Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-01T14:48:22.277Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  22 August 2009

Dennis M. Filler
Affiliation:
University of Alaska, Fairbanks
Ian Snape
Affiliation:
Australian Antarctic Division, Tasmania
David L. Barnes
Affiliation:
University of Alaska, Fairbanks
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggarwal, P. K., Means, J. L., and Hinchee, R. E. 1991. Formulation of nutrient solutions for in situ bioremediation. In In Situ Bioremediation, Hinchee, R. E. and Olfenbuttel, R. F. (eds.), Columbus, OH, Battelle Press, 51–66.Google Scholar
Aguirre-Puente, J. and Gruson, J. 1983. Measurement of permeabilities of frozen soils. Proc. 4th Int'l. Conf. on Permafrost, 5–9.Google Scholar
Aichberger, H., Hasinger, M., Braun, R., and Loibner, A. P. 2005. Potential of preliminary test methods to predict biodegradation performance of petroleum hydrocarbons in soil. Biodegradation 16: 115–25.CrossRefGoogle ScholarPubMed
Aiken, G. R., McKnight, D. M., Wershaw, R. L., and MacCarthy, P. 1985. An introduction to humic substances in soil, sediment, and water. In Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation, and Characterization, Aiken, G. R., McKnight, D. M., Wershaw, R. L., and MacCarthy, P. (eds.), New York, NY, Wiley-Interscience, 1–12.Google Scholar
Aislabie, J. 1997. Hydrocarbon-degrading bacteria in oil-contaminated soils near Scott Base, Antarctica. In Ecosystem Processes in Antarctica's Ice-Free Landscape. Lyons, W. B., Howard-Williams, C., and Hawes, I. (eds.), Rotterdam, Balkema Publishers Ltd., 253–8.Google Scholar
Aislabie, J. M., Balks, M. R., Foght, J. M., and Waterhouse, E. J. 2004. Hydrocarbon spills on Antarctic soils: effects and management. Environ. Sci. Technol. 38(5): 1265–74.CrossRefGoogle Scholar
Aislabie, J., Baraniecki, C., and Foght, J. M. 2002. Distribution and diversity of phenanthrene-degrading bacteria from soils of the Ross Sea region, Antarctica. Proc. 3rd Int'l. Conf. on Contaminants in Freezing Ground, Australian Antarctic Division, 103.Google Scholar
Aislabie, J., Foght, J., and Saul, D. 2000. Aromatic-hydrocarbon degrading bacteria isolated from soil near Scott Base, Antarctica. Polar Biol. 23: 183–8.CrossRefGoogle Scholar
Aislabie, J., Fraser, R., Duncan, S., and Farrell, R. L. 2001. Effects of soil spills on microbial heterotrophs in Antarctic soils. Polar Biol. 24: 308–13.CrossRefGoogle Scholar
Aislabie, J., McLeod, M., and Fraser, R. 1998. Potential of biodegradation of hydrocarbons in soil from the Ross Dependency, Antarctica. Appl. Microbiol. and BioTechnol. 49: 210–14.CrossRefGoogle Scholar
Aksenov, V. I., Klinova, G. I., and Scheikin, I. V. 1998. Material composition and strength characteristics of saline frozen soils. The 7th Int'l. Permafrost Conf., 1–4.Google Scholar
Aldrich, H. P. and Paynter, H. M. 1966. Depth of Frost Penetration in Non-uniform Soil. U.S. Army Cold Regions Research and Engineering Laboratory Special Report 104.
Alexander, M. 1999. Biodegradation and Bioremediation. San Diego, CA, Academic Press.Google Scholar
Allen-King, R. M., Barker, J. F., Gillham, R. W., and Jensen, B. K. 1994. Substrate- and nutrient-limited toluene biotransformation in sandy soil. Environ. Toxicology and Chem. 13: 693–705.CrossRefGoogle Scholar
Amann, R. I., Ludwig, W., and Schleifer, K- H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59(1): 143–69.Google Scholar
AMAP. 1998. AMAP Assessment Report: Arctic pollution issues, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway.
AMAP. 2006. Prospectus for the preparation of the Arctic Council's assessment of oil and gas activities in the Arctic (January 2006 version). Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. viewed 11 August 2006, www.amap.no/MiscTempFiles/OGAOutline-January2006.doc.
Andersland, O. B. and Ladanyi, B. 1994. An Introduction to Frozen Ground Engineering. London, Chapman & Hall.CrossRefGoogle Scholar
Andersland, O. B. and Ladanyi, B. 2004. Frozen Ground Engineering. American Society of Civil Engineers & John Wiley & Sons.Google Scholar
Andersland, O. B., Wiggert, D. C., and Davies, S. H. 1996. Hydraulic conductivity of frozen soils. J. Environ. Eng., March, 212–16.CrossRefGoogle Scholar
Anderson, D. M. and Tice, A. R. 1972. Predicting unfrozen water contents in frozen soils from surface area measurements. In Frost Action in Soils, Washington, DC, National Academy of Sciences, 12–18.Google Scholar
Arenson, L. U. and Sego, D. C. 2004. Freezing processes for a coarse sand with varying salinities. Proc. 12th Int'l. Conf. on Ground Freezing, Smith, D. W., Sego, D. C. and Lendzion, C. A. (eds.).Google Scholar
Arey, J. S., Nelson, R. K., Xu, L., and Reddy, C. M. 2005. Using comprehensive two-dimensional gas chromatography retention indices to estimate environmental partitioning properties for a complete set of diesel fuel hydrocarbons. Analytical Chem. 77: 7172–82.CrossRefGoogle ScholarPubMed
Armstrong J. E., Biggar K., Staudt W., et al. 2002. Assessment of Monitored Natural Attenuation at Upstream Oil & Gas Facilities in Alberta: Final Report. Canadian Association of Petroleum Producers, Research Report 2001-0010. Komex International Ltd., Calgary, AB, Canada.
Aronson, D., Philip, H., and Howard, P. H. 1997. Anaerobic Biodegradation of Organic Chemicals in Groundwater: A Summary of Field and Laboratory Studies. Final report prepared for American Petroleum Institute, Chemical Manufacturer's Association, National Council of the Paper Industry for Air and Stream Improvement, Edison Electric Institute, American Forest and Paper Association. Environmental Science Center, Syracuse Research Corporation, North Syracuse, New York.
Athey, P., Reeder, D., Lukin, J., McKendrick, J., and Conn, J. S. 2001. Tundra Treatment Guidelines, Alaska Department of Environmental Conservation.
Atlas, R. M. 1979. Measurement of hydrocarbon biodegradation potentials and enumeration of hydrocarbon-utilizing microorganisms using carbon-14 hydrocarbon-spiked crude oil. In Native Aquatic Bacteria: Enumeration, Activity, and Ecology, Costerton, J. W. and Colwell, R. R. (eds), Philadelphia, American Society for Testing and Materials. ATSM STP 695, 196–204.CrossRefGoogle Scholar
Atlas, R. M. 1981. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol. Rev. 45(1): 180–209.Google Scholar
Ausma, S., Edwards, G. C., Fitzgerald-Hubble, C. R.et al. 2002. Volatile hydrocarbon emissions from a diesel fuel-contaminated soil bioremediation facility. J. Air & Waste Mgmt. Assoc. 52: 769–80.CrossRefGoogle ScholarPubMed
Ausma, S., Edwards, G. C., Wong, E. K.et al. 2001. A micrometeorological technique to monitor total hydrocarbon emissions from landfarms to the atmosphere. J. Environ. Qual. 30: 776–85.CrossRef
Baedecker, M. J., Cozzarelli, I. M., Eganhouse, R. P., Siegel, D. I., and Bennett, P. C. 1993. Crude oil in a shallow sand and gravel aquifer – III. Biogeochemical reactions and mass balance modeling in anoxic groundwater. Appl. Geochem. 8: 569–58.CrossRefGoogle Scholar
Baker, G. C. and Osterkamp, T. E. 1988. Salt redistribution during laboratory freezing of saline sand columns. 5th Int'l. Symposium on Ground Freezing, 29–33.Google Scholar
Baker, J. H. 1974. The use of temperature-gradient incubator to investigate the temperature characteristics of some bacteria from Antarctic peat. British Antarct. Surv. B. 39: 49–59.Google Scholar
Balks, M. R., Holmes, D. J., and Aislabie, J. 2002. The fate and effects of hydrocarbons in Antarctic soil: preliminary results of an experimental fuel spill. In Transactions of the 17th World Congress of Soil science, Kheoruenromne, I. (ed), Bangkok, ThailandInternational Union of Soil Sciences, 320–1 to 320–9.Google Scholar
Banks, P. D. and Brown, K. M. 2002. Hydrocarbon effects on fouling assemblages: the importance of taxonomic differences, seasonal, and tidal variation. Mar. Environ. Res. 53: 311–26.CrossRefGoogle ScholarPubMed
Baraniecki, C. A., Aislabie, J., and Foght, J. M. 2002. Characterisation of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microbial Ecol. 43: 44–54.CrossRefGoogle Scholar
Barker, J. F, Patrick, G. C., and Major, D. 1987. Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer. Ground Water Monitor. Rev. 7(1): 64–7.CrossRefGoogle Scholar
Barnes, D. L. and Adhikari, H. 2006. Suprapermafrost ground water dynamics in gravel pads located in the Arctic. In Contaminants in Freezing Ground: Proc. 5th Int'l Conf., Rike, A. G.Øvstedal, J., and Vethe, O. (eds.), Oslo, Norway: Norsk Geologisk Forening, 13.Google Scholar
Barnes, D. L. and Filler, D. M. 2003. Spill evaluation of petroleum products in freezing ground. Polar Rec. 39: 385–90.CrossRefGoogle Scholar
Barnes, D. L. and Wolfe, S. M. In press. Influence of ice on the infiltration of petroleum into frozen coarse grain soil. Petroleum Sci. & Technol.Google Scholar
Barnes, D. L., Wolfe, S. M., and Filler, D. M. 2004. Equilibrium distribution of petroleum hydrocarbons in freezing ground. Polar Rec. 40: 245–51.
Barnette, M., Ziervogel, H., Das, D., Clark, J., and Hayden, K. 2005. Bioventing at a heating oil spill site in Yellowknife, Northwest Territories. Proc. '05 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) workshop, Edmonton, Canada, 207–16.Google Scholar
Bathurst, R. J., Rowe, R. K., Zeeb, B. A., and Reimer, K. J. 2006. A geocomposite barrier for hydrocarbon containment in the Arctic. Int. J. Geoeng. Case Histories 1: 18–34.Google Scholar
Batley, G. E., Burton, G. A., Chapman, P. M., and Forbes, V. E. 2002. Uncertainties in sediment quality weight-of-evidence (WOE) assessments. Hum. Ecol. Risk Assess. 8: 1517–47.CrossRefGoogle Scholar
Bazilescu, I. and Lyhus, B. 1996. Russia Oil Spill. TED Case Studies, No. 265. Washington, DC, American University, viewed 11 August 2006, www.american.edu/ted/KOMI.HTM.
Bej, A. K., Saul, D., and Aislabie, J. 2000. Cold-tolerant alkane-degrading Rhodococcos species from Antarctica. Polar Biol. 23(2): 100–5.CrossRefGoogle Scholar
Bekins, B. A., Warren, E., and Godsy, E. M. 1998. A comparison of zero-order, first-order, and Monod biotransformation models. Ground Water 36: 261–8.CrossRefGoogle Scholar
Bellona, 2006. Three times more oil spills in Komi Republic. Bellona, Oslo, viewed 11 August 2006, www.bellona.org/news/Three_times_more_oil_spills_in_Komi_Republic.
Berchet, V., Thomas, T., Cavicchioli, R., Russell, N. J., and Gounot, A. 2000. Structural analysis of the elongation factor G protein from the low-temperature-adapted bacterium Arthrobacter globiformis SI55. Extremophiles 4: 123–30.CrossRefGoogle ScholarPubMed
Berlow, E. L. 1999. Strong effects of weak interactions in ecological communities. Nature 398: 330–4.CrossRefGoogle Scholar
Biggar, K. W., Haidar, S., Nahir, M., and Jarrett, P. M. 1998. Site investigation of fuel spill migration into permafrost. J. Cold Regions Eng. 12(2): 84–104.CrossRefGoogle Scholar
Biggar, K. W. and Neufeld, J. C. R. August, 1996. Vertical migration of diesel into silty sand subject to cyclic freeze-thaw. Proc. 8th Int'l. Conf. Cold Regions Eng., Fairbanks, Alaska, 116–27.Google Scholar
Biggar, K. W., Van Stempvoort, D., Iwakun, O., Bickerton, G., and Voralek, J. 2006. Fuel contamination characterization in permafrost fractured bedrock at the Colomac mine site, NWT. In Contaminants in Freezing Ground: Proc. 5th Int'l. Conf., Rike, A. G., Øvstedal, J., and Vethe, Ø. (eds.), Oslo, Norway, Norsk Geologisk Forening, 17.Google Scholar
Billi, D., Friedmann, E. I., Hofer, K. G., Grilli-Caiola, M., and Ocampo-Friedman, R. 2000. Ionizing-radiation resistance in the desiccation-tolerant cyanobacteriumChroococcidiopsis. Appl. and Environ. Microbiol. 66: 1489–92.CrossRefGoogle ScholarPubMed
Billowits, M. E., Whyte, L.G, Ramsay, J. A., Greer, C., and Nahir, M. 1999. An evaluation of the bioremediation potential of near surface groundwater contaminated with petroleum hydrocarbons in the Yukon. Proc. '99 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) workshop, Edmonton, Canada, 91–100.Google Scholar
Bockheim, J. G. and Tarnocai, C. 1998. Nature, occurrence and origin of dry permafrost. Permafrost, 7th Int'l. Conf., Lewkowicz, A. G. and Allard, M. (eds.), Yellowknife, Canada, June 23–27, 57–63.Google Scholar
B⊘rresen, M. H., Barnes, D. L., and Rike, A. G. 2006. Repeated freeze-thaw cycles and their effects on mineralization of hexadecane and phenanthrene in cold climate soils. Proc. 5th Int'l. Conf. on Contaminants in Freezing Ground, NGF Abstracts and Proceedings of the Geological Society of Norway, No. 2, p. 23.
B⊘rresen, M., Breedveld, G. D., and Rike, A. G. 2003a. Assessment of the biodegradation potential of hydrocarbons in contaminated soil from a permafrost site. Cold Reg. Sci. Technol. 37: 137–49.CrossRefGoogle Scholar
B⊘rresen, M. and Rike, A. G. 2003b. Effect of nutrient content on biodegradation of hydrocarbons in arctic soil. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conf., Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada, May 4–6, 220–6.Google Scholar
Bowles, J. E. 1988. Foundation Analysis and Design. New York, McGraw-Hill.Google Scholar
Bowles, M. W., Bentley, L. R.et al. (2000). In situ groundwater remediation using the trench and gate system. Ground Water 38: 172–81.CrossRefGoogle Scholar
Braddock, J. F., Harduar, L. N. A., Lindstrom, J. E., and Filler, D. M. 2000. Efficacy of bioaugmentation vs. fertilization only for treatment of diesel contaminated soil at an Arctic site. Proc. 23rd Arctic and Marine Oilspill (AMOP) Technol. Seminar, Vancouver, Environment Canada, 991–1002.Google Scholar
Braddock, J. F., Lindstrom, J., Filler, D. M., and Walworth, J. 2001. Temperature and nutrient effects on bioremediation of petroleum hydrocarbons in cold soils and groundwater. Proc. ‘01 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Workshop, Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada, 161–7.Google Scholar
Braddock, J. F., Lindstrom, J. E., and Prince, R. C. 2003. Weathering of a subarctic oil spill over 25 years: the Caribou Poker Creeks Research Watershed experiment. Cold Reg. Sci. Technol. 36(1–3): 11–23.CrossRefGoogle Scholar
Braddock, J. F. and McCarthy, K. A. 1996. Hydrologic and microbiological factors affecting persistence and migration of petroleum hydrocarbons spilled in a continuous-permafrost region. Environ. Sci. Technol. 30: 2626–33.CrossRefGoogle Scholar
Braddock, J. F., Ruth, M. L., Catterall, P. H., Walworth, J. L., and McCarthy, K. A. 1997. Enhancement and inhibition of microbial activity in hydrocarbon-contaminated Arctic soils: implications for nutrient-amended bioremediation. Environ. Sci. Technol. 31(7): 2078–84.CrossRefGoogle Scholar
Braddock, J. F., Walworth, J. L., and McCarthy, K. A. 1999. Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized Arctic soils. Bioremediation J. 3(2): 105–16.CrossRefGoogle Scholar
Bradley, P. M. and Chapelle, F. H. 1995. Rapid toluene mineralization by microorganisms at Adak, Alaska: Implications for intrinsic bioremediation in cold environments. Environ. Sci. Technol. 29: 2778–81.CrossRefGoogle ScholarPubMed
Braids, O. C. and Miller, R. H. 1975. Fats, waxes, and resins in soil. In Soil Components: Volume 1, Organic Components, Gieseking, J. E. (ed.), New York, NY, Springer-Verlag, 343–68.Google Scholar
Braley, W. A. 1984. A Personal Computer Solution to the Modified Berggren Equation. Institute of Water Resources/Engineering Experiment Station-University of Alaska Fairbanks, Report No. AK-RD-85–19.
Broeze., R. J., Solomon, C. J., and Pope, D. H. 1987. Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens. J. Bacteriol. 134: 861–74.Google Scholar
Brook, T. R., Stiver, W. H., and Zytner, R. G. 1997. Effect of nitrogen sources on the biodegradation of diesel fuel in unsaturated soil. 1997 CSCE/ASCE Environ. Eng. Conf., Edmonton, Alberta, Canada, July 22–26.Google Scholar
Brook, T. R., Stiver, W. H., and Zytner, R. G. 2001. Biodegradation of diesel fuel in soil under various nitrogen addition regimes. Soil and Sediment Contam. 10: 539–53.CrossRefGoogle Scholar
Brown, E. J. and Braddock, J. F. 1990. Sheen Screen, a miniaturized most-probable-number method for enumeration of oil-degrading microorganisms. Appl. and Environ. Microbiol. 56: 3895–6.Google ScholarPubMed
Brown, K. W., Donnelly, K. C., and Deuel, J. 1983. Effects of mineral nutrients, sludge application rate, and application frequency on biodegradation of two oily sludges. Microbial Ecol. 9: 363–73.CrossRefGoogle ScholarPubMed
Brunner, W. and Focht, D. D. 1984. Deterministic three-half-order kinetic model for microbial degradation of added substrates in soil. Appl. and Environ. Microbiol. 47: 167–72.Google ScholarPubMed
Burt, T. P. and Williams, P. J. 1976. Hydraulic conductivity in frozen soils. Earth Sur. Proc. 1: 349–60CrossRefGoogle Scholar
Burton, G. A., Batley, G. E., Chapman, P. M.et al., 2002a. A weight-of-evidence framework for assessing sediment (or other) contamination: Improving certainty in the decision-making process. Hum. Ecol. Risk Assess. 8: 1675–96.CrossRefGoogle Scholar
Burton, G. A., Chapman, P. M., and Smith, E. P. 2002b. Weight-of-evidence approaches for assessing ecosystem impairment. Hum. Ecol. Risk Assess. 8: 1657–73.CrossRefGoogle Scholar
Bury, S. J. and Miller, C. A. 1993. Effect of micellar solubilization on biodegradation rates of hydrocarbons. Environ. Sci. Technol. 27: 104–10.CrossRefGoogle Scholar
Campbell, D. I., MacCulloch, R. J. L., and Campbell, I. B. 1998. Thermal regimes of some soils in the McMurdo Sound region, Antarctica. In Ecosystem Processes in Antarctic Ice-free Landscapes, Lyons, W. B., Howard-Williams, C., and Hawes, I. (eds), Rotterdam, Balkema, 45–56.Google Scholar
Carss, J. G., Agar, J. G., and Surbey, G. E. 1994. In situ bioremediation in Arctic Canada. Proc. ‘93 Bioreclamation Symposium. Boca Raton Florida, Lewis Publishers, 2(2): 323–8.Google Scholar
Cavicchioli, R., Thomas, T., and Curmi, P. M. G. 2000. Cold stress response in Archaea. Extremophiles 4: 321–31.CrossRefGoogle ScholarPubMed
CCME 1996. A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines (PN 1332). Canadian Council of Ministers of the Environment.
CCME 2001. Canada-wide Standard for Petroleum Hydrocarbons (PHC) in Soil: User Guidance. Report 10-6162. Winnipeg: Canadian Council for Ministers for the Environment.
Chablain, P. A., Philippe, G., Groboillot, A., Truffaut, N., and Guespin-Michel, J. F. 1997. Isolation of a soil psychrotrophic toluene-degrading Pseudomonas strain: influence of temperature on the growth characteristics on different substrates. Res. in Microbiol. 148: 153–61.CrossRefGoogle ScholarPubMed
Chamberlain, E. J. 1983. Frost heave of saline soils. 4th Int'l. Conf. on Permafrost, 121–6.Google Scholar
Chang, Z. Z., Weaver, R. W., and Rhykerd, R. L. 1996. Oil bioremediation in a high and a low phosphorus soil. J. Soil Contam. 5(3): 215–24.CrossRefGoogle Scholar
Chang, Z. Z., and Weaver, R. W. 1997. Nitrification and utilization of ammonium and nitrate during oil bioremediation at different soil water potential. J. Soil Contam. 6(2): 149–60.CrossRefGoogle Scholar
Chapman, P. M. 1986. Sediment quality criteria from the sediment quality triad: an example. Environ. Toxicol. Chem. 5: 957–64.CrossRefGoogle Scholar
Chapman, P. M., Ho, K. T., Munns, J.et al. 2002a. Issues in sediment toxicity and ecological risk assessment. Mar. Pollut. Bull. 44: 271–8.CrossRefGoogle Scholar
Chapman, P. M., McDonald, B. G., and Lawrence, G. S. 2002b. Weight-of-evidence issues and frameworks for sediment quality (and other) assessments. Hum. Ecol. Risk Assess. 8: 1489–515.CrossRefGoogle Scholar
Charbeneau, R., Johns, R., Lake, L., and McAdams, M. 1999. Free-Product Recovery of Petroleum Hydrocarbon Liquids. American Petroleum Institute Publication No. 4682.
Chatham, J. R. 2003. Landfarming on the Alaskan North slope – historical development and recent applications. 10th Annual Int'l. Petroleum Environ. Conf., Houston, TX, November 11–14, 2003. http://ipec.utulsa.edu/Conf2003/Papers/chatham_35.pdf.Google Scholar
Chattopadhyay, M. A. and Jagannadham, M. V. 2001. Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol. 24: 386–8.Google Scholar
Chiang, C. Y., Salanitro, J. P., Chai, E. Y., Colthart, J. D., and Klein, C. L. 1989. Aerobic biodegradation of benzene, toluene, and xylene in a sandy aquifer – Data analysis and computer modeling. Ground Water 27(6): 823–34.CrossRefGoogle Scholar
Christensen, K. E. and Shenk, C. G. 2006. Observations of fuel transport from two fuel release events on multi-year sea ice with relevance to site assessment and closure. Contaminants in Freezing Ground: Proc. 5th Int'l Conf., Rike, A. G.Øvstedal, J., and Vethe, Ø. (eds.), Oslo, Norway, Norsk Geologisk Forening, 25.Google Scholar
Chuvilin, E. M. and Miklyaeva, E. S. 2003. An experimental investigation of the influence of salinity and cryogenic structure on the dispersion of oil and oil products in frozen soils. Cold Regions Sci. Technol. 37: 89–95.CrossRefGoogle Scholar
Chuvilin, E. M., Naletova, N. S., Miklyaeva, E. C., Kozlova, E. V., and Istanes, A. 2001. Factors affecting the spreadibility and transportation of oil in regions of frozen ground. Polar Rec. 37(202): 229–38.CrossRefGoogle Scholar
Clarke, P. J. and Ward, T. J. 1994. The response of southern hemisphere saltmarsh plants and gastropods to experimental contamination by petroleum hydrocarbons. J. Exp. Mar. Biol. Ecol. 175: 43–57.CrossRefGoogle Scholar
Collins, C. M., Racine, C. H., and Walsh, M. E. 1994. The physical, chemical and biological effects of crude oil spills after 15 years on a black spruce forest, Interior Alaska. Arctic 47(2): 164–75.CrossRefGoogle Scholar
Colwell, R. R. and Walker, J. D. 1977. Ecological aspects of microbial degradation of petroleum in the marine environment. CRC Crit. Rev. Microbiol. 5: 423–45.Google Scholar
COMNAP. 2006. Antarctic Facilities in Operation. Council of Managers of National Antarctic Programs. viewed 28 August 2006, (www.comnap.aq/operations/facilities/)
Conner, J. S. 1988. Case study of soil venting. Pollution Eng. 7: 74–8.Google Scholar
Cookson, J. T. 1995. Bioremediation Engineering: Design and Application, New York, McGraw-Hill.Google Scholar
Council of the European Communities. 2004. Council Directive 75/439/EEC of 16 June 1975 on the disposal of waste oils. viewed 29 August 2006, http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31975L0439:EN:HTML
Croft, B. C., Swannell, R. P. J., Grant, A. L., and Lee, K. 1995. The effect of bioremediation agents on oil biodegradation in medium-fine sand. In Appl. Bioremediation of Petroleum Hydrocarbons, Hinchee, R. E., (ed.), Columbus, OH, Battelle Press.Google Scholar
Cross, K., Biggar, K., Semple, K., et al. 2003. Intrinsic bioremediation of invert diesel fuel contaminating groundwater in a bedrock formation. Proc. '03 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Workshop, Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada, 227–42.Google Scholar
Cunningham, J. 1993. Increased biodegradation rates of diesel fuel in soil using controlled-release nutrients. In Principles and Practices for Diesel Contaminated Soils, Volume II, Kostecki, P. T., Calabrese, E. J., and Barkan, C. P. L. (eds.), Amherst, MA, Association for the Environmental Health of Soils, 29–42.Google Scholar
Curtis, F. and Lammey, J. 1998. Intrinsic remediation of a diesel fuel plume in Goose Bay, Labrador, Canada. Environ. Poll. 103(2–3): 203–10.CrossRefGoogle Scholar
Dean, J. 1998. Extraction Methods for Environmental Analysis. New York, John Wiley and Sons.Google Scholar
DEC. 2005. 18 Alaska Administrative Code 75: Oil and Other Hazardous Substances Pollution Control. Alaska Department of Environmental Conservation.
Delille, D., Coulon, F., and Pelletier, E. 2004a. Effects of temperature warming during a bioremediation study of natural and nutrient-amended hydrocarbon-contaminated sub-Antarctic soils. Cold Reg. Sci. Technol. 40: 61–7.CrossRefGoogle Scholar
Delille, D., Coulon, F., and Pelletier, E. 2004b. Biostimulation of natural microbial assemblages in oil-amended vegetated and desert sub-Antarctic soils. Microbial Ecol. 47(4): 407–15.CrossRefGoogle Scholar
Delille, D., Delille, B., and Pelletier, E. 2002. Effectiveness of bioremediation of crude oil contaminated subantarctic intertidal sediment: The microbial response. Microbial Ecol. 44: 118–26.CrossRefGoogle ScholarPubMed
Delille, D. and Pelletier, E. 2002. Natural attenuation of diesel-oil contamination in a subantarctic soil (Crozet Island). Polar Biol. 25: 682–7.Google Scholar
Delille, D., Pelletier, E., Coulon, F., Feller, G., and Delille, B. 2006. Tools for bioremediation of sub-Antarctic soils exposed to petroleum hydrocarbons. Newsletter for the Canadian Antarctic Research Network, 21: 11–16.Google Scholar
Delille, D., Pelletier, E., Delille, B., and Coulon, F. 2003. Effect of nutrient enrichments on the bacterial assemblage of Antarctic soils contaminated by diesel or crude oil. Polar Rec. 39(211): 309–18.CrossRefGoogle Scholar
Deming, J. W. 2002. Psychrophiles and polar regions. Current Opinions in Microbiol. 5: 301–9.CrossRefGoogle ScholarPubMed
Demque, D. E., Biggar, K. W., and Heroux, J. A. 1997. Land treatment of diesel contaminated soil. Can. GeoTechnol. J. 34: 421–31.CrossRefGoogle Scholar
Denef, V. J., Park, J., Rodrigues, J. L. M.et al. 2003. Validation of a more sensitive method for using spotted oligonucleotide DNA microarrays for functional genomics on bacterial communities. Environ. Microbiol. 5: 933–43.CrossRefGoogle ScholarPubMed
Det Norske Veritas. 2003. Russia Pipeline Oil Spill Study. ESMAP Technical Paper 034-03. Joint UNDP/World Bank Energy Sector Management Assistance Programme, Norway, p. 82+app., viewed 11 August 2006, http://wbln0018.worldbank.org/esmap/site.nsf/files/034-03+Russia+Pipeline+Oil+Spill+Study+Report.pdf/$FILE/034-03+Russia+Pipeline+Oil+Spill+Study+Report.pdf
DIAND. 2002. Contaminated Sites Program Management Framework, October 2002. Department of Indian and Northern Affairs Development.
Diaz-Ravina, M., Frostegard, A., and Baath, E. 1994. Thymidine, leucine and acetate incorporation into soil bacterial assemblages at different temperatures. FEMS Microbiol. Ecol. 14: 221–32.CrossRefGoogle Scholar
Dibble, J. T. and Bartha, R. 1979. Effect of environmental parameters on the biodegradation of oil sludge. Appl. and Environ. Microbiol. 37: 729–39.Google ScholarPubMed
Dirksen, C. and Miller, R. D. 1966. Closed-system freezing of unsaturated soil. Soil Sci. Soc. of America 30: 168–73.CrossRefGoogle Scholar
DND-NTI. 1998. Agreement between Nunavut Tunngavik Incorporated and Her Majesty in the Right of Canada as represented by the Minister of National Defence for the Clean-up and Restoration of Distant Early Warning Sites within the Nunavut Settlement area. September 1998.
Dörfler, U., Haala, R., Matthies, M., and Scheunert, I. 1996. Mineralization kinetics of chemicals in soils in relation to environmental conditions. Ecotoxicol. and Environ. Safety 34: 216–22.CrossRefGoogle ScholarPubMed
Dott, W., Feidieker, D., Kampfer, P., Schleibinger, H., and Strechel, S. 1989. Comparison of autochthonous bacteria and commercially available cultures with respect to their effectiveness in fuel oil degradation. J. Indust. Microbiol. 4: 365–74.CrossRefGoogle Scholar
Dragun, J. 1988. The Soil Chemistry of Hazardous Materials. Silver Spring, MD, Hazardous Materials Control Research Institute.
Duffie, J. A. and Beckman, W. A. 1991. Solar Engineering of Thermal Processes, 2nd edn.Wiley Interscience.Google Scholar
Dunne, J. A., Williams, R. J., and Martinez, N. D. 2002a. Food-web structure and network theory: the role of connectance and size. Proc. Nat. Acad. Sci. USA99: 12917–22.
Dunne, J. A., Williams, R. J., and Martinez, N. D. 2002b. Network topology and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5: 558–67.
Durant, N. D., Jonkers, C. A. A., and Bouwer, E. J. 1997. Spatial variability in the naphthalene mineralization response to oxygen, nitrate, and orthophosphate amendments in MGP aquifer sediments. Biodegradation 8: 77–86.CrossRefGoogle Scholar
Eckford, R., Cook, F. D., Saul, D., Aislabie, J., and Foght, J. 2002. Free-living nitrogen-fixing bacteria from Antarctic soils. Appl. and Enviro. Microbiol. 68: 5181–5.CrossRefGoogle ScholarPubMed
Edwards, D. A., Andriot, M. D., Amoruso, M. A., et al. 1997. Development of fraction specific reference doses (RfDs) and reference concentrations (RfCs) for total petroleum hydrocarbons (TPH). Total Petroleum Hydrocarbon Criteria Working Group series; Volume 4, Amherst, MA, Amherst Scientific Publishers.
EEA-IMS. 2005. Progress in management of contaminated sites (CSI 015) – May 2005 Assessment. European Environment Agency – Indicator Management Service. viewed 18 August 2006, http://ims.eionet.europa.eu/IMS/ISpecs/ISpecification20041007131746/IAssessment1116497286336/view_content.
Eganhouse, R. P., Baedecker, M. J., Cozzarelli, I. M., Aiken, G. R., Thorn, K. A., and Dorsey, T. F. 1993. Crude oil in a shallow sand and gravel aquifer – II. Organic geochemistry. Appl. Geochem. 8(4): 551–67.CrossRefGoogle Scholar
EIA. 2000. Antarctica: Fact Sheet. Energy Information Administration, United States Department of Energy, viewed 13 November 2006, www.eia.doe.gov/emeu/cabs/antarctica.html.
Elliot, D. H. 1988. Antarctica – is there any oil and natural gas. Oceanus 31: 32–8.Google Scholar
El-Shinnawi, M. M., Bayoumi, N. A., Aboel-naga, S. A., and Mohammed, S. S. 1993. Changes of nitrogen forms in different arid soils during incubation at varying moisture contents. Egyptian J. Soil Sci. 33(4): 435–61.Google Scholar
EMPCA. 1994. Environmental Management and Pollution Control Act 1994. Tasmania, Australia.
Environment and Food Agency Iceland. 2002. Contaminated Soil in Iceland. Environment and Food Agency, Iceland, viewed 3 October 2006, http://english.ust.is/infobase/pollution-prevention/WasteManagementinIceland/ContaminatedsoilInIceland.
Eriksson, M., Dalhammar, G., and Mohn, W. W. 2002. Bacterial growth and biofilm production on pyrene. FEMS Microbiol. Ecol. 40: 21–7.CrossRefGoogle ScholarPubMed
Eriksson, S., Hallbeck, L., Ankner, T., Abrahamsson, K., and Sjöling, Å. 2006. Indicators of petroleum hydrocarbon biodegradation in anaerobic granitic groundwater. Geomicrobiol. J. 23(1): 45–58.CrossRefGoogle Scholar
Eriksson, M., Ka, J.-O., and Mohn, W. W. 2001. Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl. and Environ. Microbiol. 67(11): 5107–12.CrossRefGoogle ScholarPubMed
Eriksson, M., Sodersten, E., Yu, Z., Dalhammer, G., and Mohn, W. W. 2003. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from Northern soils. Appl. and Environ. Microbiol. 69: 275–84.CrossRefGoogle ScholarPubMed
Eschenbach, A., Wienberg, R., and Mahro, B. 1998. Fate and stability of nonextractable residues of [14C]PAH in contaminated soils under environmental stress conditions. Environ. Sci. Technol. 32: 2585–90.CrossRefGoogle Scholar
ESG. 1993. The Environmental Impact of the DEW Line on the Canadian Arctic. Environmental Sciences Group, Royal Military College, Kingston, Ontario, Canada.
Fan, X., Guigard, S., Foght, J.Semple, K., and Biggar, K. W. 2006. A mesocosm study of enhanced anaerobic biodegradation of petroleum hydrocarbons in groundwater from a flare pit site. Proc. 59th Canadian Geotechnical Conf., Vancouver, Canada, Paper No. 346.Google Scholar
Farouki, O. 1981. Thermal Properties of Soils. U.S. Army Cold Regions Research and Engineering Laboratory Monograph 81–1.CrossRef
Farr, A. M., Houghtalen, R. J., and McWhorter, D. B. 1990. Volume estimation of light nonaqueous phase liquids in porous media. Ground Water 28(1): 48–56.CrossRefGoogle Scholar
Fayad, N. M. and Overton, E. B. 1995. A unique biodegradation pattern of the oil spilled during the 1991 gulf war. Mar. Pollut. Bull. 30(4): 239–46.CrossRefGoogle Scholar
Ferguson, C. C. and Kasamas, H. 1999. Risk Assessment for Contaminated Sites in Europe. Policy Framework. Nottingham, LQM Press.
Ferguson, S. H., Franzmann, P. D., Revill, A. T., Snape, I., and Rayner, J. L. 2003a. The effects of nitrogen and water on mineralisation of diesel-contaminated terrestrial Antarctic sediments. Cold Reg. Sci. Technol. 37: 197–212.CrossRefGoogle Scholar
Ferguson, S. H., Franzmann, P. D., Snape, I.et al. 2003b. Effects of temperature on mineralisation of petroleum in contaminated Antarctic terrestrial sediments. Chemosphere 52(6): 975–87.CrossRefGoogle Scholar
Filler, D. F. 1997. Thermally enhanced bioventing of petroleum hydrocarbons in cold regions. Doctoral Thesis, Dept. of Civil and Environ. Eng., University of Alaska Fairbanks.
Filler, D. M. and Barnes, D. L. 2003. Technical procedures for recovery and evaluation of chemical spills on tundra. Cold Reg. Sci. Technol. 37: 121–35.CrossRefGoogle Scholar
Filler, D. M. and Carlson, R. F. 2000. Thermal insulation systems for bioremediation in cold regions. J. Cold Regions Eng. 14(3): 119–29.CrossRefGoogle Scholar
Filler, D. A., Lindstrom, J. E., Braddock, J. F., Johnson, R. A., and Nickalaski, R. 2001. Integral biopile components for successful bioremediation in the Arctic. Cold Reg. Sci. Technol. 32(2–3): 143–56.CrossRefGoogle Scholar
Filler, D. M., Reynolds, C. M., Snape, I.et al. 2006. Advances in engineered remediation for use in the Arctic and Antarctica. Polar Rec. 42: 111–20.CrossRefGoogle Scholar
Fine, P., Graber, E. R., and Yaron, B. 1997. Soil interactions with petroleum hydrocarbons: abiotic processes. Soil Technol. 10: 133–53.CrossRefGoogle Scholar
Foght, J. and Aislabie, J. 2005. Enumeration of soil microorganisms. In Soil Biology, Volume 5. Manual for Soil Analysis, Margesin, R. and Schinner, F. (eds.), Springer-Verlag, 261–80.Google Scholar
Fourie, W., Barnes, D. L., and Shur, Y. 2007. The formation of ice from the infiltration of water in frozen coarse grain soils. Cold Reg. Sci. Technol. (in press).CrossRefGoogle Scholar
Frankenberger, W. T. 1988. Use of urea as a nitrogen-fertilizer in bioreclamation of petroleum-hydrocarbons in soil. Bulletin of Environ. Contam. and Toxicol. 40(1): 66–8.CrossRefGoogle ScholarPubMed
Franzmann, P. D., Zappia, L. R., Power, T. R., Davis, G. B., and Patterson, B. M. 1999. Microbial mineralisation of benzene and characterisation of microbial biomass in soil above hydrocarbon contaminated groundwater. FEMS Microbiol. Ecol. 30, 67–76.CrossRefGoogle Scholar
Garland, D. S. 1999. Quantifying biogenic interference in petroleum contamination tests of organic soil using pyrolysis-GC/FID, MS Thesis, University of Alaska Fairbanks.Google Scholar
Garland, J. L. and Mills, A. L. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57: 2351–9.Google ScholarPubMed
Garland, D. S., White, D. M., and Woolard, C. R. 1999. Contaminant analysis in tundra by pyrolysis-GC/FID. Proc. 10th Int'l. Cold Regions Eng.: Putting Research into Practice, American Society of Civil Engineers, Reston, VA, 352–62.Google Scholar
Gavril'ev, R. I. 2004. Thermal properties of soils and surface covers. In Thermal Analysis, Construction, and Monitoring Methods for Frozen Ground, Esch, D. C. (ed.), American Society of Civil Engineers, 277–94.CrossRefGoogle Scholar
Genouw, G., Naeyer, F. D., Meenan, P. V.et al. 1994. Degradation of oil sludge by landfarming: a case study at the Ghent Harbour. Biodegradation 5: 37–46.CrossRefGoogle Scholar
Geosphere, & CH2MHILL. 2006. Three- and Four-Phase Partitioning of Petroleum Hydrocarbons and Human Health Risk Calculations Technical Background Report. Report prepared for the SOCWG.
Gibb, A., Chu, A., Wong, R. C. K., and Goodman, R. H. 2001. Bioremediation kinetics of crude oil at 5 °C. J. Environ. Eng. Sept. 818–24.CrossRefGoogle Scholar
Gill, R. A. and Robotham, P. 1989. Composition, sources, and source identification of petroleum hydrocarbons and their residues. In The Fate and Effects of Oil in Freshwater, Green, J. and Trett, M. (eds.), New York, Elsevier Appl. Science, 11–40.CrossRefGoogle Scholar
GNWT. 1998. Guideline for Contaminated Site Remediation in the NWT. Government of the Northwest Territories.
Goering, D. J. and Kumar, P. 1994. Roadway Stabilization Using Air Convection Embankments, Transportation Research Center, Report No. INE/TRC 94.01.
Goldstein, J., Pollit, N. S., and Inouye, M. 1990. Major cold shock protein of Escherichia coli. Proc. Nat'l. Academy of Sci. USA 87: 283–7.CrossRefGoogle ScholarPubMed
Goldsworthy, P. M., Canning, E. A., and Riddle, M. J. 2003. Soil and water contamination in the Larsemann Hills, East Antarctica. Polar Rec. 39: 319–37.CrossRefGoogle Scholar
Gore, D. B., Heiden, E. S., Snape, I., Nash, G., and Stevens, G. W. 2006a. Grain size of activated carbon, and untreated and modified granular clinoptilolite under freeze-thaw: applications to permeable reactive barriers. Polar Rec. 42(2): 121–6.CrossRefGoogle Scholar
Gore, D. B., Heiden, E. S., Stevens, G. W., and Snape, I. 2004. Grain size of selected permeable reactive barrier materials under freeze-thaw (+/− water and diesel). Proc. 4th Int'l. Conf. on Contaminants in Freezing Ground, Filler, D. M. and Barnes, D. L. (eds.), Fairbanks, Alaska, 30 May – 3 June, 18.Google Scholar
Gore, D. B., Revill, A. T., and Guille, D. 1999. Petroleum hydrocarbons ten years after spillage at a helipad in Bunger Hills, East Antarctica. Antarctic Sci. 11: 427–9.CrossRefGoogle Scholar
Gore, D. B., Snape, I., Rayner, J. L., Dixon, E., and Stevens, G. W. 2006b. In Hydraulics of permeable reactive barrier materials under freezing conditions, Proc. 5rd Int'l. Conf. on Contaminants in Freezing Ground Contaminants in Freezing Ground, Rike, A. G., Øvstedal, J., and Vethe, Ø. (eds.), Norsk Geologisk Forening, Oslo, Norway, p. 37.Google Scholar
Gounot, A. M. and Russell, N. J. 1999. Physiology of cold-adapted microorganisms. In Cold-Adapted Organisms, Margesin, R., and Schinner, F. (eds.), Ecology, physiology, enzymology and molecular biology, Berlin, Springer-Verlag, 33–55.CrossRefGoogle Scholar
Graham, D. W., Smith, V. H., Cleland, D. L., and Law, K. P. 1999. Effects of nitrogen and phosphorus supply on hexadecane biodegradation in soil systems. Water, Air, Soil Poll. 111: 1–18.CrossRefGoogle Scholar
Grechishchev, S.E., Chistotinov, L. V., and Shur, Y. L. 1980. Cryogenic physics-geological processes and their forecast. Moscow, “Nedra”.Google Scholar
Grechishchev, S. E., Pavlov, A. V., and Ponomarev, V. V. 1998. Phase equilibrium and kinetics of saline soil water freezing, 7th Int'l. Permafrost Conf., 351–7.Google Scholar
Grigg, B. C., Assaf, N. A., and Turco, R. F., 1997. Removal of atrazine contamination in soil and liquid systems using bioaugmentation. Pestic. Sci.50: 211–20.
Gustafson, J. B., Tell, J. G., and Orem, D. 1997. Selection of representative TPH fractions based on fate and transport considerations. In Total Petroleum Hydrocarbon Criteria Working Group series; Volume 3, Amherst, MA, Amherst Scientific Publishers.
Haines, J. R., Kadkhokayan, M., Mocsny, D. J., et al. 1994. Effect of salinity, oil type, and incubation temperature on oil degradation. In Applied BioTechnology for Site Remediation, Hinchee, R. (ed.), Boca Raton, FL, Lewis Publishers, 75–83.Google Scholar
Hallet, B. 1978. Solute redistribution in freezing ground. 3rd Int'l. Conf. on Permafrost, 86–91.Google Scholar
Hayward, S. A. L., Worland, M. R., Convey, P., and Bale, S. 2003. Temperature preferences of the mite, Alaskozetes antarcticus, and the collembolan, Cryptopygus antarcticus from the maritime Antarctic. Physiol. Entomol. 28: 114–21.CrossRefGoogle Scholar
Head, I. M., Saunders, J. R., and Pickup, R. W. 1998. Microbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial Ecol. 35: 1–21.CrossRefGoogle ScholarPubMed
Helweg, A., Fomsgaard, I. S., Reffstrup, T. K., and Sorensen, H. 1998. Degradation of mecoprop and isoproturon in soil influence on initial concentration. Int'l. J. Environ. Analytical Chem. 70: 133–48.CrossRefGoogle Scholar
Herrington, R. T., Benson, L., Downey, D., and Hansen, J. 1997. Validation of fuel hydrocarbon attenuation in low-temperature groundwater environments. Proc. In Situ and On-Site Bioremediation Symposium, Columbus, OH, Battelle Press, 4(1): 303–8.Google Scholar
Hinzman, L. D., Bettez, N. D., Bolton, W. R.et al. 2005. Evidence and implications of recent climate change in Northern Alaska and other arctic regions, Climate Change 72: 251–98.CrossRefGoogle Scholar
Horiguchi, K. and Miller, R. D. 1980. Experimental studies with frozen soil in an ‘Ice Sandwich’ permeater. Cold Reg. Sci. Technol. 3: 177–83.CrossRefGoogle Scholar
Hoyle, B.L, Scow, K. M., Fogg, G. E., and Darby, J. L. 1995. Effect of carbon: nitrogen ratio on kinetics of phenol biodegradation by Acinetobactor Johnsonii in saturated sand. Biodegradation 6: 283–93.CrossRefGoogle Scholar
Huesemann, M. H. 1994. Guidelines for land-treating petroleum hydrocarbon-contaminated soils. J. Soil Contam. 3: 299–318.CrossRefGoogle Scholar
Huesemann, M. H. and Truex, M. J. 1996. The role of oxygen diffusion in passive bioremediation of petroleum contaminated soils. J. Haz. Materials 15: 93–113.CrossRefGoogle Scholar
Hunt, P. G., Rickard, W. E., Deneke, F. J., Koutz, F. R., and Murrman, R. P. 1973. Terrestrial oil spills in Alaska: environmental effects and recovery. Proc. Joint Conf. on Prevention and Control of Oil Spills, American Petroleum Institute and United States Coast Guard, Washington D.C., March 13–15.Google Scholar
Huntjens, J. L. M., Potter, H. D., and Barendrecht, J. 1986. The degradation of oil in soil. In Contaminated Soil, Assink, J. W. and Brink, W. J. V. D. (eds.), Dordrecht, Netherlands, Marinus Nijhoff, 121–4.CrossRefGoogle Scholar
Hutchins, S. R., Sewell, G. W., Kovacs, D. A., and Smith, G. A. 1991. Biodegradation of aromatic-hydrocarbons by aquifer microorganisms under denitrifying conditions. Environ. Sci. and Technol. 25(1): 68–76.CrossRefGoogle Scholar
Jackson, R. D. 1965. Water vapor diffusion in relatively dry soil: IV. Temperature and pressure effects on sorption diffusion coefficients. Soil Sci. Soc. of America Proc. 30: 144–8.CrossRefGoogle Scholar
Jansson, S. L. and Persson, J. 1982. Mineralization and immobilization of soil nitrogen. In Nitrogen in Agricultural Soils, Stevenson, F. J. (ed.), Madison, WS, American Society of Agronomy, 229–52.Google Scholar
Jobson, A., McLaughlin, M., Cook, F. D., and Westlake, W. S. 1974. Effects of amendments on the microbial utilization of oil applied to soil. Appl. Microbiol. 27(1): 166–71.Google Scholar
Johansen, O. 1975. Thermal conductivity of soils. Ph.D. Dissertation, Norwegian Technical Univ., Trondheim; also, U.S. Army Cold Regions Research and Engineering Laboratory Transl. 637, July 1977.
Johnsen, A. R., Bendixen, K., and Karlson, U. 2002. Detection of microbial growth on polycyclic aromatic hydrocarbons in microtitre plates using the respiration indicator WST-1. Appl. and Environ. Microbiol. 68: 2683–9.CrossRefGoogle Scholar
Johnson, L. A., Sparrow, E. B., Jenkins, T. F., et al. 1980. The Fate and Effect of Crude Oil Spilled on Subarctic Permafrost Terrain in Interior Alaska, U.S. Environmental Protection Agency, Corvallis Environmental Research Laboratory, Office of Research and Development, EPA-600/3-80-040.
Johnson, P. C., Kemblowski, M. W., and Colthart, J. D. 1990. Quantitative analysis for the cleanup of hydrocarbon contaminated soils by in-situ soil venting. Ground Water 28(3): 413–29.CrossRefGoogle Scholar
Johnson, R. A. 1990. Cogeneration and diesel electric power production. The Cogeneration J. 5: 44–60.Google Scholar
Jordán, F. 2001. Strong threads and weak chains? – a graph theoretical estimation of the power of indirect effects. Community Ecol.2: 17–20.
Kade, A., Walker, D. A., and Raynolds, M. K. 2005. Plant communities and soils in cryoturbated tundra along a bioclimate gradient in the Low Arctic, Alaska. Phytocoenologia35: 761–820.
Kandror, O., DeLeon, A., and Goldberg, A. L. 2002. Trehalose synthesis is induced upon exposure of Echerichia coli to cold and is essential for viability at low temperatures. Proc. Natl. Acad. Sci. 99(15): 9727–32.CrossRefGoogle Scholar
Kane, D. L., Gieck, R. E., and Hinzman, L. D. 1990. Evapotranspiration from a small Alaskan arctic watershed. Nord. Hydrol. 21: 253–72.CrossRefGoogle Scholar
Kane, D. L. and Slaughter, C. W. 1974. Recharge of a central Alaska lake by subpermafrost groundwater. Proc. 2nd In'l. Conf. on Permafrost, Yakutsk, USSR, North American Contribution, 458–72.Google Scholar
Kennicutt, M. C. 2003. Spatial and Temporal Scales of Human Disturbance: McMurdo Station, Antarctica. Final Report. Geochemical and Environmental Research Group and Department of Geography, College of Geosciences, Texas A&M University and Marine Science Institute, The University of Texas at Austin.
Kerry, E. 1990. Microorganisms colonizing plants and soil subjected to different degrees of human activity, including petroleum contamination in the Vestfold Hills and MacRobertson Land Antarctica. Polar Biol. 10: 423–30.CrossRefGoogle Scholar
Kerry, E. 1993. Bioremediation of experimental petroleum spills on mineral soils in the Vestfold Hills, Antarctica. Polar Biol. 13: 163–70.CrossRefGoogle Scholar
Kersten, M. S. 1949. Thermal properties of soils. University of Minnesota Engineering Experiment Station Bulletin, no 28.Google Scholar
Khimenkov, A. N. and Brushkov, A. V. 2003. Oceanic cryo-lithogenesis, Moscow, “Nauka” (In Russian).Google Scholar
Kireeva, A. 2006. Murmansk Region oil-spill cleanup plan: just empty words on paper? Bellona Oslo, viewed 11 August 2006, http://bellona.no/bellona.org/english_import_area/energy/42017.
Klein, A. G., Kennicutt, M. C., Montana, P. A., et al. 2006. A long-term environmental monitoring program at McMurdo Station, Antarctica. In 2nd SCAR Open Science Conference ‘Antarctica in the Earth System’, Hobart.
Klonowski, M. R., Breedveld, G. D., and Aagaard, P. 2005. Natural gradient experiment on transport of jet fuel derived hydrocarbons in an unconfined sandy aquifer. Environ. Geol. 48(8): 1040–57.CrossRefGoogle Scholar
Kolenc, R. J., Innis, W. E., Glick, B. R., Robinson, C. W., and Mayfield, C. I. 1988. Transfer and expression of mesophilic plasmid-mediated degradative capacity in a psychrotrophic bacterium. Appl. and Environ. Microbiol. 54: 638–41.Google Scholar
Konrad, J. M. and McCammon, A. W. 1990. Solute partitioning in freezing soils. Can. GeoTechnical J. 25: 108–18.Google Scholar
Konrad, J.-M. and Seto, J. C. T. 1991. Freezing of a clayey silt contaminated with an organic solvent. J. Contam. Hydrol. 8: 335–55.CrossRefGoogle Scholar
Kudriavtsev, V. A. (ed.). 1978. General Permafrost Science (Geocryology), Moscow, Moscow State University (in Russian).Google Scholar
Kumar, G. S., Jagannadham, M. V., and Ray, M. K. 2002. Low-temperature-induced changes in composition and fluidity of lipopolysaccharides in the Antarctic psychrotrophic bacterium Pseudomonas syringae. J. Bacteriology 184: 6746–9.CrossRefGoogle ScholarPubMed
Lai, V., Biggar, K., Mullick, A., et al. 2001. Natural attenuation of 1,1,1 TCA and BTEX from a landfill in northern Alberta. Proc. '01 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Workshop, Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada, 215–25.Google Scholar
Laurie, A. D. and Lloyd-Jones, G. 2000. Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl. and Environ. Microbiol. 66: 1814–17.CrossRefGoogle ScholarPubMed
Leahy, J. G. and Colwell, R. R. 1990. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54(3): 305–15.Google ScholarPubMed
Lee, R. F. and Silva, M. 1994. Polycyclic aromatic hydrocarbon removal rates in oiled sediments treated with urea, urea-fish protein, or ammonium nitrate. In Appl. Biotechnol. for Site Remediation, Hinchee, R. E. (ed.), London, Lewis, 320–5.Google Scholar
Leeson, A., Hinchee, R. E., Kittel, J. A., and Foote, E. A. 1995. Environics TOC Task 3 Bioventing Feasibility Study, Eielson AFB site. Final report to Environmental Quality Directorate of the Armstrong Laboratory, Tyndall Air Force Base, Florida.
Lehner, C. A. 1995. Evaluation of controlled freezing to remove trapped residual NAPL. Unpublished MSc Thesis, Department of Civil and Environmental Engineering, Michigan State University.Google Scholar
Leszkiewicz, C. G. 2001. The effect of freeze-thaw temperature fluctuations on microbial metabolism of petroleum hydrocarbon contaminated Antarctic soil. Civil Engineering, University of New Hampshire, New Hampshire.Google Scholar
Lewis, D. L., Kollig, H. P., and Hodson, R. E. 1986. Nutrient limitation and adaptation of microbial populations to chemical transformations. Appl. and Environ. Microbiol. 51(3): 598–603.Google ScholarPubMed
Liebeg, E. W. and Cutright, T. J. 1999. The investigation of enhanced bioremediation through the addition of macro and micro nutrients in a PAH contaminated soil. Int'l. Biodeterioration and Biodegradation 44: 55–64.CrossRefGoogle Scholar
Lindstrom, J. E., Prince, R. C., Clark, J. C.et al. 1991. Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez Oil Spill. Appl. and Environ. Microbiol. 57: 2514–22.Google Scholar
Line, M. A. 1988. Microbial flora of some soils of Mawson Base and the Vestfold Hills, Antarctica. Polar Biol. 8: 421–7.CrossRefGoogle Scholar
Linell, K. A. 1973. Long term effects of vegetation cover on permafrost stability in an area of discontinuous permafrost. Proc. 2nd Int'l. Conf. on Permafrost, Yakutsk, USSR, North American Contribution, 688–93.Google Scholar
Long, E. R. and Chapman, P. M. 1985. A sediment quality triad: Measures of sediment contamination, toxicity and infaunal community composition in Puget Sound. Mar. Pollut. Bull. 16: 405–15.CrossRefGoogle Scholar
Lunardini, V. J. 1978. Theory of n-factors and correlation of data. Proc. 3rd Int'l. Conf. on Permafrost, Edmonton, Alberta. Ottawa: National Research Council of Can., 1: 41–6.Google Scholar
Mackay, D., Charles, M. E., and Phillips, C. R. 1974a. The Physical Aspects of Crude Oil Spills on Northern Terrain. Northern Pipelines, Task Force on Northern Oil Development, Environmental – Social Committee, Report No. 74-25.
Mackay, D., Charles, M. E., and Phillips, C. R. 1974b. The Physical Aspects of Crude Oil Spills on Northern Terrain (Second Report). Northern Pipelines, Task Force on Northern Oil Development, Environmental – Social Committee, Report No. 73-42.
Mackay, D., Charles, M. E., and Phillips, C. R. 1975. The Physical Aspects of Crude Oil Spills on Northern Terrain (Final Report). Arctic Land Use Research Program, Northern Natural Resources and Environmental Branch, Department of Indian Affairs and Northern Development, INA Publication No. QS 8060-00-EE-A1.
Mahar, L. J., Wilson, R. M., and Vinson, T. S. 1983. Physical and numerical modeling of uniaxial freezing in a saline gravel. 4th Int'l. Conf. on Permafrost, 773–8.Google Scholar
Manefield, M., Whiteley, A. S., Griffiths, R. I., and Bailey, M. J. 2002. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. and Environ. Microbiol. 68: 5367–73.CrossRefGoogle Scholar
Manilal, V. B. and Alexander, M. 1995. Factors affecting the microbial degradation of phenanthrene in soil. Appl. Microbiol. and BioTechnol. 35: 401–5.Google Scholar
Margesin, R. 2000. Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Int. Biodet. Biodegrad. 46: 3–10.CrossRefGoogle Scholar
Margesin, R., Labbe, D., Schinner, F., Greer, C. W., and Whyte, L. G. 2003. Characterization of hydrocarbon-degrading microbial population in contaminated and pristine alpine soils. Appl. and Environ. Microbiol. 69: 3085–92.CrossRefGoogle Scholar
Margesin, R. and Schinner, F. 1997a. Bioremediation of diesel-oil-contaminated alpine soils at low temperatures. Appl. Microbiol. and BioTechnol. 47: 462–8.CrossRefGoogle Scholar
Margesin, R. and Schinner, F. 1997b. Effect of temperature and oil degradation by a psychrotrophic yeast in liquid culture and in soil. FEMS Microbiol. Ecol. 24: 243–9.CrossRefGoogle Scholar
Margesin, R. and Schinner, F. 1997c. Efficiency of indigenous and inoculated cold-adapted soil microorganisms for biodegradation of diesel oil in Alpine soils. Appl. and Environ. Microbiol. 63: 2660–4.Google Scholar
Margesin, R. and Schinner, F. 1997d. Laboratory bioremediation experiments with soil from a diesel-oil contaminated site – significant role of cold-adapted microorganisms and fertilizers. J. Chem. Technol. Biotechnol. 70: 92–8.3.0.CO;2-M>CrossRefGoogle Scholar
Margesin, R. and Schinner, F. 1998. Oil biodegradation potential in alpine soils. Arctic Alpine Res. 30: 262–5.CrossRefGoogle Scholar
Margesin, R. and Schinner, F. 2001. Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an alpine glacier skiing area. Appl. and Environ. Microbiol. 67: 3127–33.CrossRefGoogle Scholar
Mariner, P. E., Jin, M., and Jackson, R. E. 1997. An algorithm for the estimation of NAPL saturation and composition from typical soil chemical analysis. Ground Water Monitor. Remed. 17: 122–9.CrossRefGoogle Scholar
Master, E. R. and Mohn, W. W. 1998. Psychrotolerant bacteria isolated from Arctic soil that degrade polychlorinated biphenyls at low temperatures. Appl. and Environ. Microbiol. 64: 4823–9.Google ScholarPubMed
McCarthy, K., Walker, L., and Vigoren, L. 2004. Subsurface fate of spilled petroleum hydrocarbons in continuous permafrost. Cold Reg. Sci. Technol. 38(1): 43–54.CrossRefGoogle Scholar
McCarthy, K., Walker, L., Vigoren, L., and Bartel, J. 2004. Remediation of spilled petroleum hydrocarbons by in situ landfarming at an arctic site. Cold Reg. Sci. Technol. 40: 31–9.CrossRefGoogle Scholar
McCauley, C. A., White, D. M., Lilly, M. R., and Nyman, D. M. 2002. A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils, Cold Reg. Sci. Technol. 34: 117–25.CrossRefGoogle Scholar
McFarland, M. J. and Sims, R. C. 1991. Thermodynamic framework for evaluating PAH degradation in the subsurface. Ground Water29(6): 885–96.CrossRefGoogle Scholar
McIntyre, C., Harvey, P. M., Ferguson, S. H.et al. 2007. Determining the extent of biodegradation of fuels using the diastereomers of the acyclic isoprenoids. Environ. Sci. Technol. 41: 2452–8.CrossRefGoogle ScholarPubMed
McNamara, N. P., Black, H. I. J., Beresford, N. A., and Parekh, N. R. 2003. Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl. Soil Ecol. 24: 117–32.CrossRefGoogle Scholar
Mercer, J. W. and Cohen, R. M. 1990. A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. J. Contam. Hydrol. 6: 107–63.CrossRefGoogle Scholar
Mesarch, W. W., Nakatsu, C. H. and Nies, L. 2000. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR. Appl. and Environ. Microbiol. 66: 678–83.CrossRefGoogle ScholarPubMed
Metcalf, & Eddy, , Inc. 1991. Wastewater Engineering: Treatment, Disposal, Reuse, 3rd edn. Boston, Massachusetts, McGraw Hill, Inc.Google Scholar
Metzger, L. O. Y., Munier-Lamy, C., Belgy, M. J.et al. 1999. A laboratory study of the mineralization and binding of 14C labelled herbicide rimsulfuron in a rendzina soil. Chemosphere 39: 1889–901.CrossRefGoogle Scholar
Meyles, C. A. and Schmidt, B. 2005. Report on Soil Protection and Remediation of Contaminated Sites in Iceland: A Preliminary Study. Environ. and Food Agency of Iceland, viewed 18 August 2006, http://english.ust.is/media/skyrslur2005/Report_about_Soil_ Protection_and_Remediation_of_Contaminated_Sites_in_Iceland.doc.Google Scholar
MFE. 2003. Contaminated Land Management, Guidelines No. 2. Ministry for the Environment, Wellington, New Zealand.
Michel, V., Lehoux, I., Depret, G.et al. 1997. The cold shock response of the psychrotrophic bacterium Pseudomonas fragi involves four low-molecular-mass nucleic acid-binding proteins. J. Bacteriol. 179(23): 7331–42.CrossRefGoogle ScholarPubMed
Mills, S. A. and Frankenberger, W. T. 1994. Evaluation of phosphorus sources promoting bioremediation of diesel fuel in soil. Bulletin of Environ. Contam. and Toxicol. 53: 280–4.CrossRefGoogle ScholarPubMed
Mitchell, I. and Friedrich, G. 2001. Multi-phase vacuum extraction at Bar-1 Komakuk Beach, Yukon Territory. Proc. '01 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Workshop, Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada, 84–97.Google Scholar
Mohn, W. W., Radziminski, C. Z., Fortin, M. C., and Reimer, K. J. 2001a. On site bioremediation of hydrocarbon-contaminated arctic tundra soils in inoculated biopiles. Appl. Microbiol. and BioTechnol. 57(1–2): 242–7.Google Scholar
Mohn, W. W., Reimer, K. J., Dalhammer, G., et al. 2001b. Bioremediation of Arctic soils contaminated by petroleum hydrocarbons. In Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates, Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada, 169–78.Google Scholar
Mohn, W. W. and Stewart, G. R. 2000. Limiting factors for hydrocarbon biodegradation at low temperature in arctic soils. Soil Biol. and Biochem. 32(8–9): 1161–72.CrossRefGoogle Scholar
Moles, A., Rice, S. D., and Norcross, B. L. 1994. Non-avoidance of hydrocarbon laden sediments by juvenile flatfishes. Neth. J. Sea Res.32: 361–7.
Moller, S., Korber, D. R., Wolfaardt, G. M., Molin, S., and Caldwell, D. E. 1997. Impact of nutrient composition on a degradative biofilm community. Appl. and Environ. Microbiol. 63: 2432–8.Google ScholarPubMed
Moore, B. J., Armstrong, J. E., Baker, J., and Hardisty, P. E. 1995. Effects of flow rate and temperature during bioventing in cold climates. In In Situ Aeration: Air Sparging, Bioventing, and Related Remediation Processes, Hinchee, R. E.et al. (eds.), Bioremediation Series, Book 3(2), 3rd Int'l. In situ and On Site Bioreclamation Symposium, Columbus, OH, Batelle Press, 307–14.Google Scholar
Morgan, P. and Watkinson, R. J. 1989. Hydrocarbon degradation in soils and methods for soil biotreatment. Critical Rev. BioTechnol. 8: 305–33.CrossRefGoogle ScholarPubMed
Morgan, P. and Watkinson, R. J. 1990. Assessment of the potential for in situ biotreatment of hydrocarbon-contaminated soils. Water Sci. and Technol. 22(6): 63–8.CrossRefGoogle Scholar
Morita, R. T. 1975. Psychrophilic bacteria. Bacteriol. Rev. 29: 144–67.Google Scholar
Mumford, K., Snape, I., Stevens, G., Rayner, J. L., and Walworth, J. L. 2006. Use of zeolite as a controlled release fertilization system for petroleum hydrocarbon remediation at low temperatures. 5th Int'l. Conf. on Contaminants in Freezing Ground, May 21–25, 2006, Oslo, Norway.Google Scholar
Nakano, Y, Tice, A., and Oliphant, J. 1984. Transport of water in frozen soil: III. Experiments on the effects of ice content. Adv. Water Res. 7 (1): 28–34.CrossRefGoogle Scholar
Nelson, F. E., Shiklimanov, N. I., Hinkel, K. M., and Christiansen, H. H. 2004. Introduction: The Cirumpolar Active Layer Monitoring (CALM) workshop and the CALM II program, Polar Geog. 28: 253–66.CrossRefGoogle Scholar
NEPC. 2005. Review of the National Environmental Protection (Assessment of Site Contamination) Measure: Issues Paper. Adelaide, National Environmental Protection Council Service Corporation.
Newman, L. and Reynolds, C. M. 2004. Phytoremediation of organics. Current Opinion in BioTechnol. 15: 225–30.CrossRefGoogle Scholar
Niemeyer, T. and Schiewer, S. 2003. Effect of temperature and nutrient supply on the bioremediation rate of diesel contaminated soil from two Alaskan sites. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates Conference (ARCSACC), Edmonton, May 4–6, 212–19.Google Scholar
NREL, National Renewable Energy Lab, Solar Radiation Resource Information, http://rredc.nrel.gov/solar/ (accessed July 2006).
Oechel, W. C. and Billings, W. D. 1992. Anticipated effects of global change on carbon balance of arctic plants and ecosystems. In Arctic Physiological Processes in a Changing Climate, ChapinIII, F. S., Jeffries, R. L., Shaver, G. R., Reynolds, J. F., and Svobada, J. (eds.), San Diego, CA, Academic Press, 139–68.Google Scholar
Oechel, W. and Vourlitis, G. 1995. Effect of global change on carbon storage in cold soils. In Soils and Global Change, Lal, R., Kimble, J., Levine, E., and Stewart, B. (eds.), New York, Lewis Publishers, 117–30.Google Scholar
Olovin, B. A. 1993. Permeability of Perennially Frozen Soils. Novosibirsk, “Nauka” (in Russian).Google Scholar
Osterkamp, T. E. and Romanovsky, V. E. 1999. Evidence for warming and thawing of discontinuous permafrost in Alaska, Permafrost Periglac. 10 (1): 17–37.3.0.CO;2-4>CrossRefGoogle Scholar
Paetz, A. and Wilke, B.-M. 2005. Soil sampling and storage. In Manual for Soil Analysis – Monitoring and Assessing Soil Bioremediation, Margesin, R. and Schinner, F. (eds), Berlin, Springer-Verlag, 1–45.Google Scholar
Panicker, G., Aislabie, J., Saul, D., and Bej, A. K. 2002. Cold tolerance of Pseudomonas sp. 30–3 isolated from oil-contaminated soil, Antarctica. Polar Biol. 25 (1): 5–11.CrossRefGoogle Scholar
Pankow, J. F. and Cherry, J. A. 1996. Dense Chlorinated Solvents and Other DNAPLs in Groundwater, Portland, Oregon, Waterloo Press.Google Scholar
Paudyn, K., Poland, J. S., Rutter, A, and Rowe, R.K. 2005. Remediation of hydrocarbon contaminated soils in the Can. arctic with landfarms. Proc. 4th Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates Conference (ARCSACC), Edmonton, Alberta, 233–9.Google Scholar
Paudyn, K., Rutter, A., Rowe, R. K., and Poland, J. S. 2006. Remediation of hydrocarbon contaminated soils in the Canadian Arctic with landfarms. In Contaminants in Freezing Ground: Proc. 5th Int'l Conf., Rike, A. G., Øvstedal, J., and Vethe, Ø. (eds.), Oslo, Norway, Norsk Geologisk Forening.
Paul, E. A. and Clark, F. E. 1996. Soil Microbiology and Biochemistry. San Diego, California, Academic Press.Google Scholar
Pawelczyk, A., Grabas, Kazimierz K., Kolwzan, Barbara B., and Steininger, M. 2003. Remediation of grounds at the former soviet military airfields contaminated by petroleum products. Proc. 2nd European Bioremediation Conf., Chania, Crete, Greece, June 30–July 4, 2003, 184–7.Google Scholar
Pelletire, F., Prévost, D., Laliberté, G., and Bochove, E. 1999. Seasonal response of denitrifiers to temperature in a Quebec cropped soil. Can. J. Soil Sci. 79: 551–6.CrossRefGoogle Scholar
Pelz, O., Chatzinotas, A., Andersen, N.et al. 2001. Use of isotopic and molecular techniques to link toluene degradation in denitrifying aquifer microcosms to specific microbial populations. Archives of Microbiol. 175: 270–81.CrossRefGoogle ScholarPubMed
PhytoPet© 2007. Phytoremediation of petroleum hydrocarbons web database developed by the University of Saskatchewan, www.phytopet.usask.ca/index.html.
Piotrowski, M. R., Aaserude, R. G., and Schmidt, F. J. 1992. Bioremediation of diesel contaminated soil and tundra in an Arctic environment. In: Contaminated Soils: Diesel Fuel Contamination, Kostecki, P. T. and Calabrese, E. J. (eds), Chelsea, MI, Lewis Publishers, 115–42.Google Scholar
Poland, J. S., Mitchell, S., and Rutter, A. 2001. Remediation of former military bases in the Canadian Arctic. Cold Regions Sci. Technol.32: 93–105.
Poland, J. S., Riddle, M. J., and Zeeb, B. A. 2003. Contaminants in the Arctic and the Antarctic: a comparison of sources, impacts, and remediation options. Polar Rec. 39: 369–84.CrossRefGoogle Scholar
Poland, J. S., Rutter, A., Rowe, K., McWatters, R., and Kalinovich, I. 2004. Design and application of a funnel and gate barrier system for PCB containment and remediation in the Canadian Arctic. Contaminants in Freezing Ground: Proceedings of the 4th International Conference, Filler, D. M. and Barnes, D. L. (eds.), Fairbanks, Alaska.Google Scholar
Pombo, S. A., Pelz, O., Schroth, M. H., and Zeyer, J. 2002. Field-scale 13C-labeling of phospholipid fatty acids (PLFA) and dissolved inorganic carbon: tracing acetate assimilation and mineralization in a petroleum hydrocarbon-contaminated aquifer. FEMS Microbiol. Ecol. 41: 259–67.CrossRefGoogle Scholar
Potter, T. and Simmons, K. E. 1998a. Composition of Petroleum Mixtures. Amherst, MA, Amherst Scientific Publishers.Google Scholar
Potter, T. and Simmons, K. E. 1998b. Analysis of Petroleum Hydrocarbons in Environmental Media. Amherst, MA, Amherst Scientific Publishers.Google Scholar
Potts, M. 1994. Desiccation tolerance of prokaryotes. Microbiol. Rev. 58: 755–805.Google ScholarPubMed
Pouliot, Y., Pokiak, C., Moreau, N., Thomassin-Lacroix, E., and Faucher, C. 2003. Soil remediation of a former tank farm site in western arctic Canada. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates Conference (ARCSACC), Edmonton, May 4–6, 262–7.Google Scholar
Poulsen, M. M. and Kueper, B. H. 1992. A field experiment to study the behavior of tetrachloroethylene in unsaturated porous media. Environ. Sci. Technol. 26(5): 889–95.CrossRefGoogle Scholar
Powell, S. M., Bowman, J. P., and Snape, I. 2004. Degradation of nonane by bacteria from Antarctic marine sediment. Polar Biol. 27: 573–8.CrossRefGoogle Scholar
Powell, S. M., Bowman, J. P., Snape, I., and Stark, J. S. 2003. Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microbiol. Ecol. 45: 135–45.CrossRefGoogle ScholarPubMed
Powell, S. M., Ferguson, S. H., Bowman, J. P., and Snape, I. 2006a. Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microbial Ecol. 52: 523–32.CrossRefGoogle Scholar
Powell, S. M., Ferguson, S. H., Snape, I., and Siciliano, S. D. 2006b. Fertilization stimulates anaerobic fuel degradation of Antarctic soils by denitrifying microorganisms. Environ. Sci. Technol. 40 (6): 2011–17.CrossRefGoogle Scholar
Powell, S. M., Harvey, P. M., Stark, J. S., Snape, I., and Riddle, M. J. 2007. Biodegradation of petroleum products in experimental plots in Antarctic marine sediments is location dependent. Mar. Pollut. Bull. 54: 434–40.CrossRefGoogle ScholarPubMed
Powell, S. M., Snape, I., Bowman, J. P.et al. 2005. A comparison of the short term effect of diesel fuel and lubricant oils on Antarctic benthic microbial communities. J. Exp. Mar. Biol. Ecol. 322: 53–65.CrossRefGoogle Scholar
Prince, R. C., Owens, E. H., and Sergy, G. A. 2002. Weathering of an Arctic oil spill over 20 years: the BIOS experiment revisited. Mar. Pollut. Bull. 44 (11): 1236–42.CrossRefGoogle ScholarPubMed
Pritchard, P. H. and Costa, C. F. 1991. EPA's Alaska oil spill bioremediation project. Environ. Sci. Technol. 25: 372–9.CrossRefGoogle Scholar
Pruthi, V. and Cameotra, S. S. 1997. Production and properties of a biosurfactant synthesized by Arthrobacter protophormiae – an Antarctic strain. World J. Microbiol. and BioTechnol. 13: 137–9.CrossRefGoogle Scholar
Purkamo, L., Salminen, J., and J⊘rgensen, K. 2004. Diversity of bacteria and archaea in petroleum hydrocarbon contaminated subsurface samples from Southern Finland. Paper (in English) in publication by Finland's environmental administration: Maaperänsuojelu, Geologian tutkimuskeskuksen ja, Suomen ympäristökeskuksen, tutkimusseminaari 5.11.2004 (J. Seppälä, H. Idman, eds.), Ympäristönsuojelu Suomenympäristö 726, 40–6.
Rasiah, V., Voroney, R. P., and Kachanoski, R. G. 1991. Effect of N-amendment on C-mineralisation of an oily waste. Water, Air Soil Poll. 59 (3–4): 249–59.CrossRefGoogle Scholar
Rasiah, V., Voroney, R. P., and Kachanoski, R. G. 1992. Biodegradation of an oily waste as influenced by nitrogen forms and sources. Water, Air Soil Poll. 65 (1–2): 143–51.CrossRefGoogle Scholar
Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N., and Chandler, R. E. 1983. Model for bacterial culture growth rate though out the entire biokinetic temperature range. J. Bacteriology 154: 1222–6.Google Scholar
Ratkowsky, D. A., Olley, J., McMeekin, T. A., and Ball, A. 1982. Relationship between temperature and growth rate of bacterial cultures. J. Bacteriology 149: 1–5.Google ScholarPubMed
Rayner, J. L., Snape, I., Walworth, J. L., Harvey, P. M., and Ferguson, S. H. 2007. Petroleum-hydrocarbon contamination and remediation by microbioventing at sub-Antarctic Macquarie Island. Cold Reg. Sci. Technol. 48: 139–53.
Reardon, K. F., Mosteller, D. C., and Rogers, J. D. B. 2000. Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. BioTechnol. and Bioeng. 69: 385–400.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Redfield, A. C., Ketchum, B. H., and Richards, F. A. 1963. The influence of organisms on the composition of seawater. In The Sea, Hill, M. N. (ed.), New York, Wiley, 26–77.Google Scholar
Reimer, K. J., Colden, M., Francis, P.et al. 2003. Cold climate bioremediation – a comparison of various approaches. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates Conference (ARCSACC), Edmonton, May 4–6, 290–300.Google Scholar
Reimer, K. J., Zeeb, B. A., Koch, I.et al. 2005. A critical review of bioremediation. Proceedings of 4th Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates Conference (ARCSACC), Edmonton, May, 195–232.Google Scholar
Reinuk, I. T. 1959. Condensation in the active layer of permafrost. Magadan, VNIIzoloto. (in Russian).
Revill, A. T., Snape, I., Jucieer, A., and Guille, D. 2007. Constraints on transport and weathering of petroleum hydrocarbons at Casey Station, Antarctica. Cold Reg. Sci. Technol. 48: 154–67.CrossRefGoogle Scholar
Reynolds, C. M. 1993. Field measured bioremediation rates in a cold region landfarm: spatial variability relationships. In Hydrocarbon Contaminated Soils, Kostecki, P. T. and Calabrese, E. J. (eds.), Chelsea, MI, Lewis Publishers, 487–99.Google Scholar
Reynolds, C. M. 2004a. Cyclic temperature effects on soil microbial activity and possible impacts on remediating contaminated soil. Proc. 4th Int'l. Contaminants in Freezing Ground Conf., Filler, D. M. and Barnes, D. L. (eds.), Fairbanks, Alaska.Google Scholar
Reynolds, C. M. 2004b. Technology Demonstration Final Report – Field Demonstration of Rhizosphere-Enhanced Treatment of Organics-Contaminated Soils on Native American Lands with Application to Northern FUD Sites. ESTCP Final Report. CRREL LR-04-18. www.crrel.usace.army.mil/techput/CRREL_Reports/reports/LR-04-18.pdf
Reynolds, C. M., Braley, W. A., Travis, M. D., Perry, L. B., and Iskandar, I. K. 1998. Bioremediation of Hydrocarbon-Contaminated Soils and Groundwater in Northern Climates. CRREL Special Report 98–5.
Reynolds, C. M., Travis, M., Braley, W. A., and Scholze, R. J. 1994. Applying field expedient bioreactors and landfarming in cold climates. In Hydrocarbon Bioremediation, Hinchee, R., Miller, R. N., and Hoeppel, R. E. (eds.), Chelsea, MI, Lewis Publishers, 100–6.Google Scholar
Rhodes, M., Wardell-Johnson, G. W., Rhodes, M. P., and Raymond, B. 2006. Applying network theory to the conservation of habitat tress in urban environments: a case study from Brisbane, Australia. Conserv. Biol.20: 861–70.
Rhykerd, R. L., Weaver, R. W., and McInnes, K. J. 1995. Influence of salinity on bioremediation of oil in soil. Environ. Pollution 90: 127–30.CrossRefGoogle ScholarPubMed
Richmond, S. A., Lindstrom, J. E., and Braddock, J. F. 2001. Assessment of natural attenuation of chlorinated aliphatics and BTEX in subarctic groundwater. Environ. Sci. Technol. 35 (20): 4038–45.CrossRefGoogle ScholarPubMed
Rike, A. G., B⊘rresen, M., and Instances, A. 2002. Response of cold-adapted microbial populations in a permafrost profile to hydrocarbon contaminants. Polar Rec. 37 (202): 239–48.CrossRefGoogle Scholar
Rike, A. G., Haugen, K. B., B⊘rresen, M., Engene, B., and Kolstad, P. 2003a. In situ biodegradation of petroleum hydrocarbons in frozen arctic soils. Cold Reg. Sci. Technol. 37 (2): 97–120.CrossRefGoogle Scholar
Rike, A. G., Haugen, K. B., B⊘rresen, M., Kolstad, P., and Engene, B. 2003b. In-situ monitoring of hydrocarbon biodegradation in the winter months at Longyearbyen, Spitsbergen. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds.), St. Joseph's Print Group, Edmonton, May 4–6, 268–78.Google Scholar
Rike, A. G., Haugen, K. B., and Engene, B. 2005. In situ biodegradation of hydrocarbons in arctic soil at sub-zero temperatures – field monitoring and theoretical simulation of the microbial activation temperature at a Spitsbergen contaminated site. Cold Reg. Sci. Technol. 41: 189–209.CrossRefGoogle Scholar
Riser-Roberts, E. 1998. Remediation of Petroleum Contaminated Soils: Biological, Physical, and Chemical Processes, Boca Raton, Lewis Publishers.CrossRefGoogle Scholar
Ristinen, R. and Kraushaar, J. 1999. Energy and Problems of a Technical Society, New York, John Wiley and Sons.Google Scholar
Rivkina, E. M., Friedmann, E. I., McKay, C. P., and Gilichinsky, D. A. 2000. Metabolic activity of permafrost bacteria below the freezing point. Appl. and Environ. Microbiol. 66 (8): 3230–3.CrossRefGoogle ScholarPubMed
Rosenberg, E. 1992. Hydrocarbon-oxidising bacteria (Chapter 19). In The Procaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. 2nd Edition, Balows, A.et al. (eds.), New York, Springer-Verlag, 446–59.Google Scholar
Rothwell, D. R. and Davis, R. 1997. Antarctic Environmental Protection: A Collection of Australian and International Instruments NSW, The Federation Press.
Roura, R. 2004. Monitoring and remediation of hydrocarbon contamination at the former site of Greenpeace's World Park Base, Cape Evans, Ross Island, Antarctica. Polar Rec.40: 51–67.
Rowsell, S. 2003. A decision tree for selecting bioremediation in cold climates. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds), St. Joseph's Print Group, Edmonton, May 4–6, 183–96.Google Scholar
Ruberto, L., Vazquez, S. C., and MacCormack, W. P. 2003. Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. Int'l. Biodeterioration & Biodegradation 52: 115–25.CrossRefGoogle Scholar
Russell, N. J. 1990. Cold adaptation of microorganisms. Phil. Trans. R. Soc. Lond. B 326: 595–611.CrossRefGoogle ScholarPubMed
Russell, N. J. 2000. Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4: 83–90.CrossRefGoogle Scholar
Russell, N. J. 2002. Bacterial membranes: the effects of chill storage and food processing. An overview. Int'l. J. Food Microbiol. 79: 27–34.CrossRefGoogle ScholarPubMed
Ryden, B. E. and Kostov, L. 1977. Ground water and the water-frost cycle in a tundra mire, Striae 4: 17–19.Google Scholar
Salanitro, J. P. 1993. The role of bioattenuation in the management of aromatic hydrocarbon plumes in aquifers. Ground Water Monitor. & Remed. 13: 150–61.CrossRefGoogle Scholar
Salminen, J. M., Tuomi, P. M., Suortti, A.-M., and J⊘rgensen, K. S. 2004. Potential for aerobic and anaerobic biodegradation of petroleum hydrocarbons in boreal subsurface. Biodegradation 15: 29–39.CrossRefGoogle ScholarPubMed
Sandvik, S., Lode, A., and Pedersen, T. A. 1986. Biodegradation of oily sludge in Norwegian soils. Appl. Microbiol. and BioTechnol. 23: 297–301.CrossRefGoogle Scholar
Saul, D. J., Aislabie, J., Brown, C. E., Harris, L., and Foght, J. M. 2005. Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMs Microbiol. Ecol. 53: 141–55.CrossRefGoogle ScholarPubMed
Schafer, A. N., Snape, I., and Siciliano, S. D. 2007. Soil biogeochemical toxicity endpoints for sub-Antarctic Islands contaminated with petroleum hydrocarbons. Environ. Toxicol. Chem. 26: 890–7.CrossRefGoogle Scholar
Schiewer, S. and Niemeyer, T. 2006. Soil heating and optimized nutrient addition for accelerating bioremediation in cold climates. Polar Rec. 42 (1): 23–31.CrossRefGoogle Scholar
Schinder-Keel, U., Lejb⊘lle, Bang K., Baehler, E., Haas, D., and Keel, C. 2001. The sigma factor AlgU (AlgT) controls exopolysaccharide production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHA0. Appl. and Environ. Microbiol. 67: 5683–93.CrossRefGoogle Scholar
Schmidtke, T., White, D., and Woolard, C. 1999. Oxygen release kinetics from solid phase oxygen in Arctic Alaska. J. Haz. Mat'ls. B64: 157–65.CrossRefGoogle Scholar
Schnitzer, M. 1991. Soil organic matter – the next 75 years. Soil Sci. 151: 41–58.CrossRefGoogle Scholar
Schofield, R. K. 1935. The pH of the water in soil. Proc. 3rd Int'l. Congress on Soil Sci. 2: 37–48; 3: 182–6.Google Scholar
Scow, K. M. 1982. Rate of biodegradation. In Handbook of Chemical Property Estimation Methods, Environmental Behavior of Organic Compounds, Lyman, W. J., Reehl, W. F., and Rosenblatt, D. H. (eds.), New York, McGraw-Hill, Chapter 16.Google Scholar
Scow, K. M., Simkins, S., and Alexander, M. 1986. Kinetics of mineralisation of organic compounds at low concentrations in soils. Appl. and Environ. Microbiol. 51: 1028–35.Google Scholar
Semple, K. T., Morris, A. W. J., and Paton, G. I. 2003. Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. European J. Soil Sci. 54: 809–18.CrossRefGoogle Scholar
SERDP. 2005. Final report. SERDP and ESTCP Expert Panel Workshop on Research and Development Needs for the Environmental Remediation Application of Molecular Biological Tools.http://docs.serdp-estcp.org/viewfile.cfm?Doc=SedimentsFinalReport.pdf.
Sexstone, A. J. and Atlas, R. M. 1977. Response of microbial populations in Arctic tundra soils to crude oil. Can. J. of Microbiol. 23: 1327–33.CrossRefGoogle ScholarPubMed
Seyfried, M. S. and Murdock, M. D. 1997. Use of air permeability to estimate infiltrability of frozen soils, J. of Hydrol. 202: 95–107.CrossRefGoogle Scholar
SFT. 1999. Guidelines for the Risk Assessment of Contaminated Sites, Report 99:06. Oslo, Norway, Norwegian Pollution Control Authority.
Shapley, D. 1974. Antarctica – world hunger for oil spurs Security Council review. Science 184: 776–81.CrossRefGoogle ScholarPubMed
Shields, D., Janzen, P., McCartney, D., and Man, A. 1997. In situ bioremediation in a sub-Arctic climate. Proc. '97 In Situ and On-Site Bioremediation Symposium, Columbus, OH, Battelle Press, 4(1): 319.Google Scholar
Shur, Y. L. 1988a. Upper Permafrost Horizon and Thermokarst. Novosibirsk, “Nauka”.Google Scholar
Shur, Y. L. 1988b. The upper horizon of permafrost soil. Proc. 5th Int'l. Permafrost Conf., Trondheim, Norway, 867–71.Google Scholar
Shur, Y. L., Hinkel, K. M., and Nelson, F. E. 2005. The transient layer: Implications for geocryology and climate-change science, Permafrost Periglac. 16: 5–17.CrossRefGoogle Scholar
Shur, Y. L. and Ping, C. L. 1994. Permafrost dynamics and soil formation. Proc. of the Meeting on the Classification, Correlation, and Management of Permafrost-Affected Soils, Soil Conservation Service, Lincoln, Nebraska, 112–17.Google Scholar
Sierra, J. and Renault, P. 1995. Oxygen consumption by soil microorganisms as affected by oxygen and carbon dioxide levels. Appl. Soil Ecol. 2: 175–84.CrossRefGoogle Scholar
Sims, J. L., Sims, R. C., and Matthews, J. E. 1989. Bioremediation of Contaminated Surface Soils. U.S. Environmental Protection Agency, EPA/600/9–89/073, Washington, D.C.
Smith, E. P., Lipkovich, I., and Ye, K. Y. 2002. Weight-of-evidence (WOE): Quantitative estimation of probability of impairment for individual and multiple lines of evidence. Hum. Ecol. Risk Assess.8: 1585–96.
Smith, M. W. and Burn, C. R. 1987. Outward flux of vapour from frozen soils at Mayo, Yukon, Canada: results and interpretation. Cold Reg. Sci. Technol. 13: 143–54.CrossRefGoogle Scholar
Snape, I., Ferguson, S. H., Harvey, P. M., and Riddle, M. J. 2006a. Investigation of evaporation and biodegradation of fuel spills in Antarctica: II – Extent of natural attenuation at Casey Station. Chemosphere 63: 89–98.CrossRefGoogle Scholar
Snape, I., Ferguson, S., and Revill, A. 2003. Constraints of rates of natural attenuation and in situ bioremediation of petroleum spills in Antarctica. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds.), St. Joseph's Print Group, Edmonton, May 4–6, 257–61.Google Scholar
Snape, I., Gore, D. B., Cole, C. M., and Riddle, M. J. 2002. Contaminant dispersal and mitigation at Casey Station: an example of how applied geoscience research can reduce environmental risks in Antarctica. Royal Soc. of New Zealand Bulletin 35: 641–8.Google Scholar
Snape, I., Harvey, P. M., Ferguson, S. H., Rayner, J. L., and Revill, A. T. 2005. Investigation of evaporation and biodegradation of fuel spills in Antarctica: I – a chemical approach using GC-FID. Chemosphere 61: 1485–94.CrossRefGoogle ScholarPubMed
Snape, I., Morris, C.E, and Cole, C. M. 2001. The use of permeable reactive barriers to control contaminant dispersal during site remediation in Antarctica. Cold Reg. Sci. Technol. 32: 157–74.CrossRefGoogle Scholar
Snape, I., Riddle, M. J., Gore, D. G., and Cole, C. M. 1998. Interim Report on the Contaminated Sites of the ‘Old’ Casey Tip and Abandoned Wilkes Station. A report to the Environmental Management Section, Australian Antarctic Division, Hobart, Australia.
Snape, I., Riddle, M. J., Stark, J. S., Cole, C. M., King, C. K., Duquesne, S., and Gore, D. B. 2001. Management and remediation of contaminated sites at Casey Station, Antarctica. Polar Rec. 37: 199–214.CrossRefGoogle Scholar
Snape, I., Siciliano, S., Schafer, A., Rayner, J. L., and Riddle, M. J. 2006b. Development of fuel spill remediation guidelines for Antarctica. 2nd SCAR Open Science Conference ‘Antarctica in the Earth System’, Hobart, 143.
Snape, I., Siciliano, S., Schafer, A., et al. 2006c. Development of petroleum remediation guidelines for polar regions. Contaminants in Freezing Ground: Proc. 5th Int'l. Conf., Rike, A. G., Øvstedal, J., and Vethe, Ø. (eds.), Oslo, Norway, Norsk Geologisk Forening, 87.Google Scholar
Soehnlen, G. 1991. Cleansing Contaminated, Granular Soils by Controlled Freezing, Masters Report, Michigan State University.
Solé, R. V. and Montoya, J. M. 2001. Complexity and fragility in ecological networks. Proc. Roy. Soc.268: 2039–45.
Soloway, D. A., Nahir, M., Billowits, M. E., and Whyte, L. G. 2001. In situ bioremediation of diesel-contaminated soil in Canada's Arctic territory: A case study at the Whitehorse International Airport, Yukon Territory. Polar Rec. 37 (202): 267–72.CrossRefGoogle Scholar
Stallwood, B., Shears, J., Williams, P. A., and Hughes, K. A. 2005. Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp from maritime Antarctica. J. of Appl. Microbiol. 99: 794–802.CrossRefGoogle ScholarPubMed
Stark, S. C., Gardner, D., Snape, I., and Mclvor, E. 2003. Assessment of contamination by heavy metals and petroleum hydrocarbons at Atlas Cove Station, Heard Island. Polar Rec. 39: 397–414.CrossRefGoogle Scholar
Starr, R. C. and Cherry, J. A. 1994. In situ remediation of contaminated ground water: the funnel and gate system. Ground Water 32: 465–76.CrossRefGoogle Scholar
Stevenson, F. J. 1985. Geochemistry of soil humic substances. In Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation, and Characterization, Aiken, G. R., McKnight, D. M., Wershaw, R. L., and MacCarthy, P. (eds.), New York, Wiley-Interscience, 13–52.Google Scholar
Stevenson, F. J. and Cole, M. A. 1999. The nitrogen cycle in soil: Global and ecological aspects. In Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients, New York, Wiley, 139–90.Google Scholar
Stow, J. P., Sova, J., and Reimer, K. J. 2005. The relative influence of distant and local (DEW-line) PCB sources in the Canadian Arctic. Sci. Total Environ.342: 107–18.
Stumm, W. and Morgan, J. J. 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd Edn, New York, John Wiley & Sons.Google Scholar
Suarez, M. P. and Rifai, H. S. 1999. Biodegradation rates for fuel hydrocarbons and chlorinated solvents in groundwater. Bioremed. J. 3(4): 337–62.CrossRefGoogle Scholar
Swedish EPA. 2002. Environmental quality criteria for contaminated sites. Swedish Environmental Protection Agency, viewed 21 December 2006, www.internat.naturvardsverket.se/index.php3?main=/documents/legal/assess/assedoc/cont.htm.
Thieringer, H. A., Jones, P. G., and Inouye, M. 1998. Cold shock and adaptation. BioEssays 20: 49–57.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Thomas, H., Jensen, D., and Authier, B. 1995. Remediation of crude-oil-contaminated soils beneath a containment liner. Proc. Geophysical Environmental 2000, Reston, VA American Society of Civil Engineers, 52–8.Google Scholar
Thomassin-Lacroix, E. J. M., Eriksson, M., Reimer, K. J., and Mohn, W. W. 2002. Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil. Appl. Microbiol. Biotechnol. 59: 551–6.Google ScholarPubMed
Thomassin-Lacroix, E. J. M., Yu, Z.., Reimer, K., and Mohn, W. W. 2001. DNA-based and culture-based characterization of a hydrocarbon-degrading consortium enriched from Arctic soil. Can. J. of Microbiol. 47: 1107–15.CrossRefGoogle ScholarPubMed
Thompson, B. A. W., Davies, N. W., Goldsworthy, P. M.et al. 2006. In situ lubricant degradation in Antarctic marine sediments. 1. Short-term changes. Environ. Toxicol. Chem. 25: 356–66.CrossRefGoogle ScholarPubMed
Tice, A. R., Anderson, D. M., and Banin, A. 1976. The Prediction of Unfrozen Water Contents in Frozen Soils from Liquid Limit Determinations. U.S. Army Cold Regions Research and Engineering Laboratory Report CRREL 76–8.Google Scholar
Tisdale, S. L., Nelson, W. L., Beaton, J. D., and Havlin, J. L. 1993. Soil Fertility and Fertilizers, New York, MacMillan.Google Scholar
Tishin, M. I. 1983. Thermal regime formation under large lakes in Central Yakutia. In Thermal Physics Studies in Siberia Ktyolitozone, Pavlov, A. (ed.), Novosibirsk “Nauka”, 127–35 (in Russian).Google Scholar
Tolstikhin, N. I. and Tolstikhin, O. N. 1973. Underground and surface water of the permafrost region. In General Permafrost Science, Mel'nikov, P. I. and Tostikhin, N. I. (eds.), Novosibirsk, “Nauka”, 192–229 (in Russian).Google Scholar
Torsvik, V. and Øvreås, L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinions in Microbiol. 5: 240–5.CrossRefGoogle ScholarPubMed
TPHCWG. 1998a. Analysis of Petroleum Hydrocarbons in Environmental Media. Total Petroleum Hydrocarbon Criteria Working Group series; Volume 1. Amherst, MA, Amherst Scientific Publishers.
TPHCWG. 1998b. Characterisation of C6 to C35 Petroleum Hydrocarbons in Environmental Samples. Total Petroleum Hydrocarbon Criteria Working Group series. Amherst, MA, Amherst Scientific Publishers.
Trefry, M. G. and Franzmann, P. D. 2003. An extended kinetic model accounting for non-ideal microbial substrate mineralisation in environmental samples. Geomicrobiol. J. 20: 113–29.CrossRefGoogle Scholar
Ulrich, A. C., Biggar, K. W., Armstrong, J.et al. 2006. Impact of cold temperatures on biodegradation rates. Proc. Sea to Sky Geotechnique 2006, 59th Canadian Geotech. Conf., and 7th Joint CGS/IAH-CNC Groundwater Specialty Conf., Vancouver, Canada, paper no. 484.Google Scholar
UNEP-WCMC. 1994. Russian Arctic Oil Pipeline Spill. United Nations Environment Programme / World Conservation Monitoring Centre, Cambridge, UK, viewed 28 August 2006, www.unep=wcmc.org/latenews/emergency/usinsk_pipeline_1994/usinsk.htm.
United States Environmental Protection Agency. 1995. How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: A Guide for Corrective Action Plan Reviewers. U.S. Environmental Protection Agency, EPA 510-B-95-007. Washington, DC.
USEPA. 1996. Soil Screening Guidance: Technical Background Document. Second Edition. Publication 9355.4-17A. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, DC.
UST. 2005. Contaminated Soil in Iceland. Environment and Food Agency of Iceland (UST), viewed 28 November 2006, http://english.ust.is/infobase/pollution-prevention/WasteManagementinIceland/Contaminatedsoillniceland/nr/3064.
UST. 2006. Waste Management in Iceland. Environment and Food Agency of Iceland (UST).
van Everdingen, R. O. 1974. Groundwater in permafrost regions of Canada. Proc. of Permafrost Hydrology workshop, Can. National Committee for the International Hydrologic Decade, Ottawa, 83–93.
Loon, W. K. P., Haneghem, I. A., and Boshoven, H. P. A. 1988. Thermal and hydraulic conductivity of unsaturated sands. 5th Int'l. Symposium on Ground Freezing, 81–90.Google Scholar
Stempvoort, D. R., Armstrong, J., and Mayer, B. 2002. Bacterial sulfate reduction in biodegradation of hydrocarbons in low-temperature, high-sulfate groundwater, Western Canada. Proc. '02 Petroleum Hydrocarbons Conf. and Organic Chemicals in Ground Water: Prevention, Detection, and Remediation, Westerville, OH, National Ground Water Association (ed.), 244–59.Google Scholar
Stempvoort, D., Armstrong., J., and Mayer, B. 2007a. Microbial reduction of sulfate injected to gas condensate plumes in cold groundwater. J. Contam. Hydrol. (in press).Google Scholar
Van Stempvoort, D., Armstrong., J., and Mayer, B. 2007b. Seasonal recharge and replenishment of sulfate associated with biodegradation of a hydrocarbon plume, Ground Water Monitor. Remed. (in press).
Stempvoort, D. R., Bickerton, G., Lesage, S., and Millar, K. 2004. Cold-climate, in situ biodegradation of petroleum fuel in ground water, Moose Factory, Ontario, Canada. Proc. '04 Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Assessment, and Remediation Conf., National Ground Water Association (ed.), Westerville, OH, 131–8.Google Scholar
Stempvoort, D. and Biggar, K. W. 2007. Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: A review. Cold Reg. Sci. Technol. (in press).Google Scholar
Van Stempvoort, D., Biggar, K. W., Iwakun, O., Bickerton, G., and Voralek, J. 2006. Characterization of Fuel Spill Plumes in Fractured Rock at a Permafrost Site: Colomac Mine, NWT. 2005/2006 Program Progress Report, April 2006, National Water Research Institute and University of Alberta.
Stempvoort, D., Maathuis, H., Jaworski, E., Mayer, B., and Rich, K. 2005. Oxidation of fugitive methane in ground water linked to bacterial sulfate reduction. Ground Water 43(2): 187–99.CrossRefGoogle Scholar
Venosa, D. V., Haines, J. R., and Allen, D. M. 1992. Efficacy of commercial inocula in enhancing biodegradation of weathered crude oil contaminating a Prince William Sound beach. J. Ind. Microbiol. 10: 1–11.CrossRefGoogle Scholar
Vidali, M. 2001. Bioremediation. An overview. Pure and Appl. Chem. 73(7): 1163–72.CrossRefGoogle Scholar
Vigil, M. F. and Kissel, D. E. 1991. Equations for estimating the amount of nitrogen mineralized from crop residues. J. Soil Sci. Soc. of America 55: 757–61.CrossRefGoogle Scholar
Virginia, R. A. and Wall, D. H. 1999. How soils structure communities in the Antarctic dry valleys. Bioscience 49: 973–83.CrossRefGoogle Scholar
Vorhees, D. J., Weisman, W. H., and Gustafson, J. B. 1999. Human Health Risk-Based Evaluation of Petroleum Release Sites: Implementing the Working Group Approach. Total Petroleum Hydrocarbon Criteria Working Group series; Volume 5. Amherst, MA, Amherst Scientific Publishers.
Waksman, S. A. 1924. Influence of microorganisms upon the carbon-nitrogen ratio in the soil. J. Agricultural Sci. 14: 555–62.CrossRefGoogle Scholar
Wall, D. H. and Virginia, R. A. 1999. Controls on soil biodiversity: insights from extreme environments. Appl. Soil Ecol. 13: 137–50.CrossRefGoogle Scholar
Walworth, J., Braddock, J., and Woolard, C. 2001. Nutrient and temperature interactions in bioremediation of cryic soils. Cold Reg. Sci. Technol. 32: 85–91.CrossRefGoogle Scholar
Walworth, J., Pond, A., Snape, I., Rayner, J. L., and Harvey, P. M. 2007. Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil. Cold Reg. Sci. Technol. (in press).CrossRefGoogle Scholar
Walworth, J. L. and Reynolds, C. M. 1995. Bioremediation of a petroleum contaminated soil: Effects of phosphorus, nitrogen and temperature. J. Soil Contam. 4(3): 299–310.CrossRefGoogle Scholar
Walworth, J. L., Woolard, C. R., Acomb, L., and Wallace, M. 1999. Nutrient and temperature interactions in bioremediation of petroleum-contaminated cryic soils. In-Situ and On-Site Bioremediation 5(3): 505–10.Google Scholar
Walworth, J. L., Woolard, C. R., and Braddock, J. F. 1999. Nitrogen management in bioremediation. Soil and Groundwater Cleanup Feb/March: 12–15.Google Scholar
Walworth, J. L., Woolard, C. R., Braddock, J. F., and Reynolds, C. M. 1997a. Enhancement and inhibition of soil petroleum biodegradation through the use of fertilizer nitrogen: An approach to determining optimum levels. J. Soil Contam. 6(5): 465–80.CrossRefGoogle Scholar
Walworth, J. L., Woolard, C. R., and Harris, K. C. 1997b. Bioremediation of petroleum-contaminated soil using fish bonemeal in cold climates. AgroBorealis 29: 31–4.Google Scholar
Walworth, J. L., Woolard, C. R., and Harris, K. C. 2003. Nutrient amendments for contaminated peri-glacial soils: Use of cod bone meal as a controlled release nutrient source. Cold Reg. Sci. Technol. 43: 1–8.Google Scholar
Wang, Z., Fingas, M., Blenkinsopp, S.et al. 1998. Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J. Chromatography A 809: 89–107.CrossRefGoogle ScholarPubMed
Wang, Z. D. and Fingas, M. 2003. Fate and identification of spilled oils and petroleum products in the environment by GC-MS and GC-FID. Energ. Sources 25: 491–508.CrossRefGoogle Scholar
Wang, Z. D., Yang, C., Fingas, M.et al. 2005. Characterization, weathering, and application of sesquiterpanes to source identification of spilled lighter petroleum products. Environ. Sci. Technol. 39: 8700–7.CrossRefGoogle ScholarPubMed
Wartena, E. G. and Evenset, A. 1997. Effects of the Komi oil spill 1994 in the Nenets Okrug. Oil Components and Other Contaminants in Sediments and Fish from the Pechora River. 1995. Report APN514.789.1. Akvaplan-niva, Tromso.
Watanabe, K. and Hamamura, N. 2003. Molecular and physiological approaches to understanding the ecology of pollutant degradation. Current Opinion in Biotechnol. 14: 289–95.CrossRefGoogle ScholarPubMed
Waterhouse, E. J. and Roper-Gee, R. 2002. From dig and ship to watch and wait? Fuel spill management in the New Zealand Antarctic programme. 3rd Contaminants in Freezing Ground. Snape, I. and Warren, R. (eds.), Hobart, Australian Antarctic Division.Google Scholar
Watson, S. W., Bock, E., Harms, H., Koops, H. P., and Hooper, A. B. 1989. Nitrifying bacteria. In Bergey's Manual of Systematic Bacteriology, Staley, J. T.et al. (eds.), Baltinpre, MD, William and Wilkins, 1808–43.Google Scholar
Watts, J. R., Corey, J. C., and McLeod, K. W. 1982. Land application studies of industrial waste oils. Environ. Pollution 28: 165–75.CrossRefGoogle Scholar
Westervelt, W. W., Lawson, P. W., Wallace, M. N., and Fosbrook, C. 1997. Intrinsic remediation of arctic diesel fuel near drinking water wells. Proc. '97 In Situ and On-Site Bioreremediation Symposium, Columbus, OH Battelle Press, 4(1):61–6.Google Scholar
Westlake, D. W. S., Jobson, A. M., and Cook, F. D. 1977. In situ degradation of oil in a soil of the boreal region of the Northwest Territories. Can. J. Microbiol. 24: 254–60.CrossRefGoogle Scholar
Westlake, D. W. S., Jobson, A., Phillippe, R., and Cook, F. D. 1973. Biodegradability and crude oil composition. Can. J. Microbiol. 20: 915–28.CrossRefGoogle Scholar
White, D. M. 1995. Bioremediation of crude oil in the active layer overlying Alaska's North Slope Permafrost, Ph.D. Dissertation, Univ. of Notre Dame.
White, D. M., Collins, C. M., Barnes, D., and Byard, H. 2004. Effects of a crude oil spill on permafrost after 24 years in interior Alaska. Proc. Cold Regions Engineering and Construction Conf., American Society of Civil Engineers, Edmonton, May 16–19.Google Scholar
White, D. M., Garland, D. S., Beyer, L., and Yoshikawa, K. 2004. Pyrolysis-GC/MS fingerprinting of environmental samples. J. Analytical and Appl. Pyrolysis 71: 107–18.CrossRefGoogle Scholar
White, D. M. and Irvine, R. L. 1996. The bituminous material in Arctic peat: implications for analyses of petroleum contamination. J. Haz. Mat'ls. 49: 81–196.Google Scholar
White, D. M. and Irvine, R. L. 1998a. Analysis of bioremediation in organic soils. In: Bioremediation: Principles and Practice, Volume 1, Fundamentals and Applications, Sikdar, S. K. and Irvine, R. L. (eds.), Lancaster, PA, Technomic Publishing, 185–221.Google Scholar
White, D. M. and Irvine, R. L. 1998b. Potential applications for pyrolysis-GC/MS in bioremediation. Environ. Monitoring and Assessment 50: 53–65.CrossRefGoogle Scholar
White, D. M., Luong, H., and Irvine, R. L. 1998. Pyrolysis-GC/MS analysis of contaminated soils in Alaska. J. Cold Regions Eng. 12: 1–10.CrossRefGoogle Scholar
White, T. L. and Williams, P. J. 1994. Cryogenic alteration of frost-susceptible soils. Proc. 7th Int'l. Symposium on Freezing Ground, Nancy, France, 17–24.
White, T. L. and Williams, P. J. 1996. The role of microstructure – geotechnical properties of freezing soils. Proc. 5th Int'l. Symposium on Thermal Eng. and Sci. for Cold Regions, Ottawa, Canada, 415–26.Google Scholar
Whyte, L. G., Bourbonnière, L., Bellerose, C., and Greer, C. W. 1999a. Bioremediation assessment of hydrocarbon-contaminated soils from high arctic. Bioremediation J. 3(1): 69–79.CrossRefGoogle Scholar
Whyte, L. G., Bourbonnière, L., and Greer, C. W. 1997. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl. and Environ. Microbiol. 63: 3719–23.Google ScholarPubMed
Whyte, L. G., Bourbonnière, L., Roy, R., and Greer, C. W. 1998. Bioremediation Assessment of Whitehorse Airport Contaminated Aquifer. Phase 1 – Final Report prepared for: Public Works and Government Services Canada. Environmental Microbiology, NRC – Biotechnology Research Institute, Montreal, Quebec, Canada.
Whyte, L. G., Goalen, B., Labbé, D., Greer, C. W., and Nahir, M. 2001. Bioremediation treatability assessment of hydrocarbon-contaminated soils from Eureka, Nunavut. Cold Reg. Sci. Technol. 32(2–3): 121–32.CrossRefGoogle Scholar
Whyte, L. G., Greer, C. W., and Inniss, W. E. 1996. Assessment of the biodegradation potential of psychrotrophic microorganisms. Can. J. Microbiol. 42: 99–106.CrossRefGoogle ScholarPubMed
Whyte, L. G., Hawari, J., Zhou, E.et al. 1998. Biodegradation of variable chain length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl. and Environ. Microbiol. 64: 2578–84.Google ScholarPubMed
Whyte, L. G. and Innis, W. E. 1992. Cold shock proteins and cold acclimation proteins in a psychrotrophic bacterium. Can. J. Microbiol. 38: 1281–5.CrossRefGoogle Scholar
Whyte, L. G., Labbé, D., Goalen, B., et al. 2003. In-situ bioremediation of hydrocarbon contaminated soils in the high arctic. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds), St. Joseph's Print Group, Edmonton, May 4–6, 245–56.Google Scholar
Whyte, L. G., Schultz, A., Beilen, J. B.et al. 2002a. Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol. Ecol. 41: 141–50.Google Scholar
Whyte, L. G., Slagman, S. J., Pietrantonio, F.et al. 1999b. Physiological adaptations involved in alkane assimilation at low temperatures by Rhodococcus sp. Strain Q15. Appl. and Environ. Microbiol. 65: 2961–8.Google Scholar
Whyte, L. G., Smits, T. M. H., Labbe, D.et al. 2002b. Gene cloning and characterization of multiple alkane hydroxylases in Rhodococcus sp. strains Q15 and NRRL B-16531. Appl. and Environ. Microbiol. 68: 5933–42.CrossRefGoogle Scholar
Wiggert, D. C., Andersland, O. B., and Davies, S. H. 1997. Movement of liquid contaminants in partially saturated frozen granular soils. Cold Reg. Sci. Technol. 25: 111–17.CrossRefGoogle Scholar
Williams, P. J. 1968. Unfrozen Water Content of Frozen Soils and Soil Moisture Suction. Division of Building Research National Research Council of Canada, Research Paper no. 359: 11–26.
Wilson, B. H., Bledsoe, B. E., Kampbell, D. H.et al. 1986. Biological fate of hydrocarbons at an aviation gasoline spill site. Proc. Conf. on Petroleum Hydrocarbons and Organic Chemicals in Ground Water, National Water Well Association (ed.), Columbus, OH, 78–90.Google Scholar
Wilson, J. L., Conrad, S. H., Mason, W. R., Peplinski, W., and Hagan, E. 1990. Laboratory Investigation of Residual Liquid Organics From Spills, Leaks, and the Disposal of Hazardous Wastes. Robert S. Kerr Environmental Research Laboratory Office of Research and Development, U.S. EPA, EPA/600/6-90/004.
Wilson, J., Rowsell, S., Chu, A., MacDonald, A, and Hetman, R. 2003. Biotreatability and pilot scale study for remediation of arctic diesel at 10 C. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds), St. Joseph's Print Group, Edmonton, May 4–6, 279–89.Google Scholar
Wingrove, T. 1997. Diesel contamination remediation at a remote site in a cold climate. Practice Periodical of Haz., Toxic, and Radioactive Waste Mgm't. 1(1): 30–4.CrossRefGoogle Scholar
Woinarski, A. Z., Snape, I., Stevens, G. W., and Morris, C. E. 2002. Development of a natural zeolite permeable reactive barrier for the treatment of contaminated water in Antarctica. Proc. 3rd Int'l. Conf. on Contaminants in Freezing Ground, Snape, I., and Warren, R. (eds.), Hobart, Australia, 14–18 April, 87–8.Google Scholar
Woinarski, A. Z., Snape, I., Stevens, G. W., and Stark, S. C. 2003. The effects of cold temperature on copper ion exchange by natural zeolite for use in a permeable reactive barrier in Antarctica. Cold Reg. Sci. Technol. 37(2): 159–68.CrossRefGoogle Scholar
Woinarski, A. Z., Stevens, G. W., and Snape, I. 2006. A natural zeolite permeable reactive barrier to treat heavy-metal contaminated waters in Antarctica: kinetic and fixed-bed studies. IChemE 84 (B2): 109–16.Google Scholar
Wong, R. C. K., Chu, A., Ng, R., and Duchscherer, T. M. 2003. An experimental study of biodegradation kinetics for distillated fractions of Alberta crude oil at 5 °C and 20 °C. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds), St. Joseph's Print Group, Edmonton, May 4–6, 197–203.Google Scholar
Wood, J. A. and Williams, P. J. 1985. Further experimental investigation of regelation flow with an ice sandwich permeater. In Freezing and Thawing of Soil-water Systems, Anderson, D. M. and Williams, P. J. (eds.), Technical Council on Cold Regions Engineering Monograph, New York, American Society of Civil Engineers, 85–94.Google Scholar
Woolard, C. R., Walworth, J. L., and White, D. M. 2000. Contaminated soil bioremediation in cold climates: nutrient management strategies to enhance hydrocarbon biodegradation rates. ISCORD 2000, Proc. 6th Int'l. Symposium on Cold Region Development, Hobart, Tasmania, Australia, 48–51.
Woolard, C. R., White, D. M., Walworth, J. L., and Hannah, M. E. 1999a. The magnitude and variability of biogenic interference in cold regions soils. J. Cold Regions Eng. 13(3): 113–21.CrossRefGoogle Scholar
Wrenn, B. A., Haines, J. R., Venosa, A. D., Kadkhodayan, M., and Suidan, M. T. 1994. Effects of nitrogen source on crude oil biodegradation. J. Ind. Microbiol. 13: 279–86.CrossRefGoogle Scholar
Yakimov, M. M., Giuliano, L., Bruni, V., Scarfi, S., and Golyshin, P. N. 1999. Characterization of Antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. Microbiologica 22: 249–56.Google ScholarPubMed
Yen, Y. C., Cheng, K. C., and Fukusako, S. 1991. Review of intrinsic thermophysical properties of snow, ice, sea ice, and frost. Proc. 3rd Int'l. Symposium on Cold Regions Heat Transfer, 187–218.Google Scholar
Yu, Z., Stewart, G. R., and Mohn, W. W. 2000. Apparent contradiction: psychrotolerant bacteria from hydrocarbon-contaminated Arctic tundra soils that degrade diterpenoids synthesized by trees. Appl. and Environ. Microbiol. 66: 5148–54.CrossRefGoogle ScholarPubMed
Zarling, J. P. and Braley, W. A. 1988. Geotechnical thermal analysis. In Embarkment Design and Construction in Cold Regions: Technical Council on Cold Regions Engineering Monograph, Reston, VA, American Society of Civil Engineers, 35–44.Google Scholar
Zhou, J. 2003. Microarrays for bacterial detection and microbial community analysis. Current Opinion in Microbiol. 6: 288–94.CrossRefGoogle ScholarPubMed
Zhou, E. and Crawford, R. L. 1995. Effects of oxygen, nitrogen, and temperature on gasoline biodegradation in soil. Biodegradation 6: 127–40.CrossRefGoogle ScholarPubMed
Aggarwal, P. K., Means, J. L., and Hinchee, R. E. 1991. Formulation of nutrient solutions for in situ bioremediation. In In Situ Bioremediation, Hinchee, R. E. and Olfenbuttel, R. F. (eds.), Columbus, OH, Battelle Press, 51–66.Google Scholar
Aguirre-Puente, J. and Gruson, J. 1983. Measurement of permeabilities of frozen soils. Proc. 4th Int'l. Conf. on Permafrost, 5–9.Google Scholar
Aichberger, H., Hasinger, M., Braun, R., and Loibner, A. P. 2005. Potential of preliminary test methods to predict biodegradation performance of petroleum hydrocarbons in soil. Biodegradation 16: 115–25.CrossRefGoogle ScholarPubMed
Aiken, G. R., McKnight, D. M., Wershaw, R. L., and MacCarthy, P. 1985. An introduction to humic substances in soil, sediment, and water. In Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation, and Characterization, Aiken, G. R., McKnight, D. M., Wershaw, R. L., and MacCarthy, P. (eds.), New York, NY, Wiley-Interscience, 1–12.Google Scholar
Aislabie, J. 1997. Hydrocarbon-degrading bacteria in oil-contaminated soils near Scott Base, Antarctica. In Ecosystem Processes in Antarctica's Ice-Free Landscape. Lyons, W. B., Howard-Williams, C., and Hawes, I. (eds.), Rotterdam, Balkema Publishers Ltd., 253–8.Google Scholar
Aislabie, J. M., Balks, M. R., Foght, J. M., and Waterhouse, E. J. 2004. Hydrocarbon spills on Antarctic soils: effects and management. Environ. Sci. Technol. 38(5): 1265–74.CrossRefGoogle Scholar
Aislabie, J., Baraniecki, C., and Foght, J. M. 2002. Distribution and diversity of phenanthrene-degrading bacteria from soils of the Ross Sea region, Antarctica. Proc. 3rd Int'l. Conf. on Contaminants in Freezing Ground, Australian Antarctic Division, 103.Google Scholar
Aislabie, J., Foght, J., and Saul, D. 2000. Aromatic-hydrocarbon degrading bacteria isolated from soil near Scott Base, Antarctica. Polar Biol. 23: 183–8.CrossRefGoogle Scholar
Aislabie, J., Fraser, R., Duncan, S., and Farrell, R. L. 2001. Effects of soil spills on microbial heterotrophs in Antarctic soils. Polar Biol. 24: 308–13.CrossRefGoogle Scholar
Aislabie, J., McLeod, M., and Fraser, R. 1998. Potential of biodegradation of hydrocarbons in soil from the Ross Dependency, Antarctica. Appl. Microbiol. and BioTechnol. 49: 210–14.CrossRefGoogle Scholar
Aksenov, V. I., Klinova, G. I., and Scheikin, I. V. 1998. Material composition and strength characteristics of saline frozen soils. The 7th Int'l. Permafrost Conf., 1–4.Google Scholar
Aldrich, H. P. and Paynter, H. M. 1966. Depth of Frost Penetration in Non-uniform Soil. U.S. Army Cold Regions Research and Engineering Laboratory Special Report 104.
Alexander, M. 1999. Biodegradation and Bioremediation. San Diego, CA, Academic Press.Google Scholar
Allen-King, R. M., Barker, J. F., Gillham, R. W., and Jensen, B. K. 1994. Substrate- and nutrient-limited toluene biotransformation in sandy soil. Environ. Toxicology and Chem. 13: 693–705.CrossRefGoogle Scholar
Amann, R. I., Ludwig, W., and Schleifer, K- H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59(1): 143–69.Google Scholar
AMAP. 1998. AMAP Assessment Report: Arctic pollution issues, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway.
AMAP. 2006. Prospectus for the preparation of the Arctic Council's assessment of oil and gas activities in the Arctic (January 2006 version). Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. viewed 11 August 2006, www.amap.no/MiscTempFiles/OGAOutline-January2006.doc.
Andersland, O. B. and Ladanyi, B. 1994. An Introduction to Frozen Ground Engineering. London, Chapman & Hall.CrossRefGoogle Scholar
Andersland, O. B. and Ladanyi, B. 2004. Frozen Ground Engineering. American Society of Civil Engineers & John Wiley & Sons.Google Scholar
Andersland, O. B., Wiggert, D. C., and Davies, S. H. 1996. Hydraulic conductivity of frozen soils. J. Environ. Eng., March, 212–16.CrossRefGoogle Scholar
Anderson, D. M. and Tice, A. R. 1972. Predicting unfrozen water contents in frozen soils from surface area measurements. In Frost Action in Soils, Washington, DC, National Academy of Sciences, 12–18.Google Scholar
Arenson, L. U. and Sego, D. C. 2004. Freezing processes for a coarse sand with varying salinities. Proc. 12th Int'l. Conf. on Ground Freezing, Smith, D. W., Sego, D. C. and Lendzion, C. A. (eds.).Google Scholar
Arey, J. S., Nelson, R. K., Xu, L., and Reddy, C. M. 2005. Using comprehensive two-dimensional gas chromatography retention indices to estimate environmental partitioning properties for a complete set of diesel fuel hydrocarbons. Analytical Chem. 77: 7172–82.CrossRefGoogle ScholarPubMed
Armstrong J. E., Biggar K., Staudt W., et al. 2002. Assessment of Monitored Natural Attenuation at Upstream Oil & Gas Facilities in Alberta: Final Report. Canadian Association of Petroleum Producers, Research Report 2001-0010. Komex International Ltd., Calgary, AB, Canada.
Aronson, D., Philip, H., and Howard, P. H. 1997. Anaerobic Biodegradation of Organic Chemicals in Groundwater: A Summary of Field and Laboratory Studies. Final report prepared for American Petroleum Institute, Chemical Manufacturer's Association, National Council of the Paper Industry for Air and Stream Improvement, Edison Electric Institute, American Forest and Paper Association. Environmental Science Center, Syracuse Research Corporation, North Syracuse, New York.
Athey, P., Reeder, D., Lukin, J., McKendrick, J., and Conn, J. S. 2001. Tundra Treatment Guidelines, Alaska Department of Environmental Conservation.
Atlas, R. M. 1979. Measurement of hydrocarbon biodegradation potentials and enumeration of hydrocarbon-utilizing microorganisms using carbon-14 hydrocarbon-spiked crude oil. In Native Aquatic Bacteria: Enumeration, Activity, and Ecology, Costerton, J. W. and Colwell, R. R. (eds), Philadelphia, American Society for Testing and Materials. ATSM STP 695, 196–204.CrossRefGoogle Scholar
Atlas, R. M. 1981. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol. Rev. 45(1): 180–209.Google Scholar
Ausma, S., Edwards, G. C., Fitzgerald-Hubble, C. R.et al. 2002. Volatile hydrocarbon emissions from a diesel fuel-contaminated soil bioremediation facility. J. Air & Waste Mgmt. Assoc. 52: 769–80.CrossRefGoogle ScholarPubMed
Ausma, S., Edwards, G. C., Wong, E. K.et al. 2001. A micrometeorological technique to monitor total hydrocarbon emissions from landfarms to the atmosphere. J. Environ. Qual. 30: 776–85.CrossRef
Baedecker, M. J., Cozzarelli, I. M., Eganhouse, R. P., Siegel, D. I., and Bennett, P. C. 1993. Crude oil in a shallow sand and gravel aquifer – III. Biogeochemical reactions and mass balance modeling in anoxic groundwater. Appl. Geochem. 8: 569–58.CrossRefGoogle Scholar
Baker, G. C. and Osterkamp, T. E. 1988. Salt redistribution during laboratory freezing of saline sand columns. 5th Int'l. Symposium on Ground Freezing, 29–33.Google Scholar
Baker, J. H. 1974. The use of temperature-gradient incubator to investigate the temperature characteristics of some bacteria from Antarctic peat. British Antarct. Surv. B. 39: 49–59.Google Scholar
Balks, M. R., Holmes, D. J., and Aislabie, J. 2002. The fate and effects of hydrocarbons in Antarctic soil: preliminary results of an experimental fuel spill. In Transactions of the 17th World Congress of Soil science, Kheoruenromne, I. (ed), Bangkok, ThailandInternational Union of Soil Sciences, 320–1 to 320–9.Google Scholar
Banks, P. D. and Brown, K. M. 2002. Hydrocarbon effects on fouling assemblages: the importance of taxonomic differences, seasonal, and tidal variation. Mar. Environ. Res. 53: 311–26.CrossRefGoogle ScholarPubMed
Baraniecki, C. A., Aislabie, J., and Foght, J. M. 2002. Characterisation of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microbial Ecol. 43: 44–54.CrossRefGoogle Scholar
Barker, J. F, Patrick, G. C., and Major, D. 1987. Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer. Ground Water Monitor. Rev. 7(1): 64–7.CrossRefGoogle Scholar
Barnes, D. L. and Adhikari, H. 2006. Suprapermafrost ground water dynamics in gravel pads located in the Arctic. In Contaminants in Freezing Ground: Proc. 5th Int'l Conf., Rike, A. G.Øvstedal, J., and Vethe, O. (eds.), Oslo, Norway: Norsk Geologisk Forening, 13.Google Scholar
Barnes, D. L. and Filler, D. M. 2003. Spill evaluation of petroleum products in freezing ground. Polar Rec. 39: 385–90.CrossRefGoogle Scholar
Barnes, D. L. and Wolfe, S. M. In press. Influence of ice on the infiltration of petroleum into frozen coarse grain soil. Petroleum Sci. & Technol.Google Scholar
Barnes, D. L., Wolfe, S. M., and Filler, D. M. 2004. Equilibrium distribution of petroleum hydrocarbons in freezing ground. Polar Rec. 40: 245–51.
Barnette, M., Ziervogel, H., Das, D., Clark, J., and Hayden, K. 2005. Bioventing at a heating oil spill site in Yellowknife, Northwest Territories. Proc. '05 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) workshop, Edmonton, Canada, 207–16.Google Scholar
Bathurst, R. J., Rowe, R. K., Zeeb, B. A., and Reimer, K. J. 2006. A geocomposite barrier for hydrocarbon containment in the Arctic. Int. J. Geoeng. Case Histories 1: 18–34.Google Scholar
Batley, G. E., Burton, G. A., Chapman, P. M., and Forbes, V. E. 2002. Uncertainties in sediment quality weight-of-evidence (WOE) assessments. Hum. Ecol. Risk Assess. 8: 1517–47.CrossRefGoogle Scholar
Bazilescu, I. and Lyhus, B. 1996. Russia Oil Spill. TED Case Studies, No. 265. Washington, DC, American University, viewed 11 August 2006, www.american.edu/ted/KOMI.HTM.
Bej, A. K., Saul, D., and Aislabie, J. 2000. Cold-tolerant alkane-degrading Rhodococcos species from Antarctica. Polar Biol. 23(2): 100–5.CrossRefGoogle Scholar
Bekins, B. A., Warren, E., and Godsy, E. M. 1998. A comparison of zero-order, first-order, and Monod biotransformation models. Ground Water 36: 261–8.CrossRefGoogle Scholar
Bellona, 2006. Three times more oil spills in Komi Republic. Bellona, Oslo, viewed 11 August 2006, www.bellona.org/news/Three_times_more_oil_spills_in_Komi_Republic.
Berchet, V., Thomas, T., Cavicchioli, R., Russell, N. J., and Gounot, A. 2000. Structural analysis of the elongation factor G protein from the low-temperature-adapted bacterium Arthrobacter globiformis SI55. Extremophiles 4: 123–30.CrossRefGoogle ScholarPubMed
Berlow, E. L. 1999. Strong effects of weak interactions in ecological communities. Nature 398: 330–4.CrossRefGoogle Scholar
Biggar, K. W., Haidar, S., Nahir, M., and Jarrett, P. M. 1998. Site investigation of fuel spill migration into permafrost. J. Cold Regions Eng. 12(2): 84–104.CrossRefGoogle Scholar
Biggar, K. W. and Neufeld, J. C. R. August, 1996. Vertical migration of diesel into silty sand subject to cyclic freeze-thaw. Proc. 8th Int'l. Conf. Cold Regions Eng., Fairbanks, Alaska, 116–27.Google Scholar
Biggar, K. W., Van Stempvoort, D., Iwakun, O., Bickerton, G., and Voralek, J. 2006. Fuel contamination characterization in permafrost fractured bedrock at the Colomac mine site, NWT. In Contaminants in Freezing Ground: Proc. 5th Int'l. Conf., Rike, A. G., Øvstedal, J., and Vethe, Ø. (eds.), Oslo, Norway, Norsk Geologisk Forening, 17.Google Scholar
Billi, D., Friedmann, E. I., Hofer, K. G., Grilli-Caiola, M., and Ocampo-Friedman, R. 2000. Ionizing-radiation resistance in the desiccation-tolerant cyanobacteriumChroococcidiopsis. Appl. and Environ. Microbiol. 66: 1489–92.CrossRefGoogle ScholarPubMed
Billowits, M. E., Whyte, L.G, Ramsay, J. A., Greer, C., and Nahir, M. 1999. An evaluation of the bioremediation potential of near surface groundwater contaminated with petroleum hydrocarbons in the Yukon. Proc. '99 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) workshop, Edmonton, Canada, 91–100.Google Scholar
Bockheim, J. G. and Tarnocai, C. 1998. Nature, occurrence and origin of dry permafrost. Permafrost, 7th Int'l. Conf., Lewkowicz, A. G. and Allard, M. (eds.), Yellowknife, Canada, June 23–27, 57–63.Google Scholar
B⊘rresen, M. H., Barnes, D. L., and Rike, A. G. 2006. Repeated freeze-thaw cycles and their effects on mineralization of hexadecane and phenanthrene in cold climate soils. Proc. 5th Int'l. Conf. on Contaminants in Freezing Ground, NGF Abstracts and Proceedings of the Geological Society of Norway, No. 2, p. 23.
B⊘rresen, M., Breedveld, G. D., and Rike, A. G. 2003a. Assessment of the biodegradation potential of hydrocarbons in contaminated soil from a permafrost site. Cold Reg. Sci. Technol. 37: 137–49.CrossRefGoogle Scholar
B⊘rresen, M. and Rike, A. G. 2003b. Effect of nutrient content on biodegradation of hydrocarbons in arctic soil. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conf., Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada, May 4–6, 220–6.Google Scholar
Bowles, J. E. 1988. Foundation Analysis and Design. New York, McGraw-Hill.Google Scholar
Bowles, M. W., Bentley, L. R.et al. (2000). In situ groundwater remediation using the trench and gate system. Ground Water 38: 172–81.CrossRefGoogle Scholar
Braddock, J. F., Harduar, L. N. A., Lindstrom, J. E., and Filler, D. M. 2000. Efficacy of bioaugmentation vs. fertilization only for treatment of diesel contaminated soil at an Arctic site. Proc. 23rd Arctic and Marine Oilspill (AMOP) Technol. Seminar, Vancouver, Environment Canada, 991–1002.Google Scholar
Braddock, J. F., Lindstrom, J., Filler, D. M., and Walworth, J. 2001. Temperature and nutrient effects on bioremediation of petroleum hydrocarbons in cold soils and groundwater. Proc. ‘01 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Workshop, Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada, 161–7.Google Scholar
Braddock, J. F., Lindstrom, J. E., and Prince, R. C. 2003. Weathering of a subarctic oil spill over 25 years: the Caribou Poker Creeks Research Watershed experiment. Cold Reg. Sci. Technol. 36(1–3): 11–23.CrossRefGoogle Scholar
Braddock, J. F. and McCarthy, K. A. 1996. Hydrologic and microbiological factors affecting persistence and migration of petroleum hydrocarbons spilled in a continuous-permafrost region. Environ. Sci. Technol. 30: 2626–33.CrossRefGoogle Scholar
Braddock, J. F., Ruth, M. L., Catterall, P. H., Walworth, J. L., and McCarthy, K. A. 1997. Enhancement and inhibition of microbial activity in hydrocarbon-contaminated Arctic soils: implications for nutrient-amended bioremediation. Environ. Sci. Technol. 31(7): 2078–84.CrossRefGoogle Scholar
Braddock, J. F., Walworth, J. L., and McCarthy, K. A. 1999. Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized Arctic soils. Bioremediation J. 3(2): 105–16.CrossRefGoogle Scholar
Bradley, P. M. and Chapelle, F. H. 1995. Rapid toluene mineralization by microorganisms at Adak, Alaska: Implications for intrinsic bioremediation in cold environments. Environ. Sci. Technol. 29: 2778–81.CrossRefGoogle ScholarPubMed
Braids, O. C. and Miller, R. H. 1975. Fats, waxes, and resins in soil. In Soil Components: Volume 1, Organic Components, Gieseking, J. E. (ed.), New York, NY, Springer-Verlag, 343–68.Google Scholar
Braley, W. A. 1984. A Personal Computer Solution to the Modified Berggren Equation. Institute of Water Resources/Engineering Experiment Station-University of Alaska Fairbanks, Report No. AK-RD-85–19.
Broeze., R. J., Solomon, C. J., and Pope, D. H. 1987. Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens. J. Bacteriol. 134: 861–74.Google Scholar
Brook, T. R., Stiver, W. H., and Zytner, R. G. 1997. Effect of nitrogen sources on the biodegradation of diesel fuel in unsaturated soil. 1997 CSCE/ASCE Environ. Eng. Conf., Edmonton, Alberta, Canada, July 22–26.Google Scholar
Brook, T. R., Stiver, W. H., and Zytner, R. G. 2001. Biodegradation of diesel fuel in soil under various nitrogen addition regimes. Soil and Sediment Contam. 10: 539–53.CrossRefGoogle Scholar
Brown, E. J. and Braddock, J. F. 1990. Sheen Screen, a miniaturized most-probable-number method for enumeration of oil-degrading microorganisms. Appl. and Environ. Microbiol. 56: 3895–6.Google ScholarPubMed
Brown, K. W., Donnelly, K. C., and Deuel, J. 1983. Effects of mineral nutrients, sludge application rate, and application frequency on biodegradation of two oily sludges. Microbial Ecol. 9: 363–73.CrossRefGoogle ScholarPubMed
Brunner, W. and Focht, D. D. 1984. Deterministic three-half-order kinetic model for microbial degradation of added substrates in soil. Appl. and Environ. Microbiol. 47: 167–72.Google ScholarPubMed
Burt, T. P. and Williams, P. J. 1976. Hydraulic conductivity in frozen soils. Earth Sur. Proc. 1: 349–60CrossRefGoogle Scholar
Burton, G. A., Batley, G. E., Chapman, P. M.et al., 2002a. A weight-of-evidence framework for assessing sediment (or other) contamination: Improving certainty in the decision-making process. Hum. Ecol. Risk Assess. 8: 1675–96.CrossRefGoogle Scholar
Burton, G. A., Chapman, P. M., and Smith, E. P. 2002b. Weight-of-evidence approaches for assessing ecosystem impairment. Hum. Ecol. Risk Assess. 8: 1657–73.CrossRefGoogle Scholar
Bury, S. J. and Miller, C. A. 1993. Effect of micellar solubilization on biodegradation rates of hydrocarbons. Environ. Sci. Technol. 27: 104–10.CrossRefGoogle Scholar
Campbell, D. I., MacCulloch, R. J. L., and Campbell, I. B. 1998. Thermal regimes of some soils in the McMurdo Sound region, Antarctica. In Ecosystem Processes in Antarctic Ice-free Landscapes, Lyons, W. B., Howard-Williams, C., and Hawes, I. (eds), Rotterdam, Balkema, 45–56.Google Scholar
Carss, J. G., Agar, J. G., and Surbey, G. E. 1994. In situ bioremediation in Arctic Canada. Proc. ‘93 Bioreclamation Symposium. Boca Raton Florida, Lewis Publishers, 2(2): 323–8.Google Scholar
Cavicchioli, R., Thomas, T., and Curmi, P. M. G. 2000. Cold stress response in Archaea. Extremophiles 4: 321–31.CrossRefGoogle ScholarPubMed
CCME 1996. A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines (PN 1332). Canadian Council of Ministers of the Environment.
CCME 2001. Canada-wide Standard for Petroleum Hydrocarbons (PHC) in Soil: User Guidance. Report 10-6162. Winnipeg: Canadian Council for Ministers for the Environment.
Chablain, P. A., Philippe, G., Groboillot, A., Truffaut, N., and Guespin-Michel, J. F. 1997. Isolation of a soil psychrotrophic toluene-degrading Pseudomonas strain: influence of temperature on the growth characteristics on different substrates. Res. in Microbiol. 148: 153–61.CrossRefGoogle ScholarPubMed
Chamberlain, E. J. 1983. Frost heave of saline soils. 4th Int'l. Conf. on Permafrost, 121–6.Google Scholar
Chang, Z. Z., Weaver, R. W., and Rhykerd, R. L. 1996. Oil bioremediation in a high and a low phosphorus soil. J. Soil Contam. 5(3): 215–24.CrossRefGoogle Scholar
Chang, Z. Z., and Weaver, R. W. 1997. Nitrification and utilization of ammonium and nitrate during oil bioremediation at different soil water potential. J. Soil Contam. 6(2): 149–60.CrossRefGoogle Scholar
Chapman, P. M. 1986. Sediment quality criteria from the sediment quality triad: an example. Environ. Toxicol. Chem. 5: 957–64.CrossRefGoogle Scholar
Chapman, P. M., Ho, K. T., Munns, J.et al. 2002a. Issues in sediment toxicity and ecological risk assessment. Mar. Pollut. Bull. 44: 271–8.CrossRefGoogle Scholar
Chapman, P. M., McDonald, B. G., and Lawrence, G. S. 2002b. Weight-of-evidence issues and frameworks for sediment quality (and other) assessments. Hum. Ecol. Risk Assess. 8: 1489–515.CrossRefGoogle Scholar
Charbeneau, R., Johns, R., Lake, L., and McAdams, M. 1999. Free-Product Recovery of Petroleum Hydrocarbon Liquids. American Petroleum Institute Publication No. 4682.
Chatham, J. R. 2003. Landfarming on the Alaskan North slope – historical development and recent applications. 10th Annual Int'l. Petroleum Environ. Conf., Houston, TX, November 11–14, 2003. http://ipec.utulsa.edu/Conf2003/Papers/chatham_35.pdf.Google Scholar
Chattopadhyay, M. A. and Jagannadham, M. V. 2001. Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol. 24: 386–8.Google Scholar
Chiang, C. Y., Salanitro, J. P., Chai, E. Y., Colthart, J. D., and Klein, C. L. 1989. Aerobic biodegradation of benzene, toluene, and xylene in a sandy aquifer – Data analysis and computer modeling. Ground Water 27(6): 823–34.CrossRefGoogle Scholar
Christensen, K. E. and Shenk, C. G. 2006. Observations of fuel transport from two fuel release events on multi-year sea ice with relevance to site assessment and closure. Contaminants in Freezing Ground: Proc. 5th Int'l Conf., Rike, A. G.Øvstedal, J., and Vethe, Ø. (eds.), Oslo, Norway, Norsk Geologisk Forening, 25.Google Scholar
Chuvilin, E. M. and Miklyaeva, E. S. 2003. An experimental investigation of the influence of salinity and cryogenic structure on the dispersion of oil and oil products in frozen soils. Cold Regions Sci. Technol. 37: 89–95.CrossRefGoogle Scholar
Chuvilin, E. M., Naletova, N. S., Miklyaeva, E. C., Kozlova, E. V., and Istanes, A. 2001. Factors affecting the spreadibility and transportation of oil in regions of frozen ground. Polar Rec. 37(202): 229–38.CrossRefGoogle Scholar
Clarke, P. J. and Ward, T. J. 1994. The response of southern hemisphere saltmarsh plants and gastropods to experimental contamination by petroleum hydrocarbons. J. Exp. Mar. Biol. Ecol. 175: 43–57.CrossRefGoogle Scholar
Collins, C. M., Racine, C. H., and Walsh, M. E. 1994. The physical, chemical and biological effects of crude oil spills after 15 years on a black spruce forest, Interior Alaska. Arctic 47(2): 164–75.CrossRefGoogle Scholar
Colwell, R. R. and Walker, J. D. 1977. Ecological aspects of microbial degradation of petroleum in the marine environment. CRC Crit. Rev. Microbiol. 5: 423–45.Google Scholar
COMNAP. 2006. Antarctic Facilities in Operation. Council of Managers of National Antarctic Programs. viewed 28 August 2006, (www.comnap.aq/operations/facilities/)
Conner, J. S. 1988. Case study of soil venting. Pollution Eng. 7: 74–8.Google Scholar
Cookson, J. T. 1995. Bioremediation Engineering: Design and Application, New York, McGraw-Hill.Google Scholar
Council of the European Communities. 2004. Council Directive 75/439/EEC of 16 June 1975 on the disposal of waste oils. viewed 29 August 2006, http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31975L0439:EN:HTML
Croft, B. C., Swannell, R. P. J., Grant, A. L., and Lee, K. 1995. The effect of bioremediation agents on oil biodegradation in medium-fine sand. In Appl. Bioremediation of Petroleum Hydrocarbons, Hinchee, R. E., (ed.), Columbus, OH, Battelle Press.Google Scholar
Cross, K., Biggar, K., Semple, K., et al. 2003. Intrinsic bioremediation of invert diesel fuel contaminating groundwater in a bedrock formation. Proc. '03 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Workshop, Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada, 227–42.Google Scholar
Cunningham, J. 1993. Increased biodegradation rates of diesel fuel in soil using controlled-release nutrients. In Principles and Practices for Diesel Contaminated Soils, Volume II, Kostecki, P. T., Calabrese, E. J., and Barkan, C. P. L. (eds.), Amherst, MA, Association for the Environmental Health of Soils, 29–42.Google Scholar
Curtis, F. and Lammey, J. 1998. Intrinsic remediation of a diesel fuel plume in Goose Bay, Labrador, Canada. Environ. Poll. 103(2–3): 203–10.CrossRefGoogle Scholar
Dean, J. 1998. Extraction Methods for Environmental Analysis. New York, John Wiley and Sons.Google Scholar
DEC. 2005. 18 Alaska Administrative Code 75: Oil and Other Hazardous Substances Pollution Control. Alaska Department of Environmental Conservation.
Delille, D., Coulon, F., and Pelletier, E. 2004a. Effects of temperature warming during a bioremediation study of natural and nutrient-amended hydrocarbon-contaminated sub-Antarctic soils. Cold Reg. Sci. Technol. 40: 61–7.CrossRefGoogle Scholar
Delille, D., Coulon, F., and Pelletier, E. 2004b. Biostimulation of natural microbial assemblages in oil-amended vegetated and desert sub-Antarctic soils. Microbial Ecol. 47(4): 407–15.CrossRefGoogle Scholar
Delille, D., Delille, B., and Pelletier, E. 2002. Effectiveness of bioremediation of crude oil contaminated subantarctic intertidal sediment: The microbial response. Microbial Ecol. 44: 118–26.CrossRefGoogle ScholarPubMed
Delille, D. and Pelletier, E. 2002. Natural attenuation of diesel-oil contamination in a subantarctic soil (Crozet Island). Polar Biol. 25: 682–7.Google Scholar
Delille, D., Pelletier, E., Coulon, F., Feller, G., and Delille, B. 2006. Tools for bioremediation of sub-Antarctic soils exposed to petroleum hydrocarbons. Newsletter for the Canadian Antarctic Research Network, 21: 11–16.Google Scholar
Delille, D., Pelletier, E., Delille, B., and Coulon, F. 2003. Effect of nutrient enrichments on the bacterial assemblage of Antarctic soils contaminated by diesel or crude oil. Polar Rec. 39(211): 309–18.CrossRefGoogle Scholar
Deming, J. W. 2002. Psychrophiles and polar regions. Current Opinions in Microbiol. 5: 301–9.CrossRefGoogle ScholarPubMed
Demque, D. E., Biggar, K. W., and Heroux, J. A. 1997. Land treatment of diesel contaminated soil. Can. GeoTechnol. J. 34: 421–31.CrossRefGoogle Scholar
Denef, V. J., Park, J., Rodrigues, J. L. M.et al. 2003. Validation of a more sensitive method for using spotted oligonucleotide DNA microarrays for functional genomics on bacterial communities. Environ. Microbiol. 5: 933–43.CrossRefGoogle ScholarPubMed
Det Norske Veritas. 2003. Russia Pipeline Oil Spill Study. ESMAP Technical Paper 034-03. Joint UNDP/World Bank Energy Sector Management Assistance Programme, Norway, p. 82+app., viewed 11 August 2006, http://wbln0018.worldbank.org/esmap/site.nsf/files/034-03+Russia+Pipeline+Oil+Spill+Study+Report.pdf/$FILE/034-03+Russia+Pipeline+Oil+Spill+Study+Report.pdf
DIAND. 2002. Contaminated Sites Program Management Framework, October 2002. Department of Indian and Northern Affairs Development.
Diaz-Ravina, M., Frostegard, A., and Baath, E. 1994. Thymidine, leucine and acetate incorporation into soil bacterial assemblages at different temperatures. FEMS Microbiol. Ecol. 14: 221–32.CrossRefGoogle Scholar
Dibble, J. T. and Bartha, R. 1979. Effect of environmental parameters on the biodegradation of oil sludge. Appl. and Environ. Microbiol. 37: 729–39.Google ScholarPubMed
Dirksen, C. and Miller, R. D. 1966. Closed-system freezing of unsaturated soil. Soil Sci. Soc. of America 30: 168–73.CrossRefGoogle Scholar
DND-NTI. 1998. Agreement between Nunavut Tunngavik Incorporated and Her Majesty in the Right of Canada as represented by the Minister of National Defence for the Clean-up and Restoration of Distant Early Warning Sites within the Nunavut Settlement area. September 1998.
Dörfler, U., Haala, R., Matthies, M., and Scheunert, I. 1996. Mineralization kinetics of chemicals in soils in relation to environmental conditions. Ecotoxicol. and Environ. Safety 34: 216–22.CrossRefGoogle ScholarPubMed
Dott, W., Feidieker, D., Kampfer, P., Schleibinger, H., and Strechel, S. 1989. Comparison of autochthonous bacteria and commercially available cultures with respect to their effectiveness in fuel oil degradation. J. Indust. Microbiol. 4: 365–74.CrossRefGoogle Scholar
Dragun, J. 1988. The Soil Chemistry of Hazardous Materials. Silver Spring, MD, Hazardous Materials Control Research Institute.
Duffie, J. A. and Beckman, W. A. 1991. Solar Engineering of Thermal Processes, 2nd edn.Wiley Interscience.Google Scholar
Dunne, J. A., Williams, R. J., and Martinez, N. D. 2002a. Food-web structure and network theory: the role of connectance and size. Proc. Nat. Acad. Sci. USA99: 12917–22.
Dunne, J. A., Williams, R. J., and Martinez, N. D. 2002b. Network topology and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5: 558–67.
Durant, N. D., Jonkers, C. A. A., and Bouwer, E. J. 1997. Spatial variability in the naphthalene mineralization response to oxygen, nitrate, and orthophosphate amendments in MGP aquifer sediments. Biodegradation 8: 77–86.CrossRefGoogle Scholar
Eckford, R., Cook, F. D., Saul, D., Aislabie, J., and Foght, J. 2002. Free-living nitrogen-fixing bacteria from Antarctic soils. Appl. and Enviro. Microbiol. 68: 5181–5.CrossRefGoogle ScholarPubMed
Edwards, D. A., Andriot, M. D., Amoruso, M. A., et al. 1997. Development of fraction specific reference doses (RfDs) and reference concentrations (RfCs) for total petroleum hydrocarbons (TPH). Total Petroleum Hydrocarbon Criteria Working Group series; Volume 4, Amherst, MA, Amherst Scientific Publishers.
EEA-IMS. 2005. Progress in management of contaminated sites (CSI 015) – May 2005 Assessment. European Environment Agency – Indicator Management Service. viewed 18 August 2006, http://ims.eionet.europa.eu/IMS/ISpecs/ISpecification20041007131746/IAssessment1116497286336/view_content.
Eganhouse, R. P., Baedecker, M. J., Cozzarelli, I. M., Aiken, G. R., Thorn, K. A., and Dorsey, T. F. 1993. Crude oil in a shallow sand and gravel aquifer – II. Organic geochemistry. Appl. Geochem. 8(4): 551–67.CrossRefGoogle Scholar
EIA. 2000. Antarctica: Fact Sheet. Energy Information Administration, United States Department of Energy, viewed 13 November 2006, www.eia.doe.gov/emeu/cabs/antarctica.html.
Elliot, D. H. 1988. Antarctica – is there any oil and natural gas. Oceanus 31: 32–8.Google Scholar
El-Shinnawi, M. M., Bayoumi, N. A., Aboel-naga, S. A., and Mohammed, S. S. 1993. Changes of nitrogen forms in different arid soils during incubation at varying moisture contents. Egyptian J. Soil Sci. 33(4): 435–61.Google Scholar
EMPCA. 1994. Environmental Management and Pollution Control Act 1994. Tasmania, Australia.
Environment and Food Agency Iceland. 2002. Contaminated Soil in Iceland. Environment and Food Agency, Iceland, viewed 3 October 2006, http://english.ust.is/infobase/pollution-prevention/WasteManagementinIceland/ContaminatedsoilInIceland.
Eriksson, M., Dalhammar, G., and Mohn, W. W. 2002. Bacterial growth and biofilm production on pyrene. FEMS Microbiol. Ecol. 40: 21–7.CrossRefGoogle ScholarPubMed
Eriksson, S., Hallbeck, L., Ankner, T., Abrahamsson, K., and Sjöling, Å. 2006. Indicators of petroleum hydrocarbon biodegradation in anaerobic granitic groundwater. Geomicrobiol. J. 23(1): 45–58.CrossRefGoogle Scholar
Eriksson, M., Ka, J.-O., and Mohn, W. W. 2001. Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl. and Environ. Microbiol. 67(11): 5107–12.CrossRefGoogle ScholarPubMed
Eriksson, M., Sodersten, E., Yu, Z., Dalhammer, G., and Mohn, W. W. 2003. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from Northern soils. Appl. and Environ. Microbiol. 69: 275–84.CrossRefGoogle ScholarPubMed
Eschenbach, A., Wienberg, R., and Mahro, B. 1998. Fate and stability of nonextractable residues of [14C]PAH in contaminated soils under environmental stress conditions. Environ. Sci. Technol. 32: 2585–90.CrossRefGoogle Scholar
ESG. 1993. The Environmental Impact of the DEW Line on the Canadian Arctic. Environmental Sciences Group, Royal Military College, Kingston, Ontario, Canada.
Fan, X., Guigard, S., Foght, J.Semple, K., and Biggar, K. W. 2006. A mesocosm study of enhanced anaerobic biodegradation of petroleum hydrocarbons in groundwater from a flare pit site. Proc. 59th Canadian Geotechnical Conf., Vancouver, Canada, Paper No. 346.Google Scholar
Farouki, O. 1981. Thermal Properties of Soils. U.S. Army Cold Regions Research and Engineering Laboratory Monograph 81–1.CrossRef
Farr, A. M., Houghtalen, R. J., and McWhorter, D. B. 1990. Volume estimation of light nonaqueous phase liquids in porous media. Ground Water 28(1): 48–56.CrossRefGoogle Scholar
Fayad, N. M. and Overton, E. B. 1995. A unique biodegradation pattern of the oil spilled during the 1991 gulf war. Mar. Pollut. Bull. 30(4): 239–46.CrossRefGoogle Scholar
Ferguson, C. C. and Kasamas, H. 1999. Risk Assessment for Contaminated Sites in Europe. Policy Framework. Nottingham, LQM Press.
Ferguson, S. H., Franzmann, P. D., Revill, A. T., Snape, I., and Rayner, J. L. 2003a. The effects of nitrogen and water on mineralisation of diesel-contaminated terrestrial Antarctic sediments. Cold Reg. Sci. Technol. 37: 197–212.CrossRefGoogle Scholar
Ferguson, S. H., Franzmann, P. D., Snape, I.et al. 2003b. Effects of temperature on mineralisation of petroleum in contaminated Antarctic terrestrial sediments. Chemosphere 52(6): 975–87.CrossRefGoogle Scholar
Filler, D. F. 1997. Thermally enhanced bioventing of petroleum hydrocarbons in cold regions. Doctoral Thesis, Dept. of Civil and Environ. Eng., University of Alaska Fairbanks.
Filler, D. M. and Barnes, D. L. 2003. Technical procedures for recovery and evaluation of chemical spills on tundra. Cold Reg. Sci. Technol. 37: 121–35.CrossRefGoogle Scholar
Filler, D. M. and Carlson, R. F. 2000. Thermal insulation systems for bioremediation in cold regions. J. Cold Regions Eng. 14(3): 119–29.CrossRefGoogle Scholar
Filler, D. A., Lindstrom, J. E., Braddock, J. F., Johnson, R. A., and Nickalaski, R. 2001. Integral biopile components for successful bioremediation in the Arctic. Cold Reg. Sci. Technol. 32(2–3): 143–56.CrossRefGoogle Scholar
Filler, D. M., Reynolds, C. M., Snape, I.et al. 2006. Advances in engineered remediation for use in the Arctic and Antarctica. Polar Rec. 42: 111–20.CrossRefGoogle Scholar
Fine, P., Graber, E. R., and Yaron, B. 1997. Soil interactions with petroleum hydrocarbons: abiotic processes. Soil Technol. 10: 133–53.CrossRefGoogle Scholar
Foght, J. and Aislabie, J. 2005. Enumeration of soil microorganisms. In Soil Biology, Volume 5. Manual for Soil Analysis, Margesin, R. and Schinner, F. (eds.), Springer-Verlag, 261–80.Google Scholar
Fourie, W., Barnes, D. L., and Shur, Y. 2007. The formation of ice from the infiltration of water in frozen coarse grain soils. Cold Reg. Sci. Technol. (in press).CrossRefGoogle Scholar
Frankenberger, W. T. 1988. Use of urea as a nitrogen-fertilizer in bioreclamation of petroleum-hydrocarbons in soil. Bulletin of Environ. Contam. and Toxicol. 40(1): 66–8.CrossRefGoogle ScholarPubMed
Franzmann, P. D., Zappia, L. R., Power, T. R., Davis, G. B., and Patterson, B. M. 1999. Microbial mineralisation of benzene and characterisation of microbial biomass in soil above hydrocarbon contaminated groundwater. FEMS Microbiol. Ecol. 30, 67–76.CrossRefGoogle Scholar
Garland, D. S. 1999. Quantifying biogenic interference in petroleum contamination tests of organic soil using pyrolysis-GC/FID, MS Thesis, University of Alaska Fairbanks.Google Scholar
Garland, J. L. and Mills, A. L. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57: 2351–9.Google ScholarPubMed
Garland, D. S., White, D. M., and Woolard, C. R. 1999. Contaminant analysis in tundra by pyrolysis-GC/FID. Proc. 10th Int'l. Cold Regions Eng.: Putting Research into Practice, American Society of Civil Engineers, Reston, VA, 352–62.Google Scholar
Gavril'ev, R. I. 2004. Thermal properties of soils and surface covers. In Thermal Analysis, Construction, and Monitoring Methods for Frozen Ground, Esch, D. C. (ed.), American Society of Civil Engineers, 277–94.CrossRefGoogle Scholar
Genouw, G., Naeyer, F. D., Meenan, P. V.et al. 1994. Degradation of oil sludge by landfarming: a case study at the Ghent Harbour. Biodegradation 5: 37–46.CrossRefGoogle Scholar
Geosphere, & CH2MHILL. 2006. Three- and Four-Phase Partitioning of Petroleum Hydrocarbons and Human Health Risk Calculations Technical Background Report. Report prepared for the SOCWG.
Gibb, A., Chu, A., Wong, R. C. K., and Goodman, R. H. 2001. Bioremediation kinetics of crude oil at 5 °C. J. Environ. Eng. Sept. 818–24.CrossRefGoogle Scholar
Gill, R. A. and Robotham, P. 1989. Composition, sources, and source identification of petroleum hydrocarbons and their residues. In The Fate and Effects of Oil in Freshwater, Green, J. and Trett, M. (eds.), New York, Elsevier Appl. Science, 11–40.CrossRefGoogle Scholar
GNWT. 1998. Guideline for Contaminated Site Remediation in the NWT. Government of the Northwest Territories.
Goering, D. J. and Kumar, P. 1994. Roadway Stabilization Using Air Convection Embankments, Transportation Research Center, Report No. INE/TRC 94.01.
Goldstein, J., Pollit, N. S., and Inouye, M. 1990. Major cold shock protein of Escherichia coli. Proc. Nat'l. Academy of Sci. USA 87: 283–7.CrossRefGoogle ScholarPubMed
Goldsworthy, P. M., Canning, E. A., and Riddle, M. J. 2003. Soil and water contamination in the Larsemann Hills, East Antarctica. Polar Rec. 39: 319–37.CrossRefGoogle Scholar
Gore, D. B., Heiden, E. S., Snape, I., Nash, G., and Stevens, G. W. 2006a. Grain size of activated carbon, and untreated and modified granular clinoptilolite under freeze-thaw: applications to permeable reactive barriers. Polar Rec. 42(2): 121–6.CrossRefGoogle Scholar
Gore, D. B., Heiden, E. S., Stevens, G. W., and Snape, I. 2004. Grain size of selected permeable reactive barrier materials under freeze-thaw (+/− water and diesel). Proc. 4th Int'l. Conf. on Contaminants in Freezing Ground, Filler, D. M. and Barnes, D. L. (eds.), Fairbanks, Alaska, 30 May – 3 June, 18.Google Scholar
Gore, D. B., Revill, A. T., and Guille, D. 1999. Petroleum hydrocarbons ten years after spillage at a helipad in Bunger Hills, East Antarctica. Antarctic Sci. 11: 427–9.CrossRefGoogle Scholar
Gore, D. B., Snape, I., Rayner, J. L., Dixon, E., and Stevens, G. W. 2006b. In Hydraulics of permeable reactive barrier materials under freezing conditions, Proc. 5rd Int'l. Conf. on Contaminants in Freezing Ground Contaminants in Freezing Ground, Rike, A. G., Øvstedal, J., and Vethe, Ø. (eds.), Norsk Geologisk Forening, Oslo, Norway, p. 37.Google Scholar
Gounot, A. M. and Russell, N. J. 1999. Physiology of cold-adapted microorganisms. In Cold-Adapted Organisms, Margesin, R., and Schinner, F. (eds.), Ecology, physiology, enzymology and molecular biology, Berlin, Springer-Verlag, 33–55.CrossRefGoogle Scholar
Graham, D. W., Smith, V. H., Cleland, D. L., and Law, K. P. 1999. Effects of nitrogen and phosphorus supply on hexadecane biodegradation in soil systems. Water, Air, Soil Poll. 111: 1–18.CrossRefGoogle Scholar
Grechishchev, S.E., Chistotinov, L. V., and Shur, Y. L. 1980. Cryogenic physics-geological processes and their forecast. Moscow, “Nedra”.Google Scholar
Grechishchev, S. E., Pavlov, A. V., and Ponomarev, V. V. 1998. Phase equilibrium and kinetics of saline soil water freezing, 7th Int'l. Permafrost Conf., 351–7.Google Scholar
Grigg, B. C., Assaf, N. A., and Turco, R. F., 1997. Removal of atrazine contamination in soil and liquid systems using bioaugmentation. Pestic. Sci.50: 211–20.
Gustafson, J. B., Tell, J. G., and Orem, D. 1997. Selection of representative TPH fractions based on fate and transport considerations. In Total Petroleum Hydrocarbon Criteria Working Group series; Volume 3, Amherst, MA, Amherst Scientific Publishers.
Haines, J. R., Kadkhokayan, M., Mocsny, D. J., et al. 1994. Effect of salinity, oil type, and incubation temperature on oil degradation. In Applied BioTechnology for Site Remediation, Hinchee, R. (ed.), Boca Raton, FL, Lewis Publishers, 75–83.Google Scholar
Hallet, B. 1978. Solute redistribution in freezing ground. 3rd Int'l. Conf. on Permafrost, 86–91.Google Scholar
Hayward, S. A. L., Worland, M. R., Convey, P., and Bale, S. 2003. Temperature preferences of the mite, Alaskozetes antarcticus, and the collembolan, Cryptopygus antarcticus from the maritime Antarctic. Physiol. Entomol. 28: 114–21.CrossRefGoogle Scholar
Head, I. M., Saunders, J. R., and Pickup, R. W. 1998. Microbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial Ecol. 35: 1–21.CrossRefGoogle ScholarPubMed
Helweg, A., Fomsgaard, I. S., Reffstrup, T. K., and Sorensen, H. 1998. Degradation of mecoprop and isoproturon in soil influence on initial concentration. Int'l. J. Environ. Analytical Chem. 70: 133–48.CrossRefGoogle Scholar
Herrington, R. T., Benson, L., Downey, D., and Hansen, J. 1997. Validation of fuel hydrocarbon attenuation in low-temperature groundwater environments. Proc. In Situ and On-Site Bioremediation Symposium, Columbus, OH, Battelle Press, 4(1): 303–8.Google Scholar
Hinzman, L. D., Bettez, N. D., Bolton, W. R.et al. 2005. Evidence and implications of recent climate change in Northern Alaska and other arctic regions, Climate Change 72: 251–98.CrossRefGoogle Scholar
Horiguchi, K. and Miller, R. D. 1980. Experimental studies with frozen soil in an ‘Ice Sandwich’ permeater. Cold Reg. Sci. Technol. 3: 177–83.CrossRefGoogle Scholar
Hoyle, B.L, Scow, K. M., Fogg, G. E., and Darby, J. L. 1995. Effect of carbon: nitrogen ratio on kinetics of phenol biodegradation by Acinetobactor Johnsonii in saturated sand. Biodegradation 6: 283–93.CrossRefGoogle Scholar
Huesemann, M. H. 1994. Guidelines for land-treating petroleum hydrocarbon-contaminated soils. J. Soil Contam. 3: 299–318.CrossRefGoogle Scholar
Huesemann, M. H. and Truex, M. J. 1996. The role of oxygen diffusion in passive bioremediation of petroleum contaminated soils. J. Haz. Materials 15: 93–113.CrossRefGoogle Scholar
Hunt, P. G., Rickard, W. E., Deneke, F. J., Koutz, F. R., and Murrman, R. P. 1973. Terrestrial oil spills in Alaska: environmental effects and recovery. Proc. Joint Conf. on Prevention and Control of Oil Spills, American Petroleum Institute and United States Coast Guard, Washington D.C., March 13–15.Google Scholar
Huntjens, J. L. M., Potter, H. D., and Barendrecht, J. 1986. The degradation of oil in soil. In Contaminated Soil, Assink, J. W. and Brink, W. J. V. D. (eds.), Dordrecht, Netherlands, Marinus Nijhoff, 121–4.CrossRefGoogle Scholar
Hutchins, S. R., Sewell, G. W., Kovacs, D. A., and Smith, G. A. 1991. Biodegradation of aromatic-hydrocarbons by aquifer microorganisms under denitrifying conditions. Environ. Sci. and Technol. 25(1): 68–76.CrossRefGoogle Scholar
Jackson, R. D. 1965. Water vapor diffusion in relatively dry soil: IV. Temperature and pressure effects on sorption diffusion coefficients. Soil Sci. Soc. of America Proc. 30: 144–8.CrossRefGoogle Scholar
Jansson, S. L. and Persson, J. 1982. Mineralization and immobilization of soil nitrogen. In Nitrogen in Agricultural Soils, Stevenson, F. J. (ed.), Madison, WS, American Society of Agronomy, 229–52.Google Scholar
Jobson, A., McLaughlin, M., Cook, F. D., and Westlake, W. S. 1974. Effects of amendments on the microbial utilization of oil applied to soil. Appl. Microbiol. 27(1): 166–71.Google Scholar
Johansen, O. 1975. Thermal conductivity of soils. Ph.D. Dissertation, Norwegian Technical Univ., Trondheim; also, U.S. Army Cold Regions Research and Engineering Laboratory Transl. 637, July 1977.
Johnsen, A. R., Bendixen, K., and Karlson, U. 2002. Detection of microbial growth on polycyclic aromatic hydrocarbons in microtitre plates using the respiration indicator WST-1. Appl. and Environ. Microbiol. 68: 2683–9.CrossRefGoogle Scholar
Johnson, L. A., Sparrow, E. B., Jenkins, T. F., et al. 1980. The Fate and Effect of Crude Oil Spilled on Subarctic Permafrost Terrain in Interior Alaska, U.S. Environmental Protection Agency, Corvallis Environmental Research Laboratory, Office of Research and Development, EPA-600/3-80-040.
Johnson, P. C., Kemblowski, M. W., and Colthart, J. D. 1990. Quantitative analysis for the cleanup of hydrocarbon contaminated soils by in-situ soil venting. Ground Water 28(3): 413–29.CrossRefGoogle Scholar
Johnson, R. A. 1990. Cogeneration and diesel electric power production. The Cogeneration J. 5: 44–60.Google Scholar
Jordán, F. 2001. Strong threads and weak chains? – a graph theoretical estimation of the power of indirect effects. Community Ecol.2: 17–20.
Kade, A., Walker, D. A., and Raynolds, M. K. 2005. Plant communities and soils in cryoturbated tundra along a bioclimate gradient in the Low Arctic, Alaska. Phytocoenologia35: 761–820.
Kandror, O., DeLeon, A., and Goldberg, A. L. 2002. Trehalose synthesis is induced upon exposure of Echerichia coli to cold and is essential for viability at low temperatures. Proc. Natl. Acad. Sci. 99(15): 9727–32.CrossRefGoogle Scholar
Kane, D. L., Gieck, R. E., and Hinzman, L. D. 1990. Evapotranspiration from a small Alaskan arctic watershed. Nord. Hydrol. 21: 253–72.CrossRefGoogle Scholar
Kane, D. L. and Slaughter, C. W. 1974. Recharge of a central Alaska lake by subpermafrost groundwater. Proc. 2nd In'l. Conf. on Permafrost, Yakutsk, USSR, North American Contribution, 458–72.Google Scholar
Kennicutt, M. C. 2003. Spatial and Temporal Scales of Human Disturbance: McMurdo Station, Antarctica. Final Report. Geochemical and Environmental Research Group and Department of Geography, College of Geosciences, Texas A&M University and Marine Science Institute, The University of Texas at Austin.
Kerry, E. 1990. Microorganisms colonizing plants and soil subjected to different degrees of human activity, including petroleum contamination in the Vestfold Hills and MacRobertson Land Antarctica. Polar Biol. 10: 423–30.CrossRefGoogle Scholar
Kerry, E. 1993. Bioremediation of experimental petroleum spills on mineral soils in the Vestfold Hills, Antarctica. Polar Biol. 13: 163–70.CrossRefGoogle Scholar
Kersten, M. S. 1949. Thermal properties of soils. University of Minnesota Engineering Experiment Station Bulletin, no 28.Google Scholar
Khimenkov, A. N. and Brushkov, A. V. 2003. Oceanic cryo-lithogenesis, Moscow, “Nauka” (In Russian).Google Scholar
Kireeva, A. 2006. Murmansk Region oil-spill cleanup plan: just empty words on paper? Bellona Oslo, viewed 11 August 2006, http://bellona.no/bellona.org/english_import_area/energy/42017.
Klein, A. G., Kennicutt, M. C., Montana, P. A., et al. 2006. A long-term environmental monitoring program at McMurdo Station, Antarctica. In 2nd SCAR Open Science Conference ‘Antarctica in the Earth System’, Hobart.
Klonowski, M. R., Breedveld, G. D., and Aagaard, P. 2005. Natural gradient experiment on transport of jet fuel derived hydrocarbons in an unconfined sandy aquifer. Environ. Geol. 48(8): 1040–57.CrossRefGoogle Scholar
Kolenc, R. J., Innis, W. E., Glick, B. R., Robinson, C. W., and Mayfield, C. I. 1988. Transfer and expression of mesophilic plasmid-mediated degradative capacity in a psychrotrophic bacterium. Appl. and Environ. Microbiol. 54: 638–41.Google Scholar
Konrad, J. M. and McCammon, A. W. 1990. Solute partitioning in freezing soils. Can. GeoTechnical J. 25: 108–18.Google Scholar
Konrad, J.-M. and Seto, J. C. T. 1991. Freezing of a clayey silt contaminated with an organic solvent. J. Contam. Hydrol. 8: 335–55.CrossRefGoogle Scholar
Kudriavtsev, V. A. (ed.). 1978. General Permafrost Science (Geocryology), Moscow, Moscow State University (in Russian).Google Scholar
Kumar, G. S., Jagannadham, M. V., and Ray, M. K. 2002. Low-temperature-induced changes in composition and fluidity of lipopolysaccharides in the Antarctic psychrotrophic bacterium Pseudomonas syringae. J. Bacteriology 184: 6746–9.CrossRefGoogle ScholarPubMed
Lai, V., Biggar, K., Mullick, A., et al. 2001. Natural attenuation of 1,1,1 TCA and BTEX from a landfill in northern Alberta. Proc. '01 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Workshop, Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada, 215–25.Google Scholar
Laurie, A. D. and Lloyd-Jones, G. 2000. Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl. and Environ. Microbiol. 66: 1814–17.CrossRefGoogle ScholarPubMed
Leahy, J. G. and Colwell, R. R. 1990. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54(3): 305–15.Google ScholarPubMed
Lee, R. F. and Silva, M. 1994. Polycyclic aromatic hydrocarbon removal rates in oiled sediments treated with urea, urea-fish protein, or ammonium nitrate. In Appl. Biotechnol. for Site Remediation, Hinchee, R. E. (ed.), London, Lewis, 320–5.Google Scholar
Leeson, A., Hinchee, R. E., Kittel, J. A., and Foote, E. A. 1995. Environics TOC Task 3 Bioventing Feasibility Study, Eielson AFB site. Final report to Environmental Quality Directorate of the Armstrong Laboratory, Tyndall Air Force Base, Florida.
Lehner, C. A. 1995. Evaluation of controlled freezing to remove trapped residual NAPL. Unpublished MSc Thesis, Department of Civil and Environmental Engineering, Michigan State University.Google Scholar
Leszkiewicz, C. G. 2001. The effect of freeze-thaw temperature fluctuations on microbial metabolism of petroleum hydrocarbon contaminated Antarctic soil. Civil Engineering, University of New Hampshire, New Hampshire.Google Scholar
Lewis, D. L., Kollig, H. P., and Hodson, R. E. 1986. Nutrient limitation and adaptation of microbial populations to chemical transformations. Appl. and Environ. Microbiol. 51(3): 598–603.Google ScholarPubMed
Liebeg, E. W. and Cutright, T. J. 1999. The investigation of enhanced bioremediation through the addition of macro and micro nutrients in a PAH contaminated soil. Int'l. Biodeterioration and Biodegradation 44: 55–64.CrossRefGoogle Scholar
Lindstrom, J. E., Prince, R. C., Clark, J. C.et al. 1991. Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez Oil Spill. Appl. and Environ. Microbiol. 57: 2514–22.Google Scholar
Line, M. A. 1988. Microbial flora of some soils of Mawson Base and the Vestfold Hills, Antarctica. Polar Biol. 8: 421–7.CrossRefGoogle Scholar
Linell, K. A. 1973. Long term effects of vegetation cover on permafrost stability in an area of discontinuous permafrost. Proc. 2nd Int'l. Conf. on Permafrost, Yakutsk, USSR, North American Contribution, 688–93.Google Scholar
Long, E. R. and Chapman, P. M. 1985. A sediment quality triad: Measures of sediment contamination, toxicity and infaunal community composition in Puget Sound. Mar. Pollut. Bull. 16: 405–15.CrossRefGoogle Scholar
Lunardini, V. J. 1978. Theory of n-factors and correlation of data. Proc. 3rd Int'l. Conf. on Permafrost, Edmonton, Alberta. Ottawa: National Research Council of Can., 1: 41–6.Google Scholar
Mackay, D., Charles, M. E., and Phillips, C. R. 1974a. The Physical Aspects of Crude Oil Spills on Northern Terrain. Northern Pipelines, Task Force on Northern Oil Development, Environmental – Social Committee, Report No. 74-25.
Mackay, D., Charles, M. E., and Phillips, C. R. 1974b. The Physical Aspects of Crude Oil Spills on Northern Terrain (Second Report). Northern Pipelines, Task Force on Northern Oil Development, Environmental – Social Committee, Report No. 73-42.
Mackay, D., Charles, M. E., and Phillips, C. R. 1975. The Physical Aspects of Crude Oil Spills on Northern Terrain (Final Report). Arctic Land Use Research Program, Northern Natural Resources and Environmental Branch, Department of Indian Affairs and Northern Development, INA Publication No. QS 8060-00-EE-A1.
Mahar, L. J., Wilson, R. M., and Vinson, T. S. 1983. Physical and numerical modeling of uniaxial freezing in a saline gravel. 4th Int'l. Conf. on Permafrost, 773–8.Google Scholar
Manefield, M., Whiteley, A. S., Griffiths, R. I., and Bailey, M. J. 2002. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. and Environ. Microbiol. 68: 5367–73.CrossRefGoogle Scholar
Manilal, V. B. and Alexander, M. 1995. Factors affecting the microbial degradation of phenanthrene in soil. Appl. Microbiol. and BioTechnol. 35: 401–5.Google Scholar
Margesin, R. 2000. Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Int. Biodet. Biodegrad. 46: 3–10.CrossRefGoogle Scholar
Margesin, R., Labbe, D., Schinner, F., Greer, C. W., and Whyte, L. G. 2003. Characterization of hydrocarbon-degrading microbial population in contaminated and pristine alpine soils. Appl. and Environ. Microbiol. 69: 3085–92.CrossRefGoogle Scholar
Margesin, R. and Schinner, F. 1997a. Bioremediation of diesel-oil-contaminated alpine soils at low temperatures. Appl. Microbiol. and BioTechnol. 47: 462–8.CrossRefGoogle Scholar
Margesin, R. and Schinner, F. 1997b. Effect of temperature and oil degradation by a psychrotrophic yeast in liquid culture and in soil. FEMS Microbiol. Ecol. 24: 243–9.CrossRefGoogle Scholar
Margesin, R. and Schinner, F. 1997c. Efficiency of indigenous and inoculated cold-adapted soil microorganisms for biodegradation of diesel oil in Alpine soils. Appl. and Environ. Microbiol. 63: 2660–4.Google Scholar
Margesin, R. and Schinner, F. 1997d. Laboratory bioremediation experiments with soil from a diesel-oil contaminated site – significant role of cold-adapted microorganisms and fertilizers. J. Chem. Technol. Biotechnol. 70: 92–8.3.0.CO;2-M>CrossRefGoogle Scholar
Margesin, R. and Schinner, F. 1998. Oil biodegradation potential in alpine soils. Arctic Alpine Res. 30: 262–5.CrossRefGoogle Scholar
Margesin, R. and Schinner, F. 2001. Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an alpine glacier skiing area. Appl. and Environ. Microbiol. 67: 3127–33.CrossRefGoogle Scholar
Mariner, P. E., Jin, M., and Jackson, R. E. 1997. An algorithm for the estimation of NAPL saturation and composition from typical soil chemical analysis. Ground Water Monitor. Remed. 17: 122–9.CrossRefGoogle Scholar
Master, E. R. and Mohn, W. W. 1998. Psychrotolerant bacteria isolated from Arctic soil that degrade polychlorinated biphenyls at low temperatures. Appl. and Environ. Microbiol. 64: 4823–9.Google ScholarPubMed
McCarthy, K., Walker, L., and Vigoren, L. 2004. Subsurface fate of spilled petroleum hydrocarbons in continuous permafrost. Cold Reg. Sci. Technol. 38(1): 43–54.CrossRefGoogle Scholar
McCarthy, K., Walker, L., Vigoren, L., and Bartel, J. 2004. Remediation of spilled petroleum hydrocarbons by in situ landfarming at an arctic site. Cold Reg. Sci. Technol. 40: 31–9.CrossRefGoogle Scholar
McCauley, C. A., White, D. M., Lilly, M. R., and Nyman, D. M. 2002. A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils, Cold Reg. Sci. Technol. 34: 117–25.CrossRefGoogle Scholar
McFarland, M. J. and Sims, R. C. 1991. Thermodynamic framework for evaluating PAH degradation in the subsurface. Ground Water29(6): 885–96.CrossRefGoogle Scholar
McIntyre, C., Harvey, P. M., Ferguson, S. H.et al. 2007. Determining the extent of biodegradation of fuels using the diastereomers of the acyclic isoprenoids. Environ. Sci. Technol. 41: 2452–8.CrossRefGoogle ScholarPubMed
McNamara, N. P., Black, H. I. J., Beresford, N. A., and Parekh, N. R. 2003. Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl. Soil Ecol. 24: 117–32.CrossRefGoogle Scholar
Mercer, J. W. and Cohen, R. M. 1990. A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. J. Contam. Hydrol. 6: 107–63.CrossRefGoogle Scholar
Mesarch, W. W., Nakatsu, C. H. and Nies, L. 2000. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR. Appl. and Environ. Microbiol. 66: 678–83.CrossRefGoogle ScholarPubMed
Metcalf, & Eddy, , Inc. 1991. Wastewater Engineering: Treatment, Disposal, Reuse, 3rd edn. Boston, Massachusetts, McGraw Hill, Inc.Google Scholar
Metzger, L. O. Y., Munier-Lamy, C., Belgy, M. J.et al. 1999. A laboratory study of the mineralization and binding of 14C labelled herbicide rimsulfuron in a rendzina soil. Chemosphere 39: 1889–901.CrossRefGoogle Scholar
Meyles, C. A. and Schmidt, B. 2005. Report on Soil Protection and Remediation of Contaminated Sites in Iceland: A Preliminary Study. Environ. and Food Agency of Iceland, viewed 18 August 2006, http://english.ust.is/media/skyrslur2005/Report_about_Soil_ Protection_and_Remediation_of_Contaminated_Sites_in_Iceland.doc.Google Scholar
MFE. 2003. Contaminated Land Management, Guidelines No. 2. Ministry for the Environment, Wellington, New Zealand.
Michel, V., Lehoux, I., Depret, G.et al. 1997. The cold shock response of the psychrotrophic bacterium Pseudomonas fragi involves four low-molecular-mass nucleic acid-binding proteins. J. Bacteriol. 179(23): 7331–42.CrossRefGoogle ScholarPubMed
Mills, S. A. and Frankenberger, W. T. 1994. Evaluation of phosphorus sources promoting bioremediation of diesel fuel in soil. Bulletin of Environ. Contam. and Toxicol. 53: 280–4.CrossRefGoogle ScholarPubMed
Mitchell, I. and Friedrich, G. 2001. Multi-phase vacuum extraction at Bar-1 Komakuk Beach, Yukon Territory. Proc. '01 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Workshop, Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada, 84–97.Google Scholar
Mohn, W. W., Radziminski, C. Z., Fortin, M. C., and Reimer, K. J. 2001a. On site bioremediation of hydrocarbon-contaminated arctic tundra soils in inoculated biopiles. Appl. Microbiol. and BioTechnol. 57(1–2): 242–7.Google Scholar
Mohn, W. W., Reimer, K. J., Dalhammer, G., et al. 2001b. Bioremediation of Arctic soils contaminated by petroleum hydrocarbons. In Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates, Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada, 169–78.Google Scholar
Mohn, W. W. and Stewart, G. R. 2000. Limiting factors for hydrocarbon biodegradation at low temperature in arctic soils. Soil Biol. and Biochem. 32(8–9): 1161–72.CrossRefGoogle Scholar
Moles, A., Rice, S. D., and Norcross, B. L. 1994. Non-avoidance of hydrocarbon laden sediments by juvenile flatfishes. Neth. J. Sea Res.32: 361–7.
Moller, S., Korber, D. R., Wolfaardt, G. M., Molin, S., and Caldwell, D. E. 1997. Impact of nutrient composition on a degradative biofilm community. Appl. and Environ. Microbiol. 63: 2432–8.Google ScholarPubMed
Moore, B. J., Armstrong, J. E., Baker, J., and Hardisty, P. E. 1995. Effects of flow rate and temperature during bioventing in cold climates. In In Situ Aeration: Air Sparging, Bioventing, and Related Remediation Processes, Hinchee, R. E.et al. (eds.), Bioremediation Series, Book 3(2), 3rd Int'l. In situ and On Site Bioreclamation Symposium, Columbus, OH, Batelle Press, 307–14.Google Scholar
Morgan, P. and Watkinson, R. J. 1989. Hydrocarbon degradation in soils and methods for soil biotreatment. Critical Rev. BioTechnol. 8: 305–33.CrossRefGoogle ScholarPubMed
Morgan, P. and Watkinson, R. J. 1990. Assessment of the potential for in situ biotreatment of hydrocarbon-contaminated soils. Water Sci. and Technol. 22(6): 63–8.CrossRefGoogle Scholar
Morita, R. T. 1975. Psychrophilic bacteria. Bacteriol. Rev. 29: 144–67.Google Scholar
Mumford, K., Snape, I., Stevens, G., Rayner, J. L., and Walworth, J. L. 2006. Use of zeolite as a controlled release fertilization system for petroleum hydrocarbon remediation at low temperatures. 5th Int'l. Conf. on Contaminants in Freezing Ground, May 21–25, 2006, Oslo, Norway.Google Scholar
Nakano, Y, Tice, A., and Oliphant, J. 1984. Transport of water in frozen soil: III. Experiments on the effects of ice content. Adv. Water Res. 7 (1): 28–34.CrossRefGoogle Scholar
Nelson, F. E., Shiklimanov, N. I., Hinkel, K. M., and Christiansen, H. H. 2004. Introduction: The Cirumpolar Active Layer Monitoring (CALM) workshop and the CALM II program, Polar Geog. 28: 253–66.CrossRefGoogle Scholar
NEPC. 2005. Review of the National Environmental Protection (Assessment of Site Contamination) Measure: Issues Paper. Adelaide, National Environmental Protection Council Service Corporation.
Newman, L. and Reynolds, C. M. 2004. Phytoremediation of organics. Current Opinion in BioTechnol. 15: 225–30.CrossRefGoogle Scholar
Niemeyer, T. and Schiewer, S. 2003. Effect of temperature and nutrient supply on the bioremediation rate of diesel contaminated soil from two Alaskan sites. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates Conference (ARCSACC), Edmonton, May 4–6, 212–19.Google Scholar
NREL, National Renewable Energy Lab, Solar Radiation Resource Information, http://rredc.nrel.gov/solar/ (accessed July 2006).
Oechel, W. C. and Billings, W. D. 1992. Anticipated effects of global change on carbon balance of arctic plants and ecosystems. In Arctic Physiological Processes in a Changing Climate, ChapinIII, F. S., Jeffries, R. L., Shaver, G. R., Reynolds, J. F., and Svobada, J. (eds.), San Diego, CA, Academic Press, 139–68.Google Scholar
Oechel, W. and Vourlitis, G. 1995. Effect of global change on carbon storage in cold soils. In Soils and Global Change, Lal, R., Kimble, J., Levine, E., and Stewart, B. (eds.), New York, Lewis Publishers, 117–30.Google Scholar
Olovin, B. A. 1993. Permeability of Perennially Frozen Soils. Novosibirsk, “Nauka” (in Russian).Google Scholar
Osterkamp, T. E. and Romanovsky, V. E. 1999. Evidence for warming and thawing of discontinuous permafrost in Alaska, Permafrost Periglac. 10 (1): 17–37.3.0.CO;2-4>CrossRefGoogle Scholar
Paetz, A. and Wilke, B.-M. 2005. Soil sampling and storage. In Manual for Soil Analysis – Monitoring and Assessing Soil Bioremediation, Margesin, R. and Schinner, F. (eds), Berlin, Springer-Verlag, 1–45.Google Scholar
Panicker, G., Aislabie, J., Saul, D., and Bej, A. K. 2002. Cold tolerance of Pseudomonas sp. 30–3 isolated from oil-contaminated soil, Antarctica. Polar Biol. 25 (1): 5–11.CrossRefGoogle Scholar
Pankow, J. F. and Cherry, J. A. 1996. Dense Chlorinated Solvents and Other DNAPLs in Groundwater, Portland, Oregon, Waterloo Press.Google Scholar
Paudyn, K., Poland, J. S., Rutter, A, and Rowe, R.K. 2005. Remediation of hydrocarbon contaminated soils in the Can. arctic with landfarms. Proc. 4th Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates Conference (ARCSACC), Edmonton, Alberta, 233–9.Google Scholar
Paudyn, K., Rutter, A., Rowe, R. K., and Poland, J. S. 2006. Remediation of hydrocarbon contaminated soils in the Canadian Arctic with landfarms. In Contaminants in Freezing Ground: Proc. 5th Int'l Conf., Rike, A. G., Øvstedal, J., and Vethe, Ø. (eds.), Oslo, Norway, Norsk Geologisk Forening.
Paul, E. A. and Clark, F. E. 1996. Soil Microbiology and Biochemistry. San Diego, California, Academic Press.Google Scholar
Pawelczyk, A., Grabas, Kazimierz K., Kolwzan, Barbara B., and Steininger, M. 2003. Remediation of grounds at the former soviet military airfields contaminated by petroleum products. Proc. 2nd European Bioremediation Conf., Chania, Crete, Greece, June 30–July 4, 2003, 184–7.Google Scholar
Pelletire, F., Prévost, D., Laliberté, G., and Bochove, E. 1999. Seasonal response of denitrifiers to temperature in a Quebec cropped soil. Can. J. Soil Sci. 79: 551–6.CrossRefGoogle Scholar
Pelz, O., Chatzinotas, A., Andersen, N.et al. 2001. Use of isotopic and molecular techniques to link toluene degradation in denitrifying aquifer microcosms to specific microbial populations. Archives of Microbiol. 175: 270–81.CrossRefGoogle ScholarPubMed
PhytoPet© 2007. Phytoremediation of petroleum hydrocarbons web database developed by the University of Saskatchewan, www.phytopet.usask.ca/index.html.
Piotrowski, M. R., Aaserude, R. G., and Schmidt, F. J. 1992. Bioremediation of diesel contaminated soil and tundra in an Arctic environment. In: Contaminated Soils: Diesel Fuel Contamination, Kostecki, P. T. and Calabrese, E. J. (eds), Chelsea, MI, Lewis Publishers, 115–42.Google Scholar
Poland, J. S., Mitchell, S., and Rutter, A. 2001. Remediation of former military bases in the Canadian Arctic. Cold Regions Sci. Technol.32: 93–105.
Poland, J. S., Riddle, M. J., and Zeeb, B. A. 2003. Contaminants in the Arctic and the Antarctic: a comparison of sources, impacts, and remediation options. Polar Rec. 39: 369–84.CrossRefGoogle Scholar
Poland, J. S., Rutter, A., Rowe, K., McWatters, R., and Kalinovich, I. 2004. Design and application of a funnel and gate barrier system for PCB containment and remediation in the Canadian Arctic. Contaminants in Freezing Ground: Proceedings of the 4th International Conference, Filler, D. M. and Barnes, D. L. (eds.), Fairbanks, Alaska.Google Scholar
Pombo, S. A., Pelz, O., Schroth, M. H., and Zeyer, J. 2002. Field-scale 13C-labeling of phospholipid fatty acids (PLFA) and dissolved inorganic carbon: tracing acetate assimilation and mineralization in a petroleum hydrocarbon-contaminated aquifer. FEMS Microbiol. Ecol. 41: 259–67.CrossRefGoogle Scholar
Potter, T. and Simmons, K. E. 1998a. Composition of Petroleum Mixtures. Amherst, MA, Amherst Scientific Publishers.Google Scholar
Potter, T. and Simmons, K. E. 1998b. Analysis of Petroleum Hydrocarbons in Environmental Media. Amherst, MA, Amherst Scientific Publishers.Google Scholar
Potts, M. 1994. Desiccation tolerance of prokaryotes. Microbiol. Rev. 58: 755–805.Google ScholarPubMed
Pouliot, Y., Pokiak, C., Moreau, N., Thomassin-Lacroix, E., and Faucher, C. 2003. Soil remediation of a former tank farm site in western arctic Canada. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates Conference (ARCSACC), Edmonton, May 4–6, 262–7.Google Scholar
Poulsen, M. M. and Kueper, B. H. 1992. A field experiment to study the behavior of tetrachloroethylene in unsaturated porous media. Environ. Sci. Technol. 26(5): 889–95.CrossRefGoogle Scholar
Powell, S. M., Bowman, J. P., and Snape, I. 2004. Degradation of nonane by bacteria from Antarctic marine sediment. Polar Biol. 27: 573–8.CrossRefGoogle Scholar
Powell, S. M., Bowman, J. P., Snape, I., and Stark, J. S. 2003. Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microbiol. Ecol. 45: 135–45.CrossRefGoogle ScholarPubMed
Powell, S. M., Ferguson, S. H., Bowman, J. P., and Snape, I. 2006a. Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microbial Ecol. 52: 523–32.CrossRefGoogle Scholar
Powell, S. M., Ferguson, S. H., Snape, I., and Siciliano, S. D. 2006b. Fertilization stimulates anaerobic fuel degradation of Antarctic soils by denitrifying microorganisms. Environ. Sci. Technol. 40 (6): 2011–17.CrossRefGoogle Scholar
Powell, S. M., Harvey, P. M., Stark, J. S., Snape, I., and Riddle, M. J. 2007. Biodegradation of petroleum products in experimental plots in Antarctic marine sediments is location dependent. Mar. Pollut. Bull. 54: 434–40.CrossRefGoogle ScholarPubMed
Powell, S. M., Snape, I., Bowman, J. P.et al. 2005. A comparison of the short term effect of diesel fuel and lubricant oils on Antarctic benthic microbial communities. J. Exp. Mar. Biol. Ecol. 322: 53–65.CrossRefGoogle Scholar
Prince, R. C., Owens, E. H., and Sergy, G. A. 2002. Weathering of an Arctic oil spill over 20 years: the BIOS experiment revisited. Mar. Pollut. Bull. 44 (11): 1236–42.CrossRefGoogle ScholarPubMed
Pritchard, P. H. and Costa, C. F. 1991. EPA's Alaska oil spill bioremediation project. Environ. Sci. Technol. 25: 372–9.CrossRefGoogle Scholar
Pruthi, V. and Cameotra, S. S. 1997. Production and properties of a biosurfactant synthesized by Arthrobacter protophormiae – an Antarctic strain. World J. Microbiol. and BioTechnol. 13: 137–9.CrossRefGoogle Scholar
Purkamo, L., Salminen, J., and J⊘rgensen, K. 2004. Diversity of bacteria and archaea in petroleum hydrocarbon contaminated subsurface samples from Southern Finland. Paper (in English) in publication by Finland's environmental administration: Maaperänsuojelu, Geologian tutkimuskeskuksen ja, Suomen ympäristökeskuksen, tutkimusseminaari 5.11.2004 (J. Seppälä, H. Idman, eds.), Ympäristönsuojelu Suomenympäristö 726, 40–6.
Rasiah, V., Voroney, R. P., and Kachanoski, R. G. 1991. Effect of N-amendment on C-mineralisation of an oily waste. Water, Air Soil Poll. 59 (3–4): 249–59.CrossRefGoogle Scholar
Rasiah, V., Voroney, R. P., and Kachanoski, R. G. 1992. Biodegradation of an oily waste as influenced by nitrogen forms and sources. Water, Air Soil Poll. 65 (1–2): 143–51.CrossRefGoogle Scholar
Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N., and Chandler, R. E. 1983. Model for bacterial culture growth rate though out the entire biokinetic temperature range. J. Bacteriology 154: 1222–6.Google Scholar
Ratkowsky, D. A., Olley, J., McMeekin, T. A., and Ball, A. 1982. Relationship between temperature and growth rate of bacterial cultures. J. Bacteriology 149: 1–5.Google ScholarPubMed
Rayner, J. L., Snape, I., Walworth, J. L., Harvey, P. M., and Ferguson, S. H. 2007. Petroleum-hydrocarbon contamination and remediation by microbioventing at sub-Antarctic Macquarie Island. Cold Reg. Sci. Technol. 48: 139–53.
Reardon, K. F., Mosteller, D. C., and Rogers, J. D. B. 2000. Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. BioTechnol. and Bioeng. 69: 385–400.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Redfield, A. C., Ketchum, B. H., and Richards, F. A. 1963. The influence of organisms on the composition of seawater. In The Sea, Hill, M. N. (ed.), New York, Wiley, 26–77.Google Scholar
Reimer, K. J., Colden, M., Francis, P.et al. 2003. Cold climate bioremediation – a comparison of various approaches. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates Conference (ARCSACC), Edmonton, May 4–6, 290–300.Google Scholar
Reimer, K. J., Zeeb, B. A., Koch, I.et al. 2005. A critical review of bioremediation. Proceedings of 4th Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates Conference (ARCSACC), Edmonton, May, 195–232.Google Scholar
Reinuk, I. T. 1959. Condensation in the active layer of permafrost. Magadan, VNIIzoloto. (in Russian).
Revill, A. T., Snape, I., Jucieer, A., and Guille, D. 2007. Constraints on transport and weathering of petroleum hydrocarbons at Casey Station, Antarctica. Cold Reg. Sci. Technol. 48: 154–67.CrossRefGoogle Scholar
Reynolds, C. M. 1993. Field measured bioremediation rates in a cold region landfarm: spatial variability relationships. In Hydrocarbon Contaminated Soils, Kostecki, P. T. and Calabrese, E. J. (eds.), Chelsea, MI, Lewis Publishers, 487–99.Google Scholar
Reynolds, C. M. 2004a. Cyclic temperature effects on soil microbial activity and possible impacts on remediating contaminated soil. Proc. 4th Int'l. Contaminants in Freezing Ground Conf., Filler, D. M. and Barnes, D. L. (eds.), Fairbanks, Alaska.Google Scholar
Reynolds, C. M. 2004b. Technology Demonstration Final Report – Field Demonstration of Rhizosphere-Enhanced Treatment of Organics-Contaminated Soils on Native American Lands with Application to Northern FUD Sites. ESTCP Final Report. CRREL LR-04-18. www.crrel.usace.army.mil/techput/CRREL_Reports/reports/LR-04-18.pdf
Reynolds, C. M., Braley, W. A., Travis, M. D., Perry, L. B., and Iskandar, I. K. 1998. Bioremediation of Hydrocarbon-Contaminated Soils and Groundwater in Northern Climates. CRREL Special Report 98–5.
Reynolds, C. M., Travis, M., Braley, W. A., and Scholze, R. J. 1994. Applying field expedient bioreactors and landfarming in cold climates. In Hydrocarbon Bioremediation, Hinchee, R., Miller, R. N., and Hoeppel, R. E. (eds.), Chelsea, MI, Lewis Publishers, 100–6.Google Scholar
Rhodes, M., Wardell-Johnson, G. W., Rhodes, M. P., and Raymond, B. 2006. Applying network theory to the conservation of habitat tress in urban environments: a case study from Brisbane, Australia. Conserv. Biol.20: 861–70.
Rhykerd, R. L., Weaver, R. W., and McInnes, K. J. 1995. Influence of salinity on bioremediation of oil in soil. Environ. Pollution 90: 127–30.CrossRefGoogle ScholarPubMed
Richmond, S. A., Lindstrom, J. E., and Braddock, J. F. 2001. Assessment of natural attenuation of chlorinated aliphatics and BTEX in subarctic groundwater. Environ. Sci. Technol. 35 (20): 4038–45.CrossRefGoogle ScholarPubMed
Rike, A. G., B⊘rresen, M., and Instances, A. 2002. Response of cold-adapted microbial populations in a permafrost profile to hydrocarbon contaminants. Polar Rec. 37 (202): 239–48.CrossRefGoogle Scholar
Rike, A. G., Haugen, K. B., B⊘rresen, M., Engene, B., and Kolstad, P. 2003a. In situ biodegradation of petroleum hydrocarbons in frozen arctic soils. Cold Reg. Sci. Technol. 37 (2): 97–120.CrossRefGoogle Scholar
Rike, A. G., Haugen, K. B., B⊘rresen, M., Kolstad, P., and Engene, B. 2003b. In-situ monitoring of hydrocarbon biodegradation in the winter months at Longyearbyen, Spitsbergen. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds.), St. Joseph's Print Group, Edmonton, May 4–6, 268–78.Google Scholar
Rike, A. G., Haugen, K. B., and Engene, B. 2005. In situ biodegradation of hydrocarbons in arctic soil at sub-zero temperatures – field monitoring and theoretical simulation of the microbial activation temperature at a Spitsbergen contaminated site. Cold Reg. Sci. Technol. 41: 189–209.CrossRefGoogle Scholar
Riser-Roberts, E. 1998. Remediation of Petroleum Contaminated Soils: Biological, Physical, and Chemical Processes, Boca Raton, Lewis Publishers.CrossRefGoogle Scholar
Ristinen, R. and Kraushaar, J. 1999. Energy and Problems of a Technical Society, New York, John Wiley and Sons.Google Scholar
Rivkina, E. M., Friedmann, E. I., McKay, C. P., and Gilichinsky, D. A. 2000. Metabolic activity of permafrost bacteria below the freezing point. Appl. and Environ. Microbiol. 66 (8): 3230–3.CrossRefGoogle ScholarPubMed
Rosenberg, E. 1992. Hydrocarbon-oxidising bacteria (Chapter 19). In The Procaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. 2nd Edition, Balows, A.et al. (eds.), New York, Springer-Verlag, 446–59.Google Scholar
Rothwell, D. R. and Davis, R. 1997. Antarctic Environmental Protection: A Collection of Australian and International Instruments NSW, The Federation Press.
Roura, R. 2004. Monitoring and remediation of hydrocarbon contamination at the former site of Greenpeace's World Park Base, Cape Evans, Ross Island, Antarctica. Polar Rec.40: 51–67.
Rowsell, S. 2003. A decision tree for selecting bioremediation in cold climates. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds), St. Joseph's Print Group, Edmonton, May 4–6, 183–96.Google Scholar
Ruberto, L., Vazquez, S. C., and MacCormack, W. P. 2003. Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. Int'l. Biodeterioration & Biodegradation 52: 115–25.CrossRefGoogle Scholar
Russell, N. J. 1990. Cold adaptation of microorganisms. Phil. Trans. R. Soc. Lond. B 326: 595–611.CrossRefGoogle ScholarPubMed
Russell, N. J. 2000. Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4: 83–90.CrossRefGoogle Scholar
Russell, N. J. 2002. Bacterial membranes: the effects of chill storage and food processing. An overview. Int'l. J. Food Microbiol. 79: 27–34.CrossRefGoogle ScholarPubMed
Ryden, B. E. and Kostov, L. 1977. Ground water and the water-frost cycle in a tundra mire, Striae 4: 17–19.Google Scholar
Salanitro, J. P. 1993. The role of bioattenuation in the management of aromatic hydrocarbon plumes in aquifers. Ground Water Monitor. & Remed. 13: 150–61.CrossRefGoogle Scholar
Salminen, J. M., Tuomi, P. M., Suortti, A.-M., and J⊘rgensen, K. S. 2004. Potential for aerobic and anaerobic biodegradation of petroleum hydrocarbons in boreal subsurface. Biodegradation 15: 29–39.CrossRefGoogle ScholarPubMed
Sandvik, S., Lode, A., and Pedersen, T. A. 1986. Biodegradation of oily sludge in Norwegian soils. Appl. Microbiol. and BioTechnol. 23: 297–301.CrossRefGoogle Scholar
Saul, D. J., Aislabie, J., Brown, C. E., Harris, L., and Foght, J. M. 2005. Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMs Microbiol. Ecol. 53: 141–55.CrossRefGoogle ScholarPubMed
Schafer, A. N., Snape, I., and Siciliano, S. D. 2007. Soil biogeochemical toxicity endpoints for sub-Antarctic Islands contaminated with petroleum hydrocarbons. Environ. Toxicol. Chem. 26: 890–7.CrossRefGoogle Scholar
Schiewer, S. and Niemeyer, T. 2006. Soil heating and optimized nutrient addition for accelerating bioremediation in cold climates. Polar Rec. 42 (1): 23–31.CrossRefGoogle Scholar
Schinder-Keel, U., Lejb⊘lle, Bang K., Baehler, E., Haas, D., and Keel, C. 2001. The sigma factor AlgU (AlgT) controls exopolysaccharide production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHA0. Appl. and Environ. Microbiol. 67: 5683–93.CrossRefGoogle Scholar
Schmidtke, T., White, D., and Woolard, C. 1999. Oxygen release kinetics from solid phase oxygen in Arctic Alaska. J. Haz. Mat'ls. B64: 157–65.CrossRefGoogle Scholar
Schnitzer, M. 1991. Soil organic matter – the next 75 years. Soil Sci. 151: 41–58.CrossRefGoogle Scholar
Schofield, R. K. 1935. The pH of the water in soil. Proc. 3rd Int'l. Congress on Soil Sci. 2: 37–48; 3: 182–6.Google Scholar
Scow, K. M. 1982. Rate of biodegradation. In Handbook of Chemical Property Estimation Methods, Environmental Behavior of Organic Compounds, Lyman, W. J., Reehl, W. F., and Rosenblatt, D. H. (eds.), New York, McGraw-Hill, Chapter 16.Google Scholar
Scow, K. M., Simkins, S., and Alexander, M. 1986. Kinetics of mineralisation of organic compounds at low concentrations in soils. Appl. and Environ. Microbiol. 51: 1028–35.Google Scholar
Semple, K. T., Morris, A. W. J., and Paton, G. I. 2003. Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. European J. Soil Sci. 54: 809–18.CrossRefGoogle Scholar
SERDP. 2005. Final report. SERDP and ESTCP Expert Panel Workshop on Research and Development Needs for the Environmental Remediation Application of Molecular Biological Tools.http://docs.serdp-estcp.org/viewfile.cfm?Doc=SedimentsFinalReport.pdf.
Sexstone, A. J. and Atlas, R. M. 1977. Response of microbial populations in Arctic tundra soils to crude oil. Can. J. of Microbiol. 23: 1327–33.CrossRefGoogle ScholarPubMed
Seyfried, M. S. and Murdock, M. D. 1997. Use of air permeability to estimate infiltrability of frozen soils, J. of Hydrol. 202: 95–107.CrossRefGoogle Scholar
SFT. 1999. Guidelines for the Risk Assessment of Contaminated Sites, Report 99:06. Oslo, Norway, Norwegian Pollution Control Authority.
Shapley, D. 1974. Antarctica – world hunger for oil spurs Security Council review. Science 184: 776–81.CrossRefGoogle ScholarPubMed
Shields, D., Janzen, P., McCartney, D., and Man, A. 1997. In situ bioremediation in a sub-Arctic climate. Proc. '97 In Situ and On-Site Bioremediation Symposium, Columbus, OH, Battelle Press, 4(1): 319.Google Scholar
Shur, Y. L. 1988a. Upper Permafrost Horizon and Thermokarst. Novosibirsk, “Nauka”.Google Scholar
Shur, Y. L. 1988b. The upper horizon of permafrost soil. Proc. 5th Int'l. Permafrost Conf., Trondheim, Norway, 867–71.Google Scholar
Shur, Y. L., Hinkel, K. M., and Nelson, F. E. 2005. The transient layer: Implications for geocryology and climate-change science, Permafrost Periglac. 16: 5–17.CrossRefGoogle Scholar
Shur, Y. L. and Ping, C. L. 1994. Permafrost dynamics and soil formation. Proc. of the Meeting on the Classification, Correlation, and Management of Permafrost-Affected Soils, Soil Conservation Service, Lincoln, Nebraska, 112–17.Google Scholar
Sierra, J. and Renault, P. 1995. Oxygen consumption by soil microorganisms as affected by oxygen and carbon dioxide levels. Appl. Soil Ecol. 2: 175–84.CrossRefGoogle Scholar
Sims, J. L., Sims, R. C., and Matthews, J. E. 1989. Bioremediation of Contaminated Surface Soils. U.S. Environmental Protection Agency, EPA/600/9–89/073, Washington, D.C.
Smith, E. P., Lipkovich, I., and Ye, K. Y. 2002. Weight-of-evidence (WOE): Quantitative estimation of probability of impairment for individual and multiple lines of evidence. Hum. Ecol. Risk Assess.8: 1585–96.
Smith, M. W. and Burn, C. R. 1987. Outward flux of vapour from frozen soils at Mayo, Yukon, Canada: results and interpretation. Cold Reg. Sci. Technol. 13: 143–54.CrossRefGoogle Scholar
Snape, I., Ferguson, S. H., Harvey, P. M., and Riddle, M. J. 2006a. Investigation of evaporation and biodegradation of fuel spills in Antarctica: II – Extent of natural attenuation at Casey Station. Chemosphere 63: 89–98.CrossRefGoogle Scholar
Snape, I., Ferguson, S., and Revill, A. 2003. Constraints of rates of natural attenuation and in situ bioremediation of petroleum spills in Antarctica. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds.), St. Joseph's Print Group, Edmonton, May 4–6, 257–61.Google Scholar
Snape, I., Gore, D. B., Cole, C. M., and Riddle, M. J. 2002. Contaminant dispersal and mitigation at Casey Station: an example of how applied geoscience research can reduce environmental risks in Antarctica. Royal Soc. of New Zealand Bulletin 35: 641–8.Google Scholar
Snape, I., Harvey, P. M., Ferguson, S. H., Rayner, J. L., and Revill, A. T. 2005. Investigation of evaporation and biodegradation of fuel spills in Antarctica: I – a chemical approach using GC-FID. Chemosphere 61: 1485–94.CrossRefGoogle ScholarPubMed
Snape, I., Morris, C.E, and Cole, C. M. 2001. The use of permeable reactive barriers to control contaminant dispersal during site remediation in Antarctica. Cold Reg. Sci. Technol. 32: 157–74.CrossRefGoogle Scholar
Snape, I., Riddle, M. J., Gore, D. G., and Cole, C. M. 1998. Interim Report on the Contaminated Sites of the ‘Old’ Casey Tip and Abandoned Wilkes Station. A report to the Environmental Management Section, Australian Antarctic Division, Hobart, Australia.
Snape, I., Riddle, M. J., Stark, J. S., Cole, C. M., King, C. K., Duquesne, S., and Gore, D. B. 2001. Management and remediation of contaminated sites at Casey Station, Antarctica. Polar Rec. 37: 199–214.CrossRefGoogle Scholar
Snape, I., Siciliano, S., Schafer, A., Rayner, J. L., and Riddle, M. J. 2006b. Development of fuel spill remediation guidelines for Antarctica. 2nd SCAR Open Science Conference ‘Antarctica in the Earth System’, Hobart, 143.
Snape, I., Siciliano, S., Schafer, A., et al. 2006c. Development of petroleum remediation guidelines for polar regions. Contaminants in Freezing Ground: Proc. 5th Int'l. Conf., Rike, A. G., Øvstedal, J., and Vethe, Ø. (eds.), Oslo, Norway, Norsk Geologisk Forening, 87.Google Scholar
Soehnlen, G. 1991. Cleansing Contaminated, Granular Soils by Controlled Freezing, Masters Report, Michigan State University.
Solé, R. V. and Montoya, J. M. 2001. Complexity and fragility in ecological networks. Proc. Roy. Soc.268: 2039–45.
Soloway, D. A., Nahir, M., Billowits, M. E., and Whyte, L. G. 2001. In situ bioremediation of diesel-contaminated soil in Canada's Arctic territory: A case study at the Whitehorse International Airport, Yukon Territory. Polar Rec. 37 (202): 267–72.CrossRefGoogle Scholar
Stallwood, B., Shears, J., Williams, P. A., and Hughes, K. A. 2005. Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp from maritime Antarctica. J. of Appl. Microbiol. 99: 794–802.CrossRefGoogle ScholarPubMed
Stark, S. C., Gardner, D., Snape, I., and Mclvor, E. 2003. Assessment of contamination by heavy metals and petroleum hydrocarbons at Atlas Cove Station, Heard Island. Polar Rec. 39: 397–414.CrossRefGoogle Scholar
Starr, R. C. and Cherry, J. A. 1994. In situ remediation of contaminated ground water: the funnel and gate system. Ground Water 32: 465–76.CrossRefGoogle Scholar
Stevenson, F. J. 1985. Geochemistry of soil humic substances. In Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation, and Characterization, Aiken, G. R., McKnight, D. M., Wershaw, R. L., and MacCarthy, P. (eds.), New York, Wiley-Interscience, 13–52.Google Scholar
Stevenson, F. J. and Cole, M. A. 1999. The nitrogen cycle in soil: Global and ecological aspects. In Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients, New York, Wiley, 139–90.Google Scholar
Stow, J. P., Sova, J., and Reimer, K. J. 2005. The relative influence of distant and local (DEW-line) PCB sources in the Canadian Arctic. Sci. Total Environ.342: 107–18.
Stumm, W. and Morgan, J. J. 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd Edn, New York, John Wiley & Sons.Google Scholar
Suarez, M. P. and Rifai, H. S. 1999. Biodegradation rates for fuel hydrocarbons and chlorinated solvents in groundwater. Bioremed. J. 3(4): 337–62.CrossRefGoogle Scholar
Swedish EPA. 2002. Environmental quality criteria for contaminated sites. Swedish Environmental Protection Agency, viewed 21 December 2006, www.internat.naturvardsverket.se/index.php3?main=/documents/legal/assess/assedoc/cont.htm.
Thieringer, H. A., Jones, P. G., and Inouye, M. 1998. Cold shock and adaptation. BioEssays 20: 49–57.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Thomas, H., Jensen, D., and Authier, B. 1995. Remediation of crude-oil-contaminated soils beneath a containment liner. Proc. Geophysical Environmental 2000, Reston, VA American Society of Civil Engineers, 52–8.Google Scholar
Thomassin-Lacroix, E. J. M., Eriksson, M., Reimer, K. J., and Mohn, W. W. 2002. Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil. Appl. Microbiol. Biotechnol. 59: 551–6.Google ScholarPubMed
Thomassin-Lacroix, E. J. M., Yu, Z.., Reimer, K., and Mohn, W. W. 2001. DNA-based and culture-based characterization of a hydrocarbon-degrading consortium enriched from Arctic soil. Can. J. of Microbiol. 47: 1107–15.CrossRefGoogle ScholarPubMed
Thompson, B. A. W., Davies, N. W., Goldsworthy, P. M.et al. 2006. In situ lubricant degradation in Antarctic marine sediments. 1. Short-term changes. Environ. Toxicol. Chem. 25: 356–66.CrossRefGoogle ScholarPubMed
Tice, A. R., Anderson, D. M., and Banin, A. 1976. The Prediction of Unfrozen Water Contents in Frozen Soils from Liquid Limit Determinations. U.S. Army Cold Regions Research and Engineering Laboratory Report CRREL 76–8.Google Scholar
Tisdale, S. L., Nelson, W. L., Beaton, J. D., and Havlin, J. L. 1993. Soil Fertility and Fertilizers, New York, MacMillan.Google Scholar
Tishin, M. I. 1983. Thermal regime formation under large lakes in Central Yakutia. In Thermal Physics Studies in Siberia Ktyolitozone, Pavlov, A. (ed.), Novosibirsk “Nauka”, 127–35 (in Russian).Google Scholar
Tolstikhin, N. I. and Tolstikhin, O. N. 1973. Underground and surface water of the permafrost region. In General Permafrost Science, Mel'nikov, P. I. and Tostikhin, N. I. (eds.), Novosibirsk, “Nauka”, 192–229 (in Russian).Google Scholar
Torsvik, V. and Øvreås, L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinions in Microbiol. 5: 240–5.CrossRefGoogle ScholarPubMed
TPHCWG. 1998a. Analysis of Petroleum Hydrocarbons in Environmental Media. Total Petroleum Hydrocarbon Criteria Working Group series; Volume 1. Amherst, MA, Amherst Scientific Publishers.
TPHCWG. 1998b. Characterisation of C6 to C35 Petroleum Hydrocarbons in Environmental Samples. Total Petroleum Hydrocarbon Criteria Working Group series. Amherst, MA, Amherst Scientific Publishers.
Trefry, M. G. and Franzmann, P. D. 2003. An extended kinetic model accounting for non-ideal microbial substrate mineralisation in environmental samples. Geomicrobiol. J. 20: 113–29.CrossRefGoogle Scholar
Ulrich, A. C., Biggar, K. W., Armstrong, J.et al. 2006. Impact of cold temperatures on biodegradation rates. Proc. Sea to Sky Geotechnique 2006, 59th Canadian Geotech. Conf., and 7th Joint CGS/IAH-CNC Groundwater Specialty Conf., Vancouver, Canada, paper no. 484.Google Scholar
UNEP-WCMC. 1994. Russian Arctic Oil Pipeline Spill. United Nations Environment Programme / World Conservation Monitoring Centre, Cambridge, UK, viewed 28 August 2006, www.unep=wcmc.org/latenews/emergency/usinsk_pipeline_1994/usinsk.htm.
United States Environmental Protection Agency. 1995. How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: A Guide for Corrective Action Plan Reviewers. U.S. Environmental Protection Agency, EPA 510-B-95-007. Washington, DC.
USEPA. 1996. Soil Screening Guidance: Technical Background Document. Second Edition. Publication 9355.4-17A. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, DC.
UST. 2005. Contaminated Soil in Iceland. Environment and Food Agency of Iceland (UST), viewed 28 November 2006, http://english.ust.is/infobase/pollution-prevention/WasteManagementinIceland/Contaminatedsoillniceland/nr/3064.
UST. 2006. Waste Management in Iceland. Environment and Food Agency of Iceland (UST).
van Everdingen, R. O. 1974. Groundwater in permafrost regions of Canada. Proc. of Permafrost Hydrology workshop, Can. National Committee for the International Hydrologic Decade, Ottawa, 83–93.
Loon, W. K. P., Haneghem, I. A., and Boshoven, H. P. A. 1988. Thermal and hydraulic conductivity of unsaturated sands. 5th Int'l. Symposium on Ground Freezing, 81–90.Google Scholar
Stempvoort, D. R., Armstrong, J., and Mayer, B. 2002. Bacterial sulfate reduction in biodegradation of hydrocarbons in low-temperature, high-sulfate groundwater, Western Canada. Proc. '02 Petroleum Hydrocarbons Conf. and Organic Chemicals in Ground Water: Prevention, Detection, and Remediation, Westerville, OH, National Ground Water Association (ed.), 244–59.Google Scholar
Stempvoort, D., Armstrong., J., and Mayer, B. 2007a. Microbial reduction of sulfate injected to gas condensate plumes in cold groundwater. J. Contam. Hydrol. (in press).Google Scholar
Van Stempvoort, D., Armstrong., J., and Mayer, B. 2007b. Seasonal recharge and replenishment of sulfate associated with biodegradation of a hydrocarbon plume, Ground Water Monitor. Remed. (in press).
Stempvoort, D. R., Bickerton, G., Lesage, S., and Millar, K. 2004. Cold-climate, in situ biodegradation of petroleum fuel in ground water, Moose Factory, Ontario, Canada. Proc. '04 Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Assessment, and Remediation Conf., National Ground Water Association (ed.), Westerville, OH, 131–8.Google Scholar
Stempvoort, D. and Biggar, K. W. 2007. Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: A review. Cold Reg. Sci. Technol. (in press).Google Scholar
Van Stempvoort, D., Biggar, K. W., Iwakun, O., Bickerton, G., and Voralek, J. 2006. Characterization of Fuel Spill Plumes in Fractured Rock at a Permafrost Site: Colomac Mine, NWT. 2005/2006 Program Progress Report, April 2006, National Water Research Institute and University of Alberta.
Stempvoort, D., Maathuis, H., Jaworski, E., Mayer, B., and Rich, K. 2005. Oxidation of fugitive methane in ground water linked to bacterial sulfate reduction. Ground Water 43(2): 187–99.CrossRefGoogle Scholar
Venosa, D. V., Haines, J. R., and Allen, D. M. 1992. Efficacy of commercial inocula in enhancing biodegradation of weathered crude oil contaminating a Prince William Sound beach. J. Ind. Microbiol. 10: 1–11.CrossRefGoogle Scholar
Vidali, M. 2001. Bioremediation. An overview. Pure and Appl. Chem. 73(7): 1163–72.CrossRefGoogle Scholar
Vigil, M. F. and Kissel, D. E. 1991. Equations for estimating the amount of nitrogen mineralized from crop residues. J. Soil Sci. Soc. of America 55: 757–61.CrossRefGoogle Scholar
Virginia, R. A. and Wall, D. H. 1999. How soils structure communities in the Antarctic dry valleys. Bioscience 49: 973–83.CrossRefGoogle Scholar
Vorhees, D. J., Weisman, W. H., and Gustafson, J. B. 1999. Human Health Risk-Based Evaluation of Petroleum Release Sites: Implementing the Working Group Approach. Total Petroleum Hydrocarbon Criteria Working Group series; Volume 5. Amherst, MA, Amherst Scientific Publishers.
Waksman, S. A. 1924. Influence of microorganisms upon the carbon-nitrogen ratio in the soil. J. Agricultural Sci. 14: 555–62.CrossRefGoogle Scholar
Wall, D. H. and Virginia, R. A. 1999. Controls on soil biodiversity: insights from extreme environments. Appl. Soil Ecol. 13: 137–50.CrossRefGoogle Scholar
Walworth, J., Braddock, J., and Woolard, C. 2001. Nutrient and temperature interactions in bioremediation of cryic soils. Cold Reg. Sci. Technol. 32: 85–91.CrossRefGoogle Scholar
Walworth, J., Pond, A., Snape, I., Rayner, J. L., and Harvey, P. M. 2007. Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil. Cold Reg. Sci. Technol. (in press).CrossRefGoogle Scholar
Walworth, J. L. and Reynolds, C. M. 1995. Bioremediation of a petroleum contaminated soil: Effects of phosphorus, nitrogen and temperature. J. Soil Contam. 4(3): 299–310.CrossRefGoogle Scholar
Walworth, J. L., Woolard, C. R., Acomb, L., and Wallace, M. 1999. Nutrient and temperature interactions in bioremediation of petroleum-contaminated cryic soils. In-Situ and On-Site Bioremediation 5(3): 505–10.Google Scholar
Walworth, J. L., Woolard, C. R., and Braddock, J. F. 1999. Nitrogen management in bioremediation. Soil and Groundwater Cleanup Feb/March: 12–15.Google Scholar
Walworth, J. L., Woolard, C. R., Braddock, J. F., and Reynolds, C. M. 1997a. Enhancement and inhibition of soil petroleum biodegradation through the use of fertilizer nitrogen: An approach to determining optimum levels. J. Soil Contam. 6(5): 465–80.CrossRefGoogle Scholar
Walworth, J. L., Woolard, C. R., and Harris, K. C. 1997b. Bioremediation of petroleum-contaminated soil using fish bonemeal in cold climates. AgroBorealis 29: 31–4.Google Scholar
Walworth, J. L., Woolard, C. R., and Harris, K. C. 2003. Nutrient amendments for contaminated peri-glacial soils: Use of cod bone meal as a controlled release nutrient source. Cold Reg. Sci. Technol. 43: 1–8.Google Scholar
Wang, Z., Fingas, M., Blenkinsopp, S.et al. 1998. Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J. Chromatography A 809: 89–107.CrossRefGoogle ScholarPubMed
Wang, Z. D. and Fingas, M. 2003. Fate and identification of spilled oils and petroleum products in the environment by GC-MS and GC-FID. Energ. Sources 25: 491–508.CrossRefGoogle Scholar
Wang, Z. D., Yang, C., Fingas, M.et al. 2005. Characterization, weathering, and application of sesquiterpanes to source identification of spilled lighter petroleum products. Environ. Sci. Technol. 39: 8700–7.CrossRefGoogle ScholarPubMed
Wartena, E. G. and Evenset, A. 1997. Effects of the Komi oil spill 1994 in the Nenets Okrug. Oil Components and Other Contaminants in Sediments and Fish from the Pechora River. 1995. Report APN514.789.1. Akvaplan-niva, Tromso.
Watanabe, K. and Hamamura, N. 2003. Molecular and physiological approaches to understanding the ecology of pollutant degradation. Current Opinion in Biotechnol. 14: 289–95.CrossRefGoogle ScholarPubMed
Waterhouse, E. J. and Roper-Gee, R. 2002. From dig and ship to watch and wait? Fuel spill management in the New Zealand Antarctic programme. 3rd Contaminants in Freezing Ground. Snape, I. and Warren, R. (eds.), Hobart, Australian Antarctic Division.Google Scholar
Watson, S. W., Bock, E., Harms, H., Koops, H. P., and Hooper, A. B. 1989. Nitrifying bacteria. In Bergey's Manual of Systematic Bacteriology, Staley, J. T.et al. (eds.), Baltinpre, MD, William and Wilkins, 1808–43.Google Scholar
Watts, J. R., Corey, J. C., and McLeod, K. W. 1982. Land application studies of industrial waste oils. Environ. Pollution 28: 165–75.CrossRefGoogle Scholar
Westervelt, W. W., Lawson, P. W., Wallace, M. N., and Fosbrook, C. 1997. Intrinsic remediation of arctic diesel fuel near drinking water wells. Proc. '97 In Situ and On-Site Bioreremediation Symposium, Columbus, OH Battelle Press, 4(1):61–6.Google Scholar
Westlake, D. W. S., Jobson, A. M., and Cook, F. D. 1977. In situ degradation of oil in a soil of the boreal region of the Northwest Territories. Can. J. Microbiol. 24: 254–60.CrossRefGoogle Scholar
Westlake, D. W. S., Jobson, A., Phillippe, R., and Cook, F. D. 1973. Biodegradability and crude oil composition. Can. J. Microbiol. 20: 915–28.CrossRefGoogle Scholar
White, D. M. 1995. Bioremediation of crude oil in the active layer overlying Alaska's North Slope Permafrost, Ph.D. Dissertation, Univ. of Notre Dame.
White, D. M., Collins, C. M., Barnes, D., and Byard, H. 2004. Effects of a crude oil spill on permafrost after 24 years in interior Alaska. Proc. Cold Regions Engineering and Construction Conf., American Society of Civil Engineers, Edmonton, May 16–19.Google Scholar
White, D. M., Garland, D. S., Beyer, L., and Yoshikawa, K. 2004. Pyrolysis-GC/MS fingerprinting of environmental samples. J. Analytical and Appl. Pyrolysis 71: 107–18.CrossRefGoogle Scholar
White, D. M. and Irvine, R. L. 1996. The bituminous material in Arctic peat: implications for analyses of petroleum contamination. J. Haz. Mat'ls. 49: 81–196.Google Scholar
White, D. M. and Irvine, R. L. 1998a. Analysis of bioremediation in organic soils. In: Bioremediation: Principles and Practice, Volume 1, Fundamentals and Applications, Sikdar, S. K. and Irvine, R. L. (eds.), Lancaster, PA, Technomic Publishing, 185–221.Google Scholar
White, D. M. and Irvine, R. L. 1998b. Potential applications for pyrolysis-GC/MS in bioremediation. Environ. Monitoring and Assessment 50: 53–65.CrossRefGoogle Scholar
White, D. M., Luong, H., and Irvine, R. L. 1998. Pyrolysis-GC/MS analysis of contaminated soils in Alaska. J. Cold Regions Eng. 12: 1–10.CrossRefGoogle Scholar
White, T. L. and Williams, P. J. 1994. Cryogenic alteration of frost-susceptible soils. Proc. 7th Int'l. Symposium on Freezing Ground, Nancy, France, 17–24.
White, T. L. and Williams, P. J. 1996. The role of microstructure – geotechnical properties of freezing soils. Proc. 5th Int'l. Symposium on Thermal Eng. and Sci. for Cold Regions, Ottawa, Canada, 415–26.Google Scholar
Whyte, L. G., Bourbonnière, L., Bellerose, C., and Greer, C. W. 1999a. Bioremediation assessment of hydrocarbon-contaminated soils from high arctic. Bioremediation J. 3(1): 69–79.CrossRefGoogle Scholar
Whyte, L. G., Bourbonnière, L., and Greer, C. W. 1997. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl. and Environ. Microbiol. 63: 3719–23.Google ScholarPubMed
Whyte, L. G., Bourbonnière, L., Roy, R., and Greer, C. W. 1998. Bioremediation Assessment of Whitehorse Airport Contaminated Aquifer. Phase 1 – Final Report prepared for: Public Works and Government Services Canada. Environmental Microbiology, NRC – Biotechnology Research Institute, Montreal, Quebec, Canada.
Whyte, L. G., Goalen, B., Labbé, D., Greer, C. W., and Nahir, M. 2001. Bioremediation treatability assessment of hydrocarbon-contaminated soils from Eureka, Nunavut. Cold Reg. Sci. Technol. 32(2–3): 121–32.CrossRefGoogle Scholar
Whyte, L. G., Greer, C. W., and Inniss, W. E. 1996. Assessment of the biodegradation potential of psychrotrophic microorganisms. Can. J. Microbiol. 42: 99–106.CrossRefGoogle ScholarPubMed
Whyte, L. G., Hawari, J., Zhou, E.et al. 1998. Biodegradation of variable chain length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl. and Environ. Microbiol. 64: 2578–84.Google ScholarPubMed
Whyte, L. G. and Innis, W. E. 1992. Cold shock proteins and cold acclimation proteins in a psychrotrophic bacterium. Can. J. Microbiol. 38: 1281–5.CrossRefGoogle Scholar
Whyte, L. G., Labbé, D., Goalen, B., et al. 2003. In-situ bioremediation of hydrocarbon contaminated soils in the high arctic. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds), St. Joseph's Print Group, Edmonton, May 4–6, 245–56.Google Scholar
Whyte, L. G., Schultz, A., Beilen, J. B.et al. 2002a. Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol. Ecol. 41: 141–50.Google Scholar
Whyte, L. G., Slagman, S. J., Pietrantonio, F.et al. 1999b. Physiological adaptations involved in alkane assimilation at low temperatures by Rhodococcus sp. Strain Q15. Appl. and Environ. Microbiol. 65: 2961–8.Google Scholar
Whyte, L. G., Smits, T. M. H., Labbe, D.et al. 2002b. Gene cloning and characterization of multiple alkane hydroxylases in Rhodococcus sp. strains Q15 and NRRL B-16531. Appl. and Environ. Microbiol. 68: 5933–42.CrossRefGoogle Scholar
Wiggert, D. C., Andersland, O. B., and Davies, S. H. 1997. Movement of liquid contaminants in partially saturated frozen granular soils. Cold Reg. Sci. Technol. 25: 111–17.CrossRefGoogle Scholar
Williams, P. J. 1968. Unfrozen Water Content of Frozen Soils and Soil Moisture Suction. Division of Building Research National Research Council of Canada, Research Paper no. 359: 11–26.
Wilson, B. H., Bledsoe, B. E., Kampbell, D. H.et al. 1986. Biological fate of hydrocarbons at an aviation gasoline spill site. Proc. Conf. on Petroleum Hydrocarbons and Organic Chemicals in Ground Water, National Water Well Association (ed.), Columbus, OH, 78–90.Google Scholar
Wilson, J. L., Conrad, S. H., Mason, W. R., Peplinski, W., and Hagan, E. 1990. Laboratory Investigation of Residual Liquid Organics From Spills, Leaks, and the Disposal of Hazardous Wastes. Robert S. Kerr Environmental Research Laboratory Office of Research and Development, U.S. EPA, EPA/600/6-90/004.
Wilson, J., Rowsell, S., Chu, A., MacDonald, A, and Hetman, R. 2003. Biotreatability and pilot scale study for remediation of arctic diesel at 10 C. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds), St. Joseph's Print Group, Edmonton, May 4–6, 279–89.Google Scholar
Wingrove, T. 1997. Diesel contamination remediation at a remote site in a cold climate. Practice Periodical of Haz., Toxic, and Radioactive Waste Mgm't. 1(1): 30–4.CrossRefGoogle Scholar
Woinarski, A. Z., Snape, I., Stevens, G. W., and Morris, C. E. 2002. Development of a natural zeolite permeable reactive barrier for the treatment of contaminated water in Antarctica. Proc. 3rd Int'l. Conf. on Contaminants in Freezing Ground, Snape, I., and Warren, R. (eds.), Hobart, Australia, 14–18 April, 87–8.Google Scholar
Woinarski, A. Z., Snape, I., Stevens, G. W., and Stark, S. C. 2003. The effects of cold temperature on copper ion exchange by natural zeolite for use in a permeable reactive barrier in Antarctica. Cold Reg. Sci. Technol. 37(2): 159–68.CrossRefGoogle Scholar
Woinarski, A. Z., Stevens, G. W., and Snape, I. 2006. A natural zeolite permeable reactive barrier to treat heavy-metal contaminated waters in Antarctica: kinetic and fixed-bed studies. IChemE 84 (B2): 109–16.Google Scholar
Wong, R. C. K., Chu, A., Ng, R., and Duchscherer, T. M. 2003. An experimental study of biodegradation kinetics for distillated fractions of Alberta crude oil at 5 °C and 20 °C. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds), St. Joseph's Print Group, Edmonton, May 4–6, 197–203.Google Scholar
Wood, J. A. and Williams, P. J. 1985. Further experimental investigation of regelation flow with an ice sandwich permeater. In Freezing and Thawing of Soil-water Systems, Anderson, D. M. and Williams, P. J. (eds.), Technical Council on Cold Regions Engineering Monograph, New York, American Society of Civil Engineers, 85–94.Google Scholar
Woolard, C. R., Walworth, J. L., and White, D. M. 2000. Contaminated soil bioremediation in cold climates: nutrient management strategies to enhance hydrocarbon biodegradation rates. ISCORD 2000, Proc. 6th Int'l. Symposium on Cold Region Development, Hobart, Tasmania, Australia, 48–51.
Woolard, C. R., White, D. M., Walworth, J. L., and Hannah, M. E. 1999a. The magnitude and variability of biogenic interference in cold regions soils. J. Cold Regions Eng. 13(3): 113–21.CrossRefGoogle Scholar
Wrenn, B. A., Haines, J. R., Venosa, A. D., Kadkhodayan, M., and Suidan, M. T. 1994. Effects of nitrogen source on crude oil biodegradation. J. Ind. Microbiol. 13: 279–86.CrossRefGoogle Scholar
Yakimov, M. M., Giuliano, L., Bruni, V., Scarfi, S., and Golyshin, P. N. 1999. Characterization of Antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. Microbiologica 22: 249–56.Google ScholarPubMed
Yen, Y. C., Cheng, K. C., and Fukusako, S. 1991. Review of intrinsic thermophysical properties of snow, ice, sea ice, and frost. Proc. 3rd Int'l. Symposium on Cold Regions Heat Transfer, 187–218.Google Scholar
Yu, Z., Stewart, G. R., and Mohn, W. W. 2000. Apparent contradiction: psychrotolerant bacteria from hydrocarbon-contaminated Arctic tundra soils that degrade diterpenoids synthesized by trees. Appl. and Environ. Microbiol. 66: 5148–54.CrossRefGoogle ScholarPubMed
Zarling, J. P. and Braley, W. A. 1988. Geotechnical thermal analysis. In Embarkment Design and Construction in Cold Regions: Technical Council on Cold Regions Engineering Monograph, Reston, VA, American Society of Civil Engineers, 35–44.Google Scholar
Zhou, J. 2003. Microarrays for bacterial detection and microbial community analysis. Current Opinion in Microbiol. 6: 288–94.CrossRefGoogle ScholarPubMed
Zhou, E. and Crawford, R. L. 1995. Effects of oxygen, nitrogen, and temperature on gasoline biodegradation in soil. Biodegradation 6: 127–40.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Edited by Dennis M. Filler, University of Alaska, Fairbanks, Ian Snape, David L. Barnes, University of Alaska, Fairbanks
  • Book: Bioremediation of Petroleum Hydrocarbons in Cold Regions
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535956.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Edited by Dennis M. Filler, University of Alaska, Fairbanks, Ian Snape, David L. Barnes, University of Alaska, Fairbanks
  • Book: Bioremediation of Petroleum Hydrocarbons in Cold Regions
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535956.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Edited by Dennis M. Filler, University of Alaska, Fairbanks, Ian Snape, David L. Barnes, University of Alaska, Fairbanks
  • Book: Bioremediation of Petroleum Hydrocarbons in Cold Regions
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535956.014
Available formats
×