Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-04T18:03:44.529Z Has data issue: false hasContentIssue false

5 - Signal processing by biochemical reaction networks

Published online by Cambridge University Press:  14 August 2009

Jan Walleczek
Affiliation:
Stanford University, California
Get access

Summary

Introduction

One cannot help but be impressed by the engineering, by evolution, of the cellular machinery. The cellular program that governs cell cycle and cell development does so robustly in the face of a fluctuating environment and energy sources. It integrates numerous signals, chemical and otherwise, each of which contains, perhaps, incomplete information of events that the cell must track in order to determine which biochemical subroutines to bring on- and off-line, or slow down and speed up. These signals, which are derived from internal processes, other cells and changes in the extracellular medium, arrive asynchronously and are multi-valued; that is, they are not merely ‘on’ or ‘off’ but have many values of meaning to the cellular apparatus. The cellular program also has a memory of signals that it has received in the past, and of its own particular history as written in the complement and concentrations of chemicals contained in the cell at any instant. These characteristics of robust, integrative, asynchronous, sequential and analog control are the hallmark of cellular control systems. Below, arguments will be made that there is also another characteristic of such control systems: there is often an irreducible nondeterminism in their function that, besides leading to differences in timing of cellular events across an otherwise genetically identical (isogenic) cell population, can also lead to profound differences in cell fate.

Type
Chapter
Information
Self-Organized Biological Dynamics and Nonlinear Control
Toward Understanding Complexity, Chaos and Emergent Function in Living Systems
, pp. 112 - 144
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×