Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-28T21:09:49.324Z Has data issue: false hasContentIssue false

30 - Supernova remnant and pulsar wind nebula interactions

Published online by Cambridge University Press:  11 August 2009

R. A. Chevalier
Affiliation:
Department of Astronomy, University of Virginia, P. O. Box 3818, Charlottesville, VA, USA
Peter Höflich
Affiliation:
University of Texas, Austin
Pawan Kumar
Affiliation:
University of Texas, Austin
J. Craig Wheeler
Affiliation:
University of Texas, Austin
Get access

Summary

Abstract

I review several topics in the structure of supernova remnants. Hydro-dynamic instabilities in young remnants may give rise to the cellular structure that is sometimes observed, although structure in the ejecta might also play a role. The presence of ejecta close to the forward shock front of a young remnant can be the result of ejecta clumps or the dynamical effects of cosmic rays. Slower moving ejecta clumps can affect the outer shock structure of older remnants such as Vela. Young remnants typically show a circular structure, but often have a one-sided asymmetry; the likely reasons are an asymmetric circumstellar medium, or pulsar velocities in the case of pulsar wind nebulae. In older remnants, asymmetric pulsar wind nebulae can result from asymmetric reverse shock flows and/or pulsar velocities.

Introduction

Observations of supernova remnants frequently show complex structure that can have its origin in several ways: structure in the freely expanding ejecta, structure in the surrounding medium, and the growth of instabilities that result from the interaction of the supernova with its surroundings. If we are to infer properties of the initial explosion from the supernova remnant, consideration of these various influences is necessary. Pulsar wind nebulae (PWNe) provide an additional probe inside a supernova remnant and can lead to an asymmetry because of a pulsar velocity. Here, I review studies of these phenomena.

Instabilities in young remnants

The basic instability that results from the deceleration of the supernova ejecta by the surrounding medium is related to the Rayleigh-Taylor instability.

Type
Chapter
Information
Cosmic Explosions in Three Dimensions
Asymmetries in Supernovae and Gamma-Ray Bursts
, pp. 263 - 269
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aschenbach, B. 1998. 1998, 396, 141–142
Aschenbach, B., Egger, R., & Trumper, J. 1995. 1995, 373, 587–589
Bandiera, R. 1987. Astrophys. J., 319, 885–892CrossRef
Bandiera, R., & Bergh, S. 1991. Astrophys. J., 374, 186–201CrossRef
Blondin, J. M., & Ellison, D. C. 2001. Astrophys. J., 560, 244–253CrossRef
Blondin, J. M., Borkowski, K. J., & Reynolds, S. P. 2001. Astrophys. J., 557, 782–791CrossRef
Blondin, J. M., Chevalier, R. A., & Frierson, D. M. 2001. Astrophys. J., 563, 806–815CrossRef
Blondin, J. M., Lundqvist, P., & Chevalier, R. A. 1996. Astrophys. J., 472, 257–266CrossRef
Blondin, J. M., Mezzacappa, A., & DeMarino, C. 2003. Astrophys. J., 584, 971–980CrossRef
Bock, D. C.-J., Turtle, A. J., & Green, A. J. 1998. Astron. J., 116, 1886–1896CrossRef
Borkowski, K. J., Blondin, J. M., & Sarazin, C. L. 1992. Astrophys. J., 400, 222–237CrossRef
Carlin, J. L. & Smith, R. C. 2002. 2002, 34, 1248–1248
Chevalier, R. A., & Oishi, J., 2003. Astrophys. J., 593, L23–L26CrossRef
Chevalier, R. A., & Blondin, J. M., 1995. Astrophys. J., 444, 312–317CrossRef
Chevalier, R. A., Blondin, J. M., & Emmering, R. T., 1992. Astrophys. J., 392, 118–130CrossRef
Fesen, R. A. 2001. 2001, 133, 161–186
Hughes, J. P. 1999. Astrophys. J., 527, 298–309CrossRef
Hughes, J. P., Rakowski, C. E., Burrows, D. N., & Slane, P. O. 2000. Astrophys. J., 528, L109–L113CrossRef
Hughes, J. P., Slane, P. O., Burrows, D. N., Garmire, G., Nousek, J. A., Olbert, C. M., & Keohane, J. W. 2001. Astrophys. J., 559, L153–L156CrossRef
Kane, J., Drake, R. P., & Remington, B. A. 1999. Astrophys. J., 511, 335–340CrossRef
Kirshner, R. P., Morse, J. A., Winkler, P. F., & Blair, W. P. 1989. Astrophys. J., 342, 260–271CrossRef
Li, H., McCray, R., & Sunyaev., R. A. 1993. Astrophys. J., 419, 824–836CrossRef
Miyata, E., Tsunemi, H., Aschenbach, B., & Mori, K. 2001. Astrophys. J., 559, L45–L48CrossRef
Monnier, J. D., Tuthill, P. G., Lopez, B., Cruzalebes, P., Danchi, W. C., & Haniff, C. A. 1999. Astrophys. J., 512, 351–361CrossRef
Pavlov, G. G., Sanwal, D., Kiziltan, B., & Garmire, G. P. 2001. Astrophys. J., 559, L131–L134CrossRef
Plucinsky, P. P. 1998. 1998, 69, 939–944
Reed, J. E., Hester, J. J., Fabian, A. C., & Winkler, P. F. 1995. Astrophys. J., 440, 706–721CrossRef
Reynolds, S. P., & Chevalier, R. A. 1984. Astrophys. J., 278, 630–648CrossRef
Rudnick, L. 2002. 2002, 114, 427–449
Sankrit, R., Blair, W. P., & Raymond, J. C. 2003. Astrophys. J., 589, 242–252CrossRef
Strom, R., Johnston, H. M., Verbunt, F., & Aschenbach, B. 1995. 1995, 373, 590–591
Thorstensen, J. R., Fesen, R. A., & Bergh, S. 2001. Astron. J., 122, 297–307CrossRef
Swaluw, E., Achterberg, A., Gallant, Y. A., & Tóth, G. 2001. 2001, 380, 309–317
Wang, C. & Chevalier, R. A. 2001. Astrophys. J., 549, 1119–1134CrossRef
Wang, C. & Chevalier, R. A. 2002. Astrophys. J., 574, 155–165CrossRef
Warren, J. S., Hughes, J. P., & Slane, P. O. 2003. Astrophys. J., 583, 260–266CrossRef
Willingale, R., Bleeker, J. A. M., Heyden, K. J., & Kaastra, J. S. 2003. Astron. Astrophys., 398, 1021–1028CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×