Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T19:34:29.135Z Has data issue: false hasContentIssue false

5 - Geochemistry

from Part I - Background information – description of the field characteristics, mineralogy and geochemistry of komatiites

Published online by Cambridge University Press:  27 August 2009

Nicholas Arndt
Affiliation:
Université Joseph Fourier, Grenoble
C. Michael Lesher
Affiliation:
Laurentian University, Ontario
Steve J. Barnes
Affiliation:
Division of Exploration and Mining, CSIRO, Australia
Get access

Summary

Introduction

Komatiites are extinct. The last eruption we know of took place on Gorgona Island some 90 Ma ago, and although sightings are regularly claimed in the literature and even more frequently in manuscripts submitted for review, none of these is convincing. When dealing with the chemical compositions of modern basalts, andesites, phonolites, even carbonatites, a natural step is to obtain samples of newly erupted lavas that are essentially unaltered and have compositions like those of the original magmas. We know of no newly erupted komatiites, and even the youngest examples – the Cretaceous Gorgona komatiites – have been affected by the circulation of hydrothermal fluids. They contain secondary hydrous minerals in veins and as pseudomorphic replacement of olivine and glass, and chemical analyses typically contain a small percentage of H2O, and variable ferrous/ferric iron ratios. Such features would be grounds for rejection from many data banks of modern igneous rocks.

The freshest Archean komatiites, those from the Zvishavane area in Zimbabwe, are only slightly more altered than the Gorgona rocks, but most other known examples of Precambrian komatiites are less well preserved. It must be accepted that all komatiites are altered to a greater or lesser extent, and any investigation of their geochemistry has to deal with this alteration.

A special characteristic of komatiites allows us to do this, and indeed by using this characteristic, the chemistry of komatiites can often be interpreted more confidently than that of all other Precambrian or even early Phanerozoic volcanic rocks.

Type
Chapter
Information
Komatiite , pp. 130 - 166
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×