Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-27T09:51:24.142Z Has data issue: false hasContentIssue false

16 - Neonatal immune thrombocytopenias

Published online by Cambridge University Press:  01 February 2010

Katharine A. Downes M.D.
Affiliation:
Assistant Professor Department of Pathology, University Hospitals of Cleveland, Cleveland, Ohio, USA
Ravindra S. Sarode M.D.
Affiliation:
Professor of Pathology, University of Texas Southwestern Medical Center; Director: Transfusion Medicine and Hemostasis, Dallas, Texas, USA
Rodger L. Bick
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Eugene P. Frenkel
Affiliation:
University of Texas Southwestern Medical Center, Dallas
William F. Baker
Affiliation:
University of California, Los Angeles
Ravi Sarode
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Get access

Summary

Introduction

Platelets first appear in the fetal circulation at approximately 5–6 weeks of gestational age. By the end of the first trimester, the mean fetal platelet count is greater than 150 × 109/l and this is maintained for the remainder of the gestation. Thus, at birth full term infants have normal platelet counts.

Thrombocytopenia in the full term, healthy neonate is defined as a platelet count of less than 150 × 109/l. The frequency of neonatal thrombocytopenia has been estimated at 1–4%. Approximately 1–2% of term infants born to mothers with normal platelet counts are thrombocytopenic at birth. There are numerous causes of neonatal thrombocytopenia, and a severe form of the disorder may result from increased consumption or destruction, deficient production, or abnormal splenic sequestration of platelets.

The major causes of neonatal thrombocytopenia are non-immune and related to infection, sepsis etc. Immune mediated platelet destruction resulting from transplacental passage of maternal antibodies remains an important cause of thrombocytopenia at birth. Up to 15% of neonatal thrombocytopenias that occur at birth result from maternal auto- or alloantibodies directed against fetal platelet antigens. Neonatal thrombocytopenia can be a devastating clinical condition and requires systematic evaluation of the cause and its management. It is also important to address the possibility of recurrence of thrombocytopenia in subsequent pregnancies. This chapter focuses on immune mediated thrombocytopenia in the fetus and neonate.

Neonatal alloimmune thrombocytopenia (NAITP)

Overview

NAITP is defined as thrombocytopenia (platelet count < 150 × 109/l) due to transplacentally acquired maternal platelet alloantibodies.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pahal, G. S., Jauniaux, E., Kinnon, C., et al. Normal development of human fetal hematopoiesis between eight and seventeen weeks' gestation. Am. J. Obstet. Gynecol., 2000; 183(4): 1029–34.CrossRefGoogle Scholar
Forestier, F., Daffos, F., Galacteros, F., et al. Hematological values of 163 normal fetuses between 18 and 30 weeks of gestation. Pediatr. Res., 1986; 20(4): 342–6.CrossRefGoogle ScholarPubMed
Forestier, F., Daffos, F., Catherine, N., et al. Developmental hematopoiesis in normal human fetal blood. Blood, 1991; 77(11): 2360–3.Google ScholarPubMed
Roberts, I. A., Murray, N. A.Thrombocytopenia in the newborn. Curr. Opin. Pediatr., 2003; 15(1): 17–23.CrossRefGoogle ScholarPubMed
Kaplan, C.Immune thrombocytopenia in the foetus and the newborn: diagnosis and therapy. Transfus. Clin. Biol., 2001; 8(3): 311–14.CrossRefGoogle ScholarPubMed
Dreyfus, M., Kaplan, C., Verdy, E., et al. Frequency of immune thrombocytopenia in newborns: a prospective study. Immune Thrombocytopenia Working Group. Blood, 1997; 89(12): 4402–6.Google ScholarPubMed
Burrows, R. F., Kelton, J. G.Incidentally detected thrombocytopenia in healthy mothers and their infants. N. Engl. J. Med., 1988; 319(3): 142–5.CrossRefGoogle ScholarPubMed
Burrows, R. F., Kelton, J. G.Thrombocytopenia at delivery: a prospective survey of 6715 deliveries. Am. J. Obstet. Gynecol., 1990; 162(3): 731–4.CrossRefGoogle ScholarPubMed
Blanchette, V. S., Rand, M. L.Platelet disorders in newborn infants: diagnosis and management. Semin. Perinatol., 1997; 21(1): 53–62.CrossRefGoogle ScholarPubMed
Sola, M. C., Del Vecchio, A., Rimsza, L. M.Evaluation and treatment of thrombocytopenia in the neonatal intensive care unit. Clin. Perinatol., 2000; 27(3): 655–79.CrossRefGoogle ScholarPubMed
Sainio, S., Jarvenpaa, A. L., Renlund, M., et al. Thrombocytopenia in term infants: a population-based study. Obstet. Gynecol., 2000; 95(3): 441–6.Google ScholarPubMed
Moulinier, J. Iso-immunisation maternelle antiplaquettaire et purpura neo-natal. Le systeme de groupe plaquettaire “Duzo”. In Proc. 6th Cong. Europe Soc. Haematol., Copenhagen, p. 817.
Simister, N. E.Placental transport of immunoglobulin G. Vaccine, 2003; 21(24): 3365–9.CrossRefGoogle ScholarPubMed
Simister, N. E., Story, C. M.Human placental Fc receptors and the transmission of antibodies from mother to fetus. J. Reprod. Immunol., 1997; 37(1): 1–23.CrossRefGoogle ScholarPubMed
Saji, F., Samejima, Y., Kamiura, S., et al. Dynamics of immunoglobulins at the feto-maternal interface. Rev. Reprod., 1999; 4(2): 81–9.CrossRefGoogle ScholarPubMed
Chiba, A. K., Bordin, J. O., Kuwano, S. T., et al. Platelet alloantigen frequencies in Amazon Indians and Brazilian blood donors. Transfus. Med., 2000; 10(3): 207–12.CrossRefGoogle ScholarPubMed
Davoren, A., McParland, P., Barnes, C. A., et al. Neonatal alloimmune thrombocytopenia in the Irish population: a discrepancy between observed and expected cases. J. Clin. Pathol., 2002; 55(4): 289–92.CrossRefGoogle ScholarPubMed
Romphruk, A. V., Akahat, J., Srivanichrak, P., et al. Genotyping of human platelet antigens in ethnic Northeastern Thais by the polymerase chain reaction-sequence specific primer technique. J. Med. Assoc. Thai., 2000; 83(11): 1333–9.Google ScholarPubMed
Mojaat, N., Halle, L., Proulle, V., et al. Gene frequencies of human platelet antigens in the Tunisian population. Tissue Antigens 1999; 54(2): 201–4.CrossRefGoogle ScholarPubMed
Santoso, S., Kiefel, V., Masri, R., et al. Frequency of platelet-specific antigens among Indonesians. Transfusion, 1993; 33(9): 739–41.CrossRefGoogle ScholarPubMed
Bussel, J. B., Zabusky, M. R., Berkowitz, R. L., et al. Fetal alloimmune thrombocytopenia. N. Engl. J. Med., 1997; 337(1): 22–6.CrossRefGoogle ScholarPubMed
Hohlfeld, P., Forestier, F., Kaplan, C., et al. Fetal thrombocytopenia: a retrospective survey of 5,194 fetal blood samplings. Blood, 1994; 84(6): 1851–6.Google ScholarPubMed
Kaplan, C., Morel-Kopp, M. C., Kroll, H., et al. HPA-5b (Br(a)) neonatal alloimmune thrombocytopenia: clinical and immunological analysis of 39 cases. Br. J. Haematol., 1991; 78(3): 425–9.CrossRefGoogle ScholarPubMed
Shih, M. C., Liu, T. C., Lin, I. L., et al. Gene frequencies of the HPA-1 to HPA-13, Oe and Gov platelet antigen alleles in Taiwanese, Indonesian, Filipino and Thai populations. Int. J. Mol. Med., 2003; 12(4): 609–14.Google ScholarPubMed
Ohto, H.Neonatal alloimmune thrombocytopenia. Nippon Rinsho, 1997; 55(9): 2310–14.Google ScholarPubMed
Kunicki, T. J.Platelet antigen polymorphism in platelets: New understanding of platelet glycoproteins and their role in disease. American Society of Hematology, 2000: 225.Google Scholar
Mueller-Eckhardt, C., Kiefel, V., Grubert, A., et al. 348 cases of suspected neonatal alloimmune thrombocytopenia. Lancet, 1989; 1(8634): 363–6.CrossRefGoogle ScholarPubMed
Kiefel, V., Konig, C., Kroll, H., et al. Platelet alloantibodies in transfused patients. Transfusion, 2001; 41(6): 766–70.CrossRefGoogle ScholarPubMed
dem Borne, A. E., Leeuwen, E. F., Riesz, L. E., et al. Neonatal alloimmune thrombocytopenia: detection and characterization of the responsible antibodies by the platelet immunofluorescence test. Blood, 1981; 57(4): 649–56.Google Scholar
dem Borne, A. E., Decary, F.ICSH/ISBT Working Party on platelet serology. Nomenclature of platelet-specific antigens. Vox Sang, 1990; 58(2): 176.CrossRefGoogle Scholar
Metcalfe, P., Watkins, N. A., Ouwehand, W. H., et al. Nomenclature of human platelet antigens. Vox Sang, 2003; 85(3): 240–5.CrossRefGoogle ScholarPubMed
Rozman, P.Platelet antigens. The role of human platelet alloantigens (HPA) in blood transfusion and transplantation. Transpl. Immunol., 2002; 10(2–3): 165–81.CrossRefGoogle ScholarPubMed
Kunicki, T. J., Aster, R. H.Isolation and immunologic characterization of the human platelet alloantigen, P1A1. Mol. Immunol., 1979; 16(6): 353–60.CrossRefGoogle ScholarPubMed
Davoren, A., McParland, P., Crowley, J., et al. Antenatal screening for human platelet antigen-1a: results of a prospective study at a large maternity hospital in Ireland. BJOG 2003; 110(5): 492–6.CrossRefGoogle Scholar
Seo, D. H., Park, S. S., Kim, D. W., et al. Gene frequencies of eight human platelet-specific antigens in Koreans. Transfus. Med., 1998; 8(2): 129–32.CrossRefGoogle ScholarPubMed
Simsek, S., Faber, N. M., Bleeker, P. M., et al. Determination of human platelet antigen frequencies in the Dutch population by immunophenotyping and DNA (allele-specific restriction enzyme) analysis. Blood, 1993; 81(3): 835–40.Google ScholarPubMed
Kim, H. O., Jin, Y., Kickler, T. S., et al. Gene frequencies of the five major human platelet antigens in African-American, white, and Korean populations. Transfusion, 1995; 35(10): 863–7.CrossRefGoogle ScholarPubMed
Kekomaki, S., Partanen, J., Kekomaki, R.Platelet alloantigens HPA-1, -2, -3, -5 and -6b in Finns. Transfus. Med., 1995; 5(3): 193–8.CrossRefGoogle ScholarPubMed
Merieux, Y., Debost, M., Bernaud, J., et al. Human platelet antigen frequencies of platelet donors in the French population determined by polymerase chain reaction with sequence-specific primers. Pathol. Biol. (Paris), 1997; 45(9): 697–700.Google ScholarPubMed
Panzer, S., Auerbach, L., Cechova, E., et al. Maternal alloimmunization against fetal platelet antigens: a prospective study. Br. J. Haematol., 1995; 90(3): 655–60.CrossRefGoogle ScholarPubMed
Williamson, L. M., Hackett, G., Rennie, J., et al. The natural history of fetomaternal alloimmunization to the platelet-specific antigen HPA-1a (PlA1, Zwa) as determined by antenatal screening. Blood, 1998; 92(7): 2280–7.Google ScholarPubMed
Doughty, H. A., Murphy, M. F., Metcalfe, P., et al. Antenatal screening for fetal alloimmune thrombocytopenia: the results of a pilot study. Br. J. Haematol., 1995; 90(2): 321–5.CrossRefGoogle ScholarPubMed
Blanchette, V. S., Chen, L., Friedberg, Z. S., et al. Alloimmunization to the PlA1 platelet antigen: results of a prospective study. Br. J. Haematol., 1990; 74(2): 209–15.CrossRefGoogle ScholarPubMed
Durand-Zaleski, I., Schlegel, N., Blum-Boisgard, C., et al. Screening primiparous women and newborns for fetal/neonatal alloimmune thrombocytopenia: a prospective comparison of effectiveness and costs. Immune Thrombocytopenia Working Group. Am. J. Perinatol., 1996; 13(7): 423–31.CrossRefGoogle ScholarPubMed
Takada, H., Nakamura, S., Nishiguchi, T., et al. Neonatal alloimmune thrombocytopenia associated with anti-human platelet antigen-3a antibody. Acta Paediatr. Jpn., 1997; 39(3): 371–4.CrossRefGoogle ScholarPubMed
Harrison, C. R., Curtis, B. R., McFarland, J. G., et al. Severe neonatal alloimmune thrombocytopenia caused by antibodies to human platelet antigen 3a (Baka) detectable only in whole platelet assays. Transfusion, 2003; 43(10): 1398–402.CrossRefGoogle ScholarPubMed
Boehlen, F., Kaplan, C., Moerloose, P.Severe neonatal alloimmune thrombocytopenia due to anti-HPA-3a. Vox Sang, 1998; 74(3): 201–4.CrossRefGoogle ScholarPubMed
Glade-Bender, J., McFarland, J. G., Kaplan, C., et al. Anti-HPA-3A induces severe neonatal alloimmune thrombocytopenia. J. Pediatr., 2001; 138(6): 862–7.CrossRefGoogle ScholarPubMed
Covas, D. T., Biscaro, T. A., Nasciutti, D. C., et al. Gene frequencies of the HPA-3 and HPA-5 platelet antigen alleles among the Amerindians. Eur. J. Haematol., 2000; 65(2): 128–31.CrossRefGoogle ScholarPubMed
Corral, J., Rivera, J., Gonzalez-Conejero, R., et al. The number of platelet glycoprotein Ia molecules is associated with the genetically linked 807 C/T and HPA-5 polymorphisms. Transfusion, 1999; 39(4): 372–8.CrossRefGoogle ScholarPubMed
Ohto, H., Yamaguchi, T., Takeuchi, C., et al. Anti-HPA-5b-induced neonatal alloimmune thrombocytopenia: antibody titre as a predictor. Collaborative Study Group. Br. J. Haematol., 2000; 110(1): 223–7.CrossRefGoogle ScholarPubMed
Dickinson, J. E., Marshall, L. R., Phillips, J. M., et al. Antenatal diagnosis and management of fetomaternal alloimmune thrombocytopenia. Am. J. Perinatol., 1995; 12(5): 333–5.CrossRefGoogle ScholarPubMed
Schild, R. L., Hoch, J., Plath, H., et al. Perinatal management of fetal hemolytic disease due to Rh incompatibility combined with fetal alloimmune thrombocytopenia due to HPA-5b incompatibility. Ultrasound Obstet. Gynecol., 1999; 14(1): 64–7.CrossRefGoogle ScholarPubMed
McFarland, J. G., Frenzke, M., Aster, R. H.Testing of maternal sera in pregnancies at risk for neonatal alloimmune thrombocytopenia. Transfusion, 1989; 29(2): 128–33.CrossRefGoogle ScholarPubMed
Proulx, C., Filion, M., Goldman, M., et al. Analysis of immunoglobulin class, IgG subclass and titre of HPA-1a antibodies in alloimmunized mothers giving birth to babies with or without neonatal alloimmune thrombocytopenia. Br. J. Haematol., 1994; 87(4): 813–17.CrossRefGoogle ScholarPubMed
Kurz, M., Stockelle, E., Eichelberger, B., et al. IgG titer, subclass, and light-chain phenotype of pregnancy-induced HPA-5b antibodies that cause or do not cause neonatal alloimmune thrombocytopenia. Transfusion, 1999; 39(4): 379–82.CrossRefGoogle Scholar
Jaegtvik, S., Husebekk, A., Aune, B., et al. Neonatal alloimmune thrombocytopenia due to anti-HPA 1a antibodies; the level of maternal antibodies predicts the severity of thrombocytopenia in the newborn. BJOG, 2000; 107(5): 691–4.CrossRefGoogle ScholarPubMed
Kaplan, C.Alloimmune thrombocytopenia of the fetus and the newborn. Blood Rev., 2002; 16(1): 69–72.CrossRefGoogle ScholarPubMed
Hurd, C., Lucas, G.Human platelet antigen genotyping by PCR-SSP in neonatal/fetal alloimmune thrombocytopenia. Methods Mol. Med., 2004; 91: 71–8.Google ScholarPubMed
Panzer, S.Report on the Tenth International Platelet Genotyping and Serology Workshop on behalf of the International Society of Blood Transfusion. Vox Sang, 2001; 80(1): 72–8.CrossRefGoogle Scholar
Berry, J. E., Murphy, C. M., Smith, G. A., et al. Detection of Gov system antibodies by MAIPA reveals an immunogenicity similar to the HPA-5 alloantigens. Br. J. Haematol., 2000; 110(3): 735–42.CrossRefGoogle ScholarPubMed
Kiefel, V., Santoso, S., Weisheit, M., et al. Monoclonal antibody specific immobilization of platelet antigens (MAIPA): a new tool for the identification of platelet-reactive antibodies. Blood, 1987; 70(6): 1722–6.Google ScholarPubMed
Allen, D. L., Floyd, A. P., Billson, A. L., et al. Neonatal alloimmune thrombocytopenia due to anti-HPA-5b (Br(a), Zav(a), Hca): the importance of third-generation platelet antibody detection techniques, a case report. Transfus. Med., 1992; 2(4): 277–81.CrossRefGoogle ScholarPubMed
Uhrynowska, M., Maslanka, K., Zupanska, B.Neonatal thrombocytopenia: incidence, serological and clinical observations. Am. J. Perinatol., 1997; 14(7): 415–18.CrossRefGoogle ScholarPubMed
Kroll, H., Kiefel, V., Santoso, S.Clinical aspects and typing of platelet alloantigens. Vox Sang, 1998; 74 (Suppl. 2): 345–54.CrossRefGoogle ScholarPubMed
Kretzschmar, E., Ahsen, N., Trobisch, H.Rapid genotyping of human platelet antigen 5 with fluorophore-labelled hybridization probes on the LightCycler. Br. J. Haematol., 2001; 114(2): 397–9.CrossRefGoogle ScholarPubMed
Randen, I., Sorensen, K., Killie, M. K., et al. Rapid and reliable genotyping of human platelet antigen (HPA)-1, -2, -3, -4, and -5 a/b and Gov a/b by melting curve analysis. Transfusion, 2003; 43(4): 445–50.CrossRefGoogle ScholarPubMed
Hurd, C. M., Cavanagh, G., Schuh, A., et al. Genotyping for platelet-specific antigens: techniques for the detection of single nucleotide polymorphisms. Vox Sang, 2002; 83(1): 1–12.CrossRefGoogle ScholarPubMed
Schuh, A. C., Watkins, N. A., Nguyen, Q., et al. A tyrosine703serine polymorphism of CD109 defines the Gov platelet alloantigens. Blood, 2002; 99(5): 1692–8.CrossRefGoogle ScholarPubMed
McFarland, J. G.Platelet and neutrophil alloantigen genotyping in clinical practice. Transfus. Clin. Biol., 1998; 5(1): 13–21.CrossRefGoogle ScholarPubMed
Bugert, P., Lese, A., Meckies, J., et al. Optimized sensitivity of allele-specific PCR for prenatal typing of human platelet alloantigen single nucleotide polymorphisms. Biotechniques, 2003; 35(1): 170–4.Google ScholarPubMed
Kaplan, C., Murphy, M. F., Kroll, H., et al. Feto-maternal alloimmune thrombocytopenia: antenatal therapy with IvIgG and steroids – more questions than answers. European Working Group on FMAIT. Br. J. Haematol., 1998; 100(1): 62–5.CrossRefGoogle Scholar
Sainio, S., Teramo, K., Kekomaki, R.Prenatal treatment of severe fetomaternal alloimmune thrombocytopenia. Transfus. Med., 1999; 9(4): 321–30.CrossRefGoogle ScholarPubMed
Gopel, W., Fehlau, K., Kohl, M., et al. HPA-1 carrier status and thrombocytopenia in preterm infants with a birth weight below 1500 grams. J. Perinat. Med., 2002; 30(2): 176–8.CrossRefGoogle ScholarPubMed
Williamson, L. M.Screening programmes for fetomaternal alloimmune thrombocytopenia. Vox Sang, 1998; 74 (Suppl. 2): 385–9.CrossRefGoogle Scholar
Silver, R. M., Porter, T. F., Branch, D. W., et al. Neonatal alloimmune thrombocytopenia: antenatal management. Am. J. Obstet. Gynecol., 2000; 182(5): 1233–8.CrossRefGoogle ScholarPubMed
Herrero, R. J., Chitrit, Y., Caubel, P., et al. Feto-maternal alloimmune thrombocytopenia due to HPA-5b incompatibility: a case report. Eur. J. Obstet. Gynecol. Reprod. Biol., 2003; 110(2): 240–1.CrossRefGoogle ScholarPubMed
Lucas, G. F., Hamon, M., Carroll, S., et al. Effect of IVIgG treatment on fetal platelet count, HPA-1a titre and clinical outcome in a case of feto-maternal alloimmune thrombocytopenia. BJOG, 2002; 109(10): 1195–8.CrossRefGoogle Scholar
Nathan, F. E., Herman, J. H., Keashen-Schnell, M., et al. Anti-Bak(a) neonatal alloimmune thrombocytopenia: possible prevention by intravenous immunoglobulin. Pediatr. Hematol. Oncol., 1994; 11(3): 325–9.CrossRefGoogle ScholarPubMed
Winters, J. L., Jennings, C. D., Desai, N. S., et al. Neonatal alloimmune thrombocytopenia due to anti-HPA-1b (PLA2)(Zwb). A case report and review. Vox Sang, 1998; 74(4): 256–9.CrossRefGoogle ScholarPubMed
Spencer, J. A., Burrows, R. F.Feto-maternal alloimmune thrombocytopenia: a literature review and statistical analysis. Aust. NZ J. Obstet. Gynaecol., 2001; 41(1): 45–55.CrossRefGoogle ScholarPubMed
Kroll, H., Kiefel, V., Giers, G., et al. Maternal intravenous immunoglobulin treatment does not prevent intracranial haemorrhage in fetal alloimmune thrombocytopenia. Transfus. Med., 1994; 4(4): 293–6.CrossRefGoogle Scholar
Zuppa, A. A., Cota, F., Luca, D., et al. Incidental diagnosis and tempestive therapy in a case of neonatal alloimmune thrombocytopenia due to anti-HPA-5b. Pediatr. Hematol. Oncol., 2002; 19(8): 587–91.CrossRefGoogle Scholar
Blanchette, V. S., Johnson, J., Rand, M.The management of alloimmune neonatal thrombocytopenia. Baillieres Best Pract. Res. Clin. Haematol., 2000; 13(3): 365–90.CrossRefGoogle ScholarPubMed
Cremer, M., Dame, C., Schaeffer, H. J., et al. Longitudinal thrombopoietin plasma concentrations in fetuses with alloimmune thrombocytopenia treated with intrauterine PLT transfusions. Transfusion, 2003; 43(9): 1216–22.CrossRefGoogle ScholarPubMed
Meyer-Heim, A. D., Boltshauser, E.Spontaneous intracranial haemorrhage in children: aetiology, presentation and outcome. Brain Dev., 2003; 25(6): 416–21.CrossRefGoogle ScholarPubMed
Sia, C. G., Amigo, N. C., Harper, R. G., et al. Failure of cesarean section to prevent intracranial hemorrhage in siblings with isoimmune neonatal thrombocytopenia. Am. J. Obstet. Gynecol., 1985; 153(1): 79–81.CrossRefGoogle ScholarPubMed
Naidu, S., Messmore, H., Caserta, V., et al. CNS lesions in neonatal isoimmune thrombocytopenia. Arch. Neurol., 1983; 40(9): 552–4.CrossRefGoogle ScholarPubMed
Dean, L. M., McLeary, M., Taylor, G. A.Cerebral hemorrhage in alloimmune thrombocytopenia. Pediatr. Radiol., 1995; 25(6): 444–5.CrossRefGoogle ScholarPubMed
Murphy, M. F., Hambley, H., Nicolaides, K., et al. Severe fetomaternal alloimmune thrombocytopenia presenting with fetal hydrocephalus. Prenat. Diagn., 1996; 16(12): 1152–5.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Stanworth, S. J., Hackett, G. A., Williamson, L. M.Fetomaternal alloimmune thrombocytopenia presenting antenatally as hydrops fetalis. Prenat. Diagn., 2001; 21(5): 423–4.CrossRefGoogle ScholarPubMed
Sadowitz, P. D., Balcom, R.Intrauterine intracranial hemorrhage in an infant with isoimmune thrombocytopenia. Clin. Pediatr. (Phila), 1985; 24(11): 655–7.CrossRefGoogle Scholar
Sharif, U., Kuban, K.Prenatal intracranial hemorrhage and neurologic complications in alloimmune thrombocytopenia. J. Child. Neurol., 2001; 16(11): 838–42.CrossRefGoogle ScholarPubMed
Dale, S. T., Coleman, L. T.Neonatal alloimmune thrombocytopenia: antenatal and postnatal imaging findings in the pediatric brain. AJNR Am. J. Neuroradiol., 2002; 23(9): 1457–65.Google ScholarPubMed
Abel, M., Bona, M., Zawodniak, L., et al. Cervical spinal cord hemorrhage secondary to neonatal alloimmune thrombocytopenia. J. Pediatr. Hematol. Oncol., 2003; 25(4): 340–2.CrossRefGoogle ScholarPubMed
Engelfriet, C. P., Reesink, H. W., Kroll, H., et al. Prenatal management of alloimmune thrombocytopenia of the fetus. Vox Sang, 2003; 84(2): 142–9.Google ScholarPubMed
Moise, K. J. Jr., Carpenter, R. J. Jr., Cotton, D. B., et al. Percutaneous umbilical cord blood sampling in the evaluation of fetal platelet counts in pregnant patients with autoimmune thrombocytopenia purpura. Obstet. Gynecol. 1988; 72(3 Pt 1): 346–50.Google ScholarPubMed
Kaplan, C., Daffos, F., Forestier, F., et al. Fetal platelet counts in thrombocytopenic pregnancy. Lancet, 1990; 336(8721): 979–82.CrossRefGoogle ScholarPubMed
Birchall, J. E., Murphy, M. F., Kaplan, C., et al. European collaborative study of the antenatal management of feto-maternal alloimmune thrombocytopenia. Br. J. Haematol., 2003; 122(2): 275–88.CrossRefGoogle ScholarPubMed
Morales, W. J., Stroup, M.Intracranial hemorrhage in utero due to isoimmune neonatal thrombocytopenia. Obstet. Gynecol., 1985; 65(3 Suppl): 20–21S.Google ScholarPubMed
Yeast, J. D., Plapp, F.Fetal anemia as a response to prophylactic platelet transfusion in the management of alloimmune thrombocytopenia. Am. J. Obstet. Gynecol., 2003; 189(3): 874–6.CrossRefGoogle ScholarPubMed
Kekomaki, S., Volin, L., Koistinen, P., et al. Successful treatment of platelet transfusion refractoriness: the use of platelet transfusions matched for both human leucocyte antigens (HLA) and human platelet alloantigens (HPA) in alloimmunized patients with leukaemia. Eur. J. Haematol., 1998; 60(2): 112–18.CrossRefGoogle ScholarPubMed
Pappalardo, P. A., Secord, A. R., Quitevis, P., et al. Platelet transfusion refractoriness associated with HPA-1a (Pl(A1)) alloantibody without coexistent HLA antibodies successfully treated with antigen-negative platelet transfusions. Transfusion, 2001; 41(8): 984–7.CrossRefGoogle ScholarPubMed
Denomme, G., Horsewood, P., Xu, W., et al. A simple and rapid competitive enzyme-linked immunosorbent assay to identify HPA-1a (PlA1)-negative donor platelet units. Transfusion, 1996; 36(9): 805–8.CrossRefGoogle ScholarPubMed
Ranasinghe, E., Walton, J. D., Hurd, C. M., et al. Provision of platelet support for fetuses and neonates affected by severe fetomaternal alloimmune thrombocytopenia. Br. J. Haematol., 2001; 113(1): 40–2.CrossRefGoogle ScholarPubMed
Murphy, M. F., Metcalfe, P., Waters, A. H., et al. Antenatal management of severe feto-maternal alloimmune thrombocytopenia: HLA incompatibility may affect responses to fetal platelet transfusions. Blood, 1993; 81(8): 2174–9.Google ScholarPubMed
Kekomaki, R.Use of HLA- and HPA – matched platelets in alloimmunized patients. Vox Sang, 1998; 74(Suppl. 2): 359–63.CrossRefGoogle ScholarPubMed
Murphy, M. F., Knechtli, C., Downie, C., et al. Serendipity and the use of random donor platelets in fetomaternal alloimmune thrombocytopenia (FMAIT). Br. J. Haematol., 2001; 113(4): 1077–8.CrossRefGoogle Scholar
Murphy, M. F., Verjee, S., Greaves, M.Inadequacies in the postnatal management of fetomaternal alloimmune thrombocytopenia (FMAIT). Br. J. Haematol., 1999; 105(1): 123–6.Google Scholar
Win, N.Provision of random-donor platelets (HPA-1a positive) in neonatal alloimmune thrombocytopenia due to anti HPA-1a alloantibodies. Vox Sang, 1996; 71(2): 130–1.CrossRefGoogle ScholarPubMed
Bussel, J., Kaplan, C., McFarland, J.Recommendations for the evaluation and treatment of neonatal autoimmune and alloimmune thrombocytopenia. The Working Party on Neonatal Immune Thrombocytopenia of the Neonatal Hemostasis Subcommittee of the Scientific and Standardization Committee of the ISTH. Thromb. Haemost., 1991; 65(5): 631–4.Google ScholarPubMed
Massey, G. V., McWilliams, N. B., Mueller, D. G., et al. Intravenous immunoglobulin in treatment of neonatal isoimmune thrombocytopenia. J. Pediatr., 1987; 111(1): 133–5.CrossRefGoogle ScholarPubMed
Saito, S., Ota, M., Komatsu, Y., et al. Serologic analysis of three cases of neonatal alloimmune thrombocytopenia associated with HLA antibodies. Transfusion, 2003; 43(7): 908–17.CrossRefGoogle ScholarPubMed
Taaning, E.HLA antibodies and fetomaternal alloimmune thrombocytopenia: myth or meaningful?Transfus. Med. Rev., 2000; 14(3): 275–80.CrossRefGoogle ScholarPubMed
Del Rosario, M. L., Fox, E. R., Kickler, T. S., et al. Neonatal alloimmune thrombocytopenia associated with maternal anti-HLA antibody: a case report. J. Pediatr. Hematol. Oncol., 1998; 20(3): 252–6.CrossRefGoogle ScholarPubMed
Sasaki, M., Yagihashi, A., Kobayashi, D., et al. Neonatal alloimmune thrombocytopenia due to anti-human leukocyte antigen antibody: a case report. Pediatr. Hematol. Oncol., 2001; 18(8): 519–24.CrossRefGoogle ScholarPubMed
Burrows, R. F., Kelton, J. G.Fetal thrombocytopenia and its relation to maternal thrombocytopenia. N. Engl. J. Med., 1993; 329(20): 1463–6.CrossRefGoogle ScholarPubMed
Burrows, R. Hemorrhagic complications in the obstetric patient. In Hirsch, J., ed., Hemostasis and Thrombosis, 4th edn. Philadelphia, PA: Lippincott, Williams and Wilkins; 2001. pp. 1045–51.Google Scholar
Lattuada, A., Rossi, E., Calzarossa, C., et al. Mild to moderate reduction of a von Willebrand factor cleaving protease (ADAMTS-13) in pregnant women with HELLP microangiopathic syndrome. Haematologica, 2003; 88(9): 1029–34.Google ScholarPubMed
Nabhan, C., Kwaan, H. C.Current concepts in the diagnosis and management of thrombotic thrombocytopenic purpura. Hematol. Oncol. Clin. North Am., 2003; 17(1): 177–99.CrossRefGoogle ScholarPubMed
Martin, J. N. Jr., Thigpen, B. D., Rose, C. H., et al. Maternal benefit of high-dose intravenous corticosteroid therapy for HELLP syndrome. Am. J. Obstet. Gynecol., 2003; 189(3): 830–4.CrossRefGoogle ScholarPubMed
Al-Kouatly, H. B., Chasen, S. T., Kalish, R. B., et al. Causes of thrombocytopenia in triplet gestations. Am. J. Obstet. Gynecol., 2003; 189(1): 177–80.CrossRefGoogle ScholarPubMed
Shehata, N., Burrows, R., Kelton, J. G.Gestational thrombocytopenia. Clin. Obstet. Gynecol., 1999; 42(2): 327–34.CrossRefGoogle ScholarPubMed
Ali, R., Ozkalemkas, F., Ozcelik, T., et al. Idiopathic thrombocytopenic purpura in pregnancy: a single institutional experience with maternal and neonatal outcomes. Ann. Hematol., 2003; 82(6): 348–52.CrossRefGoogle ScholarPubMed
George, J. N., Woolf, S. H., Raskob, G. E., et al. Idiopathic thrombocytopenic purpura: a practice guideline developed by explicit methods for the American Society of Hematology. Blood, 1996; 88(1): 3–40.Google ScholarPubMed
Freiberg, A., Mauger, D.Efficacy, safety, and dose response of intravenous anti-D immune globulin (WinRho SDF) for the treatment of idiopathic thrombocytopenic purpura in children. Semin. Hematol., 1998; 35(1 Suppl. 1): 23–7.Google ScholarPubMed
Cooper, N., Woloski, B. M., Fodero, E. M., et al. Does treatment with intermittent infusions of intravenous anti-D allow a proportion of adults with recently diagnosed immune thrombocytopenic purpura to avoid splenectomy?Blood, 2002; 99(6): 1922–7.CrossRefGoogle ScholarPubMed
Sagripanti, A., Ferretti, A., Giannessi, D., et al. Anti-D treatment for chronic immune thrombocytopenic purpura: clinical and laboratory aspects. Biomed. Pharmacother., 1998; 52(7–8): 293–7.CrossRefGoogle ScholarPubMed
Newman, G. C., Novoa, M. V., Fodero, E. M., et al. A dose of 75 microg/kg/d of i.v. anti-D increases the platelet count more rapidly and for a longer period of time than 50 microg/kg/d in adults with immune thrombocytopenic purpura. Br. J. Haematol., 2001; 112(4): 1076–8.CrossRefGoogle Scholar
Scaradavou, A., Bussel, J. B.Clinical experience with anti-D in the treatment of idiopathic thrombocytopenic purpura. Semin. Hematol., 1998; 35(1 Suppl. 1): 52–7.Google ScholarPubMed
Michel, M., Novoa, M. V., Bussel, J. B.Intravenous anti-D as a treatment for immune thrombocytopenic purpura (ITP) during pregnancy. Br. J. Haematol., 2003; 123(1): 142–6.CrossRefGoogle ScholarPubMed
David, M., Chevalier, I.Alternatives to intravenous immunoglobulins in the treatment of immune thrombocytopenic purpura. Vox Sang, 2002; 83 (Suppl. 1): 443–5.CrossRefGoogle ScholarPubMed
Payne, S. D., Resnik, R., Moore, T. R., et al. Maternal characteristics and risk of severe neonatal thrombocytopenia and intracranial hemorrhage in pregnancies complicated by autoimmune thrombocytopenia. Am. J. Obstet. Gynecol., 1997; 177(1): 149–55.CrossRefGoogle ScholarPubMed
Gill, K. K., Kelton, J. G.Management of idiopathic thrombocytopenic purpura in pregnancy. Semin. Hematol., 2000; 37(3): 275–89.CrossRefGoogle ScholarPubMed
Boehlen, F., Hohlfeld, P., Extermann, P., et al. Maternal antiplatelet antibodies in predicting risk of neonatal thrombocytopenia. Obstet. Gynecol., 1999; 93(2): 169–73.Google ScholarPubMed
Valat, A. S., Caulier, M. T., Devos, P., et al. Relationships between severe neonatal thrombocytopenia and maternal characteristics in pregnancies associated with autoimmune thrombocytopenia. Br. J. Haematol., 1998; 103(2): 397–401.CrossRefGoogle ScholarPubMed
Gandemer, V., Kaplan, C., Quelvennec, E., et al. Pregnancy-associated autoimmune neonatal thrombocytopenia: role of maternal HLA genotype. Br. J. Haematol., 1999; 104(4): 878–85.CrossRefGoogle ScholarPubMed
Guidelines for the investigation and management of idiopathic thrombocytopenic purpura in adults, children and in pregnancy. Br. J. Haematol., 2003; 120(4): 574–96.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Neonatal immune thrombocytopenias
    • By Katharine A. Downes, M.D., Assistant Professor Department of Pathology, University Hospitals of Cleveland, Cleveland, Ohio, USA, Ravindra S. Sarode, M.D., Professor of Pathology, University of Texas Southwestern Medical Center; Director: Transfusion Medicine and Hemostasis, Dallas, Texas, USA
  • Edited by Rodger L. Bick, University of Texas Southwestern Medical Center, Dallas, Eugene P. Frenkel, University of Texas Southwestern Medical Center, Dallas, William F. Baker, University of California, Los Angeles, Ravi Sarode, University of Texas Southwestern Medical Center, Dallas
  • Book: Hematological Complications in Obstetrics, Pregnancy, and Gynecology
  • Online publication: 01 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511526978.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Neonatal immune thrombocytopenias
    • By Katharine A. Downes, M.D., Assistant Professor Department of Pathology, University Hospitals of Cleveland, Cleveland, Ohio, USA, Ravindra S. Sarode, M.D., Professor of Pathology, University of Texas Southwestern Medical Center; Director: Transfusion Medicine and Hemostasis, Dallas, Texas, USA
  • Edited by Rodger L. Bick, University of Texas Southwestern Medical Center, Dallas, Eugene P. Frenkel, University of Texas Southwestern Medical Center, Dallas, William F. Baker, University of California, Los Angeles, Ravi Sarode, University of Texas Southwestern Medical Center, Dallas
  • Book: Hematological Complications in Obstetrics, Pregnancy, and Gynecology
  • Online publication: 01 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511526978.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Neonatal immune thrombocytopenias
    • By Katharine A. Downes, M.D., Assistant Professor Department of Pathology, University Hospitals of Cleveland, Cleveland, Ohio, USA, Ravindra S. Sarode, M.D., Professor of Pathology, University of Texas Southwestern Medical Center; Director: Transfusion Medicine and Hemostasis, Dallas, Texas, USA
  • Edited by Rodger L. Bick, University of Texas Southwestern Medical Center, Dallas, Eugene P. Frenkel, University of Texas Southwestern Medical Center, Dallas, William F. Baker, University of California, Los Angeles, Ravi Sarode, University of Texas Southwestern Medical Center, Dallas
  • Book: Hematological Complications in Obstetrics, Pregnancy, and Gynecology
  • Online publication: 01 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511526978.017
Available formats
×