Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-29T05:44:08.675Z Has data issue: false hasContentIssue false

2 - Pedogenic processes and pathways of horizon differentiation

Published online by Cambridge University Press:  11 November 2009

Riccardo Scalenghe
Affiliation:
Università degli Studi, Palermo, Italy
Stanley W. Buol
Affiliation:
Department of Soil Science North Carolina State University Raleigh, USA
Giacomo Certini
Affiliation:
Università degli Studi di Firenze, Italy
Get access

Summary

Soils acquire and maintain their characteristics and composition while undergoing simultaneous alteration by an almost infinite number of biogeochemical reactions. The possible number of pedogenic events and combinations and interactions among them in soils is staggering. Although laboratory experiments can demonstrate that specific processes can produce specific soil features, the actual course of events within undisturbed soil will probably never be fully known because the cumulative impact of soil-forming processes spans such long periods of time relative to the lives of humans who observe those impacts.

Horizonation processes

The entire volume of material defined as soil is but one layer within a larger context of the lithosphere. Soil is a layer of the lithosphere where minerals formed at high temperatures in the absence of water during the cooling of the Earth's magma are being decomposed by water, and new minerals (secondary minerals) are being formed at lower temperatures. In soil, organic compounds formed in plants primarily from carbon taken from the air are mixed into the mineral material of the lithosphere. Soil can be conceptualized as an open system where material can be added, transformed, translocated and removed. Generalized processes responsible for the presence of identifiable horizons and other features within soil are outlined in Fig. 2.1.

These processes include:

  1. Energy exchange as the soil surface is daily heated by the sun and cooled by radiation to space each night.

  2. Water exchange as soil is periodically wetted by precipitation and dried as water evaporates and/or taken from the soil by plant roots and transpired through the plant leaves.

  3. […]

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×