Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-28T16:34:11.183Z Has data issue: false hasContentIssue false

9 - Summary

Published online by Cambridge University Press:  09 August 2009

Christopher Haslett
Affiliation:
Ofcom, UK
Get access

Summary

An attempt has been made to provide an insight into the way in which signal strength can be predicted for a variety of situations. Information has been presented with the intention of stimulating an intuitive understanding of radio wave propagation together with essential formulas that will allow rapid estimates of signal strength to be made. It is the sort of information that experienced radio-propagation engineers will carry around in their heads (with the exception of the more complicated equations). Further, detailed information will be gained from consulting more detailed books such as those recommended as further reading and the ITU recommendations (also listed). Further, a radio-propagation engineer will often have software modules available that implement the ITU recommendations and other methods for propagation prediction such as the Okumura–Hata method.

Although radio wave propagation is really a single subject, all the diverse factors that affect the strength of a received signal make a comprehensive calculation of signal strength almost impossible. As a result, radio-propagation engineers concentrate on the factors that have the most significant effect for the circumstances in hand. It is seen that the task of predicting the signal received when propagation is in free space is relatively straightforward and depends upon antenna gains, path length and frequency. The concept of antennas possessing gain, although they are passive devices, is explained: the ‘gain’ is associated with the ability of an antenna to direct the transmitted energy in the required direction and prevent the energy spreading as it travels.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Summary
  • Christopher Haslett
  • Book: Essentials of Radio Wave Propagation
  • Online publication: 09 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536762.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Summary
  • Christopher Haslett
  • Book: Essentials of Radio Wave Propagation
  • Online publication: 09 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536762.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Summary
  • Christopher Haslett
  • Book: Essentials of Radio Wave Propagation
  • Online publication: 09 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536762.010
Available formats
×