Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T04:59:36.006Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  12 January 2010

K. E. Peters
Affiliation:
United States Geological Survey, California
C. C. Walters
Affiliation:
ExxonMobil Research & Engineering Co.
J. M. Moldowan
Affiliation:
Stanford University, California
Get access
Type
Chapter
Information
The Biomarker Guide , pp. 399 - 450
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, A. (2003) Anthropologists cast doubt on human DNA evidence. Nature, 423, 468CrossRefGoogle ScholarPubMed
Abe, I., Rohmer, M. and Prestwich, G. D. (1993) Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chemical Reviews, 93, 2189–206CrossRefGoogle Scholar
Abelson, P. H. (1963) Organic geochemistry and the formation of petroleum. 6th World Petroleum Congress Proceedings, Section 1, John Wiley & Sons, Chichester, pp. 397–407
Abrajano, T. A., Sturchio, N. C., Kennedy, B. M., et al. (1990) Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines. Applied Geochemistry, 5, 625–30CrossRefGoogle Scholar
Adams, J. A. S. and Weaver, C. E. (1958) Thorium-to-uranium ratios as indicators of sedimentary processes: example of concept of geochemical facies. American Association of Petroleum Geologists Bulletin, 42, 387–430Google Scholar
Aiello, A., Fattorusso, E. and Menna, M. (1999) Steroids from sponges: recent reports. Steroids, 64, 687–714CrossRefGoogle ScholarPubMed
Aizenshtat, Z. (1973) Perylene and its geochemical significance. Geochimica et Cosmochimica Acta, 37, 559–67CrossRefGoogle Scholar
Alaska Department of Environmental Conservation (1993) The Exxon Valdez Oil Spill. Final Report, State of Alaska Response. Alaska Department of Environmental Conservation, Juneau, Alaska
Albaigés, J. (1980) Identification and geochemical significance of long chain acyclic isoprenoid hydrocarbons in crude oils. In: Advances in Organic Geochemistry 1979 (A. G. Douglas and J. R. Maxwell, eds.), Pergamon, New York, pp. 19–28CrossRef
Albaigés, J., Borbon, J. and Salagre, P. (1978) Identification of a series of C25–C40 acyclic isoprenoid hydrocarbons in crude oils. Tetrahedron Letters, 6, 595–8CrossRefGoogle Scholar
Albaigés, J., Borbon, J. and Walker, W. II (1985) Petroleum isoprenoid hydrocarbons derived from catagenetic degradation of archaebacterial lipids. Organic Geochemistry, 8, 293–7CrossRefGoogle Scholar
Alberdi, M., López, C. E. and Galarraga, F. (1996) Genetic classification of crude oil families in the Eastern Venezuela Basin. Boletin de la Sociedad Venezolana de Geológos, 21, 7–21Google Scholar
Alexander, M. (1999) Biodegradation and Bioremediation, 2nd edn. Academic Press, San Diego, CA
Alexander, R., Kagi, R. and Woodhouse, G. W. (1981) Geochemical correlation of Windalia oil and extracts of Winning Group (Cretaceous) potential source rocks, Barrow Subbasin, Western Australia. American Association of Petroleum Geologists Bulletin, 65, 235–50Google Scholar
Alexander, R., Kagi, R. I., Roland, S. J., Sheppard, P. N. and Chirila, T. V. (1985) The effects of thermal maturity on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some ancient sediments and petroleum. Geochimica et Cosmochimica Acta, 49, 385–95CrossRefGoogle Scholar
Alexander, R., Bastow, T. P., Kagi, R. I. and Singh, R. K. (1992) Identification of 1,2,2,5-tetramethyltetralins and 1,2,2,5,6-pentamethyltetralins as racemates in petroleum. Journal of the Chemical Society, Chemical Communications, 23, 1712–14CrossRefGoogle Scholar
Alsharhan, A. S. and Salah, M. G. (1997) A common source rock for Egyptian and Saudi hydrocarbons in the Red Sea. American Association of Petroleum Geologists Bulletin, 81, 1640–59Google Scholar
Alvarez, H. M. and Steinbüchel, A. (2002) Triacylglycerols in prokaryotic microorganisms. Applied Microbiology and Biotechnology, 60, 367–76Google ScholarPubMed
Ambrose, S. H. (1993) Isotopic analysis of paleodiets: methodological and interpretive considerations. In: Investigations of Ancient Human Tissue (M. K. Stanford, ed.), Gordon and Breach Science Publishers, Langhorne, PA, pp. 59–130
American Society for Testing and Materials (1992) Detailed analysis of petroleum naphthas through n-nonane by capillary gas chromatography. Procedure ASTM D 5134–92
Andersen, N., Paul, H. A., Bernasconi, S. M., et al. (2001) Large and rapid climate variability during the Messinian salinity crisis: evidence from deuterium concentrations of individual biomarkers. Geology, 29, 799–8022.0.CO;2>CrossRefGoogle Scholar
Anderson, R. B. (1984) The Fischer-Tropsch Synthesis. Academic Press, New York
Anderson, K. B. and Muntean, J. V. (2000) The nature and fate of natural resins in the geosphere. Part X. Structural characteristics of the macromolecular constituents of modern dammar resin and Class II ambers. Geochemical Transactions, 1, 1–9CrossRefGoogle Scholar
Andrusevich, V. E., Engel, M. H., Zumberge, J. E. and Brothers, L. A. (1998) Secular, episodic changes in stable carbon isotope composition of crude oils. Chemical Geology, 152, 59–72CrossRefGoogle Scholar
Andrusevich, V. E., Engel, M. H. and Zumberge, J. E. (2000) Effects of paleolatitude on the stable carbon isotope composition of crude oils. Geology, 28, 847–502.0.CO;2>CrossRefGoogle Scholar
Aplin, A. C., Larter, S. R., Bigge, M. A., et al. (2000) PVTX history of the North Sea's Judy oilfield. Journal of Geochemical Exploration, 69–70, 641–4CrossRefGoogle Scholar
Apps, J. A. and van de Kamp, P. C. (1993) Energy gases of abiogenic origin in the Earth's crust. U.S. Geological Survey Professional Paper 1570, pp. 81–132
Armanios, C. (1995) Molecular sieving, analysis and geochemistry of some pentacyclic triterpanes in sedimentary organic matter. Ph. D. thesis, Curtin University of Technology, School of Applied Chemistry, Perth, Australia
Armanios, C., Alexander, R. and Kagi, R. I. (1992) Shape-selective sorption of petroleum hopanoids by ultrastable Y zeolite. Organic Geochemistry, 18, 399–406CrossRefGoogle Scholar
Armanios, C., Alexander, R. and Kagi, R. I. (1994) Fractionation of higher-plant derived triterpanes using molecular sieves. Organic Geochemistry, 21, 531–43CrossRefGoogle Scholar
Armanios, C., Alexander, R., Sosrowidjojo, I. M. and Kagi, R. I. (1995) Identification of bicadinanes in Jurassic organic matter from the Eromanga Basin, Australia. Organic Geochemistry, 23, 837–43CrossRefGoogle Scholar
Arnold, R. and Anderson, R. (1907) Geology and oil resources of the Santa Maria oil district, Santa Barbara County, California. U. S. Geological Survey Bulletin, 322Google Scholar
Arthur D. Little, Inc. (1999) Sediment Quality in Depositional Areas of Shelikof Strait and Outermost Cook Inlet, draft final report, U.S. Department of the Interior, Minerals Management Service, contract no. 1435-01-97-CT-30830
Arthur, M. A., Dean, W. E. and Pratt, L. M. (1988) Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature, 335, 714–17CrossRefGoogle Scholar
Audino, M., Grice, K., Alexander, R., Boreham, C. J. and Kagi, R. I. (2001) Unusual distribution of monomethylalkanes in Botryococcus braunii-rich samples. Origin and significance. Geochimica et Cosmochimica, 65, 1995–2000CrossRefGoogle Scholar
Aveling, E. M. (1997) Chew, chew, that ancient chewing gum. A slovenly modern habit? Or one of the world's oldest pastimes. British Archaeology, 21, 6Google Scholar
Aveling, E. M. (1998) Characterisation of natural products from the Mesolithic of Northern Europe. Ph.D. thesis, University of Bradford, Bradford, UK
Aveling, E. M. and Heron, C. (1999) Chewing tar in the early Holocene: an archaeological and ethnographic evaluation. Antiquity, 73, 579–84CrossRefGoogle Scholar
Ayres, M. G., Bilal, M., Jones, R. W., et al. (1982) Hydrocarbon habitat in main producing areas, Saudi Arabia. American Association of Petroleum Geologists Bulletin, 66, 1–9Google Scholar
Azevedo, D. A., Aquino Neto, F. R., Simoneit, B. R. T. and Pinto, A. C. (1992) Novel series of tricyclic aromatic terpanes characterized in Tasmanian tasmanite. Organic Geochemistry, 18, 9–16CrossRefGoogle Scholar
Bada, J. L., Wang, X. S. and Hamilton, H. (1999) Preservation of key biomolecules in the fossil record: current knowledge and future challenges. Philosophical Transactions of the Royal Society of London, Biological Sciences, 354, 77–88CrossRefGoogle ScholarPubMed
Baelocher, C., Meier, W. M. and Olson, D. H. (2001) Atlas of Zeolite Framework Types, 5th edn, Elsevier, Amsterdam
Bailey, N. J. L., Burwood, R. and Harriman, G. E. (1990) Application of pyrolyzate carbon isotope and biomarker technology to organofacies definition and oil correlation problems in North Sea basins. Organic Geochemistry, 16, 1157–72CrossRefGoogle Scholar
Baker, E. W. and Louda, J. W. (1983) Thermal aspects of chlorophyll geochemistry. In: Advances in Organic Geochemistry 1981 (M. Bjorøy, C. Albrecht, C. Cornford, et al., eds.), John Wiley & Sons, New York, pp. 401–21
Baker, E. W. and Louda, J. W. (1986) Porphyrins in the geological record. In: Biological Markers in the Sedimentary Record (R. B. Johns, ed.), Elsevier, New York, pp. 125–224
Balabanova, S., Parsche, F. and Pirsig, W. (1992) First identification of drugs in Egyptian mummies. Naturwissenschaften, 79, 358CrossRefGoogle ScholarPubMed
Ballentine, C. J., Schoell, M., Coleman, D. and Cain, B. A. (2001) 300-Myr-old magmatic CO2 in natural gas reservoirs of the west Texas Permian Basin. Nature, 409, 327–31CrossRefGoogle ScholarPubMed
Balogh, B., Wilson, D. M., Christiansen, P. and Burlingame, A. L. (1973) 17α(H)-hopane identified in oil shale of the Green River Formation (Eocene) by carbon-13 NMR. Nature, 242, 603–5CrossRefGoogle Scholar
Barker, C. and Smith, M. P. (1986) Mass spectrometric determination of gases in individual fluid inclusions in natural minerals. Analytical Chemistry, 58, 1330–33CrossRefGoogle Scholar
Barwise, A. J. G. (1990) Role of nickel and vanadium in petroleum classification. Energy & Fuels, 4, 647–52CrossRefGoogle Scholar
Barwise, A. J. G. and Whitehead, E. V. (1980) Separation and structure of petroporphyrins. In: Advances in Organic Geochemistry 1979 (A. G. Douglas and J. R. Maxwell, eds.), Pergamon, New York, pp. 181–92CrossRef
Baskin, D. K. (1979) A method of preparing phytoclasts for vitrinite reflectance analysis. Journal of Sedimentary Petrology, 49, 633–5CrossRefGoogle Scholar
Baskin, D. K. (1997) Atomic H/C ratio of kerogen as an estimate of thermal maturity and organic matter conversion. American Association of Petroleum Geologists Bulletin, 81, 1437–50Google Scholar
Baskin, D. K. (2001) Comparison between atomic H/C and Rock-Eval hydrogen index as an indicator of organic matter quality. In: The Monterey Formation: From Rocks to Molecules (C. M. Isaacs and J. Rullkötter, eds.), Columbia University Press, New York, pp. 230–40
Baskin, D. K. and Jones, R. W. (1993) Prediction of oil gravity prior to drill-stem testing in Monterey Formation reservoirs, offshore California. American Association of Petroleum Geologists Bulletin, 77, 1479–87Google Scholar
Baskin, D. K. and Peters, K. E. (1992) Early generation characteristics of a sulfur-rich Monterey kerogen. American Association of Petroleum Geologists Bulletin, 76, 1–13Google Scholar
Bass, G. (1986) A Bronze Age shipwreck at Ulu Burun (Kas) 1984 Campaign. American Journal of Archaeology, 90, 269–96CrossRefGoogle Scholar
Bass, G. and Pulak, C. (1987) A Late Bronze Age shipwreck at Ulu Burun: 1986. American Journal of Archaeology, 93, 1–29CrossRefGoogle Scholar
Bastow, T. P. (1998) Sedimentary processes involving aromatic hydrocarbons. Ph. D. thesis, Curtin University of Technology, Perth, Australia
Bauer, P. E., Dunlap, N. K., Arseniyadis, S., et al. (1983) Synthesis of biological markers in fossil fuels. 1. 17α and 17β isomers of 30-norhopane and 30-normoretane. Journal of Organic Chemistry, 48, 4493–7CrossRefGoogle Scholar
Baumer, U. and Koller, J. (2002) The gold tree from the Celtic oppidum at Manching: investigation of the organic adhesive used for the gilding procedure. Presented at the 33rd International Symposium on Archaeometry, April 22–25, 2002, Amsterdam
Beato, B. D., Yost, R. A., Berkel, G. J., Filby, R. H. and Quirke, M. E. (1991) The Henryville bed of the New Albany Shale. III: tandem mass spectrometric analyses of geoporphyrins from the bitumen and kerogen. Organic Geochemistry, 17, 93–105CrossRefGoogle Scholar
Beck, C. W. and Borromeo, C. (1990) Ancient pine pitch: technological perspectives from a Hellenistic shipwreck. In: Organic Content of Ancient Vessels: Materials Analysis and Archaeological Investigation. Vol. 7 (A. R. Biers and P. E. McGovern, eds.), University of Pennsylvania Press, Philadelphia, pp. 51–8
Beck, C. W., Stout, E. C. and Janne, P. A. (1998) The pyrotechnology of pine tar and pitch inferred from quantitative analysis by gas chromatography/mass spectrometry and carbon-13 nuclear magnetic resonance spectroscopy. In: Proceedings of the First International Symposium on Wood Tar and Pitch (W. Brzeinski, and W. Piotrowski, eds.), Biskupin, Poland, pp. 181–90
Beck, C. W., Stout, E. C., Bingham, J., Lucas, J. and Purohit, V. (1999) Central European pine tar technologies. Ancient Biomolecules, 2, 281–93Google Scholar
Beesley, T. E. and Scott, P. W. (1998) Chiral Chromatography. John Wiley & Sons, New York
Bellamine, A., Mangla, A. T., Nes, W. D. and Waterman, M. R. (1999) Characterization and catalytic properties of the sterol 14α-demethylase from Mycobacterium tuberculosis. Proceedings of the National Academy of Science, USA, 96, 8937–8942CrossRefGoogle ScholarPubMed
BeMent, W. O., Levey, R. A. and Mango, F. D. (1995) The temperature of oil generation as defined with C7 chemistry maturity parameter (2,4-DMP/2,3-DMP ratio). In: Organic Geochemistry: Development and Applications to Energy, Climate, Environment and Human History (J. O. Grimalt and C. Dorronsoro, eds.), AIGOA, Donostia-San Sebastián, Spain, pp. 505–7
BeMent, W. O., McNeil, R. I. and Lippincott, R. G. (1996) Predicting oil quality from sidewall cores using PFID, TEC, and NIR analytical techniques in sandstone reservoirs, Rio Del Rey Basin, Cameroon. Organic Geochemistry, 24, 1173–8CrossRefGoogle Scholar
Bence, A. E. and Burns, W. A. (1993) Fingerprinting hydrocarbons in the biological resources of the Exxon Valdez spill area. In: Exxon Valdez Oil Spill: Fate and Effects in Alaskan Waters (3rd ASTM Environmental Toxicology and Risk Assessment Symposium) (P. G. Wells, J. N. Butler, and J. S. Hughes, eds.) American Society for Testing and Materials, STP 1219, Philadelphia, p. 84–140
Bence, A. E., Kvenvolden, K. A. and Kennicutt, M. C. II (1996) Organic geochemistry applied to environmental assessments of Prince William Sound, Alaska, after the Exxon Valdez oil spill – a review. Organic Geochemistry, 24, 7–42CrossRefGoogle Scholar
Bence, A. E., Burns, W. A., Mankiewicz, P. J., Page, D. S. and Boehm, P. D. (2000) Comment on “PAH refractory index as a source discriminant of hydrocarbon input from crude oil and coal in Prince William Sound, Alaska” by F. D. Hostettler, R. J. Rosenbauer, K. A. Kvenvolden. Organic Geochemistry, 31, 931–8CrossRefGoogle Scholar
Benford, D. J., Hanley, A. B., Bottrill, K., et al. (2000) Biomarkers as predictive tools in toxicity testing. Alternatives to Laboratory Animals, 28, 119–31Google Scholar
Berkert, U. and Allinger, N. L. (1982) Molecular Mechanics, monograph 177, American Chemical Society, Washington, DC
Berndt, M. E., Allen, D. E. and Seyfried, W. E. J. (1996) Reduction of CO2 during serpentinization of olivine at 300°C and 500 bar. Geology, 24, 351–42.3.CO;2>CrossRefGoogle Scholar
Berner, R. A. (1984) Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48, 605–15CrossRefGoogle Scholar
Berner, R. A. and Raiswell, R. (1983) Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta, 47, 605–15CrossRefGoogle Scholar
Berry, A. M., Harriott, O. T., Moreau, R. A., et al. (1993) Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proceedings of the National Academy of Science, USA, 90, 6091–4CrossRefGoogle ScholarPubMed
Berthelot, M.-P. (1860) Chimie organique fondée sur la synthèse. Mallet-Bachelier, Paris
Bertsch, W. (1999) Two-dimensional gas chromatography. Concepts, instrumentation, and applications. Part 1. Fundamentals, conventional two-dimensional gas chromatography, selected applications. Journal of High Resolution Chromatography, 22, 647–653.0.CO;2-V>CrossRefGoogle Scholar
Bertsch, W. (2000) Two-dimensional gas chromatography. Concepts, instrumentation, and applications. Part 2. Comprehensive two-dimensional GC. Journal of High Resolution Chromatography, 23, 167–813.0.CO;2-2>CrossRefGoogle Scholar
Bethell, P. H., Goad, L. J., Evershed, R. P. and Ottaway, J. (1994) The study of molecular markers of human activity: the use of coprostanol in the soil as an indicator of human faecal material. Journal of Archaeological Science, 21, 619–32CrossRefGoogle Scholar
Bhullar, A. G., Karlsen, D. A., Backer-Owe, K., Seland, R. T. and Tran, K. (1999) Dating reservoir filling – a case history from the North Sea. Marine Petroleum Geology, 16, 581–603CrossRefGoogle Scholar
Bidigare, R. R., Kennicutt, M. C. II, Ondrusek, M. E., Keller, M. D. and Guillard, R. R. L. (1990) Novel chlorophyll-related compounds in marine phytoplankton: distributions and geochemical implications. Energy & Fuels, 4, 653–7CrossRefGoogle Scholar
Bidigare, R. R., Kennicutt, M. C. II, Keeney-Kennicutt, W. L. and Macko, S. A. (1991) Isolation and purification of chlorophylls a and b for the determination of stable carbon and nitrogen isotope compositions. Analytical Chemistry, 63, 130–33CrossRefGoogle Scholar
Binder, D., Bourgois, G., Benoist, F. and Votry, C. (1990) Identification de brai de bouleau (Betula) dans le Neolithique de Giribaldi (Nice, France) par la spectrometrie de masse. Revue d'Archeometrie, 14, 37–42CrossRefGoogle Scholar
Bird, C. W., Lynch, J. M., Pirt, F. J., et al. (1971) Steroids and squalene in Methylococcus capsulatus grown on methane. Nature, 230, 473–4CrossRefGoogle ScholarPubMed
Bisset, N. G. and Zenk, M. H. (1993) Responding to ‘First identification of drugs in Egyptian mummies’. Naturwissenschaften, 80, 244–5Google Scholar
Bisset, N., Bruhn, J. G. and Zenk, M. H. (1996) Was opium known in the 18th dynasty in Egypt? An examination of materials from the tomb of the chief royal architect Kha, the presence of opium in a 3,500 year old Cypriote base-ring juglet. Ägypten und Levante, 6, 199–204Google Scholar
Biswas, S. K., Rangaraju, M. K., Thomas, J. and Bhattacharya, S. K. (1994) Cambay-Hazad(!) petroleum system in South Cambay Basin, India. In: The Petroleum System – From Source to Trap (L. B. Magoon and W. G. Dow, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp. 615–24
Bjorn, L. O. (1993) Responding to ‘First identification of drugs in Egyptian mummies’. Naturwissenschaften, 80, 244Google Scholar
Bjorøy, M., Hall, K., Gillyon, P. and Jumeau, J. (1991) Carbon isotope variations in n-alkanes and isoprenoids of whole oils. Chemical Geology, 93, 13–20CrossRefGoogle Scholar
Bjorøy, M., Hall, P. B. and Moe, R. P. (1994) Variation in the isotopic composition of single components in the C4–C20 fraction of oils and condensates. Organic Geochemistry, 21, 761–76CrossRefGoogle Scholar
Blankenship, R. (1992) Origin and early evolution of photosynthesis. Photosynthetic Research, 33, 91–111CrossRefGoogle ScholarPubMed
Blankenship, R. E. and Hartman, H. (1998) The origin and evolution of oxygenic photosynthesis. Trends in Biochemical Sciences, 23, 94–7CrossRefGoogle ScholarPubMed
Bloch, K. (1983) Sterol structure and membrane function. CRC Critical Reviews of Biochemistry, 4, 47–92CrossRefGoogle Scholar
Blokker, P., Bergen, P., Pancost, R., et al. (2001) The chemical structure of Gloeocapsomorpha prisca microfossils: implications for their origin. Geochimica et Cosmochimica Acta, 65, 885–900CrossRefGoogle Scholar
Blomberg, J., Schoenmakers, P. J. and Brinkman, U. A. (2002) Gas chromatographic methods for oil analysisJournal of Chromatography A, 972, 137–73CrossRefGoogle ScholarPubMed
Blumer, M. and Sass, J. (1972) Oil pollution: persistence and degradation of spilled fuel oil. Science, 176, 1120–2CrossRefGoogle ScholarPubMed
Blumer, M., Guillard, R. R. L. and Chase, T. (1971) Hydrocarbons of marine plankton. Marine Biology, 8, 183–9CrossRefGoogle Scholar
Blumer, M., Blokker, P. C., Cowell, E. B. and Duckworth, D. F. (1972) Petroleum. In: A Guide to Marine Pollution (E. D. Goldberg, ed.), Gordon and Breach, New York, pp. 19–40
Bocherens, H., Billiou, D., Mariotti, A., et al. (1999) Palaeoenvironmental and palaeodietary implications of isotopic biogeochemistry of last interglacial Neanderthal and mammal bones in Scladina Cave (Belgium). Journal of Archaeological Science, 26, 599–607CrossRefGoogle Scholar
Boëda, E., Connan, J., Dessort, D., et al. (1996) Bitumen as a hafting material on Middle Paleolithic artefacts. Nature, 380, 336–8CrossRefGoogle Scholar
Boehm, P. D., Douglas, G. S., Burns, W. A., et al. (1997) Application of petroleum hydrocarbon chemical fingerprinting and allocation techniques after the Exxon Valdez oil spill. Marine Pollution Bulletin, 34, 599–613CrossRefGoogle Scholar
Boehm, P. D., Page, D. S., Gilfillan, E. S., et al. (1998) Study of the fates and effects of the Exxon Valdez oil spill on benthic sediments in two bays in Prince William Sound, Alaska. 1. Study design, chemistry, and source fingerprinting. Environmental Science & Technology, 32, 567–76CrossRefGoogle Scholar
Boehm, P. D., Douglas, G. S., Borwn, J. S., et al. (2000) Comment on “Natural hydrocarbon background in benthic sediments of Prince William Sound, Alaska: oil vs. coal”. Environmental Science & Technology, 34, 2064–5CrossRefGoogle Scholar
Boehm, P. D., Page, D. S., Burns, W. A., et al. (2001) Resolving the origin of the petrogenic hydrocarbon background in Prince William Sound, Alaska. Environmental Science & Technology, 35, 471–9CrossRefGoogle Scholar
Boetius, A., Raveschlag, K., Schubert, C. J., et al. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 577–9CrossRefGoogle ScholarPubMed
Booth, M. (1999) Opium: A History. St Martin's Griffin, New York
Bordenave, M. L. (1993) Applied Petroleum geochemistry. Editions Technip, Paris
Bordovskiy, O. K. and Takh, N. I. (1978) Organic matter in the Recent carbonate sediments of the Caspian Sea. Oceanology, 18, 673–8Google Scholar
Boreham, C. J. and Powell, T. G. (1993) Petroleum source rock potential of coal and associated sediments: qualitative and quantitative aspects. In: Hydrocarbons from Coal (D. D. Rice, ed.), American Association of Petroleum Geologists, Tulsa, OK, pp. 133–57
Boreham, C. J., Fookes, C. J. R., Popp, B. N. and Hayes, J. M. (1989) Origins of etioporphyrins in sediments: evidence from stable carbon isotopes. Geochimica et Cosmochimica Acta, 53, 2451–5CrossRefGoogle ScholarPubMed
Borgund, A. E. and Barth, T. (1994) Generation of short-chain organic acids from crude oil by hydrous pyrolysis. Organic Geochemistry, 21, 943–52CrossRefGoogle Scholar
Bostick, N. H. (1979) Microscopic measurement of the level of catagenesis of solid organic matter in sedimentary rocks to aid exploration for petroleum and to determine former burial temperatures – a review. In: Aspects of Diagenesis (P. A. Schdle and P. R. Schulger, eds.), Society for Sedimentary Geology, Houston, TX, pp. 17–43CrossRef
Bostick, N. H. and Alpern, B. (1977) Principles of sampling, preparation and constituent selection for microphotometry in measurement of maturation of sedimentary organic matter. Journal of Microscopy, 109, 41–7CrossRefGoogle Scholar
Botneva, T. A., Eremenko, N. A. and Pankina, R. G. (1984) Isotopic composition of carbon, hydrogen, nitrogen, and sulphur in crude oils, gases, and organic matter of rocks. In: Handbook on Oil and Gas Geology [in Russian], Nedra, Moscow, pp. 78–97
Bottomley, R. J., York, D. and Grieve, R. A. F. (1978) 40Ar–39Ar ages of Scandinavian impact structures: I. Mien and Siljan. Contributions to Mineralogy and Petrology, 68, 79–84CrossRefGoogle Scholar
Bouvier, P., Rohmer, M., Benveniste, P. and Ourisson, G. (1976) Δ8,14-Steroids in the bacterium Methylococcus capsulatus. Biochemistry Journal, 159, 267–71CrossRefGoogle ScholarPubMed
Bragg, J. R., Prince, R. C., Harner, E. J. and Atlas, R. M. (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature, 368, 413–8CrossRefGoogle Scholar
Brassell, S. C. (1987) Natural gas from the mantle. Book review. Power from the Earth by Thomas Gold. New Scientist, 116, 54–5Google Scholar
Brassell, S. C., Wardroper, A. M. K., Thompson, I. D., Maxwell, J. R. and Eglinton, G. (1981) Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments. Nature, 290, 693–6CrossRefGoogle ScholarPubMed
Brassell, S. C., Eglinton, G. and Fu, J. M. (1985) Biological marker compounds as indicators of the depositional history of the Maoming oil shale. Organic Geochemistry, 10, 927–41CrossRefGoogle Scholar
Bray, E. E. and Evans, E. D. (1961) Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, 22, 2–15CrossRefGoogle Scholar
Breck, D. W. (1974) Zeolite Molecular Sieves. John Wiley & Sons, New York
Britton, G. (1998) Overview of carotenoid biosynthesis. In: Carotenoids, Vol. 3 (G. Britton, S. Leeaen-Jensen and H. Pfander, eds.), Birkhauser Verlag, Basel, pp. 13–147
Brock, T. D. and Madigan, M. T. (1991) Biology of Microorganisms. Prentice-Hall, Englewood Cliffs, NJ
Brocks, J. J., Logan, G. A., Buick, R. and Summons, R. E. (1999) Archean molecular fossils and the early rise of eukaryotes. Science, 285, 1033–6CrossRefGoogle ScholarPubMed
Bromley, B. W. and Larter, S. R. (1986) Biogenic origin of petroleums. Chemical and Engineering News, August 25, 3, 43Google Scholar
Brooks, P. W., Maxwell, J. R., Cornforth, J. W. Butlin, A. G. and Milne, C. B. (1977) Stereochemical studies of acyclic isoprenoid compounds. VI. The stereochemistry of farnesane from crude oil. In: Advances in Organic Geochemistry 1975 (R. Campos and J. Goni, eds.), Pergamon, Oxford, pp. 91–97
Brooks, J. M., Kennicutt, M. C. II and Carey, B. D. Jr. (1986) Offshore surface geochemical exploration. Oil and Gas Journal, 84, 66–72Google Scholar
Brown, T. A. (1999) How ancient DNA may help in understanding the origin and spread of agriculture. Philosophical Transactions of the Royal Society of London, Biological Sciences, 354, 89–98CrossRefGoogle Scholar
Buck, S. P. and McCulloh, T. H. (1994) Bampo-Peutu(!) petroleum system, North Sumatra, Indonesia. In: The Petroleum System – From Source to Trap (L. B. Magoon and W. G. Dow, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp. 624–38
Buckley, S. A. and Evershed, R. P. (2001) Organic chemistry of embalming agents in Pharaonic and Graeco-Roman mummies. Nature, 413, 837–41CrossRefGoogle ScholarPubMed
Buckley, S. A., Stott, A. W. and Evershed, R. P. (1999) Studies of organic residues from ancient Egyptian mummies using high temperature gas chromatography mass spectrometry and sequential thermal desorption gas chromatography mass spectrometry and pyrolysis gas chromatography mass spectrometry. Analyst, 124, 443–52CrossRefGoogle ScholarPubMed
Budiansky, S. (1982) Research article triggers dispute on zeolite. Nature, 300, 309CrossRefGoogle Scholar
Buick, R., Rasmussen, B. and Krapez, B. (1998) Archean oil: evidence for extensive hydrocarbon generation and migration 2.5–3.5 Ga. American Association of Petroleum Geologists Bulletin, 82, 50–69Google Scholar
Bull, I. D., Bergen, P. F., Poulton, P. R. and Evershed, R. P. (1998) Organic geochemical studies of soils from the Rothamsted classical experiments – II. Soils from the Hoosfield spring barley experiment treated with different quantities of manure. Organic Geochemistry, 28, 11–26CrossRefGoogle Scholar
Bull, I. D., Betancourt, P. P. and Evershed, R. P. (1999a) Chemical evidence supporting the existence of structured agricultural manuring regime on Pseira Island, Crete during the Minoan Age. Malcolm Wiener Fertschrift Volume, Aegeum, 20, 69–74Google Scholar
Bull, I. D., Simpson, I. A., Bergen, P. F., Poulton, P. R. and Evershed, R. P. (1999b) Muck ‘n’ molecules: organic geochemical methods for detecting ancient manuring. Antiquity, 73, 86–96CrossRefGoogle Scholar
Bull, I. D., Bergen, P. F., Nott, C. J., Poulton, P. R. and Evershed, R. P. (2000) Organic geochemical studies of soils from the Rothamsted classical experiments – V. The fate of lipids in different long-term experiments. Organic Geochemistry, 31, 389–408CrossRefGoogle Scholar
Bull, I. D., Lockheart, M. J., Elhummali, M. M., Roberts, D. J. and Evershed, R. P. (2002) The origin of faeces by means of biomarker detection. Environment International, 27, 647–54CrossRefGoogle ScholarPubMed
Bull, I. D., Elhmmali, M. M., Roberts, D. J. and Evershed, R. P. (2003) The application of steroidal biomarkers to track the abandonment of a Roman wastewater course at the Agora (Athens, Greece). Archaeometry, 45, 149–62CrossRefGoogle Scholar
Bullock, C. (2000) The archaea – a biochemical perspective. Biochemistry and Molecular Biology Education, 28, 186–91Google Scholar
Burke, E. A. J. (2001) Raman microspectrometry of fluid inclusions. Lithos, 55, 139–58CrossRefGoogle Scholar
Burkhart, C. N., Kruge, M. A., Burkhart, C. G. and Black, C. (2001) Cerumen composition by flash pyrolysis-gas chromatography/mass spectrometry. Otology and Neurotology, 22, 715–22CrossRefGoogle ScholarPubMed
Burlingame, A. L., Haug, P., Belsky, T. and Calvin, M. (1965) Occurrence of biogenic steranes and pentacyclic triterpanes in an Eocene shale (52 million years) and in an early Precambrian shale (2.7 billion years): a preliminary report. Proceedings of the National Academy of Sciences, USA, 54, 1406–12CrossRefGoogle Scholar
Burlingame, A. L., Baillie, T. A., Derrick, P. G. and Chizhov, O. S. (1980) Mass spectrometry. Analytical Chemistry, 52, 214–58RCrossRefGoogle Scholar
Burns, W. A., Mankiewicz, P. J., Bence, A. E., Page, E. S. and Parker, K. R. (1997) A principal-component and least-squares method for allocating polycyclic aromatic hydrocarbons in sediment to multiple sources. Environmental Toxicological Chemistry, 16, 1119–31CrossRefGoogle Scholar
Burruss, R. C., Cercone, K. R. and Harris, P. M. (1983) Fluid inclusion petrography and tectonic-burial history of the Al Ali no. 2 well: evidence for the timing of diagenesis and oil migration, northern Oman foredeep. Geology, 7, 567–702.0.CO;2>CrossRefGoogle Scholar
Burwood, R., Cornet, P. J., Jacobs, L. and Paulet, J. (1990) Organofacies variation control on hydrocarbon generation: a Lower Congo Coastal Basin (Angola) case history. Organic Geochemistry, 16, 325–38CrossRefGoogle Scholar
Cahn, R. S., Ingold, C. and Prelog, V. (1966) Specification of molecular chirality. Angewandte Chemie International Edition, 5, 385–415CrossRefGoogle Scholar
Cajaraville, M. P., Orbea, A., Mrigomez, I. and Cncio, I. (1997) Peroxisome proliferation in the digestive epithelium of mussels exposed to the water accommodated fraction of three oils. Comparative Biochemistry and Physiology C: Pharmacology, Toxicology and Endocrinology, 117C, 233–42Google Scholar
Callot, H. J., Ocampo, R. and Albrecht, P. (1990) Sedimentary porphyrins: correlations with biological precursors. Energy & Fuels, 4, 635–9CrossRefGoogle Scholar
Calvert, S. E. (1987) Oceanographic controls on the accumulation of organic matter in marine sediments. In: Marine Petroleum Source Rocks (J. Brooks and A. J. Fleet, eds.), Blackwell, London, pp. 137–51CrossRef
Calvert, S. E. and Pederson, T. (1992) Organic carbon accumulation and preservation in marine sediments: how important is anoxia? In: Productivity, Accumulation and Preservation of Organic Matter in Recent and Ancient Sediments (J. Whelan and J. W. Farrington, eds.), Columbia University Press, New York, pp. 231–63
Calvert, S. E., Karlin, R. E., Toolin, L. J., et al. (1991) Low organic carbon accumulation rates in Black Sea sediments. Nature, 350, 692–5CrossRefGoogle Scholar
Cameron, N. R., Brooks, J. M. and Zumberge, J. E. (1999) Deepwater petroleum systems in Nigeria: their identification and characterization ahead of the drill bit using SGE technology. www.tdi-bi.com (accessed 2 October, 1999)
Cane, R. F. (1969) Coorongite and the genesis of oil shale. Geochimica et Cosmochimica Acta, 33, 257–65CrossRefGoogle Scholar
Cann, R. L., Stoneking, M. and Wilson, A. C. (1987) Mitochondrial DNA and human evolution. Nature, 325, 31–6CrossRefGoogle ScholarPubMed
Caplan, M. L. and Bustin, R. M. (1996) Factors governing organic matter accumulation and preservation in a marine petroleum source rock from the Upper Devonian to Lower Carboniferous Exshaw Formation, Alberta. Bulletin of Canadian Petroleum Geology, 44, 474–94Google Scholar
Caramelli, D., Lalueza-Fox, C., Vernesi, C., et al. (2003) Evidence for a genetic discontinuity between Neandertals and 24,000-year-old anatomically modern Europeans. Proceedings of the National Academy of Sciences, USA, 100, 6593–7CrossRefGoogle ScholarPubMed
Carlson, R. M. K., Croasmun, W. R. and Chamberlain, D. E. (1995) Transformations of cholestane useful for probing processing chemistry. Presented at the 210th National Meeting of the American Chemical Society, August 20–25, 1995, Chicago, IL
Carpentier, B., Ungerer, P., Kowalewski, I., et al. (1996) Molecular and isotopic fractionation of light hydrocarbons between oil and gas phases. Organic Geochemistry, 24, 1115–39CrossRefGoogle Scholar
Carrigan, W. J., Tobey, M. H., Halpern, H. I., et al. (1998) Identification of reservoir compartments by geochemical methods: Jauf reservoir, Ghawar. Saudi Aramco Journal of Technology, Summer, 28–32Google Scholar
Carroll, A. R. and Bohacs, K. M. (2001) Lake-type controls on petroleum source rock potential in nonmarine basins. American Association of Petroleum Geologists Bulletin, 85, 1033–53Google Scholar
Carson, R. (1962) Silent Spring. Houghton Mifflin, Boston, MA
Casagrande, D. J. (1987) Sulfur in peat and coal. In: Coal and Coal-bearing Strata: Recent Advances (A. C. Scott, ed.), Geological Society, London, pp. 87–105
Castagna, J. P. and Backus, M. M. (eds.) (1997) Offset-dependent Reflectivity – Theory and Practice of AVO Analysis. Society of Exploration Geophysicists, Tulsa, OK
Castaño, J. R. (1993) Prospects for Commercial Abiogenic Gas Production: Implications from the Siljan Ring Area, Sweden. U.S. Geological Survey Professional Paper 1570
Cazier, E. C., Hayward, A. B., Espinosa, G., et al. (1995) Petroleum geology of the Cusiana Field, Llanos Basin Foothills, Colombia. American Association of Petroleum Geologists Bulletin, 79, 1444–62Google Scholar
Chan, M. A., Parry, W. T. and Bowman, J. R. (2000) Diagenetic hematite and manganese oxides and fault-related fluid flow in Jurassic Sandstones, Southeastern Utah. American Association of Petroleum Geologists Bulletin, 84, 1281–310Google Scholar
Chapelle, F. H., O'Neill, K., Bradley, P. M., et al. (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature, 415, 312–5CrossRefGoogle ScholarPubMed
Chapman, D. J. and Gest, H. (1983) Terms used to describe biological energy conversions, electron transport processes, interactions of cellular systems with molecular oxygen, and carbon nutrition. In: Earth's Earliest Biosphere (J. W. Schopf, ed.), Princeton University Press, Princeton, NJ, pp. 459–63
Chapman, D. J. and Schopf, J. W. (1983) Biological and biochemical effects of the development of an aerobic environment. In: Earth's Earliest Biosphere (J. W. Schopf, ed.), Princeton University Press, Princeton, NJ, pp. 302–20
Chappe, B., Michaelis, W. and Albrecht, P. (1980) Molecular fossils of archaebacteria as selective degradation products of kerogen. In: Advances in Organic Geochemistry 1979 (A. G. Douglas and J. R. Maxwell, eds.), Pergamon Press, Oxford, pp. 265–74CrossRef
Charlou, J.-L. and Donval, J.-P. (1993) Hydrothermal methane venting between 12°N and 26°N along the Mid-Atlantic Range. Journal of Geophysical Research, 98, 9625–42CrossRefGoogle Scholar
Charters, S., Evershed, R. P., Goad, L. J., Heron, C. and Blinkhorn, P. W. (1993) Identification of an adhesive used to repair a Roman jar. Archaeometry, 35, 211–23CrossRefGoogle Scholar
Charters, S., Evershed, R. P., Blinkhorn, P. W. and Denham, V. (1995) Evidence for the mixing of fats and waxes in archaeological ceramics. Archaeometry, 37, 113–27CrossRefGoogle Scholar
Charters, S., Evershed, R. P., Quye, A., Blinkhorn, P. W. and Reeves, V. (1997) Simulation experiments for determining the use of ancient pottery vessels: the behaviour of epicuticular leaf wax during boiling of a leafy vegetable. Journal of Archaeological Science, 24, 1–7CrossRefGoogle Scholar
Chen, J., Fu, J., Sheng, G., Liu, D., and Zhang, J. (1996) Diamondoid hydrocarbon ratios: novel maturity indices for highly mature crude oils. Organic Geochemistry, 25, 179–90CrossRefGoogle Scholar
Chicarelli, M. I., Kaur, S. and Maxwell, J. R. (1987) Sedimentary porphyrins: unexpected structures, occurrence, and possible origins. In: Metal Complexes in Fossil Fuels (R. H. Filby and J. F. Branthaven, eds.), American Chemical Society, Washington, DC, pp. 41–67CrossRef
Child, A. M., Collins, M. J., Vermeer, C., et al. (1997) Osteocalcin – a “long-term” protein. In: Archaeological Sciences Conference Proceedings, 2–4 September 1997 (A. Millard, ed.), British Archaeological Reports International Series No. 939, University of Durham, Durham, UK
Chung, H. M., Brand, S. W. and Grizzle, P. L. (1981) Carbon isotope geochemistry of Paleozoic oils from Big Horn Basin. Geochimica et Cosmochimica Acta, 45, 1803–15CrossRefGoogle Scholar
Chung, H. M., Gormly, J. R. and Squires, R. M. (1988) Origin of gaseous hydrocarbons in subsurface environments: theoretical considerations of carbon isotope distribution. Chemical Geology, 71, 97–103CrossRefGoogle Scholar
Chung, H. M., Rooney, M. A., Toon, M. B. and Claypool, G. E. (1992) Carbon isotope composition of marine crude oils. American Association of Petroleum Geologists Bulletin, Vol. 76, p. 1000–1007Google Scholar
Chung, H. M., Walters, C. C., Buck, S. and Bingham, G. (1998) Mixed signals of the source and thermal maturity for petroleum accumulations from light hydrocarbons: an example of the Beryl Field. Organic Geochemistry, 29, 381–96CrossRefGoogle Scholar
Chunqing, J., Li, M. and Duin, A. C. T. (2000a) Inadequate separation of saturate and monoaromatic hydrocarbons in crude oils and rock extracts by alumina column chromatography. Organic Geochemistry, 31, 751–6Google Scholar
Chunqing, J., Alexander, R., Kagi, R. I. and Murray, A. P. (2000b) Origin of perylene in ancient sediments and its geological significance. Organic Geochemistry, 31, 1545–59Google Scholar
Clarke, F. W. (1916) Data of geochemistry, third edition. US Geological Survey Bulletin, 616Google Scholar
Claus, H., Akca, E., Debaerdemaeker, T., et al. (2002) Primary structure of selected archaeal mesophilic and extremely thermophilic outer surface layer proteins. Systematic and Applied Microbiology, 25, 3–12CrossRefGoogle ScholarPubMed
Claypool, G. E. and Kaplan, I. R. (1974) The origin and distribution of methane in marine sediments. In: Natural Gases in Marine Sediments (I. R. Kaplan, ed.), Plenum Press, New York, pp. 99–140CrossRef
Claypool, G. E. and Magoon, L. B. (1985) Comparison of oil-source rock correlation data for Alaskan North Slope: techniques, results, and conclusions. In: Alaska North Slope Oil/Source Rock Correlation Study (L. B. Magoon and G. E. Claypool, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp. 49–81
Claypool, G. E. and Mancini, E. A. (1989) Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, Southwestern Alabama. American Association of Petroleum Geologists Bulletin, 73, 904–24Google Scholar
Claypool, G. E., Love, A. H. and Maughan, E. K. (1978) Organic geochemistry, incipient metamorphism, and oil generation in black shale members of Phosphoria Formation, western interior United States. American Association of Petroleum Bulletin, 62, 98–120Google Scholar
Clayton, C. (1991) Carbon isotope fractionation during natural gas generation from kerogen. Marine and Petroleum Geology, 8, 232–40CrossRefGoogle Scholar
Clayton, C. J. and Bjorøy, M. (1994) Effect of maturity on 13C/12C ratios of individual compounds in North Sea oils. Organic Geochemistry, 21, 737–50CrossRefGoogle Scholar
Clifford, D. J., Clayton, J. L. and Sinninghe Damsté, J. S. (1997) 3,4,5–2,3,6 Substituted diaryl carotenoid derivatives (Chlorobiaceae) and their utility as indicators of photic zone anoxia in sedimentary environments. In: Abstracts from the 18th International Meeting on Organic Geochemistry, September 22–26, 1997, Maastricht, The Netherlands (B. Horsfield, ed.), Forschungszentrum Jülich, Jülich, Germany, pp. 685–6
Coe, S. D. and Coe, M. D. (2000) The True History of Chocolate. Thames and Hudson, London
Coleman, I. W. M. and Lawrence, B. M. (2000) Examination of the enantiomeric distribution of certain monoterpene hydrocarbons in selected essential oils by automated solid-phase microextraction-chiral gas chromatography-mass selective detection. Journal of Chromatographic Science, 38, 95–9CrossRefGoogle ScholarPubMed
Collins, M. J., Child, A. M., Duin, A. T. C. and Vermeer, C. (1998) Ancient osteocalcin; the most stable bone protein?Ancient Biomolecules, 2, 223–38Google Scholar
Collins, M. J., Waite, E. R. and Duin, A. C. T. (1999) Predicting protein decomposition: the case of aspartic-acid racemization kinetics. Philosophical Transactions of the Royal Society London, Biological Sciences, 354, 51–64CrossRefGoogle ScholarPubMed
Colombini, M. P., Modugno, C., Silvano, F. and Onor, M. (2000) Characterization of the balm of an Egyptian mummy from the seventh century B.C.Studies in Conservation, 45, 19–29Google Scholar
Condamin, J., Formenti, F., Metais, M. O., Michel, M. and Blond, P. (1976) The application of gas chromatography to the tracing of oil in ancient amphorae. Archaeometry, 18, 195–201CrossRefGoogle Scholar
Connan, J. (1981) Un exemple de biodegradation preferentielle des hydrocarbures aromatique dans des asphaltes du bassin Sud-Aquitain (France). Bulletin des Centres de Recherches Exploration Production Elf Aquitaine, 5, 151–71Google Scholar
Connan, J. (1984) Biodegradation of crude oils in reservoirs. In: Advances in Petroleum Geochemistry, Vol. 1 (J. Brooks and D. H. Welte, eds.), Academic Press, London, pp. 299–335CrossRef
Connan, J. (1988) Quelques secrets des bitumens archéologiques de Mésopotamie révélés par les analyses de Géochimi Organique Pétrolière. Bulletin des Centres de Recherches Exploration Production Elf Aquitaine, 12, 759–87Google Scholar
Connan, J. (1996) La colle au collagène, innovation du Néolithique. La Recherche, 284, 33–4Google Scholar
Connan, J. (1999) Use and trade of bitumen in antiquity and prehistory: molecular archaeology reveals secrets of past civilizations. Philosophical Transactions of the Royal Society, Biological Sciences, 354, 33–50CrossRefGoogle Scholar
Connan, J. and Deschesne, O. (1996) Le Bitumen à Suse (Bitumen at Susa), Réunion des musées nationaux (Collection du musée du Louvre). Elf Aquitaine Production, Pau, France
Connan, J. and Deschesne, O. (2001) Matériau artificiel ou roche naturelle? [Artificial material or natural rock?]La Recherche, 347, 46–7Google Scholar
Connan, J. and Dessort, D. (1989a) Du bitume dans les baumes de momies égyptienne (1295 av. J-C.-300 ap. J. C.): determination de son origine et évaluation de sa quantité. Comptes Rendus de l'Academie des Sciences, Paris, 312, 1445–52Google Scholar
Connan, J. and Dessort, D. (1989b) Du bitume de la Mer Morte dans les baumes d'une momie égyptienne: identification par critèrese moléculaires. Comptes Rendus de l'Academie des Sciences, Paris, 309, 1665–72Google Scholar
Connan, J. and Dessort, D. (1991) Le bitume dans l'Antiguité. La Recherche, 229, 152–9Google Scholar
Connan, J. and Lacrampe-Couloume, G. (1993) The origin of the Lacq Superieur heavy oil accumulation and of the giant Lacq Inferieur gas field (Aquitaine Basin, SW France). In: Applied Petroleum Geochemistry (M. L. Bordenave, ed.), Editions Technip, Paris, pp. 465–87
Connan, J. and Nissenbaum, A. (2003) Conifer tar on the keel and hull planking of the Ma'agan Mikhael Ship (Israel, 5th century BC): identification and comparison with natural products and artefacts employed in boat construction. Journal of Archaeological Science, 30, 709–19CrossRefGoogle Scholar
Connan, J., Nissenbaum, A. and Dessort, D. (1992) Molecular archaeology: export of Dead Sea asphalt to Canaan and Egypt in the Chalcolithic-Early Bronze Age (4th–3rd millennium BC). Geochimica et Cosmochimica Acta, 56, 2743–59CrossRefGoogle Scholar
Cook, A. C. and Sherwood, N. R. (1991) Classification of oil shales, coals and other organic-rich rocks. Organic Geochemistry, 17, 211–22CrossRefGoogle Scholar
Cooles, G. P., Mackenzie, A. S. and Quigley, T. M. (1986) Calculation of petroleum masses generated and expelled from source rocks. Organic Geochemistry, 10, 235–45CrossRefGoogle Scholar
Cooper, A. and Poinar, H. N. (2002) Ancient DNA: do it right or not at all. Science, 289, 1139CrossRefGoogle Scholar
Cooper, A., Poinar, H. N., Paabo, S., et al. (1997) Neandertal genetics. Science, 277, 1021–5CrossRefGoogle ScholarPubMed
Coplen, T. B. (1996) New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochimica et Cosmochimica Acta, 60, 3359–60CrossRefGoogle Scholar
Copley, M. S., Rose, P. J., Clapham, A., et al. (2001) Processing palm fruits in the Nile Valley – biomolecular evidence from Qasr Ibrim. Antiquity, 75, 538–42CrossRefGoogle Scholar
Copley, M., Jones, V., Rose, P., et al. (2002) Biomolecular analysis of pottery and palaeoenvironmental material from Qasr Ibrîm as indicators of changing economy. Presented at the 33rd International Symposium on Archaeometry, April 22–25, 2002, Amsterdam
Copley, M. S., Berstan, R., Dudd, S. N., et al. (2003) Direct chemical evidence for widespread dairying in prehistoric Britain. Proceedings of the National Academy of Sciences, USA, 100, 1524–9CrossRefGoogle ScholarPubMed
Corbin, C. J. (1993) Petroleum contribution of the coastal environment of St Lucia. Marine Pollution Bulletin, 26, 579–80CrossRefGoogle Scholar
Cornford, C. (1994) Mandal-Ekofisk(!) petroleum system in the Central Graben of the North Sea. In: The Petroleum System – From Source to Trap (L. B. Magoon and W. G. Dow, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp. 537–71
Corr, L. T., Sealy, J., Jones, V. and Evershed, R. P. (2002) Carbon isotopic analysis of individual collagenous amino acids and coastal diets in the Late Stone Age of South Africa. Presented at the 33rd International Symposium on Archaeometry, April 22–25, 2002, Amsterdam
Cox, R. M. and Gallois, R. W. (1981) The Stratigraphy of the Kimmeridge Clay of the Dorset Type Area and its Correlation With Some Other Kimmeridgian Sequences. Institute of Geological Sciences Report 80/4
Cragg, B. A., Parkes, R. J., Fry, F. C., et al. (1996) Bacterial populations and processes in sediments containing gas hydrates (ODP Leg 146: Cascadia Margin). Earth and Planetary Science Letters, 139, 497–507CrossRefGoogle Scholar
Craig, H. (1953) The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta, 3, 53–92CrossRefGoogle Scholar
Cranwell, P. A., Eglinton, G. and Robinson, N. (1987) Lipids of aquatic organisms as potential contributors to lacustrine sediments. II. Organic Geochemistry, 11, 513–27CrossRefGoogle Scholar
Creaney, S. and Passey, Q. R. (1993) Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework. American Association of Petroleum Geologists Bulletin, 77, 386–401Google Scholar
Croasmun, W. R. and Carlson, R. M. K. (1987) Two-dimensional NMR spectroscopy – applications for chemists and biochemists. In: Methods in Stereochemical Analysis, Vol. 9 (W. R. Croasmun and R. M. K. Carlson, eds.), VCH Publishers, New York, pp. 1–534
Cronin, J., Pizzarello, S. and Cruikshank, D. P. (1988) Organic matter in carbonaceous chondrites, planetary satellites, asteroids, and comets. In: Meteorites and the Early Solar System (J. F. Kerridge and M. S. Mathews, eds.), University of Arizona Press, Tempe, AZ, pp. 819–57
Crowder, R. E. (1960) Hyperion oil field. In: Summary of Operations, California Oil Fields, Vol. 46, Department of Natural Resources, Division of Oil and Gas, San Francisco, pp. 86–91
Curiale, J. A. (1986) Origin of solid bitumens, with emphasis on biological marker results. Organic Geochemistry, 10, 559–80CrossRefGoogle Scholar
Curiale, J. A. (1995) Saturated and olefinic terrigenous triterpenoid hydrocarbons in a biodegraded Tertiary oil of northeast Alaska. Organic Geochemistry, 23, 177–82CrossRefGoogle Scholar
Curiale, J. A. and Sperry, S. W. (1998) An isotope-based oil-source rock correlation in the Camamu-Almada Basin, offshore Brazil. Revista Latino Americana de Geoquimica Organica, 4, 51–64Google Scholar
Curiale, J. A., Cameron, D. and Davis, D. V. (1985) Biological marker distribution and significance in oils and rocks of the Monterey Formation, California. Geochimica et Cosmochimica Acta, 49, 271–88CrossRefGoogle Scholar
Curiale, J., Morelos, J., Lambiase, J. and Mueller, W. (2000) Brunei Darussalam – characteristics of selected petroleums and source rocks. Organic Geochemistry, 31, 1475–93CrossRefGoogle Scholar
Curran, R., Eglinton, G., Maclean, I., Douglas, A. G. and Dungworth, G. (1968) Simplification of complex mixtures of alkanes using 7A molecular sieve. Tetrahedron Letters, 14, 1669–73CrossRefGoogle Scholar
Curtis, C. D. (1987) Inorganic geochemistry and petroleum exploration. In: Advances in Petroleum Geochemistry, Vol. 2 (J. Brooks and D. Welte, eds.), Academic Press, London, pp. 91–140
Dahl, J. E., Moldowan, J. M., Peters, K. E., et al. (1999) Diamondoid hydrocarbons as indicators of natural oil cracking. Nature, 399, 54–7CrossRefGoogle Scholar
Dahl, J. E., Liu, S. G. and Carlson, R. M. K. (2002) Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science, 299, 96–9CrossRefGoogle ScholarPubMed
Dahl, J. E., Moldowan, J. M., Peakman, T. M., et al. (2003) Isolation and structural proof of the large diamond molecule, cyclohexamantane (C26H30). Angewandte Chemie International Edition, 42, 2040–4CrossRefGoogle Scholar
Dai, J. (1992) Identification and distribution of various alkane gases. Science in China. Series D, Earth Sciences, 35, 1246–57Google Scholar
Dasgupta, S., Tang, Y., Moldowan, J. M., Carlson, R. M. K. and Goddard, W. A., III (1995) Stabilizing the boat conformation of cyclohexane rings. Journal of the American Chemical Society, 117, 6532–4CrossRefGoogle Scholar
David, R. (2000) Mummification. In: Ancient Egyptian Materials and Technology (P. Nicholson and I. Shaw, eds.), Cambridge University Press, Cambridge, pp. 372–89
David, R. and Sandra, P. (1999) Use of hydrogen as carrier gas in capillary GC. American Laboratory, 9, 18–9Google Scholar
Dean, R. A. and Whitehead, E. V. (1961) The occurrence of phytane in petroleum. Tetrahedron Letters, 21, 768–70CrossRefGoogle Scholar
Decavallas, O., Garnier, N. and Regert, M. (2002) Chemical characterisation of plant commodities in archaeological ceramic vessels. Presented at the 33rd International Symposium on Archaeometry, April 22–25, 2002, Amsterdam
Decola, E. (2000) International Oil Spill Statistics: 1999. Cutter Information Corporation, Arlington, MA
Deines, E. T. (1980a) Biogeochemistry of stable carbon isotopes. In: Organic Geochemistry (G. Eglinton and M. T. J. Murphy, eds.), Springer-Verlag, New York, pp. 306–29
Deines, P. (1980b) The isotopic composition of reduced organic carbon. In: Handbook of Environmental Isotope Geochemistry, Vol. 1 (P. Fritz and J. C. Fontes, eds.), Elsevier, Amsterdam, pp. 329–406
Leeuw, J. W., Cox, H. C., Graas, G., et al. (1989) Limited double bond isomerization and selective hydrogenation of sterenes during early diagenesis. Geochimica et Cosmochimica Acta, 53, 903–9CrossRefGoogle Scholar
Del Río, J. C. and Philp, R. P. (1992) High molecular weight hydrocarbon (>C40) in source rock extracts. American Association of Petroleum Geologists Bulletin, Annual Meeting Abstracts, 76, 1097Google Scholar
Del Río, J. C. and Philp, R. P. (1999) Field ionization mass spectrometric study of high molecular weight hydrocarbons in a crude oil and a solid bitumen. Organic Geochemistry, 30, 279–86CrossRefGoogle Scholar
Demaison, G. J. and Huizinga, B. J. (1994) Genetic classification of petroleum systems using three factors: charge, migration, and entrapment. In: The Petroleum System – From Source to Trap (L. B. Magoon and W. G. Dow, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp. 73–89
Demaison, G. J. and Moore, G. T. (1980) Anoxic environments and oil source bed genesis. American Association of Petroleum Geologists Bulletin, 64, 1179–209Google Scholar
Demaison, G. and Murris, R. J. (1984) Petroleum Geochemistry and Basin Evaluation. American Association of Petroleum Geologists, Tulsa, OK
Demaison, G., Holck, A. J. J., Jones, R. W. and Moore, G. T. (1983) Predictive source bed stratigraphy; a guide to regional petroleum occurrence. In: Proceedings of the 11th World Petroleum Congress, Vol. 2, John Wiley & Sons, London, pp. 1–13
Demirel, I. H., Yurtsever, T. S. and Guneri, S. (2001) Petroleum systems of the Adiyaman region, Southeastern Anatolia, Turkey. Marine and Petroleum Geology, 18, 391–410CrossRefGoogle Scholar
Dempster, H. S., Sherwood Lollar, B. and Feenstra, S. (1997) Tracing organic contaminants in groundwater: a new methodology using compound-specific isotopic analysis. Environmental Science & Technology, 31, 3193–7CrossRefGoogle Scholar
DeNiro, M. J. and Epstein, J. (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 42, 495–506CrossRefGoogle Scholar
Derenne, S., Largeau, C. and Taulelle, F. (1993) Occurrence of non-hydrolysable amides in the macromolecular constituent of Scenedesmus quadricauda cell wall as revealed by 15N NMR: origin of n-alkylnitriles in pyrolysates of ultralaminae-containing kerogens. Geochimica et Cosmochimica Acta, 57, 851–7CrossRefGoogle Scholar
Derenne, S., Largeau, C. and Behar, F. (1994) Low polarity pyrolysis products of Permian to Recent Botryococcus-rich sediments; first evidence for the contribution of an isoprenoid to kerogen formation. Geochimica et Cosmochimica Acta, 58, 3703–11CrossRefGoogle Scholar
Rosa, M., Gambacorta, A., Nicolaus, B., Sodano, S. and Bu'lock, J. D. (1980) Structural regulations in tetraetherlipids of Caldariella and their biosynthetic and phyletic implications. Phytochemistry, 19, 833–6CrossRefGoogle Scholar
De Rosa, M., Trincone, A., Nicolaus, B. and Gambacorta, A. (1991) Achaebacteria: lipids, membrane structures and adaptation to environmental stresses. In: Life Under Extreme Conditions (G. di Prisco, ed.), Spinger-Verlag, Berlin, pp. 61–87CrossRef
Des Marais, D. J., Donchin, J. H., Nehring, N. L. and Truesdell, A. H. (1981) Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons. Nature, 292, 826–8CrossRefGoogle Scholar
Des Marais, D. J., Stallard, M. L., Nehring, N. L. and Truesdell, A. H. (1988) Carbon isotope geochemistry of hydrocarbons in the Cerro Prieto geothermal field, Baja California Norte, Mexico. Chemical Geology, 71, 159–67CrossRefGoogle ScholarPubMed
Devon, T. K. and Scott, A. I. (1972) Handbook of Naturally Occurring Compounds, Vol. II. Academic Press, New York
De Vivo, B. and Frezzotti, M. L. (1994) Fluid Inclusions in Minerals: Methods and Applications. Short Course of the IMA Working Group “Inclusions in Minerals”, Virginia Tech., Blacksberg, VA, p. 376
Dias, R. F., Freeman, K. H. and Franks, S. G. (2002) Gas chromatography-pyrolysis-isotope ratio mass spectrometry: a new method for investigating intramolecular isotopic variation in low molecular weight organic acids. Organic Geochemistry, 33, 161–8CrossRefGoogle Scholar
Dimmler, A. and Strausz, O. P. (1983) Enrichment of polycyclic terpenoid, saturated hydrocarbons from petroleum by adsorption on zeolite NaX. Journal of Chromatography, 270, 219–25CrossRefGoogle Scholar
Dlugokencky, E. J., Masarie, K. A., Lang, L. M. and Tans, P. M. (1998) Continuing decline in the growth rate of the atmospheric methane burden. Nature, 393, 447–50CrossRefGoogle Scholar
DOE/EIA (1995) Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, Kyrgyzstan). US Department of Energy/Energy Information Administration, Report No. DOE/EIA-TR/0575, Washington, D.C.
Dott, R. H. (1969) Hypotheses for an organic origin. In: Sourcebook for Petroleum Geology, Part 1. Genesis of Petroleum (R. H. Dott and M. J. Reynolds, eds), American Association of Petroleum Geologists, Tulsa, OK, pp. 1–244
Douglas, A. G., Sinninghe Damsté, J. S., Fowler, M. G., Eglinton, T. I. and Leeuw, J. W. (1991) Unique distributions of hydrocarbons and sulphur compounds released by flash pyrolysis from the fossilized alga Gloecapsomorpha prisca, a major constituent in one of four Ordovician kerogens. Geochimica et Cosmochimica Acta, 55, 275–91CrossRefGoogle Scholar
Douglas, G. S., Prince, R. C., Butler, E. L. and Steinhauer, W. G. (1994) The use of internal chemical indicators in petroleum and refined products to evaluate the extent of biodegradation. In: Hydrocarbon Bioremediation (R. E. Hinchee, B. C. Alleman, R. E. Hoeppel, and R. N. Miller, eds.), Lewis Publishers, Ann Arbor, MI, pp. 59–72
Douglas, A. G., Bence, A. E., McMillen, S. J., Prince, R. C. and Butler, E. L. (1996) Environmental stability of selected petroleum hydrocarbon source and weathering ratios. Environmental Science & Technology, 30, 2332–9CrossRefGoogle Scholar
Douka, E., Koukkou, A., Drainas, C., Grosdemange-Billiard, C. and Rohmer, M. (2001) Structural diversity of the triterpenic hydrocarbons from the bacterium Zymomonas mobilis: the signature of defective squalene cyclization by the squalene/hopene cyclase. FEMS Microbiology Letters, 199, 247–51CrossRefGoogle ScholarPubMed
Dow, W. G. (1977) Kerogen studies and geological interpretations. Journal of Geochemical Exploration, 7, 79–99CrossRefGoogle Scholar
Duarte, C., Maurício, J., Pettitt, P. B., et al. (1999) The early Upper Paleolithic human skeleton from the Abrigo do Lagar Velho (Portugal) and modern human emergence in Iberia. Proceedings of the National Academy of Science, USA, 96, 7604–9CrossRefGoogle ScholarPubMed
Dudd, S. N. and Evershed, R. P. (1998) Direct demonstration of milk as an element of archaeological economies. Science, 282, 1478–81CrossRefGoogle ScholarPubMed
Dudd, S. N., Regert, M. and Evershed, R. P. (1998) Assessing microbial lipid contributions during laboratory degradations of fats and oils and pure triacylglycerols absorbed in ceramic potsherds. Organic Geochemistry, 29, 1345–54CrossRefGoogle Scholar
Durand, B. (1980) Kerogen. Insoluble Organic Matter From Sedimentary Rocks. Editions Technip, Paris
Durand, B. (1983) Present trends in organic geochemistry in research on migration of hydrocarbons. In: Advances in Organic Geochemistry 1981 (M. Bjorøy, C. Albrecht, C. Cornford, et al., eds.), John Wiley & Sons, New York, pp. 117–28
Durand, B. and Monin, J. C. (1980) Elemental analysis of kerogens (C,H,O,N,S,Fe). In: Kerogen. Insoluble Organic Matter from Sedimentary Rocks (B. Durand, ed.), Editions Technip, Paris, pp. 113–42
Dutkiewicz, A., Rasmussen, B. and Buick, R. (1998) Oil preserved in fluid inclusions in Archean sandstones. Nature, 395, 885–8CrossRefGoogle Scholar
Dzou, L. I. P. and Hughes, W. B. (1993) Geochemistry of oils and condensates, K Field, offshore Taiwan: a case study in migration fractionation. Organic Geochemistry, 20, 437–62CrossRefGoogle Scholar
Eganhouse, R. P. (1997) Molecular Markers in Environmental Geochemistry. American Chemical Society, Washington, DC
Eglinton, G. and Calvin, M. (1967) Chemical fossils. Scientific American, 216, 32–43CrossRefGoogle Scholar
Eglinton, G. and Hamilton, R. J. (1967) Leaf epicuticular waxes. Science, 156, 1322–35CrossRefGoogle ScholarPubMed
Eglinton, T. I. and Douglas, A. G. (1988) Quantitative study of biomarker hydrocarbons released from kerogens during hydrous pyrolysis. Energy & Fuels, 2, 81–8CrossRefGoogle Scholar
Eglinton, G., Scott, P. M., Besky, T., Burlingame, A. L. and Calvin, M. (1964) Hydrocarbons of biological origin from a one-billion-year-old sediment. Science, 145, 263–4CrossRefGoogle ScholarPubMed
Eglinton, T. I., Curtis, C. D. and Rowland, S. J. (1987) Generation of water-soluble organic acids from kerogen during hydrous pyrolysis: implications for porosity development. Mineralogical Magazine, 51, 495–503CrossRefGoogle Scholar
Ekweozor, E. M., and Daukoru, E. M. (1994) Northern delta depobelt portion of the Akata-Agbada(!) petroleum system, Niger Delta, Nigeria. In: The Petroleum System – From Source to Trap (L. B. Magoon and W. G. Dow, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp. 599–614
Elhmmali, M. M. (1998) Complementary use of bile acids and sterols as sewage pollution indicators. Ph. D. thesis, University of Bristol, Bristol, UK
Elhmmali, M. M., Roberts, D. J. and Evershed, R. P. (2000) Combined analysis of bile acids and sterols/stanols from riverine particulates to assess sewage discharges and other fecal sources. Environmental Science & Technology, 34, 39–46CrossRefGoogle Scholar
Ellis, L. (1995) Aromatic hydrocarbons in crude oil and sediments: Molecular sieve separations and biomarkers. Ph. D. thesis, Curtin University of Technology, Perth, Australia
Ellis, L. and Fincannon, A. L. (1998) Analytical improvements in IRM-GC/MS analyses: advanced techniques in tube furnace design and sample preparationOrganic Geochemistry, 29, 1101–17CrossRefGoogle Scholar
Ellis, L., Kagi, R. I. and Alexander, R. (1992) Separation of petroleum hydrocarbons using dealuminated mordenite molecular sieve. I. Monoaromatic hydrocarbons. Organic Geochemistry, 18, 587–93CrossRefGoogle Scholar
Ellis, L., Alexander, R. and Kagi, R. I. (1994) Separation of petroleum hydrocarbons using dealuminated mordenite molecular sieve. II. Alkylnaphthalenes and alkylphenanthrenes. Organic Geochemistry, 21, 849–55CrossRefGoogle Scholar
Elvert, M., Suess, E., Greinert, J. and Whiticar, M. J. (2000) Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone. Organic Geochemistry, 31, 1175–87CrossRefGoogle Scholar
Emerson, S. (1985) Organic carbon preservation in marine sediments. In: The Carbon Cycle and Atmospheric CO2: Natural Variations from Archean to Present (E. T. Sundquist and W. S. Broecker, eds.), American Geophysical Union, Washington, DC, pp. 78–86CrossRef
Endo, K., Walton, D., Urry, G. B. C. and Reyment, R. A. (1995) Fossil intra-crystalline biomolecules of brachiopod shells: diagenesis and preserved geo-biological information. Organic Geochemistry, 23, 661–73CrossRefGoogle Scholar
Engel, M. H. and Maynard, R. J. (1989) Preparation of organic matter for stable carbon isotope analysis by sealed tube combustion: a cautionary note. Analytical Chemistry, 61, 1996–8CrossRefGoogle Scholar
England, W. A. (1990) The organic geochemistry of petroleum reservoirs. Organic Geochemistry, 16, 415–25CrossRefGoogle Scholar
England, W. A. and Fleet, A. J. (1991) Petroleum Migration, Geological Society, London
Engelhardt, G. and Michel, D. (1987) High Resolution Solid State NMR of Silicates and Zeolites. John Wiley & Sons, New York
Ensminger, A. (1977) Evolution de composes polycycliques sedimentaires [in French]. Doctorate thesis, University Louis Pasteur, Strasbourg, France
EPA (1995) Musts for USTs: A Summary of the Federal Regulations for Underground Storage Tank Systems. EPA 510-K-95–002, July 1995, Environmental Protection Agency, Washington, DC
EPA (1999) Estimates of Methane Emissions from the US Oil Industry. Final draft, October 1999, Prepared by ICF Consulting for the US Environmental Protection Agency, Washington, DC
Epstein, A. G., Epstein, J. B. and Harris, L. D. (1977) Conodont Color Alteration: An Index to Organic Metamorphism. Geological Survey Professional Paper 995, US Geological Survey, Washington, DC
Erdman, J. G. and Morris, D. A. (1974) Geochemical correlation of petroleum. American Association of Petroleum Geologists Bulletin, 58, 2326–37Google Scholar
Espitalié, J., Madec, M., Tissot, B. and Leplat, P. (1977) Source rock characterization method for petroleum exploration. In: Proceedings of the Offshore Technology Conference, May 2–5, 1977, OTC, Houston, TX, pp. 439–44CrossRef
Espitalié, J., Marquis, F. and Sage, L. (1987) Organic geochemistry of the Paris Basin. In: Petroleum Geology of Northwest Europe (J. Brooks and K. Glennie, eds.), Graham and Trotman, London, pp. 71–86
Etminan, H. and Hoffmann, C. F. (1989) Biomarkers in fluid inclusions: a new tool in constraining source regimes and its implications for the genesis of Mississippi Valley-type deposits. Geology (Boulder), 17, 19–222.3.CO;2>CrossRefGoogle Scholar
Evans, S. A. (1928) The Palace of Minos: A Comparative Account of the Successive Stages. Macmillan, London
Evershed, R. P. (1992) Chemical composition of bog body adipocere. Archaeometry, 34, 253–65CrossRefGoogle Scholar
Evershed, R. P. and Bethell, P. H. (1998) Application of multimolecular biomarker techniques to the identification of fecal material in archaeological soils and sediments. In: Archaeological Chemistry, 23, ACS Symposium Series 625 (M. V. Orna, ed.), American Chemical Society, Washington, DC, pp. 157–72
Evershed, R. P. and Connolly, R. C. (1994) Post-mortem transformations of sterols in bog body tissues. Journal of Archaeological Science, 21, 577–83CrossRefGoogle Scholar
Evershed, R. P. and Tuross, N. (1996) Proteinaceous material from potsherds and associated soils. Journal of Archaeological Science, 23, 429–36CrossRefGoogle Scholar
Evershed, R. P., Jerman, K. and Eglinton, G. (1985) Pine wood origin for pitch from the Mary Rose. Nature, 314, 528–30CrossRefGoogle Scholar
Evershed, R. P., Heron, C. and Goad, L. J. (1990) Analysis of organic residues of archaeological origin by high temperature gas chromatography/mass spectrometry. Analyst, 115, 1339–42CrossRefGoogle Scholar
Evershed, R. P., Heron, C. and Goad, L. J. (1991) Epicuticular wax components preserved in potsherds as chemical indicators of leafy vegetables in ancient diets. Antiquity, 65, 540–4CrossRefGoogle Scholar
Evershed, R. P., Arnot, K. I., Collister, J., Eglinton, G. and Charters, S. (1994) Application of isotope ratio monitoring gas chromatography-mass spectrometry to the analysis of organic residues of archaeological origin. Analyst, 119, 909–14CrossRefGoogle Scholar
Evershed, R. P., Stott, A. W., Raven, A., et al. (1995) Formation of long-chain ketones in ancient pottery vessels by pyrolysis of acyl lipids. Tetrahedron Letters, 36, 8875–8CrossRefGoogle Scholar
Evershed, R. P., Bethell, P. H., Reynolds, R. J. and Walsh, N. J. (1997a) 5β-Stigmastanol and related 5β-stanols as biomarkers of manuring: analysis of modern experimental material and assessment of the archaeological potential. Journal of Archaeological Science, 24, 485–95CrossRefGoogle Scholar
Evershed, R. P., Mottram, H. R., Dudd, S. N., et al. (1997b) New criteria for the identification of animal fats preserved in archaeological pottery. Naturwissenschaften, 84, 402–6CrossRefGoogle Scholar
Evershed, R. P., Bergen, P. F., Peakman, T. M., et al. (1997c) Archaeological frankincense. Nature, 390, 667–8CrossRefGoogle Scholar
Evershed, R. P., Vaughan, S. J., Dudd, S. N. and Soles, J. S. (1997d) Fuel for thought? Beeswax in lamps and conical cups from Late Minoan Crete. Antiquity, 71, 979–85CrossRefGoogle Scholar
Evershed, R. P., Bland, H. A., Bergen, P. F., et al. (1997e) Volatile compounds in archaeological plant remains and the Maillard reaction during decay of organic matter. Science, 278, 432–3CrossRefGoogle Scholar
Evershed, R. P., Dudd, S. N., Charters, S., et al. (1999) Lipids as carriers of anthropogenic signals from prehistory. Philosophical Transactions of the Royal Society, Biological Sciences, 354, 19–32CrossRefGoogle Scholar
Evershed, R. P., Dudd, S. N., Anderson-Stojanovic, V. R. and Gebhard, E. R. (2003) New chemical evidence for the use of combed ware pottery vessels as beehives in ancient Greece. Journal of Archaeological Science, 30, 1–12CrossRefGoogle Scholar
Ewbank, G., Manning, D. A. C. and Abbott, G. D. (1993) An organic geochemical study of bitumens and their potential source rocks from the South Pennine Orefield, Central England. Organic Geochemistry, 20, 579–98CrossRefGoogle Scholar
Farrimond, P., Eglinton, G., Brassell, S. C. and Jenkyns, H. C. (1989) Toarcian anoxic event in Europe: an organic geochemical study. Marine and Petroleum Geology, 6, 136–47CrossRefGoogle Scholar
Farrimond, P., Head, I. M. and Innes, H. E. (2000) Environmental influence on the biohopanoid composition of Recent sediments. Geochimica et Cosmochimica Acta, 64, 2985–92CrossRefGoogle Scholar
Farrington, J. W. and Meyers, P. A. (1975) Hydrocarbons in the marine environment. In: Environmental Chemistry (G. Eglinton, ed.), The Chemical Society, London, pp. 109–36CrossRef
Faulon, J. L., Carlson, G. A. and Hatcher, P. G. (1993) Statistical model for bituminous coal: a three-dimensional evaluation of structural and physical properties based on computer-generated structures. Energy & Fuels, 7, 1062–72CrossRefGoogle Scholar
Faure, P., Landais, P., Schlepp, L. and Michels, R. (2000) Evidence for diffuse contamination of river sediments by road asphalt particles. Environmental Science & Technology, 34, 1174–81CrossRefGoogle Scholar
Feazel, C. T. and Aram, R. B. (1990) Interpretation of discontinuous reflectance profiles. Discussion. American Association of Petroleum Geologists Bulletin, 74, 91–3Google Scholar
Filby, R. H. and Berkel, G. J. V. (1987) Geochemistry of metal complexes in petroleum, source rocks, and coals: an overview. In: Metal Complexes in Fossil Fuels (R. H. Filby and J. F. Branthaven, eds.), American Chemical Society, Washington, DC, pp. 2–39CrossRef
Filby, R. H. and Branthaven, J. F. (1987) Metal Complexes in Fossil Fuels. American Chemistry Society, Washington, DC
Filley, T. R., Blanchette, R. A., Simpson, E. and Fogel, M. L. (2001) Nitrogen cycling by wood decomposing soft-rot fungi in the “King Midas tomb,” Gordion, TurkeyProceedings of the National Academy of Science, USA, 98, 13346–50CrossRefGoogle ScholarPubMed
Fingas, M. F. (1995a) A literature review of the physics and predictive modeling of oil spill evaporation. Journal of Hazardous Materials, 42, 157–75CrossRefGoogle Scholar
Fingas, M. F. (1995b) The evaporation of oil spills: variations with temperature and correlation with distillation data. Journal of Hazardous Materials, 42, 29–72Google Scholar
Fischer, F. and Tropsch, H. (1926) Über die direkte synthese von erdöl-kohlenwasserstoffen bei gewöhnlichem druck. Berichte der Deutschen Chemischen Gesellschaft, 59, 830–1CrossRefGoogle Scholar
Fischer, P., Aichholz, R., Boelz, S., Juza, M. and Krimmer, S. (1990) Chiral recognition in capillary gas chromatography. 3. Polysiloxane-bound permethyl-β-cyclodextrin – a chiral stationary phase with broad application in gas-chromatographic enantiomer separation. Angewandte Chemie International Edition, 29, 427CrossRefGoogle Scholar
Fisher, K., Largeau, C. and Derenne, S. (1996a) Can oil shales be used to produce fullerenes?Organic Geochemistry, 24, 715–23CrossRefGoogle Scholar
Fisher, S. J., Alexander, R., Ellis, L. and Kagi, R. I. (1996b) The analysis of dimethylphenanthrenes by direct deposition gas chromatography-Fourier transform infrared spectroscopy (GC-FTIR). Polycyclic Aromatic Compounds, 9, 257–64CrossRefGoogle Scholar
Fisher, S. J., Alexander, R., Kagi, R. I. and Oliver, G. A. (1998) Aromatic hydrocarbons as indicators of biodegradation in north Western Australian reservoirs. In: Sedimentary Basins of Western Australia: West Australian Basins Symposium (P. G. Purcell and R. R. Purcell, eds.), Petroleum Exploration Society of Australia, WA Branch, Perth, Australia, pp. 185–94
Fisher, E., Oldfield, F., Wake, R., et al. (2003) Molecular marker records of land use change. Organic Geochemistry, 34, 105–19CrossRefGoogle Scholar
Fishman, N. S., Ridgley, J. L., Hall, D. L. and Lillis, P. G. (2002) Timing of biogenic methane generation in Cretaceous rocks of the Northern Great Plains, Southeastern Alberta and Southwestern Saskatchewan: petrologic and fluid inclusion evidence. Presented at the Annual Meeting of the American Association of Petroleum Geologists, March 10–13, 2002, Houston, TX
Flanigen, E. M., Bennett, J. M., Grosee, R. W., et al. (1978) Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature, 271, 512–6CrossRefGoogle Scholar
Flannery, M. B., Stankiewicz, B. A., Hutchins, J. C., White, C. W. and Evershed, R. P. (1999) Chemical and morphological changes in human skin during preservation in waterlogged and desiccated environments. Ancient Biomolecules, 3, 37–50Google Scholar
Fogel, M. L. and Tuross, N. (2003) Extending the limits of paleodietary studies of humans with compound specific carbon isotope analysis of amino acids. Journal of Archaeological Science, 30, 535–45CrossRefGoogle Scholar
Fogel, M. L., Tuross, N., Johnson, B. J. and Miller, G. H. (1997) Biogeochemical record of ancient humans. Organic Geochemistry, 27, 275–87CrossRefGoogle Scholar
Ford, T. B. D. (1968) Field meeting to Charnwood Forest, Leicestershire. Proceedings of the Yorkshire Geological Society, 45, 67–9Google Scholar
Forsman, J. P. and Hunt, J. M. (1958) Insoluble organic matter (kerogen) in sedimentary rocks of marine origin. In: Habitat of Oil: A Symposium (L. G. Weeks, ed.) American Association of Petroleum Geologists, Tulsa, OK, pp. 747–78
Fouch, T. D., Nuccio, V. F., Anders, D. E., et al. (1994) Green River (!) petroleum system, Uinta Basin, Utah, USA. In: The Petroleum System-From Source to Trap (L. B. Magoon and W. G. Dow, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp 399–421
Fowler, M. G. and Brooks, P. W. (1990) Organic geochemistry as an aid in the interpretation of the history of oil migration into different reservoirs at the Hibernia K-18 and Ben Nevis I-45 wells, Jeanne d'Arc Basin, offshore eastern Canada. Organic Geochemistry, 16, 461–75CrossRefGoogle Scholar
Fowler, M. G. and McAlpine, K. D. (1995) The Egret Member, a prolific Kimmeridgian source rock from offshore eastern Canada. In: Petroleum Source Rocks (B. Katz, ed.), Springer-Verlag, Berlin, pp. 111–30CrossRef
Fowler, S. W., Readman, J. W., Oregioni, B., Villeneuve, J. P. and McKay, K. (1993) Petroleum hydrocarbons and trace metals in nearshore Gulf sediments and biota before and after the 1991 war: an assessment of temporal and spatial trends. Marine Pollution Bulletin, 27, 171–82CrossRefGoogle Scholar
Fowler, M. G., Brooks, P. W., Northcott, M., et al. (1994) Preliminary results from a field experiment investigating the fate of some creosote components in a natural aquifer. Organic Geochemistry, 22, 641–9CrossRefGoogle Scholar
Fox, P. A., Carter, J. F. and Farrimond, P. (1998) Analysis of bacteriohopanepolyols in sediment and bacterial extracts by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 12, 1–43.0.CO;2-U>CrossRefGoogle Scholar
Francois, R. (1987) A study of sulphur enrichment in the humic fraction of marine sediments during early diagenesis. Geochimica et Cosmochimica Acta, 51, 17–27CrossRefGoogle Scholar
Francu, J., Radke, M., Schaefer, R. G., et al. (1996) Oil-oil and oil-source rock correlations in the northern Vienna Basin and adjacent Carpathian Flysch Zone (Czech and Slovak area). In: Oil and Gas in Alpidic Thrustbelts and Basins of Central and Eastern Europe (G. Wessely and W. Liebl, eds.), Geological Society of London, London, pp. 343–53
Frank, H. A., Young, A. J., Britton, G. and Cogdell, R. J. (2000) The Photochemistry of Carotenoids, Kluwer Academic Publishers, Dordrecht
Franks, S. G., Dias, R. F., Freeman, K. H., et al. (2001) Carbon isotopic composition of organic acids in oil field waters, San Joaquin Basin, California, USA. Geochimica et Cosmochimica Acta, 65, 1301–10CrossRefGoogle Scholar
Freedman, P. A., Gillyon, E. C. P. and Jumeau, E. J. (1998) Design and application of a new instrument for GC-isotope ratio MS. American Laboratory, 20, 114–9Google Scholar
Freeman, K. H. and Colarusso, L. A. (2001) Molecular and isotopic records of C4 grassland expansion in the late Miocene. Geochimica et Cosmochimica Acta, 65, 1439–54CrossRefGoogle Scholar
Freeman, K. H., Hayes, J. M., Trendel, J. M. and Albrecht, P. (1990) Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature, 343, 254–6CrossRefGoogle ScholarPubMed
Frenkel, D. and Smit, B. (2001) Understanding Molecular Simulation, 2nd ed. Academic Press, San Diego, CA
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., et al. (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43, 1075–90CrossRefGoogle Scholar
Frolov, E. B., Smirnov, M. B., Melikhov, V. A. and Vanyukova, N. A. (1998) Olefins of radiogenic origin in crude oils. Organic Geochemistry, 29, 409–20CrossRefGoogle Scholar
Frysinger, G. S. and Gaines, R. B. (1999) Analysis of petroleum fuels by comprehensive two-dimensional gas chromatography with mass spectrometry detection (GC×GC/MS). Presented at the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, March 8, 1999, Orlando, FL
Frysinger, G. S. and Gaines, R. B. (2001) Separation and identification of petroleum biomarkers by comprehensive two-dimensional gas chromatography. Journal of Separation Science, 24, 87–963.0.CO;2-0>CrossRefGoogle Scholar
Fu, J., Sheng, G., Peng, P., et al. (1986) Peculiarities of salt lake sediments as potential source rocks in China. Organic Geochemistry, 10, 119–26Google Scholar
Fuex, A. N. (1977) The use of stable carbon isotopes in hydrocarbon exploration. Journal of Geochemical Exploration, 7, 155–88CrossRefGoogle Scholar
Futrell, J. H. (2000) Development of tandem mass spectrometry: one perspective. International Journal of Mass Spectrometry, 200, 495–508CrossRefGoogle Scholar
Fyfe, C. A., Gobbi, G. C., Klinowski, J., Thomas, J. M. and Ramdas, S. (1982) Resolving crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR. Nature, 296, 530–3CrossRefGoogle Scholar
Gaffney, J. S., Premuzic, E. T. and Manowitz, B. (1980) On the usefulness of sulfur isotope ratios in crude oil correlations. Geochimica et Cosmochimica Acta, 44, 135–9CrossRefGoogle Scholar
Gaines, R. B., Frysinger, G. S., Hendrick-Smith, M. S. and Stuart, J. D. (1999) Oil spill source identification by comprehensive two-dimensional gas chromatography. Environmental Science & Technology, 33, 2106–12CrossRefGoogle Scholar
Galimov, E. M. (1973) Carbon Isotopes in Oil – Gas Geology (translation from Russian). National Aeronautics and Space Administration, Washington, DC
Galimov, E. M., Lopatin, N. V. and Espitalié, J. (1988) Oil-source properties of the Bazhenovskaya suite at Salym area, Western Siberia. Geokhimiya, 4, 467–78Google Scholar
Gallegos, E. J. (1976) Analysis of organic mixtures using metastable transition spectra. Analytical Chemistry, 48, 1348–51CrossRefGoogle Scholar
Gallegos, E. J. and Moldowan, J. M. (1992) The effect of hold time on GC resolution and the effect of collision gas on mass spectra in geochemical “biomarker” research. In: Biological Markers in Sediments and Petroleum (J. M. Moldowan, P. Albrecht and R. P. Philp, eds.), Prentice-Hall, Englewood Cliffs, NJ, pp. 156–81
Garcia-Asua, G., Lang, H. P., Cogdell, R. J. and Hunter, C. N. (1998) Carotenoid diversity: a modular role for the phytoene desaturase step. Trends in Plant Science, 3, 445–9CrossRefGoogle Scholar
Garnier, N. and Regert, M. (2002) Development of a new methodology to detect polyphenols, biomarkers of archaeological wine and grape seeds. Presented at the 33rd International Symposium on Archaeometry, April 22–25, 2002, Amsterdam
Garnier, N., Cren-Olivé, C., Rolando, C. and Regert, M. (2002) Characterization of archaeological beeswax by electron ionization and electrospray ionization mass spectrometry. Analytical Chemistry, 74, 4868–77CrossRefGoogle ScholarPubMed
Garrett, R. M., Pickering, I. J., Haith, C. E. and Prince, R. C. (1998) Photooxidation of crude oils. Environmental Science & Technology, 32, 3719–23CrossRefGoogle Scholar
Gas Processors Association (1995) Tentative Method for the Extended Analysis of Hydrocarbon Liquid Mixtures Containing Nitrogen and Carbon Dioxide by Temperature Programmed Gas Chromatography. GPA Standard 2186–95
Geigl, E. M. (2002) DNA preservation in 500,000 year-old fossils: hibernation in molecular niches? Presented at the 33rd International Symposium on Archaeometry, April 22–25, 2002, Amsterdam
Gelin, F., Leeuw, J. W., Sinninghe Damsté, J. S., et al. (1994) The similarity of chemical structures of soluble aliphatic polyaldehyde and insoluble algaenan in the green microalga Botryococcus braunii race A as revealed by analytical pyrolysis. Organic Geochemistry, 21, 423–35CrossRefGoogle Scholar
Gelpi, V., Schneider, H., Mann, J. and Oró, J. (1970) Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry, 9, 603–12CrossRefGoogle Scholar
George, S. C., Krieger, F. W., Eadington, P. J., et al. (1997) Geochemical comparison of oil-bearing fluid inclusions and produced oil from the Toro sandstone, Papua New Guinea. Organic Geochemistry, 26, 155–73CrossRefGoogle Scholar
George, S. C., Eadington, P. J., Lisk, M. and Quezada, R. A. (1998a) Geochemical comparison of oil trapped in fluid inclusions and reservoired oil in Blackback Oilfield, Gippsland Basin, Australia. PESA (Petroleum Exploration Society of Australia) Journal, 26, 64–81Google Scholar
George, S. C., Lisk, M., Summons, R. E. and Quezada, R. A. (1998b) Constraining the oil charge history of the South Pepper oilfield from the analysis of oil-bearing fluid inclusions. Organic Geochemistry, 29, 631–48CrossRefGoogle Scholar
George, S. C., Ruble, T. E., Dutkiewicz, A. and Eadington, P. J. (2001) Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours. Applied Geochemistry, 16, 451–73CrossRefGoogle Scholar
GESAMP (2001) A Sea of Troubles. Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection and Advisory Committee on Protection of the Sea, United Nations Environment Program, Report 70
Gest, H. (1993) Photosynthetic and quasi-photosynthetic bacteria. FEMS Microbiology Letters, 112, 1–6CrossRefGoogle Scholar
Giardini, A. A. and Salotti, C. A. (1969) Kinetics and relations in the calcite-hydrogen reaction and relations in the dolomite-hydrogen and siderite-hydrogen systems. American Mineralogist, 54, 1151–72Google Scholar
Gibbison, R., Peakman, T. M. and Maxwell, J. R. (1995) Novel porphyrins as molecular fossils for anoxygenic photosynthesis. Tetrahedron Letters, 36, 9057–60CrossRefGoogle Scholar
Gogou, A., Stratigakis, N., Kanakidou, M. and Stephanou, E. G. (1996) Organic aerosols in Eastern Mediterranean: components source reconciliation by using molecular markers and atmospheric back trajectories. Organic Geochemistry, 25, 79–96CrossRefGoogle Scholar
Gold, T. (1985) The origin of natural gas and petroleum and the prognosis for future supplies. Annual Review of Energy, 10, 53–77CrossRefGoogle Scholar
Gold, T. (1999) The Deep Hot Biosphere. Copernicus, New York
Gold, T. and Soter, S. (1980) The deep-earth gas hypothesis. Scientific American, 242, 154–62CrossRefGoogle Scholar
Gold, T. and Soter, S. (1982) Abiogenic methane and the origin of petroleum. Energy Exploration and Exploitation, 1, 89–104CrossRefGoogle Scholar
Goldhaber, M. B. and Orr, W. L. (1995) Kinetic controls on thermochemical sulfate reduction as a source of sedimentary H2S. In: Geochemical Transformations of Sedimentary Sulfur (M. A. Vairavamurthy and M. A. A. Schoonen, eds.), American Chemical Society, Washington, DC, pp. 412–25CrossRef
Goldstein, T. P. and Aizenshtat, Z. (1994) Thermochemical sulfate reduction. A review. Journal of Thermal Analysis, 42, 241–90CrossRefGoogle Scholar
Goldstein, R. H. and Reynolds, T. J. (1994) Systematics of Fluid Inclusions in Diagenetic Minerals. Society for Sedimentary Geology, Tulsa, OK
Goodwin, N. S., Park, P. J. D., and Rawlinson, T. (1983) Crude oil biodegradation. In: Advances in Organic Geochemistry 1981 (M. Bjorøy, C. Albrecht, C. Cornford, et al., eds.), John Wiley & Sons, New York, pp. 650–8
Goossens, H., Leeuw, J. W., Schenck, P. A. and Brassell, S. C. (1984) Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature, 312, 440–2CrossRefGoogle Scholar
Goth, K., Leeuw, J. W., Püttmann, W. and Tegelaar, E. W. (1988) Origin of Messel oil shale kerogen. Nature, 336, 759–61CrossRefGoogle Scholar
Gou, X., Fowler, M. G., Comet, P. A., et al. (1987) Investigation of three natural bitumens from central England by hydrous pyrolysis and gas chromatography-mass spectrometry. Chemical Geology, 64, 181–95Google Scholar
Gough, M. A. and Rowland, S. J. (1990) Characterization of unresolved complex mixtures of hydrocarbons in petroleum. Nature, 344, 648–50CrossRefGoogle Scholar
Gransch, J. A. and Posthuma, J. (1974) On the origin of sulfur in crudes. In: Advances of Organic Geochemistry 1973 (B. Tissot and F. Bienner, eds.), Editions Technip, Paris, pp. 727–39
Grantham, P. J., Posthuma, J. and DeGroot, K. (1980) Variation and significance of the C27 and C28 triterpane content of a North Sea core and various North Sea crude oils. In: Advances in Organic Geochemistry 1979 (A. G. Douglas and J. R. Maxwell, eds.), Pergamon Press, Oxford, UK, pp. 29–38CrossRef
Grice, K. (2001) δ13C as an indicator of paleoenvironments: a molecular approach. In: Application of Stable Isotope Techniques to Study Biological Processes and Functioning Ecosystems (M. Unkovich, J. Pate, A. McNeill and J. Gibbs, eds.), Kluwer Scientific, Dordrecht, The Netherlands, pp. 247–81
Grice, K., Schaeffer, P., Schwark, L. and Maxwell, J. R. (1997) Changes in palaeoenvironmental conditions during deposition of the Permian Kupferschiefer (Lower Rhine Basin, northwest Germany) inferred from molecular and isotopic compositions of biomarker components. Organic Geochemistry, 26, 677–90CrossRefGoogle Scholar
Grice, K., Schouten, S., Peters, K. E. and Sinninghe Damsté, J. S. (1998a) Molecular isotopic characterisation of hydrocarbon biomarkers in Palaeocene-Eocene evaporitic, lacustrine source rocks from the Jianghan Basin, China. Organic Geochemistry, 29, 1745–64CrossRefGoogle Scholar
Grice, K., Alexander, R. and Kagi, R. I. (2000) Diamondoid hydrocarbon ratios as indicators of biodegradation levels in Australian crude oils. Organic Geochemistry, 31, 67–73CrossRefGoogle Scholar
Grieve R. A. F. (1988) The formation of large impact structures and constraints on the nature of Siljan. In: Deep Drilling in Crystalline Bedrock (A. Boden and K. G. Eriksson, eds. Vol. 1, Springer-Verlag, New York, pp. 328–48CrossRef
Grimalt, J. O., Torras, E. and Albaigés, J. (1988) Bacterial reworking of sedimentary lipids during sample storage. Organic Geochemistry, 13, 741–6CrossRefGoogle Scholar
Grimalt, J. O., Fernandez, P., Bayona, J. M. and Albaigés, J. (1990) Assessment of faecal sterols and ketones as indicators of urban sewage inputs to coastal waters. Environmental Science & Technology, 24, 357–63CrossRefGoogle Scholar
Grob, K. (2001) Split and Splitless Injection for Quantitative Gas Chromatography. Wiley-VCH, New York
Guadalupe, M. F. M., Castello branco, V. A. and Schmid, J. C. (1991) Isolation of sulfides in oils. Organic Geochemistry, 17, 355–61CrossRefGoogle Scholar
Guilhaumou, N., Ellouz, N., Jaswal, T. M. and Mougin, P. (2001) Genesis and evolution of hydrocarbons entrapped in the fluorite deposit of Koh-i-Maran, (North Kirthar Range, Pakistan). Marine and Petroleum Geology, 17, 1151–64CrossRefGoogle Scholar
Gülaçar, F. O., Susini, A. and Koln, M. (1990) Preservation of post-mortem transformation of lipids in samples from a 4000-year-old Nubian mummy. Journal of Archaeological Science, 17, 651–9Google Scholar
Guthrie, J. M., Trindade, L. A. F., Eckardt, C. B. and Takaki, T. (1996) Molecular and carbon isotopic analysis of specific biological markers: evidence for distinguishing between marine and lacustrine depositional environments in sedimentary basins of Brazil. Presented at the Annual Meeting of the American Association of Petroleum Geologists, 1996, San Diego, CA
Guthrie, J. M., Walters, C. C. and Peters, K. E. (1998) Comparison of micro-techniques used for analyzing oils in sidewall cores to model viscosity, API gravity and sulfur content. American Association of Petroleum Geologists Bulletin, 82, 1883–4Google Scholar
Haber, C. L., Allen, L. N., Zhao, S. and Hanson, R. S. (1983) Methylotrophic bacteria: biochemical diversity and genetics. Science, 221, 1147–53CrossRefGoogle ScholarPubMed
Haddon, W. F. (1979) Computerized mass spectrometry linked scan system for recording metastable ions. Analytical Chemistry, 51, 983–8CrossRefGoogle Scholar
Hagelberg, E., Kayser, M., Nagy, M., et al. (1999) Molecular genetic evidence for the human settlement of the Pacific: analysis of mitochondrial DNA, Y chromosome and HLA markers. Philosophical Transactions of the Royal Society London, Biological Sciences, 354, 141–52CrossRefGoogle ScholarPubMed
Hairfield, H. H. and Hairfield, E. M. (1990) Identification of a late Bronze Age resin. Analytical Chemistry, 62, 41–5CrossRefGoogle Scholar
Halbouty, M. T. (1972) Rationale for deliberate pursuit of stratigraphic, unconformity, and paleogeomorphic traps. American Association of Petroleum Geologists Bulletin, 56, 537–41Google Scholar
Hall, D. L., Bigge, M. A. and Jarvie, D. M. (2002a) Fluid inclusion evidence for alteration of crude oils. 2002 American Association of Petroleum Geologists Annual Convention, March 10–13, 2002, Houston, Texas, Abstract, p. A70
Hall, D. L., Sterner, S. M., Shentwu, W. and Bigge, M. A. (2002b) Applying fluid inclusions to petroleum exploration and production. American Association of Petroleum Geologists, Search and Discovery, article #40042, www.searchanddiscovery.net/documents/donhall/index.htm
Halpern, H. I. (1995) Development and applications of light-hydrocarbon-based star diagrams. American Association of Petroleum Geologists Bulletin, 79, 801–15Google Scholar
Hanin, S., Adam, P., Kowalewski, I., et al. (2002) Bridgehead alkylated 2-thiaadamantanes: novel markers for sulfurisation processes occurring under high thermal stress in deep petroleum reservoirs. Chemical Communications – Royal Society of Chemistry, 16, 1750–1CrossRefGoogle Scholar
Hare, P. E., Fogel, M. L., Stafford, T. W., Mitchell, A. and Hoering, T. C. (1991) The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. Journal of Archaeological Science, 18, 277–92CrossRefGoogle Scholar
Harrell, J. A. and Lewan, M. D. (2002) Sources of mummy bitumen in ancient Egypt and Palestine. Archaeometry, 44, 285–93CrossRefGoogle Scholar
Harris, N. B., Freeman, K. H., Pancost, R. D., et al. (1998) The origin of lacustrine petroleum source rocks, Congo Basin, West Africa: preliminary results of a multidisciplinary study. American Association of Petroleum Geologists Bulletin, 82, 1922–3Google Scholar
Harrison, O. R. (1991) An overview of the Exxon Valdez oil spill. In: Proceedings of the 1991 International Oil Spill Conference (Prevention, Behavior, Control, Cleanup), March 4–7, 1991, San Diego, California, American Petroleum Institute, Washington, DC, pp. 313–9
Harvey, H. R. and McManus, G. B. (1991) Marine ciliates as a widespread source of tetrahymanol and hopan-3β-ol in sediments. Geochimica et Cosmochimica Acta, 55, 3387–90CrossRefGoogle Scholar
Haskell, N., Nissen, S., Hughes, M., et al. (1999) Delineation of geologic drilling hazards using 3-D seismic attributes. The Leading Edge, 18, 373–4, 376, 378, 381–2CrossRefGoogle Scholar
Hatch, J. R., Jacobson, J. R., Witzke, B. J., et al. (1987) Possible Middle Ordovician organic carbon isotope excursion: evidence from Ordovician oils and hydrocarbon source rocks, Mid-Continent, and East-Central United States. American Association of Petroleum Geologists Bulletin, 71, 1342–54Google Scholar
Hatcher, P. G., Keister, L. E. and McGillivary, P. A. (1977) Steroids as sewage specific indicators in New York bight sediments. Bulletin of Environmental Contamination and Toxicology, 17, 491–8CrossRefGoogle ScholarPubMed
Hawes, I. and Schwarz, A.-M. (1995) Photosynthesis in benthic cyanobacterial mats from Lake Hoare, Antarctica. Antarctic Journal of the United States 30, 296–7Google Scholar
Hayek, E. W. H., Krenmayer, P., Lonhinger, H., et al. (1990) Identification of archaeological and recent wood tar pitches using gas chromatography/mass spectrometry and pattern recognition. Analytical Chemistry, 62, 2038–43CrossRefGoogle Scholar
Hayek, E. W. H., Krenmayer, P., Lonhinger, H., et al. (1991) Gas chromatography/mass spectrometry and chemometrics in archaeometry. Investigation of glue on Copper Age arrowheads. Fresenius' Journal of Analytical Chemistry, 340, 153–6CrossRefGoogle Scholar
Hayes J. M., Kaplan, I. R. and Wedeking, K. M. (1983) Precambrian organic geochemistry, preservation of the record. In: Earth's Earliest Biosphere, Its Origin and Evolution (J. W. Schopf, ed.), Princeton University Press, Princeton, NJ, pp. 93–134
Hayes, J. M., Takigiku, R., Ocampo, R., Callot, H. J. and Albrecht, P. (1987) Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale. Nature, 329, 48–51CrossRefGoogle ScholarPubMed
Hayes, J. M., Freeman, K. H., Popp, B. N. and Hoham, C. H. (1990) Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. Organic Geochemistry, 16, 1115–28CrossRefGoogle ScholarPubMed
Head, I. M. and Swannell, R. P. J. (1999) Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Current Opinion in Biotechnology, 10, 234–9CrossRefGoogle ScholarPubMed
Hedberg, H. D. (1988) The 1740 Description by Daniel Tilas of Stratigraphy and Petroleum Occurrence at Osmundsberg in the Siljan Region of Central Sweden. American Association of Petroleum Geologists, Tulsa, OK
Hedges, J. I. and Keil, R. G. (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry, 49, 81–115CrossRefGoogle Scholar
Helgesen, H. C., Knox, A. M., Owens, E. E. and Shock, E. L. (1993) Petroleum, oil field waters, and authigenic mineral assemblages: are they in metastable equilibrium in hydrocarbon reservoirs?Geochimica et Cosmochimica Acta, 57, 3295–339CrossRefGoogle Scholar
Henley, D. and Hoffmann, C. (1987) Complex hydrocarbons in fluid inclusion in gold and tin deposits; a new frontier for mineral exploration. BMR Research Newsletter, 6, 1–2Google Scholar
Hermans, M. A. F., Neuss, B. and Sahm, H. (1991) Content and composition of hopanoids in Zymomonas mobilis under various growth conditions. Journal of Bacteriology, 173, 5592–5CrossRefGoogle ScholarPubMed
Hernes, P. J. and Hedges, J. I. (2000) Determination of condensed tannin monomers in environmental samples by capillary gas chromatography of acid depolymerization extracts. Analytical Chemistry, 72, 5115–24CrossRefGoogle ScholarPubMed
Heron, C., Evershed, R. P., Chapman, B. and Pollard, A.-M. (1991) Glue, disinfectant and ‘chewing gum’ in prehistory. In: Archaeological Sciences 1989: Proceedings of a Conference on the Application of Scientific Techniques to Archaeology (P. Budd, B. Chapman, C. Jackson, R. Janaway and B. Ottaway, eds.), Oxbow, Oxford, UK, pp. 325–31
Heron, C., Nemcek, N., Bonfield, K. M., Dixon, D. and Ottaway, B. S. (1994) The chemistry of Neolithic beeswax. Naturwissenschaften, 81, 266–9CrossRefGoogle Scholar
Herrmann, D., Bisseret, P., Connan, J. and Rohmer, M. (1996) A non-extractable triterpanoid of the hopane series in Acetobacter xylinum. FEMS Microbiology Letters, 135, 323–6CrossRefGoogle Scholar
Hills, I. R. and Whitehead, E. V. (1966) Triterpanes in optically active petroleum distillates. Nature, 209, 977–9CrossRefGoogle Scholar
Hills, I. R., Whitehead, E. V., Anders, D. E., Cummins, J. J. and Robinson, W. E. (1966) An optically active triterpane, gammacerane in Green River, Colorado, oil shale bitumen. Journal of the Chemical Society, Chemical Communications, 20, 752–4Google Scholar
Hinrichs, K.-U., Haver, J. M., Sylva, S. P., Brewer, P. G. and Delong, E. F. (1999) Methane-consuming archaebacteria in marine sediments. Nature, 398, 802–5CrossRefGoogle ScholarPubMed
Ho, T. Y., Rogers, M. A., Drushel, H. V. and Kroons, C. B. (1974) Evolution of sulfur compounds in crude oils. American Association of Petroleum Geologists Bulletin, 58, 2338–48Google Scholar
Hoefs, J. (1997) Stable Isotope Geochemistry. Springer-Verlag, New York
Hoering, T. C. and Freeman, D. H. (1984) Shape-selective sorption of monomethylalkanes by silicalite, a zeolite form of silica. Journal of Chromatography, 316, 333–41CrossRefGoogle Scholar
Hoffmann, C. F., Mackenzie, A. S., Lewis, C. A., et al. (1984) A biological marker study of coals, shales, and oils from the Mahakam Delta, Kalimantan, Indonesia. Chemical Geology, 42, 1–23CrossRefGoogle Scholar
Holba, A. G., Dzou, L. I. P., Masterson, W. D., (1998) Application of 24-norcholestanes for constraining source age of petroleum. Organic Geochemistry, 29, 1269–83CrossRefGoogle Scholar
Holba A. G., Ellis, L., Dzou, I. L., et al. (2001) Extended tricyclic terpanes as age discriminators between Triassic, Early Jurassic and Middle-Late Jurassic oils. Presented at the 20th International Meeting on Organic Geochemistry, 10–14 September, 2001, Nancy, France
Hollander, D. J. and Mckenzie, J. A. (1991) CO2 control on carbon-isotope fractionation during aqueous photosynthesis: a paleo-pCO2 barometer. Geology, 19, 929–322.3.CO;2>CrossRefGoogle Scholar
Holloway, J. R. (1984) Graphite-CH4-H2O-CO2 equilibria at low-grade metamorphic conditions. Geology, 12, 455–82.0.CO;2>CrossRefGoogle Scholar
Holm, N. G. and Charlou, J. L. (2001) Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge. Earth and Planetary Science Letters, 191, 1–8CrossRefGoogle Scholar
Honghan, C., Sitian, L., Yongchuan, S., and Qiming, Z. (1998) Two petroleum systems charge the YA13-1 gas field in Yinggehai and Qiongdongnan basins, South China Sea. American Association of Petroleum Geologists Bulletin, 82, 757–72Google Scholar
Hoots, H. W., Blount, A. L. and Jones, P. H. (1935) Marine oil shale, source of oil in Playa del Rey Field, California. American Association of Petroleum Geologists Bulletin, 19, 172–205Google Scholar
Horita, J. and Berndt, M. E. (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science, 285, 1055–7CrossRefGoogle ScholarPubMed
Horsfield, B., Schenk, H. J., Mills, N. and Welte, D. H. (1992) An investigation of the in-reservoir conversion of oil to gas: compositional and kinetic findings from closed-system programmed-temperature pyrolysisOrganic Geochemistry, 19, 191–204CrossRefGoogle Scholar
Horstad, I., Larter, S. R., Dypvik, H., et al. (1990) Degradation and maturity controls on oil Field petroleum column heterogeneity in the Gullfaks field, Norwegian North Sea. Organic Geochemistry, 16, 497–510CrossRefGoogle Scholar
Hostettler, F. D., Rosenbauer, R. J. and Kvenvolden, K. A. (1999) PAH refractory index as a source discriminant of hydrocarbon input from crude oil and coal in Prince William Sound, Alaska. Organic Geochemistry, 30, 873–9CrossRefGoogle Scholar
Hostettler, F. D., Rosenbauer, R. J. and Kvenvolden, K. A. (2000) Response to comment by Bence et al. on “PAH refractory index as a source discriminant of hydrocarbon input from crude oil and coal in Prince William Sound, Alaska.”Organic Geochemistry, 31, 939–943CrossRefGoogle Scholar
Hoyle, F. (1955) Frontiers of Astronomy. Heinemann, London
Hu, G., Ouyang, Z., Wang, Z. and Wen, Q. (1998) Carbon isotopic fractionation in the process of Fischer–Tropsch reaction in primitive solar nebula. Scientia Sinica, 41, 202–7Google Scholar
Huang, W.-Y. and Meinschein, W. G. (1978) Sterols in sediments from Baffin Bay, Texas. Geochimica et Cosmochimica Acta, 42, 1391–6CrossRefGoogle Scholar
Huang, W.-Y. and Meinshein, W. G. (1979) Sterols as ecological indicators. Geochimica et Cosmochimica Acta, 43, 739–45CrossRefGoogle Scholar
Huc, A. Y. (1988a) Aspects of depositional processes of organic matter in sedimentary basins. Organic Geochemistry, 13, 263–72CrossRefGoogle Scholar
Huc, A. Y. (1988b) Sedimentology of organic matter. In: Humic Substances and Their Role in the Environment (F. H. Frimmel and R. F. Christman, eds.), John Wiley & Sons, New York, pp. 215–43
Huckins, J. N., Tubergen, M. W. and Manuweera, G. K. (1990) Semipermeable membrane devices containing model lipid: a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere, 20, 533–52CrossRefGoogle Scholar
Hughes, W. B. (1984) Use of thiophenic organosulfur compounds in characterizing crude oils derived from carbonate versus siliciclastic sources. In: Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks (J. G. Palacas, ed.), American Association of Petroleum Geologists, Tulsa, OK, pp. 181–196
Hughes, W. B., Holba, A. G., Mueller, D. E. and Richardson, J. S. (1985) Geochemistry of greater Ekofisk crude oils. In: Geochemistry in Exploration of the Norwegian Shelf (B. M. Thomas, ed.), Graham and Trotman, London, pp. 75–92CrossRef
Hughey, C. A., Rodgers, R. P., Marshall, A. G., Qian, K. and Robbins, W. K. (2002a) Identification of acidic NSO compounds in crude oils of different geochemical origins by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Organic Geochemistry, 33, 743–59CrossRefGoogle Scholar
Hughey, C. A., Rodgers, R. P. and Marshall, A .G. (2002b) Resolution of 11 000 compositionally distinct components in a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil. Analytical Chemistry, 36, 4145–9CrossRefGoogle Scholar
Hulen, J. B. and Collister, J. W. (1999) The oil-bearing, Carlin-type gold deposits of Yankee Basin, Alligator Ridge district, Nevada. Economic Geology and the Bulletin of the Society of Economic Geologists, 94, 1029–49CrossRefGoogle Scholar
Hunkeler, D., Andersen, N., Aravena, R., Bernasconi, S. M. and Butler, B. J. (2001) Hydrogen and carbon isotope fractionation during aerobic biodegradation of benzene. Environmental Science & Technology, 35, 3462–7CrossRefGoogle ScholarPubMed
Hunt T. S. (1863) Report on the Geology of Canada. Canadian Geological Survey report: progress to 1863
Hunt, J. M. (1984) Generation and migration of light hydrocarbons. Science, 1226, 1265–70CrossRefGoogle Scholar
Hunt, J. M. (1996) Petroleum Geochemistry and Geology. W. H. Freeman, New York
Hunt, J. M., Miller, R. J. and Whelan, J. K. (1980a) Formation of C4–C7 hydrocarbons from bacterial degradation of naturally occurring terpenoids. Nature, 288, 577–8CrossRefGoogle Scholar
Hunt, J. M., Whelan, J. K. and Huc, A.-Y. (1980b) Genesis of petroleum hydrocarbons in marine sediments. Science, 209, 403–4CrossRefGoogle Scholar
Huq, N. L., Tseng, A. and Chapman, G. E., (1990) Partial amino acid sequence of osteocalcin from an extinct species of ratite bird. Biochemistry International, 21, 491–6Google ScholarPubMed
Hurst, R. W. (2002) Lead isotopes as age-sensitive genetic markers in hydrocarbons. 3. Leaded gasoline, 1923–1990 (ALAS Model). Environmental Geosciences, 9, 43–50CrossRefGoogle Scholar
Hurst, R. W., Davis, T. E. and Chinn, B. D. (1996) The lead fingerprints of gasoline contamination. Environmental Science & Technology, 30, 304–7ACrossRefGoogle ScholarPubMed
Hurst, R. W., Barron, D., Washington, M. and Bowring, S. A. (2001) Lead isotopes as age-sensitive, genetic markers in hydrocarbons. 1. Copartitioning of lead with MTBE into water and implications for MTBE-source correlations. Environmental Geosciences, 8, 242–50CrossRefGoogle Scholar
Hurst, W. J., Tarka, S. M. Jr, Powis, T. G., Valdez, F. Jr and Hester, T. R. (2002) Cacao usage by the earliest Maya civilization. Nature, 418, 289–90CrossRefGoogle ScholarPubMed
Hutton, A. C. (1987) Petrographic classification of oil shales. International Journal of Coal Geology, 8, 203–31CrossRefGoogle Scholar
Hutton, A. C. and Cook, A. C. (1980) Influence of alginite on the reflectance of vitrinite from Joadja, NSW, and some other coals and oils shales containing alginite. Fuel, 59, 711–4CrossRefGoogle Scholar
Hutton, A. C., Kantsler, A. J., Cook, A. C. and Mckirdy, D. M. (1980) Organic matter in oil shales. Journal of the Australian Petroleum Exploration Association, 20, 44–67Google Scholar
Hwang, R. J. (1990) Biomarker analysis using GC-MSD. Journal of Chromatographic Science, 28, 109–13CrossRefGoogle Scholar
Hwang R J., Sundararaman, P., Teerman, S. C. and Schoell, M. (1989) Effect of preservation on geochemical properties of organic matter in immature lacustrine sediments. Presented at the 14th International Meeting on Organic Geochemistry, September 18–22, 1989, Paris, France
Ibach, L. E. J. (1982) Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. American Association of Petroleum Geologists Bulletin, 66, 170–88Google Scholar
IHS (Information Handling Services)/Petroconsultants S. A. (1996–99) Petroleum exploration and production database. Available from Petroconsultants, Inc., PO Box 740619, Houston, TX 77274–0619, USA
Isaacs, C. M. (2001) Statistical evaluation of interlaboratory data from the cooperative Monterey organic geochemistry study. In: The Monterey Formation: From Rocks to Molecules (C. M. Isaacs and J. Rullkötter, eds.), Columbia University Press, New York, pp. 461–524
Isaksen, G. H. and Bohacs, K. M. (1995) Geological controls on source rock geochemistry through relative sea level; Triassic, Barents Sea. In: Petroleum Source Rocks (B. J. Katz, ed.), Springer-Verlag, New York, pp. 25–50CrossRef
Isaksen, G. H., Pottorf, R. J. and Jenssen, A. I. (1998) Correlation of fluid inclusions and reservoired oils to infer trap fill history in the South Viking Graben, North Sea. Petroleum Geoscience, 4, 41–55CrossRefGoogle Scholar
Isaksen, G. H., Aliyev, A. A., Mamedova, S. A., et al. (1999) Geochemistry of organic-rich rocks from mud-volcano ejecta in Azerbaijan – a novel approach for regional assessment of source rock quality. Presented at the Geodynamics of the Black Sea–Caspian Segment of the Alpine Folded Belt International Conference, Baku, Azerbaijan, June 9–10, 1999
Isaksson, S. (1998) A kitchen entrance to the aristocracy – analysis of lipid biomarkers in cultural layers. Journal of Nordic Archaeological Science, 10–11, 289–93Google Scholar
Itoh, Y. H., Sugai, A., Uda, I. and Itoh, T. (2001) The evolution of lipids. Advances in Space Research: the Official Journal of the Committee on Space Research (COSPAR), 28, 719–24CrossRefGoogle ScholarPubMed
ITOPF (2001) ITOPF Handbook 2001/2002. International Tanker Owners Pollution Federation Ltd, London
Jacob, S. M., Quann, R. J., Sanchez, E. and Wells, M. E. (1998) Composition modeling reduces crude-analysis time, predicts yield. Oil and Gas Journal, 96, 51–6Google Scholar
Jacobson, S. R., Hatch, J. R., Teerman, S. C. and Askin, R. A. (1988) Middle Ordovician organic matter assemblages and their effect on Ordovician-derived oils. American Association of Petroleum Geologists Bulletin, 72, 1090–100Google Scholar
Jaffé, R., Albrecht, P. and Oudin, J. L. (1988a) Carboxylic acids as indicators of oil migration. I. Occurrence and geochemical significance of C-22 diastereoisomers of the 17β(H), 21β(H) C30 hopanoic acid in geological samples. Organic Geochemistry, 13, 483–8CrossRefGoogle Scholar
Jaffé, R., Albrecht, P. and Oudin, J. L. (1988b) Carboxylic acids as indicators of oil migration. II. Case of the Mahakam Delta, Indonesia. Geochimica et Cosmochimica Acta, 52, 2599–607CrossRefGoogle Scholar
James, A. T. (1983) Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components. American Association of Petroleum Geologists Bulletin, 67, 1176–91Google Scholar
Jarvie, D. M. (1991) Total organic carbon (TOC) analysis. In: Source and Migration Processes and Evaluation Techniques (R. K. Merril, ed.), American Association of Petroleum Geologists, Tulsa, OK, pp. 113–8
Jarvie, D. M. (2001) Williston Basin petroleum systems: inferences from oil geochemistry and geology. Mountain Geologist, 38, 19–42Google Scholar
Jarvie, D. M. and Walker, P. R. (1997) Correlation of oils and source rocks in the Williston Basin using classical correlation tools and thermal extraction very high resolution C7 gas chromatography. In: Abstracts from the 18th International Meeting on Organic Geochemistry, September 22–26, 1997, Maastricht, the Netherlands (B. Horsfield, ed.). Forschungszentrum Jülich, Germany, pp. 51–2
Jarvie, D. M. and Lundell, L. L. (2001) Kerogen type and thermal transformation of organic matter in the Miocene Monterey Formation. In: The Monterey Formation: From Rocks to Molecules (C. M. Isaacs and J. Rullkötter, eds.), Columbia University Press, New York, pp. 268–95
Jarvie, D. M., Morelos, A. and Zhiwen, H. (2001a) Detection of pay zones and pay quality, Gulf of Mexico: application of geochemical techniques. Gulf Coast Association of Geological Societies Transactions, 51, 151–60Google Scholar
Jarvie, D. M., Claxton, B. L., Henk, F. and Breyer, J. T. (2001b) Oil and shale gas from the Barnett Shale, Fort Worth Basin, Texas.American Association of Petroleum Geologists Bulletin, 85, A100Google Scholar
Jasper, J. P. (1999) The increasing use of stable isotopes in the pharmaceutical industry. Pharmaceutical Technology, 23, 106–14Google Scholar
Jasper, J. P. (2001) Quantitative estimates of precision for molecular isotopic measurements. Rapid Communications in Mass Spectrometry, 15, 1554–7CrossRefGoogle ScholarPubMed
Jasra, R. V. and Bhat, S. G. (1987) Sorption kinetics of higher n-paraffins on zeolite molecular sieve 5A. Indian Engineering and Chemical Research, 26, 2544–6CrossRefGoogle Scholar
Jeffrey, A. W. A. and Kaplan, I. R. (1989) Drilling fluid additives and artifact hydrocarbon shows: examples from the Gravberg-1 well, Siljan Ring, Sweden. Scientific Drilling, 1, 63–70Google Scholar
Jeffrey, A. W. A., Alimi, H. M. and Jenden, P. D. (1991) Geochemistry of Los Angeles Basin oil and gas systems. In: Active Margin Basins (K. T. Biddle, ed.), American Association of Petroleum Geologists, Tulsa, OK, pp. 197–219
Jenden, P. D., Hilton, D. R., Kaplan, I. R. and Craig, H. (1993a) Abiogenic Hydrocarbons and Mantle Helium in Oil and Gas Fields. US Geological Survey Professional Paper 1570
Jenden, P. D., Drozan, D. J. and Kaplan, I. R. (1993b) Mixing of thermogenic natural gases in northern Appalachian Basin. American Association of Petroleum Geologists Bulletin, 77, 980–98Google Scholar
Jetten, M. S. M., Wagner, M., Fuerst, J. A., et al. (2001) Microbiology and application of the anaerobic ammonium oxidation (“anammox”) process. Current Opinion in Biotechnology, 12, 283–8CrossRefGoogle ScholarPubMed
Johathan, D., l'Hote, G. and du Rochet, J. (1975) Analyse géochimiques des hydrocarbures léger per thermovaporisation. Review Institut Français du Petrolé, 30, 65–88CrossRefGoogle Scholar
Jomaa, H., Wiesner, J., Sanderbrand, S., et al. (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science, 285, 1573–6CrossRefGoogle ScholarPubMed
Jones, R. W. (1987) Organic facies. In: Advances in Petroleum Geochemistry (J. Brooks and D. Welte, eds.), Academic Press, New York, pp. 1–90
Jones, R. W. and Edison, T. A. (1978) Microscopic observations of kerogen related to geochemical parameters with emphasis on thermal maturation. In: Low Temperature Metamorphism of Kerogen and Clay Minerals (D. F. Oltz, ed.), Society of Economic Paleontologists and Mineralogists, Los Angeles, pp. 1–12
Jones, D. M. and Macleod, G. (2000) Molecular analysis of petroleum in fluid inclusions: a practical methodology. Organic Geochemistry, 31, 1163–73CrossRefGoogle Scholar
Jones, D. M., Douglas, A. G., Parkes, R. J., et al. (1983) The recognition of biodegraded petroleum-derived aromatic hydrocarbons in recent marine sediments. Marine Pollution Bulletin, 14, 103–8CrossRefGoogle Scholar
Jones, D. M., Macleod, G., Larter, S. R., et al. (1996) Characterization of the molecular composition of included petroleum. In: PACROFI VI: Sixth Biennial Pan-American Conference on Research on Fluid Inclusions: Program and Abstracts. (P. E. Brown and St. G. Hagemann, eds.), University of Wisconsin Press, Madison, WI pp. 64–5
Jones, V., Ambrose, S. and Evershed, R. P. (2001) Tracing the routing and synthesis of amino acids using gas chromatography-combustion-isotope ratio mass spectrometry in palaeodietary reconstruction. Presented at the 221st National Meeting of the American Chemical Society, San Diego, CA, April 1–5, 2001
Juvancz, Z., Alexander, B. and Bzejtll, S. (1987) Permethylated β-cyclodextrin as stationary phase in capillary gas chromatography. Journal of High Resolution Chromatography, 10, 105–7CrossRefGoogle Scholar
Kamioka, H., Shibata, K., Kajizuka, I. and Ohta, T. (1996) Rare-earth element patterns and carbon isotopic composition of carbonados: implications for their crustal origin. Geochemistry Journal, 30, 189–94Google Scholar
Kannenberg, E. L. and Poralla, K. (1999) Hopanoid biosynthesis and function in bacteria. Naturwissenschaften, 86, 168–76CrossRefGoogle Scholar
Kaplan, I. R. (1975) Stable isotopes as a guide to biogeochemical processes. Proceedings of the Royal Society of London, 189, 183–211CrossRefGoogle Scholar
Kaplan, I. R. (1983) Stable isotopes of sulfur, nitrogen, and deuterium in recent marine environments. In: Stable Isotopes in Sedimentary Geology, Society of Economic Paleontologists and Mineralogists (SEPM) Short Course 10 (M. A. Arthur, ed.), Society of Economic Paleontologists and Mineralogists, Tulsa, OK pp. 1–108
Kaplan, I. R. (1989) Forensic geochemistry methods to trace sources of oil and gasoline pollution. American Association of Petroleum Geologists Bulletin, 73, 543Google Scholar
Kaplan, I., Lu, S.-T., Lee, R.-P. and Warrick, G. (1996) Polycyclic hydrocarbon biomarkers confirm selective incorporation of petroleum in soil and kangaroo rat liver samples near an oil well blowout site in the western San Joaquin Valley, California. Environmental Toxicology and Chemistry, 15, 696–707CrossRefGoogle Scholar
Kaplan, I. R., Galperin, Y., Lu, S.-T. and Lee, R.-P. (1997) Forensic environmental geochemistry: differentiation of fuel-types, their sources and release time. Organic Geochemistry, 27, 289–317CrossRefGoogle Scholar
Karlsen, D. A. and Larter, S. (1990) A rapid correlation method for petroleum population mapping within individual petroleum reservoirs: applications to petroleum reservoir description. In: Correlation in Hydrocarbon Exploration (J. D. Collinson, ed.), Graham and Trotman, London, pp. 77–85
Karlson, D. A., Nedvitne, T., Larter, S. R. and Bjørlkke, K. (1993) Hydrocarbon composition of authigenic inclusions: application to elucidation of petroleum reservoir filling history. Geochimica et Cosmochimica Acta, 57, 3641–59CrossRefGoogle Scholar
Karner, M. B., Delong, E. F. and Karl, D. M. (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409, 507–10CrossRefGoogle ScholarPubMed
Katz, B. J. and Dawson, W. C. (1997) Pematang-Sihapas petroleum system of Central Sumatra. In: Petroleum Systems of SE Asia and Australasia (J. V. C. Howes and R. A. Noble, eds.), Indonesian Petroleum Association, Jakarta, pp. 685–98CrossRef
Katz, B. J., Pheifer, R. N. and Schunk, D. J. (1988) Interpretation of discontinuous vitrinite reflectance profiles. American Association of Petroleum Geologists Bulletin, 72, 926–31Google Scholar
Katz, B. J., Robison, V. D., Dawson, W. C. and Elrod, L. W. (1994) Simpson-Ellenburger(.) petroleum system of the Central Basin Platform, West Texas, USA. In: The Petroleum System – From Source to Trap (L. B. Magoon and W. G. Dow, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp. 453–62
Katz, B. J., Dittmar, E. E. and Ehret, G. E. (2000a) A geochemical review of carbonate source rocks in Italy. Journal of Petroleum Geology, 23, 399–424CrossRefGoogle Scholar
Kaufman, R. L., Ahmed, A. S. and Hempkins, W. B. (1987) A new technique for the analysis of commingled oils and its application to production allocation calculations. In: Proceedings of the Sixteenth Annual Convention of the Indonesian Petroleum Association, Indonesian Petroleum Association Jakarta, Indonesia, pp. 247–68CrossRef
Kaufman, R. L., Ahmed, A. S. and Elsinger, R. J. (1990) Gas chromatography as a development and production tool for fingerprinting oils from individual reservoirs: applications in the Gulf of Mexico. In: Proceedings of the 9th Annual Research Conference of the Society of Economic Paleontologists and Mineralogists (D. Schumacher and B. F. Perkins, eds.), Society of Paleontologists and Mineralogists, Tulsa, OK, pp. 263–82
Keely, B. J., Prowse, W. G. and Maxwell, J. R. (1990) The Treibs hypothesis: an evaluation based on structural studies. Energy & Fuels, 4, 628–34CrossRefGoogle Scholar
Kenig, F., Popp, B. N. and Summons, R. E. (2000) Preparative HPLC with ultrastable-Y zeolite for compound-specific carbon isotopic analyses. Organic Geochemistry, 31, 1087–94CrossRefGoogle Scholar
Kennedy, M. J., Pevear, D. R. and Hill, R. J. (2002) Mineral surface control of organic carbon in black shale. Science, 295, 657–60CrossRefGoogle ScholarPubMed
Kenney, J. F. (1996) Considerations about recent predictions of impending shortages of petroleum evaluated from the perspective of modern petroleum science. Energy World, 240, 16–18Google Scholar
Kenney, J. F., Kutcherov, V. A., Bendeliani, N. A. and Alekseev, V. A. (2002) The evolution of multicomponent systems at high pressures. VI. The thermodynamic stability of the hydrogen–carbon system: the genesis of hydrocarbons and the origin of petroleum. Proceedings of the National Academy of Science, USA, 99, 10 976–81CrossRefGoogle ScholarPubMed
Kerr, G. T. (1989) Synthetic zeolites. Scientific American, 261, 82–7CrossRefGoogle Scholar
Kerr, R. A. (1990) When a radical experiment goes bust. Science, 247, 1177CrossRefGoogle ScholarPubMed
Kessler, A. and Baldwin, I. I. (2001) Defensive function of herbivore-injured plant volatile emissions in nature. Science, 291, 2141–4CrossRefGoogle Scholar
Kihle, J. (1995) Adaptation of fluorescence excitation-emission micro-spectroscopy for characterization of single hydrocarbon fluid inclusions. Organic Geochemistry, 23, 1029–42CrossRefGoogle Scholar
Killops, S. D. and Al-Juboori, M. A. H. A. (1990) Characterization of the unresolved complex mixture (UCM) in the gas chromatograms of biodegraded petroleums. Organic Geochemistry, 15, 147–60CrossRefGoogle Scholar
Kimpe, K., Jacobs, P. A. and Waelkens, M. (2001) Analysis of oil used in late Roman cooking lamps with different mass spectrometric techniques revealed in presence of predominantly olive oil together with traces of animal fat. Journal of Chromatography A, 937, 87–95CrossRefGoogle Scholar
King, W. J. (1988) Operating problems in the Hanlan Swan Hills gas field. Presented at the Society of Petroleum Engineers Gas Technology Symposium, June 13–15, 1988, Dallas, TX
Kitson, F. G., Larsen, B. S. and McEwen, C. N. (1996) Gas Chromatography and Mass Spectrometry. Academic Press, New York
Klemme, H. D. (1994) Petroleum systems of the world involving Upper Jurassic source rocks. In: The Petroleum System – From Source to Trap (L. B. Magoon and W. G. Dow, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp. 51–72
Klemme, H. D. and Ulmishek, G. F. (1991) Effective petroleum source rocks of the world: stratigraphic distribution and controlling depositional factors. American Association of Petroleum Geologists Bulletin, 75, 1809–51Google Scholar
Knauss, K. G., Copenhaver, S. A., Braun, R. L. and Burnham, A. K. (1997) Hydrous pyrolysis of New Albany and Phosphoria shales: production kinetics of carboxylic acids and light hydrocarbons and interactions between the inorganic and organic chemical systems. Organic Geochemistry, 27, 477–96CrossRefGoogle Scholar
Knights, B. A., Dickson, C. A., Dickson, J. H. and Breeze, D. J. (1983) Evidence concerning the Roman military diet at Bearsden, Scotland, in the 2nd century A.D.Journal of Archaeological Science, 10, 139–52CrossRefGoogle Scholar
Knöss, W. and Reuter, B. (1998) Biosynthesis of isoprenic units via different pathways: occurrence and future prospects. Pharmaceutica Acta Helvetiae, 73, 45–52CrossRefGoogle Scholar
Koch, P. L., Fogel, M. L. and Tuross, N. (1992a) Tracing the diets of fossil animals using stable isotopes. In: Methods in Ecology (K. Lajtha and B. Michener, eds.), Blackwell Scientific Publishing, Oxford, UK, pp. 63–92
Kohl, W., Gloe, A. and Reichenbach, H. (1983) Steroids from the myxobacterium Nannocystis exedens. Journal of General Microbiology, 129, 1629–35Google Scholar
Kohnen, M. E. L., Sinninghe Damsté, J. S., Kock-Van Dalen, A. C. and Leeuw, J. W. (1991) Di- or polysulfide-bound biomarkers in sulfur-rich geomacromolecules as revealed by selective chemolysis. Geochimica et Cosmochimica Acta, 55, 1375–94CrossRefGoogle Scholar
Kolaczkowska, E., Slougui, N.-E., Watt, D. S., Marcura, R. E. and Moldowan, J. M. (1990) Thermodynamic stability of various alkylated, dealkylated, and rearranged 17α- and 17β-hopane isomers using molecular mechanics calculations. Organic Geochemistry, 16, 1033–8CrossRefGoogle Scholar
Koller, J. and Baumer, U. (1993) Analyse einer Kittprobe aus dem Griff des Messers von Xanten-Wardt. Praehistorica et Archaeologica Acta, 25, 129–31Google Scholar
Koller, J., Baumer, U., Kaup, Y., Etspuler, H. and Weser, U. (1998) Embalming was used in Old Kingdom. Nature, 391, 343–4CrossRefGoogle ScholarPubMed
Koller, J., Baumer, U. and Mania, D. (2001) High-tech in the Middle Palaeolithic: Neandertal-manufactured pitch identified. European Journal Archaeology, 4, 385–97CrossRefGoogle Scholar
König, W. A. (1992) Gas Chromatographic Enantiomeric Separation with Modified Cyclodextrins. Hütig, Buch Verlag, Heidelberg
Kontorovich, A. E. (1984) Geochemical methods for the quantitative evaluation of the petroleum potential of sedimentary basins. In: Petroleum Geochemistry and Basin Evaluation (G. Demaison and R. J. Murris, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp. 79–109
Kontorovich, A. E., Danilova, V. P., Kostyreva, E. A., et al. (1998a) Main marine oil source formations of the West Siberian petroleum megabasin and their genetic relations to oils. Presented at the Annual Meeting of the American Association of Petroleum Geologists, Salt Lake City, UT, May 17–20, 1998
Koonin, E. V., Makarova, K. S. and Aravind, L. (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annual Review of Microbiology, 55, 709–42CrossRefGoogle ScholarPubMed
Koopmans, M. P., Schouten, S., Kohnen, M. E. L., and Sinninghe Damsté, J. S. (1996) Restricted utility of aryl isoprenoids as indicators for photic zone anoxia. Geochimica et Cosmochimica Acta, 60, 4467–96CrossRefGoogle Scholar
Kornacki, A. S. (1993) C7 chemistry and origin of Monterey oils and source rocks from the Santa Maria Basin, California. Presented at the Annual Meeting of the American Association of Petroleum Geologists, April 25– 28, 1993
Kornacki, A. S. and Mango, F. D. (1996) C7 chemistry of biodegraded Monterey oils from the southwestern margin of the Los Angeles Basin, California. Presented at the Annual Meeting of the American Association of Petroleum Geologists, 1996
Koschel, K. (1996) Opium alkaloids in a Cypriote base ring I vessel (Bilbil) of the Middle Bronze Age from Egypt. Ägypten und Levante, 6, 159–66Google Scholar
Krahn, M. M. and Stein, J. E. (1998) Assessing exposure of marine biota and habitats to petroleum compounds. Analytical Chemistry News and Features, 70, 186–92AGoogle Scholar
Krings, M., Stone, A., Schmitz, R. W., et al. (1997) Neanderthal DNA sequences and the origin of modern humans. Cell, 90, 19–30CrossRefGoogle Scholar
Krings, M., Geisert, H., Schmitz, R. W., Krainitzki, H. and Pääbo, S. (1999) DNA sequence of the mitochondrial hypervariable region II from the Neanderthal type specimen. Proceedings of the National Academy of Science, USA, 96, 5581–5CrossRefGoogle Scholar
Krouse, H. R., Viau, C. A., Eliuk, L. S., Ueda, A. and Halas, S. (1989) Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature, 333, 415–9CrossRefGoogle Scholar
Kudryavtsev, N. A. (1951) Against the organic hypothesis of the origin of petroleum. Petroleum Economy[Neftianoye Khozyaistvo], 9, 17–29Google Scholar
Kurelec, B., Britvic, S., Rijavec, M., Muller, W. E. G. and Zahn, R. K. (1977) Benzo(a)pyrene monooxygenase induction in marine fish – molecular response to oil pollution. Marine Biology, 44, 211–6CrossRefGoogle Scholar
Kvenvolden, K. A. (1993) Gas hydrates – geological persepctive and global change. Reviews of Geophysics, 31, 173–87CrossRefGoogle Scholar
Kvenvolden, K. A. (2002) History of the recognition of organic geochemistry in geoscience. Organic Geochemistry, 33, 517–21CrossRefGoogle Scholar
Kvenvolden, K. A. and Lorenson, T. D. (2001) The global occurrence of natural gas hydrate. In: Natural Gas Hydrates: Occurrence, Distribution, and Detection (C. K. Paull and W. P. Dillon, eds.), American Geophysical Union, Washington, DC, pp. 3–18CrossRef
Kvenvolden, K. A., Carlson, P. R., Threlkeld, C. N. and Warden, A. (1993a) Possible connection between two Alaskan catastrophies occurring 25 yr apart (1964 and 1989). Geology, 21, 813–62.3.CO;2>CrossRefGoogle Scholar
Kvenvolden, K. A., Hostettler, F. D., Rapp, J. B. and Carlson, P. R. (1993b) Hydrocarbons in oil residue on beaches of islands of Prince William Sound, Alaska. Marine Pollution Bulletin, 26, 24–9CrossRefGoogle Scholar
Kvenvolden, K. A., Hostettler, F. D., Carlson, P. R., et al. (1995) Ubiquitous tar balls with a California-source signature on the shorelines of Prince William Sound, Alaska. Environmental Science & Technology, 29, 2684–94CrossRefGoogle Scholar
Kvenvolden, K. A., Carlson, P. R., Hostettler, F. D. and Rosenbauer, R. J. (2000) Response to Comment on “Natural hydrocarbon background in benthic sediments of Prince William Sound, Alaska: oil vs. coal”. Environmental Science & Technology, 34, 2066–7Google Scholar
Lafargue, E., Marquis, F. and Pillot, D. (1998) Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue de l'Insitut Francais du Petrole, 53, 421–37CrossRefGoogle Scholar
Lampert, C. D., Heron, C., Thompson, J., et al. (2001) Sticky links to the past: characterization and radiocarbon dating of archaeological resins from Southeast Asia. Presented at the 222nd ACS National Meeting, August 26–30, 2001, Chicago, IL
Lampert, C. D., Glover, I. C., Heron, C. P., et al. (2002) The characterization and radiocarbon dating of archaeological resins from Southeast Asia. In: Archaeological Chemistry: Material, Methods and Meaning (K. A. Jakes, ed.), American Chemical Society, Washington, DC, pp. 84–109CrossRef
Lampert, C. D., Glover, I. C., Hedges, R. E. M., et al. (2003a) Dating resin coating on pottery: the Spirit Cave early dates revised. Antiquity, 77, 126–33CrossRefGoogle Scholar
Lampert, C. D., Glover, I. C., Heron, C. P., et al. (2003b) Resinous residues on prehistoric pottery from Southeast Asia: characterisation and radiocarbon dating. In: Proceedings of the 9th International Conference of the European Association of Southeast Asian Archaeologists (A. Kallen & A. Karlstrom, eds.), Museum of Far Eastern Antiquities, Stockholm, in press
Lancet, H. S. and Anders, E. (1970) Carbon isotope fractionation in the Fischer-Tropsch synthesis of methane. Science, 170, 980–2CrossRefGoogle Scholar
Languri, G. M., Horst, J. and Boon, J. J. (2002) Characterisation of a unique “asphalt” sample from the early 19th century Hafkenscheid painting materials collection by analytical pyrolysis MS and GC/MS. Journal of Analytical and Applied Pyrolysis, 63, 171–96CrossRefGoogle Scholar
Langworthy, T. A. and Mayberry, W. R. (1976) A 1,2,3,4-tetrahydroxy pentane-substituted pentacyclic triterpene from Bacillus acidocaldarius. Biochimica et Biophysica Acta, 431, 570–7CrossRefGoogle ScholarPubMed
Largeau, C., Derenne, S., Casadevall, E., et al. (1990) Occurrence and origin of ultralaminar structures in amorphous kerogens of various source rocks and oils shales. Organic Geochemistry, 16, 889–95CrossRefGoogle Scholar
Larter, S. R., Bowler, F., Li, M., et al. (1996) Benzocarbazoles as molecular indicators of secondary oil migration distance. Nature, 383, 593–7CrossRefGoogle Scholar
Laughrey, C. D. and Baldassare, F. J. (1998) Geochemistry and origin of some natural gases in the Plateau Province, Central Appalachian Basin, Pennsylvania and Ohio. American Association of Petroleum Geologists Bulletin, 82, 317–35Google Scholar
Law, B. E. and Rice, D. D. (1993) Hydrocarbons from Coal. American Association of Petroleum Geologists, Tulsa, OK
Lawler, A. (2002) Report of oldest boat hints at early trade routes. Science, 296, 1791–2CrossRefGoogle ScholarPubMed
Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C. and Macko, S. A. (1995) Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: theoretical considerations and experimental results. Geochimica et Cosmochimica Acta, 59, 1131–8CrossRefGoogle Scholar
Dréau, Y., Gilbert, F., Doumenq, P., et al. (1997) The use of hopanes to track in situ variations in petroleum composition in surface sediments. Chemosphere, 34, 1663–72CrossRefGoogle Scholar
Leeming, R., Latham, V., Rayner, M. and Nichols, P. (1997) Detecting and distinguishing sources of sewage pollution in Australian inland and coastal waters and sediments. In: Molecular Markers in Environmental Geochemistry, Vol. 67 (R. P. Eganhouse, ed.), American Chemical Society, Washington, DC, pp. 306–19CrossRef
Lesquereux, L. (1866) Report on the fossil plants of Illinois: IllinoisGeological Survey, 2, 425–70Google Scholar
Levorsen, A. I. (1967) Geology of Petroleum. W. H. Freeman and Company, San Francisco
Lewan, M. D. (1984) Factors controlling the proportionality of vanadium to nickel in crude oils. Geochimica et Cosmochimica Acta, 48, 2231–8CrossRefGoogle Scholar
Lewan, M. D. (1985) Evaluation of petroleum generation by hydrous pyrolysis experimentation. Philosophical Transactions of the Royal Society of London, A, 315, 123–34CrossRefGoogle Scholar
Lewan, M. D. (1987) Petrographic study of primary petroleum migration in the Woodford Shale and related rock units. In: Migration of Hydrocarbons in Sedimentary Basins (B. Doligez, ed.), Editions Technip, Paris, pp. 113–30
Lewan, M. D. (1994) Assessing natural oil expulsion from source rocks by laboratory pyrolysis. In: The Petroleum System – From Source to Trap (L. B. Magoon and W. G. Dow, eds.), American Association of Petroleum Geologists, pp. 201–10
Lewan, M. D. and Fisher, J. B. (1994) Organic acids from petroleum source rocks. In: Organic Acids in Geological Processes (E. D. Pittman and M. D. Lewan, eds.), Springer-Verlag, New York, pp. 70–114CrossRef
Lewan, M. D., Winters, J. C. and McDonald, J. H. (1979) Generation of oil-like pyrolyzates from organic-rich shales. Science, 203, 897–9CrossRefGoogle ScholarPubMed
Leythaeuser, D., Schaefer, R. G. and Weiner, B. (1978) Generation of low molecular weight hydrocarbons from organic matter in source beds as a function of temperature. Chemical Geology, 25, 95–108CrossRefGoogle Scholar
Leythaeuser, D., Schaefer, R. G., Cornford, C. and Weiner, B. (1979) Generation and migration of light hydrocarbons (C2–C7) in sedimentary basins. Organic Geochemistry, 1, 191–204CrossRefGoogle Scholar
Li, M., Larter, S. R., Stoddart, S. and Bjorøy, M. (1992) Practical liquid chromatographic separation schemes for pyrrolic and pyridinic nitrogen heterocyclic fractions from crude oils suitable for rapid characterization of geological samples. Analytical Chemistry, 64, 1337–44CrossRefGoogle Scholar
Li, J. G., Philp, R. P. and Cui, M. Z. (2000) Methyl diamantane index (MDI) as a maturity parameter for Lower Palaeozoic carbonate rocks at high maturity and overmaturity. Organic Geochemistry, 31, 267–72Google Scholar
Liberti, A., Cartoni, G. P. and Bruner, F. (1965) Isotope effect in gas chromatography. In: Gas Chromatography 1964 (A. Goldup, et.), Elsevier, Amsterdam, pp. 301–12
Lichtenthaler, H. K. (2000) Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochemical Society Transactions, 28, 785–9CrossRefGoogle ScholarPubMed
Lijmbach, G. W. M. (1975) On the origin of petroleum. Proceedings of the 9th World Petroleum Congress, 2, 357–69Google Scholar
Lijmbach, G. W. M., van der Veen, F. M. and Englehardt, E. D. (1983) Geochemical characterisation of crude oils and source rocks using field ionisation mass spectrometry In: Advances in Organic Geochemistry 1981 (M. Bjorøy, C. Albrecht, C. Cornford, et al., eds.), John Wiley & Sons, New York, pp. 788–98
Lin, R. (1995) An interlaboratory comparison of vitrinite reflectance measurement. Organic Geochemistry, 22, 1–9CrossRefGoogle Scholar
Lin, R. and Wilk, Z. A. (1995) Natural occurrence of tetramantane (C22H28), pentamantane (C26H32) and hexamantane (C30H36) in a deep petroleum reservoir. Fuel, 74, 1512–21CrossRefGoogle Scholar
Lin, D. S., Connor, W. E., Napton, L. K. and Heizer, R. F. (1978) The steroids of 2000-year-old human coprolites. Journal of Lipid Research, 19, 215–21Google ScholarPubMed
Lindstrom, J. E., Prince, R. C., Clark, J. C., et al. (1991) Microbial populations and hydrocarbon biodegradation potential in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill. Applied and Environmental Microbiology, 57, 2514–52Google Scholar
Lorant, F. and Behar, F. (2002) Late generation of methane from mature kerogens. Energy & Fuels, 16, 412–27CrossRefGoogle Scholar
Losh, L., Eglinton, L., Schoell, M. and Wood, J. (1999) Vertical and lateral fluid flow related to a large growth fault, South Eugene Island Block 330 Field, Offshore Louisiana. American Association of Petroleum Geologists Bulletin, 83, 244–76Google Scholar
Louati, A., Elleuch, B., Kallel, M., et al. (2001) Hydrocarbon contamination of coastal sediments from the Sfax Area (Tunisia), Mediterranean Sea. Marine Pollution Bulletin, 42, 445–52CrossRefGoogle ScholarPubMed
Louda, J. W. and Baker, E. W. (1984) Perylene occurrence, alkylation and possible sources in deep-ocean sediments. Geochimica et Cosmochimica Acta, 48, 1043–58CrossRefGoogle Scholar
Louda, J. W. and Baker, E. W. (1986) The biogeochemistry of chlorophyll. In: Organic Marine Chemistry (M. L. Sohn, ed.), Vol. 305, American Chemical Society, Washington, DC, pp. 107–41CrossRef
Loutit, T. S., Hardenbol, J., Vail, P. R. and Baum, G. R. (1988) Condensed sections: the key to age determination and correlation of continental margin sequences. In: Sea-level Changes – An Integrated Approach (C. K. Wilgus, B. S. Hastings, C. G. St C. Kendall, et al., eds.), Society of Economic Paleontologists and Mineralogists, Tulsa, OK, pp. 109–24CrossRef
Lubell, D., Jackes, M., Schwarcz, H., Knyf, M. and Meiklejohn, C. (1994) The Mesolithic-Neolithic transition in Portugal: isotopic and dental evidence of diet. Journal of Archaeological Science, 21, 201–16CrossRefGoogle Scholar
Luellen, D. R. and Shea, D. (2002) Calibration and field verification of semipermeable membrane devices for measuring polycyclic aromatic hydrocarbons in water. Environmental Science & Technology, 36, 1791–7CrossRefGoogle ScholarPubMed
Lundegard, P. D., Haddad, R. and Brearley, M. (1998) Methane associated with a large gasoline spill: forensic determination of origin and source. Environmental Geoscience, 5, 69–78CrossRefGoogle Scholar
Lundegard, P. D., Sweeney, R. E. and Ririe, G. T. (2000) Soil gas methane at petroleum contaminated sites: forensic determination of origin and source. Environmental Forensics, 1, 3–10CrossRefGoogle Scholar
Lunel, T., Rusin, J., Halliwell, C. and Davies, L. (1997) The net environmental benefit of a successful dispersant operation at the Sea Empress incident. In Proceedings of the 1997 International Oil Spill Conference, April 7–10, 1997, Fort Lauderdale, FL, American Petroleum Institute, Washington, DC, pp. 185–94
Luzzati, V., Gulik, A., Rosa, M. and Gambacorta, A. (1987) Lipids from Sulfolobus solfatarius, life at high temperature and the structure of membranes. Chemica Scripta, 27B, 211–9Google Scholar
MacDonald, I. R. (1998) Natural oil spills. Scientific American, 11, 31–5Google Scholar
Machel, H. G. (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights. Sedimentary Geology, 140, 143–75CrossRefGoogle Scholar
Machel, H. G., Krouse, H. R., Riciputi, L. R. and Cole, D. R. (1995a) Devonian Nisku sour gas play, Canada: a unique natural laboratory for study of thermochemical sulfate reduction. In: Geochemical Transformations of Sedimentary Sulfur (M. A. Vairavamurthy and M. A. A. Schoonen, Tedse), American Chemical Society, Washington, DC pp. 439–54
Machel, H. G., Krouse, H. R. and Sassen, R. (1995b) Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Applied Geochemistry, 10, 373–89CrossRefGoogle Scholar
MacHugh, D. E., Troy, C. S., McCormick, F., et al. (1999) Early medieval cattle remains from a Scandinavian settlement in Dublin: genetic analysis and comparison with extant breeds. Philosophical Transactions of the Royal Society London, Biological Sciences, 354, 99–110CrossRefGoogle ScholarPubMed
Mackenzie, A. S., Brassell, S. C., Eglinton, G. and Maxwell, J. R. (1982) Chemical fossils: the geological fate of steroids. Science, 217, 491–504CrossRefGoogle ScholarPubMed
Mackenzie, A. S., Disko, U. and Rullkötter, J. (1983a) Determination of hydrocarbon distributions in oils and sediment extracts by gas chromatography–high resolution mass spectrometry. Organic Geochemistry, 5, 57–63CrossRefGoogle Scholar
Mackenzie, A. S., Li, R.-W., Maxwell, J. R., Moldowan, J. M. and Seifert, W. K. (1983b) Molecular measurements of thermal maturation of Cretaceous shales from the Overthrust Belt, Wyoming, USA. In: Advances in Organic Geochemistry 1981 (M. Bjorøy, C. Albrecht, C. Cornford, et al. eds.), John Wiley & Sons, New York, pp. 496–503
Mackenzie, A. S., Rullkötter, J., Welte, D. H. and Mankiewicz, P. (1985) Reconstruction of oil formation and accumulation in North Slope, Alaska, using quantitative gas chromatography-mass spectrometry. In: Alaska North Slope Oil/Source Rock Correlation Study (L. B. Magoon and G. E. Claypool, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp. 319–77
Mackenzie, A. S., Leythaeuser, D., Altebäumer, F.-J., Disko, U. and Rullkötter, J. (1988) Molecular measurements of maturity for Lias δ shales in N. W. Germany. Geochimica et Cosmochimica Acta, 52, 1145–54CrossRefGoogle Scholar
Macko, S. A. and Quick, R. S. (1986) A geochemical study of oil migration at source rock reservoir contacts: stable isotopes. Organic Geochemistry, 10, 199–205CrossRefGoogle Scholar
Macko, S. A., Engel, M. H. and Qian, Y. (1994) Early diagenesis and organic matter preservation – a molecular stable carbon isotope perspective. Chemical Geology, 114, 365–79CrossRefGoogle Scholar
Macko, S. A., Engel, M. H., Andrusevich, V., et al. (1999) Documenting the diet in ancient human populations through stable isotope analysis of hair. Philosophical Transactions of the Royal Society London, Biological Sciences, 354, 65–77CrossRefGoogle ScholarPubMed
Magoon, L. B. (1994) Tuxedni-Hemlock(!) petroleum system in Cook Inlet, Alaska, U.S.A. In: The Petroleum System – From Source to Trap. (L. B. Magoon and W. G. Dow, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp. 359–70
Magoon, L. B. and Bird, K. J. (1988) Evaluation of petroleum source rocks in the National Petroleum Reserve in Alaska using organic-carbon content, hydrocarbon content, visual kerogen, and vitrinite reflectance. In: Geology and Exploration of the National Petroleum Reserve in Alaska, 1974 to 1982 (C. Gryc, ed.), U.S. Geological Survey, Washington, DC, 1399, pp. 381–450
Magoon, L. B. and Claypool, G. E. (1981) Two oil types on the North Slope of Alaska – Implications for future exploration. American Association of Petroleum Geologists Bulletin, 65, 644–52Google Scholar
Magoon, L. B. and Claypool, G. E. (1983) Petroleum geochemistry of the North Slope of Alaska: time and degree of thermal maturity. In: Advances in Organic Geochemistry 1981 (M. Bjorøy, C. Albrecht, C. Cornford, et al., eds.) John Wiley & Sons, New York, pp. 28–38
Magoon, L. B. and Claypool, G. E. (1984) The Kingak shale of north Alaska-Regional variations in organic geochemical properties and petroleum source rock quality. Organic Geochemistry, 6, 533–42CrossRefGoogle Scholar
Magoon, L. B. and Dow, W. G. (1994) The Petroleum System – From Source to Trap. American Association of Petroleum Geologists, Tulsa, OK
Magoon, L. B. and Valin, Z. C. (1994) Overview of petroleum system case studies. In: The Petroleum System – From Source to Trap (L. B. Magoon and W. G. Dow, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp. 329–38
Mahato, S. B. and Sen, S. (1997) Advances in terpenoid research 1990–1994. Phytochemistry, 44, 1185–236CrossRefGoogle ScholarPubMed
Mair, B. J., Ronen, Z., Eisenbraun, E. J. and Horodysky, A. G. (1966) Terpenoid precursors of hydrocarbons from the gasoline range of petroleum. Science, 154, 1339–41CrossRefGoogle ScholarPubMed
Maldonado, C., Bayona, J. M. and Bodineau, L. (1999) Sources, distribution, and water column processes of aliphatic and polycyclic aromatic hydrocarbons in the Northwestern Black Sea water. Environmental Science & Technology, 33, 2693–702CrossRefGoogle Scholar
Mancini, E. A., Mink, R. M. and Bearden, B. L. (1989) Integrated geological, geophysical, and geochemical interpretation of Upper Jurassic petroleum in the eastern Gulf of Mexico. Transactions – Gulf Coast Association of Geological Societies, 36, 309–20Google Scholar
Mango, F. D. (1987) Invariance in the isoheptanes of petroleum. Science, 247, 514–7CrossRefGoogle Scholar
Mango, F. D. (1990) The origin of light cycloalkanes in petroleum. Geochimica et Cosmochimica Acta, 54, 24–7CrossRefGoogle Scholar
Mango, F. D. (1991) The stability of hydrocarbons under the time-temperature conditions of petroleum genesis. Nature, 352, 146–8CrossRefGoogle Scholar
Mango, F. D. (1992) Transition metal catalysis in the generation of petroleum and natural gas. Geochimica et Cosmochimica Acta, 56, 553–5CrossRefGoogle Scholar
Mango, F. D. (1994) The origin of light hydrocarbons in petroleum: ring preference in the closure of carbocyclic rings. Geochimica et Cosmochimica Acta, 58, 895–901CrossRefGoogle Scholar
Mango, F. D. (1996) Transition metal catalysis in the generation of natural gas. Organic Geochemistry, 24, 977–84CrossRefGoogle Scholar
Mango, F. D. (1997) The light hydrocarbons in petroleum: a critical review. Organic Geochemistry, 26, 417–40CrossRefGoogle Scholar
Mango, F. D. (1998) Some evidence supporting catalysis in the decomposition of oil to natural gas. Presented at the 215th National Meeting of the American Chemical Society, Dallas, TX, March 29–April 2, 1998
Mango, F. D. (2000) The origin of light hydrocarbons. Geochimica et Cosmochimica Acta, 64, 1265–77CrossRefGoogle Scholar
Mango, F. D. and Elrod, L. W. (1998) The carbon isotopic composition of catalytic gas: a comparative analysis with natural gas. Geochimica et Cosmochimica Acta, 63, 1097–106CrossRefGoogle Scholar
Mango, F. D. and Hightower, J. (1997) The catalytic decomposition of petroleum into natural gas. Geochimica et Cosmochimica Acta, 61, 5347–50CrossRefGoogle Scholar
Mango, F. D., Hightower, J. W. and James, A. T. (1994) Role of transition-metal catalysis in the formation of natural gas. Nature, 368, 536–8CrossRefGoogle Scholar
Mansfield, C. T., Barman, B. N., Thomas, J. V., Mehrotra, A. K. and McCann, J. M. (1999) Petroleum and coal. Analytical Chemistry, 71, 81–107RCrossRefGoogle Scholar
Mansuy, L., Philp, R. P. and Allen, J. (1997) Source identification of oil spills based on the isotopic composition of individual components in weathered oil samples. Environmental Science & Technology, 31, 3417–25CrossRefGoogle Scholar
Manzano, B. K., Fowler, M. G. and Machel, H. G. (1997) The influence of thermochemical sulfate reduction on hydrocarbon composition in Nisku reservoirs, Brazeau River area, Alberta, Canada. Organic Geochemistry, 27, 507–21CrossRefGoogle Scholar
Marlar, R. A., Leonard, B. L., Billman, B. R., Lambert, P. M. and Marlar, J. E. (2000) Biochemical evidence of cannibalism at a prehistoric Puebloan site in southwestern Colorado. Nature, 407, 74–8CrossRefGoogle Scholar
Marschner, R. F. and Wright, H. T. (1978) Asphalts from Middle Eastern archaeological sites. Archaeological Chemistry, 21, 51–171Google Scholar
Martin, G. C. (1908) Geology and Mineral Resources of the Controller Bay Region, Alaska. U.S. Geological Survey Bulletin, 335, 3–141Google Scholar
Martin, L. K., Jr and Black, M. C. (1996) Biomarker assessment of the effects of petroleum refinery contamination on channel catfish. Ecotoxicology and Environmental Safety, 33, 81–7CrossRefGoogle ScholarPubMed
Martin, R. L., Winters, J. C. and Williams, J. A. (1963) Composition of crude oils by gas chromatography: geological significance of hydrocarbon distribution. Presented at the Sixth World Petroleum Congress Proceedings, Frankfurt am Main, June 1963
Mason, G. M., Rudell, L. G. and Branthaver, J. F. (1990) Review of the stratigraphic distribution and diagenetic history of abelsonite. Organic Geochemistry, 14, 585–94CrossRefGoogle Scholar
Masterson, W. D., Dzou, L. I. P., Holba, A. G., Fincannon, A. L. and Ellis, L. (2001) Evidence for biodegradation and evaporative fractionation in West Sak, Kuparuk and Prudhoe Bay field areas, North Slope, Alaska. Organic Geochemistry, 32, 411–41CrossRefGoogle Scholar
Matthews, D. E. and Hayes, J. M. (1978) Isotope-ratio monitoring gas chromatgraphy-mass spectrometry. Analytical Chemistry, 50, 1465–73CrossRefGoogle Scholar
Mauch, D. H., Nägler, K., Schumacher, S., et al. (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science, 294, 1354–7CrossRefGoogle ScholarPubMed
Maughan, E. K. (1993) Phosphoria Formation (Permian) and its resource significance in the Western Interior, USA. Presented at the CSPG Pangeo: Global Environment and Resources Conference, Calgary, August 15–19, 1993
Maurer, J., Möhring, T., Rullkötter, J. and Nissenbaum, A. (2002) Plant lipids and fossil hydrocarbons in embalming material of Roman Period mummies from the Dakhleh Oasis, Western Desert, Egypt. Journal of Archaeological Science, 29, 751–62CrossRefGoogle Scholar
Maxwell, J. R., Cox, R. E., Eglinton, G., et al. (1973) Stereochemical studies of acyclic isoprenoid compounds – 2. The role of chlorophyll in the derivation of isoprenoid-type acids in a lacustrine sediment. Geochimica et Cosmochimica Acta, 37, 297–313CrossRefGoogle Scholar
Mayuga, M. N. (1970) Geology and development of California's giant – Wilmington oil field. In: Geology of Giant Petroleum Fields (M. T. Halbouty, ed.), American Association of Petroleum Geologists, Tulsa, OK, pp. 158–84
Mazeas, L. and Budzinski, H. (2001) Polycyclic aromatic hydrocarbon 13C/12C ratio measurement in petroleum and marine sediments: application to standard reference materials and a sediment suspected of contamination from the Erika oil spill. Journal of Chromatography A, 923, 165–76CrossRefGoogle Scholar
McCaffrey, M. A., Farrington, J. W. and Repeta, D. J. (1989) Geochemical implications of the lipid composition of Thioploca spp. from the Peru upwelling region – 15 S. Organic Geochemistry, 14, 61–8CrossRefGoogle Scholar
McCaffrey, M. A., Moldowan, J. M., Lipton, P. A., et al. (1994) Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochimica et Cosmochimica Acta, 58, 529–32CrossRefGoogle Scholar
McCaffrey, M. A., Legarre, H. A. and Johnson, S. J. (1996) Using biomarkers to improve heavy oil reservoir management; an example from the Cymric Field, Kern County, California. American Association of Petroleum Geologists Bulletin, 80, 898–913Google Scholar
McCollom, T. M. (2003) Formation of meteorite hydrocarbons from thermal decomposition of siderite (FeCO3). Geochimica et Cosmochimica Acta, 67, 311–7CrossRefGoogle Scholar
McCollom, T. M. and Seewald, J. S. (2001) A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochimica et Cosmochimica Acta, 65, 3769–78CrossRefGoogle Scholar
McCusker, L. B. (1994) Advances in powder diffraction methods for zeolite structure analysis. In: Zeolites and Related Microporous Materials: State of the Art 1994, Vol. 84 (J. W. Weitkamp, H. G. Karge, H. Pfeifer and W. Hölderich, eds.), Elsevier, Amsterdam, pp. 341–356CrossRef
McFadden W. H. (1973) Techniques of Combined Gas Chromatography Mass Spectrometry. Wiley-Interscience, New York
McGovern, P. E., Fleming, S. J. and Katz, S. H. (1995) The Origins and Ancient History of Wine. Food and Nutrition in History and Anthropology Vol. 11. Gordon and Breach, New York
McGovern, P. E., Glusker, D. L., Exner, L. J. and Voigt, M. W. (1996) Neolithic resinate wine. Nature, 381, 480–1CrossRefGoogle Scholar
McGovern, P. E., Glusker, D. L., Moreau, R. A., et al. (1999) A funerary feast fit for King Midas. Nature, 402, 863–4CrossRefGoogle Scholar
McKay, D. S., Gibson, E. K. Jr, Thomas-Keprta, K. L., et al. (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924–30CrossRefGoogle ScholarPubMed
McKirdy, D. M., Aldrige, A. K. and Ypma, P. J. M. (1983) A geochemical comparison of some crude oils from Pre-Ordovician carbonate rocks. In: Advances in Organic Geochemistry 1981 (M. Bjorøy, C. Albrecht, C. Cornford, et al., eds.), John Wiley & Sons, New York, pp. 99–107
McLafferty, F. W. (1980) Interpretation of Mass Spectra, 3rd edn., University Science Books, Mill Valley, CA
McLimans, R. K. (1987) The application of fluid inclusions to migration of oil and diagenesis in petroleum reservoirs. Applied Geochemistry, 2, 585–603CrossRefGoogle Scholar
McNeil, R. H. and Bement, W. O. (1996) Thermal stability of hydrocarbons: laboratory criteria and field examples. Energy & Fuels, 10, 60–7CrossRefGoogle Scholar
Mearns, E. W. and McBride, J. J. (1999) Hydrocarbon filling history and reservoir continuity of oil fields evaluated using 87Sr/86Sr isotope ratio variations in formation water, with examples from the North Sea. Petroleum Geoscience, 5, 17–27CrossRefGoogle Scholar
Meganathan, R. (2001) Ubiquinone biosynthesis in microorganisms. FEMS Microbiology Letters, 203, 131–9CrossRefGoogle ScholarPubMed
Meissner, F. F., Woodward, J. and Clayton, J. L. (1984) Stratigraphic relationships and distribution of source rocks in the Greater Rocky Mountain Region. In: Hydrocarbon Source Rocks of the Greater Rocky Mountain Region (J. Woodward, F. F. Meissner and J. L. Clayton, eds.), Rocky Mountain Association of Geologists, Denver, CO, pp. 1–34
Mello, M. R., Koutsoukos, E. A. M., Mohriak, W. U. and Bacoccoli, G. (1994) Selected petroleum systems in Brazil. In: The Petroleum System – From Source to Trap (L. B. Magoon and W. G. Dow, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp. 499–512
Mendeleev, D. (1877) L'origine du petrole. Revue Scientifique, 2e Ser., VIII, 409–16Google Scholar
Mendeleev, D. (1902) The Principles of Chemistry, Vol. 1. Second English edition translated from the sixth Russian edition. Collier, New York
Mercadante, A. Z. (1999) New carotenoids: recent progress. Pure and Applied Chemistry, 71, 2263–73CrossRefGoogle Scholar
Merlin, M. D. (1984) On the Trail of the Ancient Opium Poppy. Fairleigh Dickinson University Press (Associated University Presses), Cranbury, NJ
Merriwether, D. A. (1999) Freezer anthropology: new uses for old blood. Philosophical Transactions of the Royal Society London, Biological Sciences, 354, 121–30CrossRefGoogle ScholarPubMed
Metzger, P., Villarreal-Rosalles, E., Casadevall, E. and Coute, A. (1989) Hydrocarbons, aldehydes and tricylglycerols in some strains of the A race of the green alga Botryococcus braunii. Phytochemistry, 28, 2349–53CrossRefGoogle Scholar
Meyers, P. A. (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 144, 289–302CrossRefGoogle Scholar
Meyers, P. A. (1997) Organic geochemical proxies of paleooceanographic, paleolimnlogic, and paleoclimatic processes. Organic Geochemistry, 27, 213–50CrossRefGoogle Scholar
Michaelis, W., Seifert, R., Nauhaus, K., et al. (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science, 297, 1013–5CrossRefGoogle ScholarPubMed
Michalczyk, G. (1985) Determination of n- and iso-paraffins in hydrocarbon waxes – comparative results of analyses by gas chromatography, urea adduction, and molecular sieve adsorption [in German]. Fette-Seifen-Anstrichmittel, 87, 481–6CrossRefGoogle Scholar
Miller, R. G. (1995) A future for exploration geochemistry. In: Organic Geochemistry: Developments and Applications to Energy, Climate, Environment and Human History (J. O. Grimalt and C. Dorronsoro, eds.), AIGOA, Donostia-San Sebastián, Spain, pp. 412–4
Mills, J. S. and White, R. (1989) The identity of the resins from the Late Bronze Age shipwreck at Ulu Burun (Kas). Archaeometry, 31, 37–44CrossRefGoogle Scholar
Mills, J. S. and White, R. (1994) The Organic Chemistry of Museum Objects, Arts and Archaeology. Butterworths, London
Milner, C. W. D., Rogers, M. A. and Evans, C. R. (1977) Petroleum transformations in reservoirs. Journal of Geochemical Exploration, 7, 101–53CrossRefGoogle Scholar
Mislow, K. (1965) Introduction to Stereochemistry. W. A. Benjamin, New York
Moldowan, J. M. and Seifert, W. K. (1979) Head-to-head linked isoprenoid hydrocarbons in petroleum. Science, 204, 169–71CrossRefGoogle ScholarPubMed
Moldowan, J. M., Seifert, W. K., Arnold, E. and Clardy, J. (1984) Structure proof and significance of stereoisomeric 28,30-bisnorhopanes in petroleum and petroleum source rocks. Geochimica et Cosmochimica Acta, 48, 1651–61CrossRefGoogle Scholar
Moldowan, J. M., Seifert, W. K. and Gallegos, E. J. (1985) Relationship between petroleum composition and depositional environment of petroleum source rocks. American Association of Petroleum Geologists Bulletin, 69, 1255–68Google Scholar
Moldowan, J. M., Sundararaman, P. and Schoell, M. (1986) Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of S. W. Germany. Organic Geochemistry, 10, 915–26CrossRefGoogle Scholar
Moldowan, J. M., Fago, F. J., Lee, C. Y., et al. (1990) Sedimentary 24-n-propylcholestanes, molecular fossils diagnostic of marine algae. Science, 247, 309–12CrossRefGoogle ScholarPubMed
Moldowan, J. M., Dahl, J., Huizinga, B. J., et al. (1994) The molecular fossil record of oleanane and its relation to angiosperms. Science, 265, 768–71CrossRefGoogle ScholarPubMed
Moldowan, J. M., Dahl, J., McCaffrey, M. A., Smith, W. J. and Fetzer, J. C. (1995) Application of biological marker technology to bioremediation of refinery by-products. Energy & Fuels, 9, 155–62CrossRefGoogle Scholar
Momper, J. A. (1980) Oil expulsion – a consequence of oil generation. Abstract. American Association of Petroleum Geologists Bulletin, 64, 1279Google Scholar
Mommessin, P. R., Castaño, J. R., Rankin, J. G. and Weiss, M. L. (1981) Process for Determining API Gravity of oil by FID. United States Patent 4 248 599
Mook, W. G. (2001) Abundance and fractionation of stable isotopes. In: Environmental Isotopes in the Hydrological Cycle. Principles and Applications Vol. 1 (W. G. Mook, ed.), UNESCO/IAEA, Paris, pp. 31–48
Morrison, R. T. and Boyd, R. N. (1987) Organic Chemistry. Allyn and Bacon, Boston, MA
Mottram, H. R., Dudd, S. N., Lawrence, G. J., Stott, A. W. and Evershed, R. P. (1999) New chromatographic, mass spectrometric and stable isotope approaches to the classification of degraded animal fats preserved in archaeological pottery. Journal of Chromatography A, 833, 223–9CrossRefGoogle Scholar
Mudge, S. M. (2002) Reassessment of the hydrocarbons in Prince William Sound and the Gulf of Alaska: identifying the source using partial least-squares. Environmental Science & Technology, 36, 2354–60CrossRefGoogle Scholar
Müller, P. J. and Suess, E. (1979) Productivity, sedimentation rate, and sedimentary organic matter in the oceans. I. Organic carbon preservation. Deep Sea Research, 26A, 1347–62CrossRefGoogle Scholar
Munz, I. A. (2001) Petroleum inclusions in sedimentary basins: systematics, analytical methods and applications. Lithos, 55, 195–212CrossRefGoogle Scholar
Murray, A. P., Edwards, D., Hope, J. M., et al. (1998) Carbon isotope biogeochemistry of plant resins and derived hydrocarbons. Organic Geochemistry, 29, 1199–214CrossRefGoogle Scholar
Murphy, M. T. K. (1969) Analytical methods. In: Organic Geochemistry (G. Eglinton and M. T. J. Murphy, eds.), Springer-Verlag, Berlin, pp. 74–88CrossRef
Murphy, B. L. and Morrison, R. D. (2002) Introduction to Environmental Forensics. Academic Press, San Diego, CA
Murphy, M. T. J., McCormick, A. and Eglinton, G. (1967) Perhydro-β-carotene in Green River Shale. Science, 157, 1040–2CrossRefGoogle ScholarPubMed
Muyzer, G., Westbroek, P., Vrind, H. P. M., et al. (1984) Immunology and organic geochemistry. Organic Geochemistry, 6, 847–55CrossRefGoogle Scholar
Muyzer, G., Dekoster, S., Zijl, Y., Boon, J. J. and Westbroek, P. (1986) Immunological studies on microbial mats from Solar Lake (Sinai): a contribution to the organic geochemistry of sediments. Organic Geochemistry, 10, 697–704CrossRefGoogle Scholar
Muyzer, G., Sandberg, P. A., Knapen, M. H. A., et al. (1992) Preservation of the bone protein osteocalcin in dinosaurs. Geology, 20, 871–42.3.CO;2>CrossRefGoogle Scholar
Mycke, B., Narjes, F. and Michaelis, W. (1987) Bacteriohopanetetrol from chemical degradation of an oil shale kerogen. Nature, 326, 179–81CrossRefGoogle Scholar
Myers, K. J. and Wignall, P. B. (1987) Understanding Jurassic organic-rich mudrock – new concepts using gamma-ray spectrometry and paleoecology: examples from the Kimmeridge Clay of Dorset and the Jet Rock of Yorkshire. In: Marine Clastic Environments: Concepts and Case Studies (J. K. Legget, ed.), Graham and Trotman, London, pp. 175–92
National Research Council (1985) Oil in the Sea: Input, Fates, and Effect. National Academy Press, Washington, DC
National Research Council (2002) Oil in the Sea III: Inputs, Fates, and Effects. National Acadamy Press, Washington, DC
Nederlof, P. J. R., Gijsen, M. A. and Doyle, M. A. (1994) Application of reservoir geochemistry to field appraisal. In: Geo ‘94: The Middle East Petroleum Geosciences. Selected Middle East Papers from the Middle East Geoscience Conference (M. I. Al Husseini, ed.), Gulf PetroLink, Manama, Bahrain, pp. 709–722
Neff, J. M. (1979) Polycyclic Aromatic Hydrocarbons in the Aquatic Environment: Sources, Fates and Biological Effects. Applied Science Publishers, London
Nes, W. R. and McKean, M. L. (1977) Biochemistry of Steroids and Other Isopentenoids. University Park Press, Baltimore
Nes, W. D. and Venkatramesh, M. (1994) Molecular assymetry and sterol evolution. In: Isopentenoids and Other Natural Products: Evolution and Function, ACS Symposium Series 562 (W. D. Nes, ed.), American Chemical Society, Washington, DC, pp. 55–89CrossRef
Newberry, J. S. (1873) The General Geological Relations and Structure of Ohio. Ohio Geological Survey Report 1, Part 1. Division of Geological Survey, Columbus, OH
Nichols, P. D., Volkman, J. K., Palmisano, A. C., Smith, G. A. and White, D. C. (1988) Occurrence of an isoprenoid C25 diunsaturated alkene and high neutral lipid content in Antarctic sea-ice diatom communities. Journal of Phycology, 24, 90–6CrossRefGoogle Scholar
Nichols, P. D., Leeming, R., Rayner, M. S. and Latham, V. (1993) Comparison of the abundance of the fecal sterol coprostanol and fecal bacterial groups in inner-shelf waters and sediments near Sydney, Australia. Journal of Chromatography, 643, 189–95CrossRefGoogle ScholarPubMed
Nielsen-Marsh, C. M., Ostrom, P. H., Gandhi, H., et al. (2002) Sequence preservation of osteocalcin protein and mitochondrial DNA in bison bones older than 55 ka. Geology, 30, 1099–1022.0.CO;2>CrossRefGoogle Scholar
Niklas, K. J. (1996) The Evolutionary Biology of Plants. University of Chicago Press, Chicago, IL
Nisbet, E. G., Cann, J. R. and Dover, C. L. (1995) Origins of photosynthesis. Nature, 373, 479–480CrossRefGoogle Scholar
Nissenbaum, A., Baedecker, M. J. and Kaplan, I. R. (1972) Studies on dissolved organic matter from interstitial water of a reducing marine fjord. In: Advances in Organic Geochemistry 1971 (H. R. von Gaertner and H. Wehner, eds.), Pergamon Press, New York, pp. 427–40
Nolte, D. G. (1991) Separation of a Mixture of Normal Paraffins, Branched Chain Paraffins, and Cyclic Paraffins. United States Patent 4 982 052, January 1, 1991
North, F. K. (1985) Petroleum Geology. Allen and Unwin, London
Oakwood, T. S., Shriver, D. S., Fall, H. H., McAleer, W. J. and Wunz, P. R. (1952) Optical activity of petroleum. Industrial and Engineering Chemistry, 44, 2568–70CrossRefGoogle Scholar
Obermajer, M., Stasiuk, L. D., Fowler, M. G. and Osadetz, K. G. (1997) Acritarch fluorescence as a new thermal maturity indicator. American Association of Petroleum Geologists Bulletin, 81, 1561Google Scholar
Obermajer, M., Osadetz, K. G., Fowler, M. G. and Snowdon, L. R. (2000b) Light hydrocarbon (gasoline range) parameter refinement of biomarker-based oil-oil correlation studies: an example from Williston Basin. Organic Geochemistry, 31, 959–76CrossRefGoogle Scholar
Ocampo, R., Callot, H. J. and Albrecht, P. (1989) Different isotope compositions of C32 DPEP and C32 etioporphyrin III in oil shale. Naturwissenschaften, 76, 419–21CrossRefGoogle Scholar
Odden, W., Patience, R. L. and Graas, G. W. (1998) Application of light hydrocarbons (C4–C13) to oil/source rock correlations. Organic Geochemistry, 28, 823–47CrossRefGoogle Scholar
Olson, D. H., Haag, W. O. and Lago, R. M. (1980) Chemical and physical properties of the ZSM-5 substitutional series. Journal of Catalysis, 61, 390–6CrossRefGoogle Scholar
O'Malley, V. P., Abrajano, T. A. Jr and Hellou, J. (1994) Determination of the 13C/12C ratios of individual PAH from environmental samples: can PAH sources be apportioned?Organic Geochemistry, 21, 809–22CrossRefGoogle Scholar
O'Neil, J. R. (1986) Theoretical and experimental aspects of isotopic fractionation. Mineralogical Society of America Reviews in Mineralogy, 16, 1–40Google Scholar
Ong, R. C. Y. and Marriott, P. J. (2002) A review of basic concepts in comprehensive two-dimensional gas chromatography. Journal of Chromatographic Science, 40, 276–91CrossRefGoogle ScholarPubMed
Orphan, V. J., Hinrichs, K.-U., Ussler, W. III, et al. (2001a) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments.Applied and Environmental Microbiology, 67, 1922–34CrossRefGoogle Scholar
Orphan, V. J., House, C. H., Hinrichs, K.-U., McKeegan, K. D. and Delong, E. F. (2001b) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293, 479–81CrossRefGoogle Scholar
Orr, W. L. (1974) Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation. Study of Big Horn Basin Paleozoic oils. American Association of Petroleum Geologists Bulletin, 58, 2295–318Google Scholar
Orr, W. L. (1977) Geologic and geochemical controls on the distribution of hydrogen sulfide in natural gas. In: Advances in Organic Geochemistry (R. Campos and J. Goni, eds.), Enadisma, Madrid, Spain, pp. 571–97
Orr, W. L. (1986) Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils. Organic Geochemistry, 10, 499–516CrossRefGoogle Scholar
Orr, W. L. and Gaines, A. G. (1974) Observations on rate of sulfate reduction and organic matter oxidation in the bottom waters of an estuarine basin: the upper basin of the Pettaquamscutt River (Rhode Island). In: Advances in Organic Geochemistry 1973 (B. Tissot and F. Bienner, eds.), Editions Technip, Paris, pp. 791–812
Othman, R. and Ward, C. R. (2002) Thermal maturation pattern in the southern Bowen, northern Gunnedah and Surat basins, northern New South Wales, Australia. International Journal of Coal Geology, 51, 145–67CrossRefGoogle Scholar
Oudemans, T. F. M. and Boon, J. J. (1991) Molecular archaeology: analysis of charred (food) remains from prehistoric pottery by pyrolysis-gas chromatography/mass spectrometry. Journal of Analytical and Applied Pyrolysis, 20, 197–227CrossRefGoogle Scholar
Ourisson, G. (1987) Bigger and better hopanoids. Nature, 326, 126–7CrossRefGoogle Scholar
Ourisson, G. and Nakatani, Y. (1994) The terpenoid theory of the origin of cellular life: the evolution of terpanoids to cholesterols. Chemistry and Biology, 1, 11–23CrossRefGoogle Scholar
Ourisson, G., Albrecht, P. and Rohmer, M. (1984) The microbial origin of fossil fuels. Scientific American, 251, 44–51CrossRefGoogle Scholar
Ourisson, G., Rohmer, M. and Poralla, K. (1987) Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annual Review of Microbiology, 41, 301–33CrossRefGoogle ScholarPubMed
Ovchinnikov, I. V., Götherström, A., Romanova, G. P., et al. (2000) Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature, 404, 490–3CrossRefGoogle ScholarPubMed
Overton, E. B., Sharp, W. D. and Roberts, P. (1994) Toxicity of petroleum. In: Basic Environmental Toxicology (L. G. Cockerham and B. S. Shane, eds.), CRC Press, Boca Raton, FL, pp. 133–56
Page, D. S., Boehm, P. D., Douglas, G. S. and Bence, A. E. (1995) Identification of hydrocarbon sources in the benthic sediments of Prince William Sound and the Gulf of Alaska following the Exxon Valdez oil spill. In: Exxon Valdez Oil Spill: Fate and Effects in Alaskan Waters (P. G. Wells, J. N. Butler and J. S. Hughes, eds.), American Society for Testing and Materials, Philadelphia, PA, pp. 41–83CrossRef
Page, D. S., Boehm, P. D., Douglas, G. S., et al. (1996a) The natural petroleum hydrocarbon background in subtidal sediments of Prince William Sound, Alaska, USA. Environmental Toxicology and Chemistry, 15, 1266–81CrossRefGoogle Scholar
Page, D. S., Boehm, P. D., Gilifillan, E. S., et al. (1996b) Effects of the Exxon Valdez oil spill on the subtidal organic geochemistry of two bays in Prince William Sound, Alaska. In: 19th Arctic and Marine Oilspill Program (AMOP) Technical Seminar, Calgary, Alberta, June 12–14, 1996. Proceedings, Vol. 2, Environment Canada, Emergencies Science Division, Ottawa, pp. 1195–209
Page, D. S., Boehm, P. D., Douglas, G. S., et al. (1997) An estimate of the annual input of natural petroleum hydrocarbons to seafloor sediments in Prince William Sound, Alaska. Marine Pollution Bulletin, 34, 744–9CrossRefGoogle Scholar
Page, D. S., Boehm, P. D., Douglas, G. S., et al. (1998) Petroleum sources in the western Gulf of Alaska/Shelikoff Strait Area. Marine Pollution Bulletin, 36, 1004–12CrossRefGoogle Scholar
Page, D. S., Boehm, P. D., Douglas, G. S., et al. (1999a) Pyrogenic polycyclic aromatic hydrocarbons in sediments record past human activity: a case study in Prince William Sound, Alaska. Marine Pollution Bulletin, 38, 247–60CrossRefGoogle Scholar
Page, D. S., Boehm, P. D., Douglas, G. S., et al. (1999b) Sources of background hydrocarbons in subtidal sediments of Prince William Sound and the Eastern Gulf of Alaska: part 2. Discriminating among multiple sources. Presented at the SETAC 20th Annual Meeting, November 14–18, 1999, Philadelphia, pp. 261
Page, D. S., Burns, W. A., Bence, A. E., et al. (2001) Resolving the origin of the petrogenic hydrocarbon background in Prince William Sound, Alaska. Environmental Science & Technology, 35, 471–9Google Scholar
Palenik, B. (2002) The genomics of symbiosis: hosts keep the baby and the bath water. Proceedings of the National Academy of Sciences, 99, 11996–7CrossRefGoogle ScholarPubMed
Palmer, S. E. (1984) Effect of water washing on C15+ hydrocarbon fraction of crude oils from northwest Palawan, Phillipines. American Association of Petroleum Geologists Bulletin, 68, 137–49Google Scholar
Palmer, S. E. (1993) Effect of biodegradation and water washing on crude oil composition. In: Organic Geochemistry (M. H. Engel and S. A. Macko, eds.), Plenum Press, New York, pp. 511–33CrossRef
Pan, C., Fu, J. and Sheng, G. (2000) Sequential extraction and compositional analysis of oil-bearing fluid inclusions in reservoir rocks from Kuche Depression, Tarim Basin. Chinese Science Bulletin, 45, 60–6CrossRefGoogle Scholar
Pan, C., Yang, J., Fu, J. and Sheng, G. (2003) Molecular correlation of free oil and inclusion oil of reservoir rocks in the Junggar Basin, China. Organic Geochemistry, 34, 357–74CrossRefGoogle Scholar
Parnell, J. (1988) Migration of biogenic hydrocarbons into granites: a review of hydrocarbons in British plutons. Marine and Petroleum Geology, 5, 385–96CrossRefGoogle Scholar
Parnell, J., Middleton, D., Honghan, C. and Hall, D. (2001) The use of integrated fluid inclusion studies in constraining oil charge history and reservoir compartmentation: examples from the Jeanne d'Arc Basin, offshore Newfoundland. Marine and Petroleum Geology, 18, 535–49CrossRefGoogle Scholar
Parsche, F. and Nerlich, A. (1995) Presence of drugs in different tissues of an Egyptian mummy. Fresenius' Journal of Analytical Chemistry, 352, 380–4CrossRefGoogle Scholar
Paseshnichenko, V. A. (1998) A new alternative non-mevalonate pathway for isoprenoid biosynthesis in eubacteria and plants. Biochemistry (Biokhimiia), 63, 139–48Google ScholarPubMed
Passey, Q. R., Creaney, S., Kulla, J. B., Moretti, F. J. and Stroud, J. D (1990) A practical model for organic richness from porosity and resistivity logs. American Association of Petroleum Geologists Bulletin, 74, 1777–94Google Scholar
Patience, R. L., Rowland, S. J. and Maxwell, J. R. (1978) The effect of maturation on the configuration of pristane in sediments and petroleum. Geochimica et Cosmochimica Acta, 42, 1871–6CrossRefGoogle Scholar
Patience, R. L., Yon, D. A., Ryback, G. and Maxwell, J. R. (1980) Acyclic isoprenoid alkanes and geochemical maturation. In: Advances in Organic Geochemistry 1979 (A. G. Douglas and J. R. Maxwell, eds.), Pergamon Press, New York, pp. 287–94CrossRef
Patience, R. L., Pedersen, V. B., Hanesand, T., et al. (1993) The Norwegian Industry Guide to Organic Geochemical Analyses, edn 4.0. The Norwegian Petroleum Directorate, Stavanger, Norway
Patin, S. (1999) Environmental Impact of the Offshore Oil and Gas Industry. EcoMonitor Publisher, East Northport, New York
Patrick, M., Koning, A. J. and Smith, A. B. (1985) Gas-liquid chromatographic analysis of fatty acids in food residues in ceramics found in Southwestern Cape. Archaeometry, 27, 231–6CrossRefGoogle Scholar
Patt, T. E. and Hanson, R. S. (1978) Intracytoplasmic membrane, phospholipid, and sterol content of Methylobacterium organophilum cells grown under different conditions. Journal of Bacteriology, 134, 636–44Google ScholarPubMed
Patterson, G. W. (1994) Phylogenetic distribution of sterols. In: Isopentenoids and Other Natural Products: Evolution and Function, ACS Symposium Series 562 (W. D. Nes, ed.), American Chemical Society, Washington, DC, pp. 90–108CrossRef
Payzant, J. D., Montgomery, D. S. and Strausz, O. P. (1986) Sulfides in petroleum. Organic Geochemistry, 9, 357–69CrossRefGoogle Scholar
Peabody, C. E. (1993) The association of cinnabar and bitumen in mercury deposits of the California Coast Ranges. In: Bitumens in Ore Deposite (J. Parnell, H. Kucha and P. Landais, eds.), Springer-Verlag, New York, pp. 178–209CrossRef
Peachey, C. P. (1995) Terebinth resin in antiquity: Possible uses in the Late Bronze Age Aegean region. M. A. thesis, Texas A&M University, College Park, TX
Pedersen, T. F. and Calvert, S. E. (1990) Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks. American Association of Petroleum Geologists Bulletin, 74, 454–66Google Scholar
Pelet, R. (1987) A model of organic sedimentation on present-day continental margins. In: Marine Petroleum Source Rocks (J. Brooks and A. J. Fleet, eds.), Geological Society, London, pp. 167–80CrossRef
Pepper, A. and Dodd, T. A. (1995) Single kinetic models of petroleum formation. Part II: oil-gas cracking. Marine and Petroleum Geochemistry, 12, 321–40CrossRefGoogle Scholar
Peters, K. E. (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. American Association of Petroleum Geologists Bulletin, 70, 318–29Google Scholar
Peters, K. E. (1999a) Rock-Eval pyrolysis. In: Encyclopedia of Geochemistry (C. P. Marshall and R. W. Fairbridge, eds.), Kluwer Academic Publishers, Boston, MA, pp. 551–5
Peters, K. E. (1999b) The Deep Hot Biosphere; Thomas Gold. Book review. Organic Geochemistry, 30, 473–5Google Scholar
Peters, K. E. (2000) Petroleum tricyclic terpanes: predicted physicochemical behavior from molecular mechanics calculations. Organic Geochemistry, 31, 497–507CrossRefGoogle Scholar
Peters, K. E. and Cassa, M. R. (1994) Applied source rock geochemistry. In: The Petroleum System – From Source to Trap (L. B. Magoon and W. G. Dow, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp. 93–117
Peters, K. E. and Creaney, S. (2004) Geochemical differentiation of Silurian and Devonian oils from Algeria. Geochemical Investigations: A Tribute to Isaac R. Kaplan (R. J. Hill, J. Leventhal, Z. Aizenshtat, et al., eds.), Geological Society of America, Boulder, CO, pp. 287–301
Peters, K. E. and Fowler, M. G. (2002) Applications of petroleum geochemistry to exploration and reservoir management. Organic Geochemistry, 33, 5–36CrossRefGoogle Scholar
Peters, K. E. and Moldowan, J. M. (1991) Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Organic Geochemistry, 17, 47–61CrossRefGoogle Scholar
Peters, K. E. and Moldowan, J. M. (1993) The Biomarker Guide. Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice-Hall, Englewood Cliffs, NJ
Peters, K. E. and Nelson, D. A. (1992) REESA – an expert system for geochemical logging of wells. American Association of Petroleum Geologists Annual Meeting Abstracts, 103Google Scholar
Peters, K. E. and Simoneit, B. R. T. (1982) Rock-Eval pyrolysis of Quaternary sediments from Leg 64, Sites 479 and 480, Gulf of California. Initial Reports Deep Sea Drilling Project, 64, 925–31Google Scholar
Peters, K. E., Rohrback, B. G. and Kaplan, I. R. (1981) Carbon and hydrogen stable isotope variations in kerogen during laboratory simulated thermal maturation. American Association of Petroleum Geologists Bulletin, 65, 501–8Google Scholar
Peters, K. E., Whelan, J. K., Hunt, J. M. and Tarafa, M. E. (1983) Programmed pyrolysis of organic matter from thermally altered Cretaceous black shales. American Association of Petroleum Geologists Bulletin, 67, 2137–46Google Scholar
Peters, K. E., Moldowan, J. M., Schoell, M. and Hempkins, W. B. (1986) Petroleum isotopic and biomarker composition related to source rock organic matter and depositional environment. Organic Geochemistry, 10, 17–27CrossRefGoogle Scholar
Peters, K. E., Moldowan, J. M., Driscole, A. R. and Demaison, G. J. (1989) Origin of Beatrice oil by cosourcing from Devonian and Middle Jurassic source rocks, Inner Moray Firth, UK.American Association of Petroleum Geologists Bulletin, 73, 454–71Google Scholar
Peters, K. E., Moldowan, J. M. and Sundararaman, P. (1990) Effects of hydrous pyrolysis on biomarker thermal maturity parameters: Monterey Phosphatic and Siliceous Members. Organic Geochemistry, 15, 249–65CrossRefGoogle Scholar
Peters, K. E., Scheuerman, G. L., Lee, C. Y., et al. (1992) Effects of refinery processes on biological markers. Energy & Fuels, 6, 560–77CrossRefGoogle Scholar
Peters, K. E., Kontorovich, A. E., Moldowan, J. M., et al. (1993) Geochemistry of selected oils and rocks from the central portion of the West Siberian Basin, Russia. American Association of Petroleum Geologists Bulletin, 77, 863–87Google Scholar
Peters, K. E., Elam, T. D., Pytte, M. H. and Sundararaman, P. (1994) Identification of petroleum systems adjacent to the San Andreas Fault, California, USA. In: The Petroleum System – From Source to Trap (L. B. Magoon and W. G. Dow, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp. 423–36
Peters, K. E., Clark, M. E., das Gupta, U., McCaffrey, M. A. and Lee, C. Y. (1995) Recognition of an Infracambrian source rock based on biomarkers in the Bagehwala-1 oil, India. American Association of Petroleum Geologists Bulletin, 79, 1481–94Google Scholar
Peters, K. E., Cunningham, A. E., Walters, C. C., Jiang, J. and Fan, Z. (1996a) Petroleum systems in the Jiangling-Dangyang area, Jianghan Basin, China. Organic Geochemistry, 24, 1035–60CrossRefGoogle Scholar
Peters, K. E., Moldowan, J. M., McCaffrey, M. A. and Fago, F. J. (1996b) Selective biodegradation of extended hopanes to 25-norhopanes in petroleum reservoirs. Insights from molecular mechanics. Organic Geochemistry, 24, 765–83CrossRefGoogle Scholar
Peters, K. E., Wagner, J. B., Carpenter, D. G. and Conrad, K. T. (1997) World class Devonian potential seen in eastern Madre de Dios Basin. Oil and Gas Journal, 95, 61–65, 84–87Google Scholar
Peters, K. E., Fraser, T. H., Amris, W., Rustanto, B. and Hermanto, E. (1999) Geochemistry of crude oils from eastern Indonesia. American Association of Petroleum Geologists Bulletin, 83, 1927–42Google Scholar
Petrov, A. A., Pustil'Nikova, S. D., Abriutina, N. N. and Kagramonova, G. R. (1976) Petroleum steranes and triterpanes. Neftekhimiia, 16, 411–27Google Scholar
Petrov, A. A., Vorobyova, N. S. and Zemskova, Z. K. (1990) Isoprenoid alkanes with irregular “head-to-head” linkages. Organic Geochemistry, 16, 1001–5CrossRefGoogle Scholar
Petsch, S. T., Eglinton, T. I. and Edwards, K. J. (2001) 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering. Science, 292, 1127–31CrossRefGoogle ScholarPubMed
Philippi, G. T. (1975) The deep subsurface temperature controlled origin of gaseous and gasoline-range hydrocarbons of petroleum. Geochimica et Cosmochimica Acta, 39, 1355–73CrossRefGoogle Scholar
Phillips, J. B. and Beens, J. (1999) Comprehensive two-dimensional gas chromatography: a hyphenated method with strong coupling between the two dimensions. Journal of Chromatography A, 856, 331–47CrossRefGoogle ScholarPubMed
Philp, R. P. (1985) Fossil Fuel Biomarkers. Elsevier, New York
Philp, R. P. and Gilbert, T. D. (1982) Unusual distribution of biological markers in an Australian crude oil. Nature, 299, 245–7CrossRefGoogle Scholar
Philp, R. P. and Brassell, S. (1986) Arguments against abiogenic origin for hydrocarbons. Chemical and Engineering News, 64, 2–3, 48, 59Google Scholar
Philp, R. P., Oung, J. and Lewis, C. A. (1988) Biomarker determinations in crude oils using a triple-stage quadrupole mass spectrometer. Journal of Chromatography, 446, 3–16CrossRefGoogle Scholar
Picha, F. J. and Peters, K. E. (1998) Biomarker oil-to-source rock correlation in the Western Carpathians and their foreland, Czech Republic. Petroleum Geoscience, 4, 289–302CrossRefGoogle Scholar
Pironon, J., Thiéry, R., Teinturier, S. and Walgenwitz, F. (2000) Water in petroleum inclusions: evidence from Raman and FT-IR measurements, PVT consequences. Journal of Geochemical Exploration, 69–70, 663–8CrossRefGoogle Scholar
Pollard, A. M. and Heron, C. (1996) Archeological Chemistry. Royal Society of Chemistry, Cambridge, UK
Pompeckj, J. F. (1901). Die Juraablagerungen zwischen Regensburg und Regenstauf. Geologisches Jahrbuch, 14, 139–220Google Scholar
Ponnamperuma, C. and Pering, K. (1966) Possible abiogenic origin of some naturally occurring hydrocarbons. Nature, 209, 979–82CrossRefGoogle Scholar
Poole, C. F. and Schuette, S. A. (1984) Contemporary Practice of Chromatography. Elsevier, New York
Popp, B. N., Laws, E. A., Bidigare, R. R., et al. (1998) Effect of phytoplankton cell geometry on carbon isotope fractionation. Geochimica et Cosmochimica Acta, 62, 69–77CrossRefGoogle Scholar
Poralla, K., Muth, G. and Härtner, T. (2000) Hopanoids are formed during transition from substrate to aerial hyphae in Streptomyces coelicolor A3(2). FEMS Microbiology Letters, 189, 93–5CrossRefGoogle Scholar
Porte, C., Biosca, X., Pastor, D., Sole, M. and Albaigés, J. (2000) Aegean Sea oil spill. 2. Temporal study of the hydrocarbons accumulation in bivalves. Environmental Science & Technology, 34, 5067–75CrossRefGoogle Scholar
Posamentier, H. W., Jervey, M. T. and Vail, P. R. (1988) Eustatic controls on clastic deposition. I – conceptual framework. In: Sea-level Changes – An Integrated Approach (C. K. Wilgus, B. S. Hastings, C. G. St. C. Kendall, et al., eds.), Society of Economic Paleontologists and Mineralogists, Tulsa, OK, pp. 109–124
Potter, J., Rankin, A. H. and Treloar, P. J. (2001) The nature and origin of abiogenic hydrocarbons in the alkaline igneous intrusions, Khibina and Lovozero in the Kola Peninsula, N. W. Presented at the Geological Society London Meeting on Hydrocarbons in Crystalline Rocks, February 13–14, 2001, London
Powell, T. G. and McKirdy, D. M. (1973) Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia. Nature, 243, 37–9Google Scholar
Premuzic, E. T., Gaffney, J. S. and Manowitz, B. (1986) The importance of sulfur isotope ratios in the differentiation of Prudhoe Bay crude oils. Journal of Geochemical Exploration, 26, 151–9CrossRefGoogle Scholar
Price, L. C. (1992) Thermal stability of hydrocarbons in nature: limits, evidence, characteristics, and possible controls. Geochimica et Cosmochimica Acta, 57, 3261–80CrossRefGoogle Scholar
Price, L. C. and Barker, C. E. (1985) Suppression of vitrinite reflectance in amorphous rich kerogen – a major unrecognized problem. Journal of Petroleum Geology, 8, 59–84CrossRefGoogle Scholar
Price, L. C. and Schoell, M. (1995) Constraints on the origins of hydrocarbon gas from compositions of gases at their site of origin. Nature, 378, 368–71CrossRefGoogle ScholarPubMed
Prince, R. C. (1993) Petroleum spill bioremediation in marine environments. Critical Reviews Microbiology, 19, 217–42CrossRefGoogle ScholarPubMed
Prince, R. C. (1998) Crude oil biodegradation. In: The Encyclopedia of Environmental Analysis and Remediation 2 (R. A. Meyers, ed.), John Wiley & Sons, New York, pp. 1327–42
Prince, R. C. and Bragg, J. R (1997) Shoreline bioremediation following the Exxon Valdez oil spill in Alaska. Journal of Bioremediation, 1, 97–104CrossRefGoogle Scholar
Prince, R. C., Elmendorf, D. L., Lute, J. R., et al. (1994) 17α(H),21β(H)-hopane as a conserved internal standard for estimating the biodegradation of crude oil. Environmental Science & Technology, 28, 142–5CrossRefGoogle Scholar
Prince, R. C., Drake, E. N., Madden, P. C. and Douglas, G. S. (1995) Biodegradation of polycyclic aromatic hydrocarbons in a historically contaminated soil. In: In Situ and On-site Bioremediation (4–2) (B. C. Alleman and A. Leeson, eds.), Battelle Press, Columbus, OH, pp. 205–10
Prince, R. C., Stibrany, R. T., Hardenstine, J., Douglas, G. S. and Owens, E. H. (2002) Aqueous vapor extraction: a previously unrecognized weathering process affecting oil spills in vigorously aerated water. Environmental Science & Technology, 36, 2822–5CrossRefGoogle ScholarPubMed
Proefke, M. L. and Rinehart, K. L. (1992) Analysis of an Egyptian mummy resin by mass spectrometry. Journal of the American Society for Mass Spectrometry, 3, 582–9CrossRefGoogle ScholarPubMed
Proefke, M. L., Rinehart, K. L., Mastura, R., Ambrose, S. H. and Wisseman, S. U. (1992) Probing the mysteries of ancient Egypt. Chemical analysis of a Roman period Egyptian mummy. Analytical Chemistry, 64, 106A–111ACrossRefGoogle Scholar
Prowse, W. G., Keely, B. J. and Maxwell, J. R. (1990) A novel sedimentary metallochlorin. Organic Geochemistry, 16, 1059–65CrossRefGoogle Scholar
Pulak, C. (1988) The Bronze Age shipwreck at Ulu Burun, Turkey: 1985 campaign. American Journal of Archaeology, 92, 1–38CrossRefGoogle Scholar
Pursch, M., Sun, K., Winniford, B., et al. (2002) Modulation techniques and applications in comprehensive two-dimensional gas chromatography (GC × GC). Analytical and Bioanalytical Chemistry, 373, 356–67CrossRefGoogle Scholar
Pustil'Nikova, S. D., Abryutina, N. N., Kayukova, G. P. and Petrov, A. A. (1980) Equilibrium composition and properties of epimeric cholestanes. Neftekhimia, 20, 26–33Google Scholar
Quann, R. J. (1998) Modeling the chemistry of complex petroleum mixtures. Environmental Health Perspectives, 106, 1441–8CrossRefGoogle ScholarPubMed
Quann, R. J. and Jaffe, S. B. (1992) Structured Oriented Lumping: describing the chemistry of complex hydrocarbon mixtures. I&EC Research, 31, 2483–97Google Scholar
Quigley, T. M. and McKenzie, A. S. (1988) The temperature of oil and gas formation in the subsurface. Nature, 333, 549–52CrossRefGoogle Scholar
Quirke, J. M. E., Cuesta, L. L., Yost, R. A., Johnson, J. and Britton, E. D. (1989) Studies on high carbon number geoporphyrins by tandem mass spectrometry. Organic Geochemistry, 14, 43–50CrossRefGoogle Scholar
Rafferty, S. M. (2002) Identification of nicotine by gas chromatography/mass spectroscopy analysis of smoking pipe residue. Journal of Archaeological Science, 29, 897–907CrossRefGoogle Scholar
Raiswell, R. and Berner, R. A. (1985) Pyrite formation in euxinic and semi-euxinic sediments. American Journal of Science, 285, 710–24CrossRefGoogle Scholar
, Ran X., Fazio, G. C. and Matsuda, S. P. T. (2004) On the origins of triterpenoid skeletal diversity. Phytochemistry, 65, 261–91Google Scholar
Raymond, J., Zhaxybayeva, O., Gogarten, J. P., Gerdes, S. Y. and Blankenship, R. E. (2003) Whole-genome analysis of photosynthetic prokaryotes. Science, 298, 1616–20Google Scholar
Readman, J. W., Bartocci, J., Tolosa, I., et al. (1996) Recovery of the coastal marine environment in the Gulf following the 1991 war-related oil spills. Marine Pollution Bulletin, 32, 493–8CrossRefGoogle Scholar
Redfield, A. C. (1942) The processes determining the concentrations of oxygen, phosphate and other organic derivatives within the depths of the Atlantic Ocean. Papers on Physical Oceanography and Meteorology, 9, 1–22Google Scholar
Reed, J. D., Illich, H. A. and Horsfield, B. (1986) Biochemical evolutionary significance of Ordovician oils and their sources. Organic Geochemistry, 10, 347–58CrossRefGoogle Scholar
Regert, M., Bland, H. A., Dudd, S. N., Bergen, P. F. and Evershed, R. P. (1998a) Free and bound fatty acid oxidation products in archaeological ceramic vessels. Proceedings of the Royal Society of London, Series B, 265, 2027–32CrossRefGoogle Scholar
Regert, M., Delacotte, J.-M., Menu, M., Petrequin, P. and Rolando, C. (1998b) Identification of haftling adhesives from two lake dwellings at Chalain (Jura, France). Ancient Biomolecules, 2, 156–63Google Scholar
Relethford, J. H. (1998) Genetics of modern human origins and diversity. Annual Review of Anthropology, 27, 1–7CrossRefGoogle Scholar
Requejo, A. G. (1992) Quantitative analysis of triterpane and sterane biomarkers: methodology and applications in molecular maturity studies. In: Biological Markers in Sediments and Petroleum (J. M. Moldowan, P. Albrecht and R. P. Philp, eds.), Prentice-Hall, Englewood Cliffs, NJ, pp. 222–40
Reunanen, M., Holmbom, B. and Edgren, T. (1993) Analysis of archaeological birch bark pitches. Holzforschung, 47, 175–7Google Scholar
Rhodes, D. C. and Morse, J. W. (1971) Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia, 4, 413–28CrossRefGoogle Scholar
Rice, D. D. and Claypool, G. E. (1981) Generation, accumulation, and resource potential of biogenic gas. American Association of Petroleum Geologists Bulletin, 65, 5–25Google Scholar
Rice, D. D., Law, B. E. and Clayton, J. L. (1993) Coalbed gas – an undeveloped resource. In: The Future of Energy Gases (D. G. Howell, K. Wiese, M. Fanelli, L. Zimk, and F. Cole, eds.), U.S. Geological Survey Professional Paper 1570, U.S. Geological Survey, Washington, DC, pp. 389–404
Rice, S. D., Spies, R. B., Douglas, D. A. and Wright, B. A. (1996) Proceedings of the Exxon Valdez Oil Spill Symposium, Anchorage Alaska, 2–5 February, 1993. American Fisheries Society, Alpharetta, GA
Richards, M. P. and Hedges, R. E. M. (1999) A Neolithic revolution? New evidence of diet in the British Neolithic. Antiquity, 73, 891–7CrossRefGoogle Scholar
Richards, M. P., Jacobi, R., Currant, A., Stringer, C. and Hedges, R. E. M. (2000a) Gough's Cave and Sun Hole Cave human stable isotope values indicate a high animal protein diet in the British Upper Palaeolithic. Journal of Archaeological Science, 27, 1–3CrossRefGoogle Scholar
Richards, M. P., Pettitt, P. B., Trinkaus, E., et al. (2000b) Neanderthal diet at Vindija and Neanderthal predation: the evidence from stable isotopes. Proceedings of the National Academy of Science, 97, 7663–6CrossRefGoogle Scholar
Riebesell, U., Revill, A. T., Holdsworth, D. G. and Volkman, J. K. (2000) The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi. Geochimica et Cosmochimica Acta, 64, 4179–92CrossRefGoogle Scholar
Rieley, G., Collier, R. J., Jones, D. M., et al. (1991) Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds. Nature, 352, 425–7CrossRefGoogle Scholar
Riva, A., Caccialanza, P. G. and Quagliaroli, F. (1988) Recognition of 18β(H)-oleanane in several crudes and Tertiary-Upper Cretaceous sediments. Definition of a new maturity parameter. Organic Geochemistry, 13, 671–5CrossRefGoogle Scholar
Robison, C. R., Gijzel, P. and Darnell, L. M. (2000) The transmittance color index of amorphous organic matter: a thermal maturity indicator for petroleum source rocks. International Journal of Coal Geology, 43, 83–103CrossRefGoogle Scholar
Rodrigues, D. C., Koike, L., De, A. M., et al. (2000) Carboxylic acids of marine evaporitic oils from Sergipe-Alagoas Basin, Brazil. Organic Geochemistry, 31, 1209–22CrossRefGoogle Scholar
Roedder, E. (1984) Fluid inclusions. Reviews in Mineralogy, 12, 1–644Google Scholar
Rohdich, F., Kis, K., Bacher, A. and Eisenreich, W. (2001) The non-mevalonate pathway of isoprenoids: genes, enzymes and intermediates. Current Opinion in Chemical Biology, 5, 535–40CrossRefGoogle ScholarPubMed
Rohmer, M. (1987) The hopanoids, prokaryotic triterpenoids and sterol surrogates. In: Surface Structures of Microorganisms and their Interactions with the Mammalian Host (E. Schriner et al., eds.), VCH Publishing, Weinlein, Germany, pp. 227–42
Rohmer, M. (1993) The biosynthesis of triterpenoids of the hopane series in eubacteria: a mine of new enzyme reactions. Pure and Applied Chemistry, 65, 1293–8CrossRefGoogle Scholar
Rohmer, M. (1999) A mevalonate-independent route to isopentenyl diphosphate. In: Comprehensive Natural Product Chemistry 2 (D. Barton and K. Nakanishi, eds.), Pergamon Press, Oxford, UK, pp. 45–68CrossRef
Rohmer, M. and Bisseret, P. (1994) Hopanoid and other polyterpenoid biosynthesis in eubacteria: phyologenetic significance. In: Isopentenoids and Other Natural Products: Evolution and Function, ACS Symposium Series 562 (W. D. Nes, ed.), American Chemical Society, Washington, DC, pp. 31–43CrossRef
Rohmer, M. and Ourisson, G. (1976a) Structure des bactériohopanetétrols d' Acetobacter xylinum. Tetrahedron Letters, 17, 3633–6CrossRefGoogle Scholar
Rohmer, M. and Ourisson, G. (1976b) Dérivés du bactériohopane: variations structurales et répartition. Tetrahedron Letters, 17, 3637–40CrossRefGoogle Scholar
Rohmer, M., Bouvier, P. and Ourisson, G. (1979) Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proceedings of the National Academy of Sciences USA, 76, 847–51CrossRefGoogle ScholarPubMed
Rohmer, M., Knani, M., Simonin, P., Sutter, B. and Sahm, H. (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochemical Journal, 295, 121–9CrossRefGoogle ScholarPubMed
Rollo, F. and Marota, I. (1999) How microbial ancient DNA, found in association with human remains, can be interpreted. Philosophical Transactions of the Royal Society London, Biological Sciences, 354, 111–20CrossRefGoogle ScholarPubMed
Rontani, J.-F. and Volkman, J. K. (2003) Phytol degradation products as biogeochemical tracers in aquatic environments. Organic Geochemistry, 34, 1–35CrossRefGoogle Scholar
Rooney, M. A. (1995) Carbon isotope ratios of light hydrocarbons as indicators of thermochemical sulfate reduction. In: Organic Geochemistry: Developments and Applications to Energy, Climate, Environment and Human History (J. O. Grimalt and C. Dorronsoro, eds.), AIGOA, Donostia-San Sebastian, Spain, pp. 523–5
Rosell-Melé, A., Carter, J. F. and Maxwell, J. R. (1999) Liquid chromatography/tandem mass spectrometry of free base alkyl porphyrins for the characterization of the macrocyclic substitutents in components of complex mixtures. Rapid Communications in Mass Spectrometry, 13, 568–733.0.CO;2-J>CrossRefGoogle Scholar
Rowan, E. L. and Goldhaber, M. B. (1995) Duration of mineralization and fluid-flow history of the Upper Mississippi Valley zinc-lead district. Geology (Boulder), 23, 609–122.3.CO;2>CrossRefGoogle Scholar
Rowan, E. L. and Goldhaber, M. B. (1996) Fluid Inclusions and Biomarkers in the Upper Mississippi Valley Zinc-Lead District – Implications for the Fluid-Flow and Thermal History of the Illinois Basin. U.S. Geological Survey Bulletin 2094-F, U.S. Geological Survey, Washington, DC
Rowan, E. L., Goldhaber, M. B. and Hatch, J. R. (1994a) Biomarker and fluid inclusion measurements as constraints on the time-temperature and fluid-flow history of the northern Illinois Basin and Upper Mississippi Valley zinc district. In: Proceedings of the Illinois Basin Energy and Mineral Resources Workshop (J. L. Ridgley, J. A. Drahovzal, B. D. Keith and D. R. Kolata, eds.), U.S. Geological Survey, Washington, DC, pp. 40–1
Rowan, E. L., Goldhaber, M. B. and Hatch, J. R. (1994b) Regional fluid flow and thermal history of the Illinois Basin: evidence from fluid inclusions and biomarkers in the Upper Mississippi Valley zinc district. Eos, Transactions, American Geophysical Union, 75, 675Google Scholar
Rowan, E. L., Goldhaber, M. B. and Hatch, J. R. (1995) Duration of mineralization in the Upper Mississippi Valley zinc-lead district: implications for the thermal-hydrologic history of the Illinois Basin. Presented at the Annual Meeting of the Geological Society of America, November 4–6, 1995, New Orleans, LA
Rowe, D. and Muehlenbachs, K. (1999) Isotopic fingerprints of shallow gases in the Western Canadian Sedimentary Basin: tools for remediation of leaking heavy oil wells. Organic Geochemistry, 30, 861–71CrossRefGoogle Scholar
Rowland, S. J. and Maxwell, J. R. (1984) Reworked triterpenoid and steroid hydrocarbons in a Recent sediment. Geochimica et Cosmochimica Acta, 48, 617–24CrossRefGoogle Scholar
Rowland, S., Donkin, P., Smith, E. and Wraige, E. (2001) Aromatic hydrocarbon “humps” in the marine environment: unrecognized toxins?Environmental Science & Technology, 35, 2640–4CrossRefGoogle ScholarPubMed
Rubinstein, I., Strausz, O. P., Spyckerelle, C., Crawford, R. J. and Westlake, D. W. S. (1977) The origin of oil sand bitumens of Alberta. Geochimica et Cosmochimica Acta, 41, 1341–53CrossRefGoogle Scholar
Ruble, T. E., Lisk, M., Ahmed, M., et al. (2000) Geochemical appraisal of palaeo-oil columns: implications for petroleum systems analysis in the Bonaparte Basin, Australia. Presented at the Annual Meeting of the American Association of Petroleum Geologists, April 16–19, 2000, New Orleans, LA
Ruble, T. E., , Lewan M. D. and Philp, R. P. (2001) New insights on the Green River petroleum system in the Unita Basin from hydrous pyrolysis experiments. American Association of Petroleum Geologists Bulletin, 85, 1333–71Google Scholar
Rullkötter, J. and Nissenbaum, A. (1988) Dead Sea asphalt in Egyptian mummies: molecular evidence. Naturwissenschaften, 75, 618–21CrossRefGoogle ScholarPubMed
Rullkötter, J., Aizenshtat, Z. and Spiro, B. (1984) Biological markers in bitumens and pyrolyzates of Upper Cretaceous bituminous chalks from the Ghareb Formation (Israel). Geochimica et Cosmochimica Acta, 48, 151–7CrossRefGoogle Scholar
Rullkötter, J., Spiro, B. and Nissenbaum, A. (1985) Biological marker characteristics of oils and asphalts from carbonate source rocks in a rapidly subsiding graben, Dead Sea, Israel. Geochimica et Cosmochimica Acta, 49, 1357–70CrossRefGoogle Scholar
Rullkötter, J., Meyers, P. A., Schaefer, R. G. and Dunham, K. W. (1986) Oil generation in the Michigan Basin: a biological marker and carbon isotope approach. Organic Geochemistry, 10, 359–75CrossRefGoogle Scholar
Rushdi, A. I. and Simoneit, B. R. T. (2001) Lipid formation by aqueous Fischer-Tropsch-type synthesis over a temperature range of 100 to 400°C. Origins of Life and Evolution of the Biosphere, 31, 103–18CrossRefGoogle Scholar
Ruthenberg, K. A., Beck, C. W. and Stout, E. C. (2001) Betulin – fate of a birch tar biomarker. In: Archaeological Sciences Conference Proceedings, Durham 97 (A. Millard, ed.), British Archaeological Reports, Oxford, UK, pp. 91–5
Ruthven, D. M. (1988) Zeolites as selective adsorbents. Chemical and Engineering Progress, 84, 42–50Google Scholar
Ryan, C. G. and Griffin, W. L. (1993) The nuclear microprobe as a tool in geology and mineral exploration. Nuclear Instruments and Methods in Physics Research B, 77, 381–98CrossRefGoogle Scholar
Sahm, H., Rohmer, M., Bringer-Meyer, S., Sprenger, G. A. and Welle, R. (1993) Biochemistry and physiology of hopanoids in bacteria. Advances in Microbial Physiology, 35, 243–73Google Scholar
Salvi, S. and Williams-Jones, A. E. (1997) Fischer-Tropsch synthesis of hydrocarbons during sub-solidus alteration of the Strange Lake peralkaline granite, Quebec/ Labrador, Canada. Geochemica et Cosmochimica Acta, 61, 83–99CrossRefGoogle Scholar
Santos Neto, E. V. and Hayes, J. M. (1999) Use of hydrogen and carbon stable isotopes characterizing oils from the Potiguar Basin (onshore), northeastern Brazil. American Association of Petroleum Geologists Bulletin, 83: 496–518Google Scholar
Santos Neto, E. V., Hayes, J. M. and Takaki, T. (1998) Isotopic biogeochemistry of the Neocomian lacustrine and Upper Aptian marine-evaporitic sediments of the Potiguar Basin, northeastern Brazil. Organic Geochemistry, 28, 361–81CrossRefGoogle Scholar
Sasaki, T., Maki, H., Ishihara, M. and Harayama, S. (1998) Vanadium as an internal marker to evaluate microbial degradation of crude oil. Environmental Science & Technology, 33, 3618–21CrossRefGoogle Scholar
Sassen, R., Roberts, H. H., Aharon, P., et al. (1993) Chemosynthetic bacterial mats at cold hydrocarbon seeps, Gulf of Mexico continental slope. Organic Geochemistry, 20, 77–89CrossRefGoogle Scholar
Sauter, F., Jordis, U. and Hayek, E. (1992) Chemische Untersuchungen der Kittschaftungs-Materialien. In: Der Mann im Eis, Band 1, Veroffentlichungen der Universitat Innsbruck 187 (F. Hopfel, W. W. Platzer and K. Spindler, eds.), Universitat Innsbruck, Innsbruck, Austria, pp. 435–41
Savrda, C. E. (1995) Ichnologic applications in paleoceanographic, paleoclimatic, and sea-level studies. Palaios, 10, 565–77CrossRefGoogle Scholar
Savrda, E. E. and Bottjer, D. J. (1986) Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology, 14, 3–62.0.CO;2>CrossRefGoogle Scholar
Scalan, R. S. and Smith, J. E. (1970) An improved measure of the odd-to-even predominance in the normal alkanes of sediment extracts and petroleum. Geochimica et Cosmochimica Acta, 34, 611–20CrossRefGoogle Scholar
Schaefer, R. G. (1992) Zur Geochemie niedrigmolekularer Kohlenwasserstoffe im Posidonienschiefer der Hilsmulde. Erdos and Kohle – Erdgas Petrochemie, 45, 73–8Google Scholar
Schaefer, R. G. and Littke, R. (1988) Maturity-related compositional changes in the low-molecular-weight hydrocarbon fraction of Toarcian shales. Organic Geochemistry, 13, 887–92CrossRefGoogle Scholar
Schäfer, T. (1993) Responding to “First identification of drugs in Egyptian mummies”. Naturwissenschaften, 80, 243–4Google Scholar
Schenk, J. E. A., Herrmann, R. G., Jeon, K. W., Muller, N. E. and Schwemmler, W. (1997) Eukaryotism and Symbiosis. Springer, New York
Schildowski, M. and Aharon, P. (1992) Carbon cycle and carbon isotope record: geochemical impact of life over 3.89 Ga of Earth history. In: Early Organic Evolution: Implications for Mineral and Energy Resources (M. Schildowski, S. Golubic, M. M. Kimberley and P. A. Trudinger, eds.), Springer-Verlag, Berlin, pp. 147–75
Schildowski, M., Matzigkeit, U. and Krumbein, W. E. (1984) Superheavy organic carbon from hypersaline microbial mats. Naturwissenschaften, 71, 303–8CrossRefGoogle Scholar
Schimmelmann, A., Lewan, M. D. and Wintsch, R. P. (1999) D/H isotope ratios of kerogen, bitumen, oil and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III. Geochimica et Cosmochimica Acta, 63, 3751–66CrossRefGoogle Scholar
Schleyer, P. (1957) A simple preparation of adamantane. Journal of the American Chemical Society, 79, 3292CrossRefGoogle Scholar
Schleyer, P. von R. (1990) My thirty years in hydrocarbon cages: from adamantane to dodecahedrane. In: Cage Hydrocarbons (G. A. Olah, ed.), John Wiley & Sons, New York, pp. 1–38
Schmid, J. C., Connan, J. and Albrecht, P. (1987) Occurrence and geochemical significance of long-chain dialkylthiocyclopentanes. Nature, 329, 54–6CrossRefGoogle Scholar
Schmidt, G. W., Beckmann, D. D. and Torkelson, B. E. (2002) A technique for estimating the age of regular/mid-grade gasolines released to the subsurface since the early 1970s. Environmental Forensics, 3, 145–62CrossRefGoogle Scholar
Schmoker, J. W. (1981) Determination of organic matter content of Appalachian Devonian shales from gamma-ray logs. American Association of Petroleum Geologists Bulletin, 65, 1285–98Google Scholar
Schoell, M. (1983) Genetic characteristics of natural gases. American Association of Petroleum Geologists Bulletin, 67, 2225–38Google Scholar
Schoell, M. (1984) Stable isotopes in petroleum research. In: Advances in Petroleum Geochemistry, Vol. 1 (J. Brooks and D. H. Welte, eds.), Academic Press, London, pp. 215–45CrossRef
Schoell, M. (1988) Multiple origins of methane in the Earth. Chemical Geology, 71, 1–10CrossRefGoogle Scholar
Schoell, M. and Hayes, J. M. (1994) Compound-specific isotope analysis in biogeochemistry and petroleum research. Organic Geochemistry, 21, 1–827Google Scholar
Schoell, M. and Wellmer, F.-W. (1981) Anomalous 13C depletion in early Precambrian graphites from Superior Province, Canada. Nature, 290, 696–9CrossRefGoogle Scholar
Schoell, M., McCaffrey, M. A., Fago, F. J. and Moldowan, J. M. (1992) Carbon isotopic compositions of 23,30-bisnorhopanes and other biological markers in a Monterey crude oil. Geochimica et Cosmochimica Acta, 56, 1391–9CrossRefGoogle Scholar
Schoell, M., Hwang, R. J., Carlson, R. M. K. and Welton, J. E. (1994) Carbon isotopic composition of individual biomarkers in gilstonites (Utah). Organic Geochemistry, 21, 673–83CrossRefGoogle Scholar
Schoell, M., Dias, R. F., Carlson, R. M. K., et al. (1997) Carbon isotope systematics in diamondoid hydrocarbons. Presented at the 18th Meeting on Organic Geochemistry, September 22–26, 1997, Maastricht, the Netherlands
Schouten, S., Bowman, J. P., Rijpstra, W. I. C. and Sinninghe Damsté, J. S. (2000a) Sterols in a psychrophilic methanotroph, Methylosphaera hansonii. FEMS Microbiology Letters, 186, 193–5CrossRefGoogle Scholar
Schouten, S., Kaam-Peters, H. M. E., Rijpstra, W. I. C., Schoell, M. and Sinninghe Damsté, J. S. (2000b) Effects of an oceanic anoxic event on the stable carbon isotope composition of Early Toarcian carbon. American Journal of Science, 300, 1–22CrossRefGoogle Scholar
Schubert, K., Rose, G., Wachtel, H., Horhold, C. and Ikekawa, N. (1968) Zum vorkommen von sterinen in bacterien. European Journal of Biochemistry, 5, 246CrossRefGoogle Scholar
Schuchert, C. (1915) The conditions of black shale deposition as illustrated by Kuperschiefer and Lias of Germany. Proceedings of the American Philosophical Society, 54, 259–69Google Scholar
Schulz, H. D., Dahmke, A., Schinzel, U., Wallman, K. and Zabel, M. (1994) Early diagenetic processes, fluxes, and reaction rates in sediments of the South Atlantic. Geochimica et Cosmochimica Acta, 58, 2041–60CrossRefGoogle Scholar
Schulz, L. K., Wilhelms, A.Rein, E. and Steen, A. S. (2001) Application of diamondoids to distinguish source rock facies. Organic Geochemistry, 32, 365–75CrossRefGoogle Scholar
Schurig, V. (1994) Review: enantiomer separation by gas chromatography on chiral stationary phases. Journal of Chromatography, A666, 111–29CrossRefGoogle Scholar
Schurig, V. and Nowotny, P. (1988) Separation of enantiomers on diluted permethylated β-cyclodextrin by high-resolution gas chromatography. Journal of Chromatography, 441, 155–63CrossRefGoogle Scholar
Scotchman, I. C., Griffith, C. E., Holmes, A. J. and Jones, D. M. (1998) The Jurassic petroleum system north and west of Britain: a geochemical oil-source correlation study. Organic Geochemistry, 29, 671–700CrossRefGoogle Scholar
Scott, A. R., Kaiser, W. R. and Ayers, W. B., Jr (1994) Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico – implications for coalbed gas producibility. American Association of Petroleum Geologists Bulletin, 78, 1186–209Google Scholar
Scrimgeour, C. M., Begley, I. S. and Thomason, M. L. (1999) Measurements of deuterium incorporation into fatty acids by gas chromatography/isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 13, 271–743.0.CO;2-6>CrossRefGoogle Scholar
Seewald, J. S. (2001) Model for the origin of carboxylic acids in basinal brines. Geochimica et Cosmochimica Acta, 65, 3779–89CrossRefGoogle Scholar
Seifert, W. K. (1975) Carboxylic acids in petroleum in sediments. Fortschritte der Chemie Organischer Naturstoffe, 32, 1–49Google ScholarPubMed
Seifert, W. K. (1977) Source rock/oil correlations by C27–C30 biological marker hydrocarbons. In: Advances in Organic Geochemistry 1974 (R. Campos and J. Goni, eds.), ENADIMSA, Madrid, pp. 21–44
Seifert, W. K. (1978) Steranes and terpanes in kerogen pyrolysis for correlation of oils and source rocks. Geochimica et Cosmochimica Acta, 42, 473–84CrossRefGoogle Scholar
Seifert, W. K. and Moldowan, J. M. (1979) The effect of biodegradation on steranes and terpanes in crude oils. Geochimica et Cosmochimica Acta, 43, 111–26CrossRefGoogle Scholar
Seifert, W. K. and Moldowan, J. M. (1980) The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. Physics and Chemistry of the Earth, 12, 229–37CrossRefGoogle Scholar
Seifert, W. K. and Moldowan, J. M. (1986) Use of biological markers in petroleum exploration. In: Methods in Geochemistry and Geophysics Vol. 24 (R. B. Johns, ed.), Elsevier, Amsterdam, pp. 261–90
Seifert, W. K., Moldowan, J. M. and Jones, R. W. (1980) Application of biological marker chemistry to petroleum exploration. In: Proceedings of the Tenth World Petroleum Congress, Heyden & Son, Inc., Philadelphia, PA pp. 425–40
Seifert, W. K., Carlson, R. M. K. and Moldowan, J. M. (1983) Geomimetic synthesis, structure assignment, and geochemical correlation application of monoaromatized petroleum steranes. In: Advances in Organic Geochemistry 1981 (M. Bjorøy, C. Albrecht, C. Cornford, et al., eds.), John Wiley & Sons, New York, pp. 710–24
Sessions, A. L., Burgoyne, T. W., Schimmelmann, A. and Hayes, J. M. (1999) Fractionation of hydrogen isotopes in lipid biosynthesis. Organic Geochemistry, 30, 1193–200CrossRefGoogle Scholar
Seufferheld, M., Vieira, M. C. F., Ruiz, F. A., et al. (2003) Identification of organelles in bacteria similar to acidocalcisomes of unicellular eukaryotes. Journal of Biological Chemistry, 278, 299, 971–8CrossRefGoogle ScholarPubMed
Shah, R., Gale, J. D., Payne, M. C. and Lee, M.-H. (1996) Understanding the catalytic behaviour of zeolites: first principles study of adsorption of methanol. Science, 271, 1395–7CrossRefGoogle Scholar
Sheldrick, C., Lowe, J. J. and Reynier, M. J. (1997) Palaeolithic barbed point from Gransmoor, East Yorkshire, England. Proceedings of the Prehistoric Society, 63, 359–70CrossRefGoogle Scholar
Shelkov, D., Verkhovsky, A. B., Milledge, H. J. and Pillinger, C. T. (1997) Carbonado: a comparison between Brazilian and Ubangui sources with other forms of microcrystalline diamond based on carbon and nitrogen isotopes [in Russian]. Geologiya i Geofizika, 38, 315–22Google Scholar
Shellie, R. A., Marriott, P. J. and Morrison, P. (2001) Concepts and preliminary observations on the triple-dimensional analysis of complex volatile samples by using GC×GC-TOFMS. Analytical Chemistry, 73, 4861–7CrossRefGoogle Scholar
Sherblom, P. M., Henry, M. S. and Kelly, D. (1997) Questions remain in the use of coprostanol and epicoprostanol as domestic waste markers: examples from coastal Florida. In: Molecular Markers in Environmental Geochemistry (R. P. Eganhouse, ed.), American Chemical Society, Washington, DC, pp. 320–31CrossRef
Sherwood Lollar, B. S., Frape, S. K., Weise, S. M., et al. (1993) Abiogenic methanogenesis in crystalline rocks. Geochimica et Cosmochimica Acta, 57, 5087–97CrossRefGoogle Scholar
Sherwood Lollar, B., Westgate, T. D., Ward, J. A., et al. (2002) Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs. Nature, 416, 522–4CrossRefGoogle ScholarPubMed
Shigenaka, G. and Henry, C. B., Jr (1995) Use of mussels and semipermeable membrane devices to assess bioavailability of residual polynuclear aromatic hydrocarbons three years after the Exxon Valdez oil spill. In: Exxon Valdez Oil Spill: Fate and Effects in Alaskan Waters (P. G. Wells, J. N. Butler and J. S. Hughes, eds.), American Society for Testing and Materials, PA, p. 239–60CrossRef
Shock, E. L. (1988) Organic acid metastability in sedimentary basins. Geology, 16, 886–902.3.CO;2>CrossRefGoogle Scholar
Shock, E. L. (1994) Application of thermodynamic calculations to geochemical processes involving organic acids. In: Organic Acids in Geological Processes (E. D. Pittman and M. D. Lewan, eds.), Springer-Verlag, New York, pp. 270–318CrossRef
Shoeninger, M. J. and DeNiro, M. J. (1984) Nitrogen and carbon isotopic composition of bone-collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta, 48, 625–39CrossRefGoogle Scholar
Short, J. W. and Babcock, M. M. (1996) Prespill and postspill concentrations of hydrocarbons in mussels and sediments in Prince William Sound. In: Proceedings of the Exxon Valdez Oil Spill Symposium, Anchorage, 1993. American Fisheries Society Symposium 18 (S. S. Rice, R. B. Spies, D. A. Wolfe and B. A. Wright, eds.), American Fisheries Society, Bethesda, MD, pp. 149–68
Short, J. W. and Heintz, R. A. (1997) Identification of Exxon Valdez oil in sediments and tissues from Prince William Sound and the Northwestern Gulf of Alaska based on a PAH weathering model. Environmental Science & Technology, 31, 2375–84CrossRefGoogle Scholar
Short, J. W. and Heintz, R. A. (1998) Source of polynuclear aromatic hydrocarbons in Prince William Sound, Alaska, USA, subtidal sediments. Environmental Toxicology and Chemistry, 17, 1651–2CrossRefGoogle Scholar
Short, J. W., Kvenvolden, K. A., Carlson, P. R., et al. (1999) Natural hydrocarbon background in benthic sediments of Prince William Sound, Alaska: oil vs. coal. Environmental Science & Technology, 33, 34–42CrossRefGoogle Scholar
Short, J. W., Wright, B. A., Kvenvolden, K. A., et al. (2000) Response to comment on “Natural hydrocarbon background in benthic sediments of Prince William Sound, Alaska: oil vs. coal”. Environmental Science & Technology, 34, 2066–7CrossRefGoogle Scholar
Silliman, J. E., Meyers, P. A. and Bourbonniere, R. A. (1996) Record of postglacial organic matter delivery and burial in sediments of Lake Ontario. Organic Geochemistry, 24, 463–72CrossRefGoogle Scholar
Silliman, J. E., Meyers, P. A., Ostrom, P. H., Ostrom, N. W. and Eadie, B. J. (2000) Insights into the origin of perylene from isotopic analyses of sediments from Saanich Inlet, British Columbia. Organic Geochemistry, 31, 1133–42CrossRefGoogle Scholar
Silliman, J. E., Meyers, P. A., Eadie, B. J. and Klump, J. V. (2001) A hypothesis for the origin of perylene based on its low abundance in sediments of Green Bay, Wisconsin. Chemical Geology, 177, 309–22CrossRefGoogle Scholar
Silverman, S. R. (1965) Migration and segregation of oil and gas. In: Fluids in Subsurface Environments, Vol. 4 (A. Young and G. E. Galley, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp. 53–65
Silverman, S. R. (1971) Influence of petroleum origin and transformation on its distribution and redistribution in sedimentary rocks. In: Proceedings of the Eighth World Petroleum Congress, Applied Science Publishers, London, pp. 47–54
Silverman, S. R. and Epstein, S. (1958) Carbon isotopic compositions of petroleums and other sedimentary organic materials. American Association of Petroleum Geologists Bulletin, 42, 998–1012Google Scholar
Simoneit, B. R. T. (1986) Cyclic terpenoids of the geosphere. In: Biological Markers in the Sedimentary Record (R. B. Johns, ed.), Elsevier, New York, pp. 43–99
Simoneit, B. R. T. (2002) Biomass burning – a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry, 68, 129–62CrossRefGoogle Scholar
Simoneit, B. R. T., Brenner, S., Peters, K. E. and Kaplan, I. R. (1981) Thermal alteration of Cretaceous black shale by diabase intrusions in the Eastern Atlantic – II. Effects on bitumen and kerogen. Geochimica et Cosmochimica Acta, 45, 1581–602CrossRefGoogle Scholar
Simoneit, B. R. T., Schoell, M., Dias, R. F. and Aquino Neto, F. R. (1993) Unusual carbon isotope compositions of biomarker hydrocarbons in a Permian tasmanite. Geochimica et Cosmochimica Acta, 57, 4205–11CrossRefGoogle Scholar
Simpson, I. A., Dockrill, S. J., Bull, I. D. and Evershed, R. P. (1998) Early anthropogenic soil formation at Tofts Ness, Sanday, Orkney. Journal of Archaeological Science, 25, 729–46CrossRefGoogle Scholar
Simpson, I. A., Bergen, P. F., Perret, V., et al. (1999) Lipid biomarkers of manuring practice in relict anthropogenic soils. The Holocene, 9, 223–9CrossRefGoogle Scholar
Sinninghe Damsté, J. S. and Leeuw, J. W. (1990) Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research. Organic Geochemistry, 16, 1077–101CrossRefGoogle Scholar
Sinninghe Damsté, J. S., Leeuw, J. W., Dalen, A. C. K., et al. (1987) The occurrence and identification of series of organic sulfur compounds in oils and sediment extracts. 1. A study of Rozel Point oil (USA).Geochimica et Cosmochimica Acta, 51, 2369–91CrossRefGoogle Scholar
Sinninghe Damsté, J. S., Koert, E. R., Kock-van Dalen, A. C., Leeuw, J. W. and Schenck, P. A. (1989) Characterisation of highly branched isoprenoid thiophenes occurring in sediments and immature crude oils. Organic Geochemistry, 14, 555–67CrossRefGoogle Scholar
Sinninghe Damsté, J. S., Kock van Dalen, A. C., Albrecht, P. A. and Leeuw, J. W. (1991) Identification of long-chain 1,2-di-n-alkylbenzenes in Amposta crude oil from the Tarragona Basin, Spanish Mediterranean: implications for the origin and fate of alkylbenzenes. Geochimica et Cosmochimica Acta, 55, 3677–83CrossRefGoogle Scholar
Sinninghe Damsté, J. S., las Heras, F. X. C., Bergen, P. F. and Leeuw, J. W. (1993a) Characterization of Tertiary Catalan lacustrine oil shales: discovery of extremely organic sulphur-rich type I kerogens. Geochimica et Cosmochimica Acta, 57, 389–415CrossRefGoogle Scholar
Sinninghe Damsté, J. S., Wakeham, S. G., Kohnen, M. E. L., Hayes, J. M. and Leeuw, J. W. (1993b) A 6,000-year sedimentary molecular record of chemocline excursions in the Black Sea. Nature, 362, 827–9CrossRefGoogle Scholar
Sinninghe Damsté, J. S., Schouten, S., Hopmans, E. C., Duin, A. C. T. and Geenevasen, J. A. J. (2002a) Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic Crenarchaeota. Journal of Lipid Research, 43, 1641–51CrossRefGoogle Scholar
Sinninghe Damsté, J. S., Strous, M., Rijpstra, W. I. C., et al. (2002b) Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature, 419, 708–12CrossRefGoogle Scholar
Slentz, L. W. (1981) Geochemistry of reservoir fluids as unique approach to optimum reservoir management. Presented at the Middle East Oil Technical Conference, March 9–12, 1981, Manama, Bahrain
Smalley, P. C. and England, W. A. (1994) Reservoir compartmentalization assessed with fluid compositional data. SPE Reservoir Engineering, 8, 175–80CrossRefGoogle Scholar
Smallwood, B. J., Philp, R. P. and Allen, J. D. (2002) Stable carbon isotopic composition of gasolines determined by isotope ratio monitoring gas chromatography mass spectrometry. Organic Geochemistry, 33, 149–59CrossRefGoogle Scholar
Smith, J. E. (1956) Basement reservoir of La Paz-Mara oil fields, western Venezuela. American Association of Petroleum Geologists Bulletin, 40, 380–5Google Scholar
Smith, H. M. (1968) Qualitative and quantitative aspects of crude oil composition. US Bureau of Mines Bulletin, 642, 1–136Google Scholar
Smith, G. W., Fowell, D. T. and Melsom, B. G. (1970) Crystal structure of 18α(H)-oleanane. Nature, 219, 355–6CrossRefGoogle Scholar
Sofer, Z. (1980) Preparation of carbon dioxide for stable carbon isotope analysis of petroleum fractions. Analytical Chemistry, 52, 1389–91CrossRefGoogle Scholar
Sofer, Z. (1984) Stable carbon isotope compositions of crude oils: application to source depositional environments and petroleum alteration. American Association of Petroleum Geologists Bulletin, 68, 31–49Google Scholar
Sofer, Z., Bjorøy, M. and Hustad, E. (1991) Isotopic composition of individual n-alkanes in oils. In: Organic Geochemistry. Advances and Applications in the Natural Environment (D. A. C. Manning, ed.), Manchester University Press, Manchester, UK, pp. 207–11
Spies, R. B., Stegeman, J. J., Hinton, D. E., et al. (1996) Biomarkers of hydrocarbon exposure and sublethal effects in embiotocid fishes from a natural petroleum seep in the Santa Barbara Channel. Aquatic Toxicology, 34, 195–219CrossRefGoogle Scholar
Stach, E., Mackowsky, M.-T., Teichmüller, M., et al. (1982) Coal Petrology. Gebrüder Borntraeger, Berlin
Stahl, W. J. (1977) Carbon and nitrogen isotopes in hydrocarbon research and exploration. Chemical Geology, 20, 121–49CrossRefGoogle Scholar
Stahl, W. J. (1978) Source rock-crude oil correlation by isotopic type-curves. Geochimica et Cosmochimica Acta, 42, 1573–7CrossRefGoogle Scholar
Stahl, W. J. (1979) Carbon isotopes in petroleum geochemistry. In: Lectures in Isotope Geology (F. Jager and J. C. Hunziker, eds.), Springer-Verlag, New York, pp. 274–83CrossRef
Staplin, F. L. (1969) Sedimentary organic matter, organic metamorphism, and oil and gas occurrence. Canadian Petroleum Geologists Bulletin, 17, 47–66Google Scholar
Steen, A. (1986) Gas chromatographic/mass spectrometric (GC/MS) analysis of C27–C30-steranes. Organic Geochemistry, 10, 1137–42CrossRefGoogle Scholar
Stein, R. (1986) Organic carbon and sedimentation rate – further evidence for anoxic deep-water conditions in the Cenomanian/Turonian Atlantic Ocean. Marine Geology, 72, 199–209CrossRefGoogle Scholar
Steinfatt, I. and Hoffmann, G. G. (1993) A contribution to the thermochemical reduction of SO42- in the presence of S2- and organic compounds. Phosphorus, Sulfur, Silicon and Related Elements, 74, 431–4CrossRefGoogle Scholar
Stevens, T. O. and McKinley, J. P. (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science, 270, 450–4CrossRefGoogle Scholar
Stinnett, J. W. (1982) The deep earth gas hypothesis: big on promises, but evidence looks thin. Synergy, 2, 12–20Google Scholar
Stone, A. C. and Stoneking, M. (1999) Analysis of ancient DNA from a prehistoric Amerindian cemetery. Philosophical Transactions of the Royal Society London, Biological Sciences, 354, 153–8CrossRefGoogle ScholarPubMed
Stoneking, M. and Cann, R. L. (1989) African origin of human mitochondrial DNA. In: The Human Revolution: Behavioural and Biological Perspectives on the Origins of Modern Humans (P. Mellars and C. Stringer, eds.), Edinburgh University Press, Edinburgh, pp. 17–30
Stott, A. W. and Evershed, R. P. (1996) δ13C Analysis of cholesterol preserved in archaeological bones and teeth. Analytical Chemistry, 68, 4402–8CrossRefGoogle Scholar
Stott, A. W., Evershed, R. P. and Tuross, N. (1997) Compound-specific approach to the δ13C analysis of cholesterol in fossil bones. Organic Geochemistry, 26, 99–103CrossRefGoogle Scholar
Stott, A. W., Evershed, R. P., Jim, S., et al. (1999) Cholesterol as a new source of palaeodietary information: experimental approaches and archaeological applications. Journal of Archaeological Science, 26, 705–16CrossRefGoogle Scholar
Strous, M., Fuerst, J. A., Kramer, E. H. M., et al. (1999) Missing lithotroph identified as new planctomycete. Nature, 400, 446–9CrossRefGoogle ScholarPubMed
Stuermer, D. H., Peters, K. E. and Kaplan, I. R. (1978) Source indicators of humic substances and proto-kerogen. Stable isotope ratios, elemental compositions, and electron spin resonance spectra. Geochimica et Cosmochimica Acta, 42, 989–97CrossRefGoogle Scholar
Sugai, A., Masuchi, Y., Uda, I., Itoh, T. and Itoh, Y. H. (2000) Core lipids of hyperthermophilic archaeon, Pyrococcus horikoshii OT3. Journal Japanese Oil Chemical Society, 49, 659–700CrossRefGoogle Scholar
Suggate, R. P. (1998) Relations between depth of burial, vitrinite reflectance and geothermal gradient. Journal of Petroleum Geology, 21, 5–32CrossRefGoogle Scholar
Summons, R. E. and Powell, T. G. (1986) Chlorobiaceae in Palaeozoic sea revealed by biological markers, isotopes, and geology. Nature, 319, 763–5CrossRefGoogle Scholar
Summons, R. E. and Powell, T. G. (1987) Identification of aryl isoprenoids in a source rock and crude oils: biological markers for the green sulfur bacteria. Geochimica et Cosmochimica Acta, 51, 557–66CrossRefGoogle Scholar
Summons, R. E., Brassell, S. C., Eglinton, G., et al. (1988) Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona. Geochimica et Cosmochimica Acta, 52, 2625–37CrossRefGoogle Scholar
Summons, R. E., Jahnke, L. L., Hope, J. M. and Logan, G. A. (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400, 554–7CrossRefGoogle ScholarPubMed
Summons, R. E., Jahnke, L. L., Cullings, K. W. and Logan, G. A. (2002a) Cyanobacterial biomarkers: triterpenoids plus steroids? EOS Transactions of the American Geophysical Union, 47, Fall Meeting Supplement
Sundararaman, P. (1985) High-performance liquid chromatography of vanadyl porphyrins. Analytical Chemistry, 57, 2204–6CrossRefGoogle Scholar
Swain, T. and Copper-Driver, G. (1979) Biochemical evolution in early land plants. In: Paleobotany, Paleoecology and Evolution 1 (K. J. Niklas, ed.), Praeger Publishers, New York, pp. 103–34
Swannell, R. P. J., Lee, K. and McDonagh, M. (1996) Field evaluations of marine oil spill bioremediation. Microbiology Reviews, 60, 342–65Google ScholarPubMed
Sweeney, J. J. and Burnham, A. K. (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. American Association of Petroleum Geologists Bulletin, 74, 1559–70Google Scholar
Sylvester-Bradley, P. C. and King, R. J. (1963) Evidence for abiogenic hydrocarbons. Nature, 198, 728–31CrossRefGoogle Scholar
Szatmari, P. (1989) Petroleum formation by Fischer–Tropsch synthesis in plate tectonics. American Association of Petroleum Geologists Bulletin, 73, 989–98Google Scholar
Taft, D. G., Egging, D. E. and Kuhn, H. A. (1995) Sheen surveillance: an environmental monitoring program subsequent to the 1989 Exxon Valdez shoreline cleanup. In: Exxon Valdez Oil Spill: Fate and Effects in Alaskan Waters (P. G. Wells, J. N. Butler and J. S. Hughes, eds.), American Society for Testing and Materials, Philadelphia, PA, pp. 215–38CrossRef
Takai, K., Moser, D. P., Deflaun, M. and Onstott, T. C. (2001) Archael diversity in waters from deep South African gold mines. Applied and Environmental Microbiology, 67, 5750–60CrossRefGoogle Scholar
Talbot, H. M., Watson, D. F., Murrell, J. C., Carter, J. F. and Farrimond, P. (2001) Analysis of intact bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. Journal of Chromatography A, 921, 175–85CrossRefGoogle ScholarPubMed
Talukdar, S. C. and Marcano, F. (1994) Petroleum systems of the Maracaibo Basin, Venezuela. In: The Petroleum System – From Source to Trap (L. B. Magoon and W. G. Dow, eds.), American Association of Petroleum Geologists Tulsa, OK, pp. 463–81
Tang, Y., Perry, J. K., Jenden, P. D. and Schoell, M. (2000) Mathematical modeling of stable carbon isotope ratios in natural gases. Geochimica et Cosmochimica Acta, 64, 2673–87CrossRefGoogle Scholar
Tauber, H. (1981) 13C evidence for dietary habits of prehistoric man in Denmark. Nature, 292, 332–3CrossRefGoogle ScholarPubMed
Taylor, G. H., Teichmüller, M., Davis, A., et al. (1998) Organic Petrology. Gebrüder Borntraeger, Berlin
Teal, J. M., Farrington, J. W., Burns, K. A., et al. (1992) The West Falmouth oil spill after 20 years: fate of fuel oil compounds and effects on animals. Marine Pollution Bulletin, 24, 607–14CrossRefGoogle Scholar
Tegelaar, E. W., Leeuw, J. W., Derenne, S. and Largeau, C. (1989) A reappraisal of kerogen formation. Geochimica et Cosmochimica Acta, 53, 3103–6CrossRefGoogle Scholar
Teichmüller, M. and Durand, B. (1983) Fluorescence microscopical rank studies on liptinites and vitrinites in peat and coals and comparison with the results of the Rock-Eval pyrolysis. International Journal of Coal Geology, 2, 197–230CrossRefGoogle Scholar
Ten Haven, H. L. (1986) Organic and inorganic geochemical aspects of Mediterranean Late Quaternary sapropels and Messinian evaporitic deposits. Ph. D. thesis, Utrecht University, Utrecht, Germany
Ten Haven, H. L. (1996) Applications and limitations of Mango's light hydrocarbon parameters in petroleum correlation studies. Organic Geochemistry, 24, 957–76CrossRefGoogle Scholar
Ten Haven, H. L., Leeuw, J. W., Rullkötter, J. and Sinninghe Damsté, J. S. (1987) Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature, 330, 641–3CrossRefGoogle Scholar
Terken, J. M. J. and Frewin, N. L. (2000) The Dhahaban petroleum system of Oman. American Association of Petroleum Geologists Bulletin, 84, 523–44Google Scholar
Thackeray, J. F., Merwe, N. J. and Merwe, T. A. (2001) Chemical analysis of residues from seventeenth-century clay pipes from Stratford-upon-Avon and environs. South Africa Journal of Science, 97, 19–22Google Scholar
Thiel, V., Peckmann, J., Richnow, H. W., et al. (2001) Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Marine Chemistry, 73, 97–112CrossRefGoogle Scholar
Thiel, V., Blumenberg, M., Pape, T., Seifert, R. and Michaelis, W. (2003) Unexpected occurrence of hopanoids at gas seeps in the Black Sea. Organic Geochemistry, 34, 81–7CrossRefGoogle Scholar
Thiéry, R., Pironon, J., Walgenwitz, F. and Montel, F. (2000) PIT (Petroleum Inclusion Thermodynamic): a new modeling tool for the characterisation of hydrocarbon fluid inclusions from volumetric and microthermometric measurements. Journal of Geochemical Exploration, 69–70, 701–4CrossRefGoogle Scholar
Thomas, J. B., Mann, A. L., Brassell, S. C. and Maxwell, J. R. (1989) 4-Methyl steranes in Triassic sediments: molecular evidence for the earliest dinoflagellates. Presented at the 14th International Meeting on Organic Geochemistry, September 18–22, 1989, Paris
Thomas, D. J., Bralower, T. J. and Zachos, J. C. (1999) New evidence for subtropical warming during the late Paleocene thermal maximum: stable isotopes from Deep Sea Drilling Project Site 527, Walvis Ridge. Paleoceanography, 14, 561–70CrossRefGoogle Scholar
Thompson, K. F. M. (1983) Classification and thermal history of petroleum based on light hydrocarbons. Geochimica et Cosmochimica Acta, 47, 303–16CrossRefGoogle Scholar
Thompson, K. F. M. (1987) Fractionated aromatic petroleums and the generation of gas-condensates. Organic Geochemistry, 11, 573–90CrossRefGoogle Scholar
Thompson, K. F. M. (1988) Gas-condensate migration and oil fractionation in deltaic systems. Marine and Petroleum Geology, 5, 237–46CrossRefGoogle Scholar
Thompson, K. F. M. and Kennicutt, M. C., II (1990) Nature and frequency of occurrence of non-thermal alteration processes in offshore Gulf of Mexico petroleums. In: Gulf Coast Oils and Gases (D. Schumacher and B. F. Perkins, eds.). Society of Economic Paleontologists and Mineralogists, Tulsa, OK, pp. 199–218
Thorne, A., Grün, R., Mortimer, G., et al. (1999) Australia's oldest human remains: age of the Lake Mungo 3 skeleton. Journal of Human Evolution, 36, 591–612CrossRefGoogle ScholarPubMed
Timofeeff, M. N., Lowenstein, T. K. and Blackburn, W. H. (2000) ESEM-EDS: an improved technique for major element chemical analysis of fluid inclusions. Chemical Geology, 164, 171–82CrossRefGoogle Scholar
Tissot, B. (1969) Premières données sur les méchanismes et la cinétique de la formation du pétrole dans les sédiments. Simulation d'un schéma réactionnel sur ordinateur. Revue de l'Insitut Français du Petrole, 24, 470–501Google Scholar
Tissot, B. P. and Welte, D. H. (1984) Petroleum Formation and Occurrence. Springer-Verlag, New York
Tissot, B. P., Durand, B., Espitalié, J. and Combaz, A. (1974) Influence of the nature and diagenesis of organic matter in formation of petroleum. American Association of Petroleum Geologists Bulletin, 58, 499–506Google Scholar
Tissot, B. P., Deroo, G. and Hood, A. (1978) Geochemical study of the Uinta Basin: formation of petroleum from the Green River Formation. Geochimica et Cosmochimica Acta, 42, 1469–85CrossRefGoogle Scholar
Tomczyk, N. A., Winans, R. E., Shinn, J. H. and Robinson, R. C. (2001) On the nature and origin of acidic species in petroleum. 1. Detailed acid type distribution in a California crude oil. Energy & Fuels, 15, 1498–1504CrossRefGoogle Scholar
Tornabene, T. G. (1985) Lipid analysis and the relationship to chemotaxonomy. In: Methods in Microbiology, Vol. 18 (G. Gottschalk, ed.), Academic Press, London, pp. 209–234CrossRef
Torsvik, V., Ovreas, L. and Thingstad, T. F. (2002) Prokaryotic diversity – magnitude, dynamics, and controlling factors. Science, 296, 1064–6CrossRefGoogle ScholarPubMed
Treibs, A. (1936) Chlorophyll and hemin derivatives in organic mineral substances. Angewandte Chemie, 49, 682–6CrossRefGoogle Scholar
Trudinger, P. A., Chambers, L. A. and Smith, J. W. (1985) Low-temperature sulphate reduction: biological versus abiological. Canadian Journal of Earth Science, 22, 1910–8CrossRefGoogle Scholar
Tseng, H.-Y., Pottorf, R. J. and Symington, W. A. (2002) Compositional characterization and PVT properties of individual hydrocarbon fluid inclusions: method and application to hydrocarbon systems analysis. Presented at the Annual Meeting of the American Association of Petroleum Geologists, March 10–13, 2002, Houston, TX
Tsuda, K., Hayatsu, R., Kishida, Y. and Akagi, S. (1958) Steroid studies. VI. Studies of the constitution of sargasterol. Journal of the American Chemical Society, 80, 921–5CrossRefGoogle Scholar
Tyson, R. V. (2001) Sedimentation rate, dilution, preservation, and total organic carbon: some results of a modeling study. Organic Geochemistry, 32, 333–9CrossRefGoogle Scholar
Tyson, R. V. and Pearson, T. H. (1991, eds.) Modern and Ancient Continental Shelf Anoxia. London Geological Society, London
Uda, I., Sugai, A., Itoh, Y. H. and Itoh, T. (2001) Variations in molecular species of polar lipids from Thermoplasma acidophilium depend on growth temperature. Lipids, 36, 103–105CrossRefGoogle Scholar
Ungerer, P., Behar, F., Villalba, M., Heum, O. R. and Audibert, A. (1988) Kinetic modeling of oil cracking. Organic Geochemistry, 13, 235–45CrossRefGoogle Scholar
Urem-Kotsou, D., Stern, B., Heron, C. and Kotsakis, K. (2002) Birch-bark tar at Neolithic Makriyalos, Greece. Antiquity, 76, 962–6CrossRefGoogle Scholar
US Geological Survey, (2000) World Petroleum Assessment 2000. Executive Summary U.S. Geological Survey, http://greenwood.cr.usgs.gov/energy/worldenergy/dds-60/espt.html (accessed September 6, 2001)
Valisolalao, J., Perakis, N., Chappe, B. and Albrecht, P. (1984) A novel sulfur containing C35 hopanoid in sediments. Tetrahedron Letters, 25, 1183–6CrossRefGoogle Scholar
Aarssen, B. G. K., Cox, H. C., Hoogendoorn, P. and Leeuw, J. W. (1990) A cadinene biopolymer in fossil and extant dammar resins as a source for cadinanes and bicadinanes in crude oils from Southeast Asia. Geochimica et Cosmochimica Acta, 54, 3021–31CrossRefGoogle Scholar
Aarssen, B. G. K., Alexander, R. and Kagi, R. I. (1996) The origin of Barrow Sub-basin crude oils: a geochemical correlation using land-plant biomarkers. APPEA Journal, 36, 465–76CrossRefGoogle Scholar
Bergen, P. F., Peakman, T. M., Leigh-Firbank, E. C. and Evershed, R. P. (1997) Chemical evidence for archaeological frankincense: boswellic acids and their derivatives in solvent soluble and insoluble fractions of resin-like materials. Tetrahedron Letters, 38, 8409–12CrossRefGoogle Scholar
Vance, J. E. (1998) Eukaryotic lipid-biosynthetic enzymes: the same but not the same. Trends in Biochemical Sciences, 23, 423–8CrossRefGoogle Scholar
Van der Berg, K. J., Pastorova, I., Spetter, L. and Boon, J. J. (1996) State of oxidation of diterpenoid Pinaceae resins in varnish, wax lining material, 18th century resin oil paint, and a recent copper resinate glaze. In: Proceedings of the 11th Triennial Meeting of ICOM Committee for Conservation (J. Bridgland, ed.), James and James, London, pp. 930–7
Van der Doelen, G. A. (1999) Molecular studies of fresh and aged triterpenoid varnishes. Ph. D. thesis, University of Amsterdam, Amsterdam, the Netherlands
Merwe, N. J. and Vogel, J. C. (1978) 13C content of human collagen as a measure of prehistoric diet in woodland North America. Nature, 276, 815–6CrossRefGoogle ScholarPubMed
Deursen, M., Beens, J., Reijenga, J., et al. (2000) Group-type identification of oil samples using comprehensive two-dimensional gas chromatography coupled to a time-of-flight mass spectrometer. Journal of High Resolution Chromatography, 23, 507–103.0.CO;2-N>CrossRefGoogle Scholar
Dorsselaer, A., Ensminger, A., Spyckerelle, C., et al. (1974) Degraded and extended hopane derivatives (C27–C35) as ubiquitous geochemical markers. Tetrahedron Letters, 14, 1349–52CrossRefGoogle Scholar
Duin, A. C. T. and Larter, S. R. (1997) Unraveling Mango's mysteries: a kinetic scheme describing the diagenetic fate of C7-alkanes in petroleum systems. Organic Geochemistry, 27, 597–9CrossRefGoogle Scholar
Duin, A. C. T. and Larter, S. R. (1998) Application of molecular dynamics calculations in the prediction of dynamical molecular properties. Organic Geochemistry, 29, 1043–50CrossRefGoogle Scholar
Duin, A. C. T. and Larter, S. R. (2001). Molecular dynamics investigation into the adsorption of organic compounds on kaolinite surfaces. Organic Geochemistry, 32, 143–50CrossRefGoogle Scholar
Duin, A. C. T. and Sinninghe Damsté, J. S. (2003) Computational chemical investigation into isorenieratene cyclisation. Organic Geochemistry, 34, 515–26CrossRefGoogle Scholar
Duin, A. C. T., Bass, J. M. A. and Graaf, B. (1996a) A molecular mechanics force field for tertiary carbocations. Journal Chemical Society Faraday Transactions, 92, 353–62CrossRefGoogle Scholar
Duin, A. C. T., Hollanders, B., Smits, R. J. A., et al. (1996b) Molecular mechanics calculation of the rotational barriers of 2,2′,6-trialkylbiphenyls to explain their GC-elution behaviour. Organic Geochemistry, 24, 587–91CrossRefGoogle Scholar
Duin, A. C. T., Peakman, T. M., Leeuw, J. W. and Graaf, B. (1996c) Novel aspects of the diagenesis of Δ7-5α-sterenes as revealed by a combined molecular mechanics calculations and laboratory simulations approach. Organic Geochemistry, 24, 473–93CrossRefGoogle Scholar
Duin, A. C. T., Sinninghe Damsté, J. S., Koopmans, M. P., Leeuw, J. W. and Graaf, B. (1997) A kinetic calculation method of homohopanoid maturation: applications in the reconstruction of burial histories of sedimentary basins. Geochimica et Cosmochimica Acta, 61, 2409–29CrossRefGoogle Scholar
Graas, G., Baas, J. M. A., Graaf, V. and Leeuw, J. W. (1982) Theoretical organic geochemistry. 1. The thermodynamic stability of several cholestane isomers calculated by molecular mechanics. Geochimica et Cosmochimica Acta, 46, 2399–402CrossRefGoogle Scholar
Vanko, D. A. and Stakes, D. S. (1991) Fluids in oceanic layer 3: evidence from veined rocks, Hole 735B, Southwest Indian Ridge. Proeedings of Ocean Drilling Program, Scientific Results, 118, 181–215Google Scholar
Van Krevelen, D. W. (1961) Coal. Elsevier, New York
Vaughan, D. E. W. (1988) Synthesis and manufacture of zeolites. Chemical and Engineering Progress, 84, 25–31Google Scholar
Venkatesan, M. I. and Kaplan, I. R. (1990) Sedimentary coprostanol as an index of sewage addition in Santa Monica Basin, Southern California. Environmental Technology, 24, 204–13Google Scholar
Venkatesan, M. I. and Mirsadeghi, F. H. (1992) Coprostanol as sewage tracer in McMurdo Sound, Antarctica. Marine Pollution Bulletin, 25, 328–33CrossRefGoogle Scholar
Venkatesen, M. I. and Santiago, C. A. (1989) Sterols in ocean sediments: novel tracers to examine habitats of cetaceans, pinnipeds, penguins and humans. Marine Biology, 102, 431–7CrossRefGoogle Scholar
Venkatesan, M. I., Linick, T. W., Suess, H. E. and Buccellati, G. (1982) Asphalt in carbon-14-dated archeological samples from Terqa, Syria. Nature, 295, 517–9CrossRefGoogle Scholar
Venkatesan, M. I., Ruth, E. and Kaplan, I. R. (1986) Coprostanols in Antarctic marine sediments: a biomarker for marine mammals and not human pollution. Marine Pollution Bulletin, 17, 554–7CrossRefGoogle Scholar
Venosa, A. D., Suidan, M. T., Wrenn, B. A., et al. (1996) Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environmental Science & Technology, 30, 1764–75CrossRefGoogle Scholar
Venosa, A. D., Suidan, M. T., King, D. and Wrenn, B. A. (1997) Use of hopane as a conservative biomarker for monitoring the bio-remediation effectiveness of crude oil contaminating a sandy beach. Journal of Industrial Microbiology and Biotechnology, 18, 131–9CrossRefGoogle Scholar
Vlierboom, F. W., Collini, B. and Zumberge, J. E. (1986) The occurrence of petroleum in sedimentary rocks of the meteor impact crater at Lake Siljan, Sweden. Organic Geochemistry, 10, 153–61CrossRefGoogle Scholar
Vogel, J. C. and Merwe, N. J. (1977) Isotopic evidence for early maize cultivation in New York State. American Antiquity, 42, 238–42CrossRefGoogle Scholar
Volkman, J. K. (1988) Biological marker compounds as indicators of the depositional environments of petroleum source rocks. In: Lacustrine Petroleum Source Rocks (A. J. Fleet, K. Kelts and M. R. Talbot, eds.), Blackwell, London, pp. 103–22CrossRef
Volkman, J. K. and Maxwell, J. R. (1986) Acyclic isoprenoids as biological markers. In: Biological Markers in the Sedimentary Record (R. B. Johns, ed.), Elsevier, New York, pp. 1–42
Volkman, J. K. and Nichols, P. D. (1991) Applications of thin layer chromatography-flame ionization detection to the analysis of lipids and pollutants in marine and environmental samples. Journal of Planar Chromatography, 4, 19–26Google Scholar
Volkman, J. K., Barrett, S. M., Blackburn, S. I., et al. (1998) Microalgal biomarkers: a review of recent research developments. Organic Geochemistry, 29, 1163–79CrossRefGoogle Scholar
Voparil, I. M. and Mayer, L. M. (2000) Dissolution of sedimentary polycyclic aromatic hydrocarbons into the Lugworm's (Arenicola marina) digestive fluids. Environmental Science & Technology, 34, 1221–8CrossRefGoogle Scholar
Wachter, E. A. and Hayes, J. M. (1985) Exchange of oxygen isotopes in carbon dioxide-phosphoric acid systems. Chemical Geology, 52, 365–74Google ScholarPubMed
Wade, W. J., Hanor, J. S. and Sassen, R. (1989) Controls on H2S concentration and hydrocarbon destruction in the eastern Smackover trend. Transactions – Gulf Coast Association of Geological Societies, 34, 309–20Google Scholar
Waldo, G. S., Carlson, R. M. K., Moldowan, J. M., Peters, K. E. and Penner-Hahn, J. E. (1991) Sulfur speciation in heavy petroleums: information from X-ray absorption near-edge structure. Geochimica et Cosmochimica Acta, 55, 801–14CrossRefGoogle Scholar
Walker, A. A. (1998) Oldest glue discovered. www.archaeology.org/online/news/glue.html (accessed February 1, 2001)
Walker, A. L., McCulloh, T. H., Petersen, N. F. and Steward, R. J. (1983) Anomalously low reflectance of vitrinite in comparison with other petroleum source-rock maturation indices from the Miocene Modelo Formation in the Los Angeles Basin, California. In: Petroleum Generation and Occurrence in the Miocene Monterey Formation, California (C. M. Isaacs and R. E. Garrison, eds.), Society of Econonic Paleontologists and Mineralogists, Los Angeles, pp. 185–90
Walters, C. C. (1990) Gases and condensated from Block 511A High Island, Offshore Texas. In: Gulf Coast Oils and Gases: Their Characteristics, Origin, Distribution, and Exploration and Production Significance (D. Schumacher and B. F. Perkins, eds.), Society of Economic Paleontologists and Mineralogists, Tulsa, OK
Walters, C. C. and Cassa, M. R. (1985) Regional organic geochemistry of offshore Louisiana. Transactions: Gulf Coast Association of Geological Societies, 35, 277–86Google Scholar
Walters, C. C. and Hellyer, C. L. (1998) Multi-dimensional gas chromatographic separation of C7 hydrocarbons. Organic Geochemistry, 29, 1033–41CrossRefGoogle Scholar
Walters, C. C., Chung, H. M., Buck, S. P. and Bingham, G. G. (1999) Oil migration and filling history of the Beryl and adjacent fields in the South Viking Graben, North Sea. Presented at the Annual Meeting of the American Association of Petroleum Geologists, April 11–14, 1999, San Antonio, TX
Wang, Z. and Fingas, M. (1999) Oil spill identification.Journal of Chromatography A, 843, 369–411CrossRefGoogle Scholar
Wang, X. and Mullins, O. C. (1994) Fluorescence lifetime studies of crude oils. Applied Spectroscopy, 48, 977–84CrossRefGoogle Scholar
Wang, H. D. and Philp, R. P. (1997b) Geochemical study of potential source rocks and crude oils in the Anadarko Basin, Oklahoma. American Association of Petroleum Geologists Bulletin, 81, 249–75Google Scholar
Wang, Z., Fingas, M. and Sergy, G. (1994) Study of 22-year-old Arrow oil samples using biomarker compounds by GC/MS. Environmental Science & Technology, 28, 1733–46CrossRefGoogle ScholarPubMed
Wang, Z., Fingas, M., Blenkinsopp, S., et al. (1998) Study of the 25-year-old Nipisi oil spill: persistence of oil residues and comparisons between surface and subsurface sediments. Environmental Science & Technology, 32, 2222–32CrossRefGoogle Scholar
Wang, Z., Fingas, M. and Page, D. S. (1999a) Oil spill identification. Journal of Chromatography A, 843, 369–411CrossRefGoogle Scholar
Wang, Z., Fingas, M., Shu, Y. Y., et al. (1999b) Quantitative characterization of PAHs in burn residue and soot samples and differentiation of pyrogenic PAHs from petrogenic PAHs – the 1994 Mobile Burn Study. Environmental Science & Technology, 33, 3100–9CrossRefGoogle Scholar
Wang, Z., Fingas, M. and Sigouin, L. (2000) Characterization and source identification of an unknown spilled oil using fingerprinting techniques by GC-MS and GC-FID. LC-GC, 18, 1058–67Google Scholar
Wang, Z., Fingas, M. and Sigouin, L. (2001a) Characterization and identification of a “mystery” oil spill from Quebec (1999). Journal of Chromatography A, 909, 155–69CrossRefGoogle Scholar
Wang, Z., Fingas, M. F., Sigouin, L. and Owens, E. H. (2001b) Fate and persistence of long-termed spilled Metula oil in the marine salt marsh environment: degradation of petroleum biomarkers. In: Proceedings of the 2001 International Oil Spill Conference, Tampa, Florida, March 26–29, 2001, American Petroleum Institute, Washington, DC, pp. 115–25
Waples, D. W. (1983) A reappraisal of anoxia and organic richness, with emphasis on Cretaceous of North Atlantic. American Association of Petroleum Geologists Bulletin, 67, 963–78Google Scholar
Warburton, G. A. and Zumberge, J. E. (1982) Determination of petroleum sterane distributions by mass spectrometry with selective metastable ion monitoring. Analytical Chemistry, 55, 123–6CrossRefGoogle Scholar
Watanabe, K. (2001) Microorganisms relevant to bioremediation.Current Opinion in Biotechnology, 12, 237–41CrossRefGoogle ScholarPubMed
Watson J. T. (1997) An Introduction to Mass Spectrometry, 3rd edn. Lippincott-Raven, Philadelphia, PA
Watson, D. F. and Farrimond, P. (2000) Novel polyfunctionalised geohopanoids in a recent lacustrine sediment (Priest Pot, UK). Organic Geochemistry, 31, 1247–52CrossRefGoogle Scholar
Watts, S., Pollard, A. M. and Wolff, G. A. (1999) The organic geochemistry of jet: pyrolysis-gas chromatography/mass spectrometry (Py-GCMS) applied to identifying jet and similar black lithic materials – preliminary results. Journal of Archaeological Science, 26, 923–33CrossRefGoogle Scholar
Weitkamp, J., Schafer, K. and Ernst, S. (1991) Selective adsorption of diastereomers in zeolites. Journal of the Chemical Society, Chemical Communications, 1142–3CrossRefGoogle Scholar
Wellings, F. E. (1966) Geological aspects the origin of oil. Institute of Petroleum Journal, 52, 124–30Google Scholar
Wells, P. G., Butler, J. N. and Hughes, J. S. (1995) Exxon Valdez Oil Spill: Fate and Effects in Alaskan Waters, (3rd ASTM Environmental Toxicology and Risk Assessment Symposium). American Society for Testing and Materials, Philadelphia, PA
Wellsbury, P., Goodman, K., Barth, T., et al. (1997) Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature, 388, 573–6CrossRefGoogle Scholar
Welte, D. H., Horsfield, B. and Baker, D. R. (1997) Petroleum and Basin Evolution. Springer-Verlag, New York
Wenger, L. M., Goodoff, L. R., Gross, O. P., Harrison, S. C. and Hood, K. C. (1994) Northern Gulf of Mexico: an integrated approach to source, maturation, and migration. Presented at the First Joint American Association of Petroleum Geologists/AMGP Research Conference, October 2–6, 1994, Mexico, Mexico
Weser, U., Kaup, Y., Etspüler, H., Koller, J. and Baumer, U. (1998) Embalming in the Old Kingdom of pharaonic Egypt. Analytical Chemistry, 70, 511–6ACrossRefGoogle ScholarPubMed
West, N., Alexander, R. and Kagi, R. I. (1990) The use of silicalite for rapid isolation of branched and cyclic alkane fractions of petroleum. Organic Geochemistry, 15, 499–501CrossRefGoogle Scholar
Westgate, T. D., Ward, J., Slater, G. F., Lacrampe-Couloume, G. and Sherwood Lollar, B. (2001) Abiotic formation of C1–C4 hydrocarbons in crystalline rocks of the Canadian Shield. Presented at the Eleventh Annual V. M. Goldschmidt Conference, May 20–24, 2001, Hot Springs, VA
Wever, H. E. (2000) Petroleum and source rock characterization based on C7 star plot results: examples from Egypt. American Association of Petroleum Geologists Bulletin, 84, 1041–54Google Scholar
White, D. (1999) The Physiology and Biochemistry of Prokaryotes, 2nd edn. Oxford University Press, New York
White, R. and Kirby, J. (2001) A survey of nineteenth- and early twentieth-century varnish compositions found on a selection of paintings in the National Gallery Collection. National Gallery Technical Bulletin (London), 22, 64–85Google Scholar
Whitehead, E. V. (1971) Chemical clues to petroleum origin. Chemistry and Industry 1971, 1116–8Google Scholar
Whitehead, E. V. (1974) The structure of petroleum pentacyclanes. In: Advances in Organic Geochemistry 1973 (B. Tissot and F. Bienner, eds.), Editions Technip, Paris, pp. 225–43
Whiticar, M. J. and Snowdon, L. R. (1999) Geochemical characterization of selected Western Canada oils by C5–C8 Compound Specific Isotope Correlation (CSIC). Organic Geochemistry, 30, 1127–61CrossRefGoogle Scholar
Whiticar, M. J., Faber, E. and Schoell, M. (1986) Biogenic methane and freshwater environments: CO2 reduction vs. acetate fermentation – isotope evidence. Geochimica et Cosmochimica Acta, 50, 693–709CrossRefGoogle Scholar
Williams, J. A. (1974) Characterization of oil types in the Williston Basin. American Association of Petroleum Geologists Bulletin, 58, 1243–52Google Scholar
Willsch, H., Clegg, H., Horsfield, B., Radke, M. and Wilkes, H. (1997) Liquid chromatographic separation of sediment, rock, and coal extracts and crude oil into compound classes. Analytical Chemistry, 69, 4203–9CrossRefGoogle Scholar
Wingert, W. S. (1992) GC-MS analysis of diamondoid hydrocarbons in Smackover petroleum. Fuel, 71, 37–43CrossRefGoogle Scholar
Winters, J. C. and Williams, J. A. (1969) Microbiological alteration of crude oil in the reservoir. American Chemical Society, Division of Petroleum Chemistry, New York Meeting Preprints, 14, E22–31Google Scholar
Wischmann, H., Hummel, S., Rothschild, M. A. and Herrmann, B. (2002) Analysis of nicotine in archaeological skeletons from the Early Modern Age and from the Bronze Age. Ancient Biomolecules, 4, 47–52CrossRefGoogle Scholar
Woese, C. R. (2002) On the evolution of cells. Proceedings of the National Academy of Sciences, USA, 99 8742–7CrossRefGoogle Scholar
Woese, C. R., Magrum, L. J. and Fox, G. E. (1978) Archaebacteria. Journal of Molecular Evolution, 11, 245–52CrossRefGoogle ScholarPubMed
Wong, K. (1999) Is out of Africa going out the door?Scientific American, 281, 13–4CrossRefGoogle Scholar
Wong, K. (2001) Shakespeare on drugs? Scientific American News Briefs. www.sciam.com/news (accessed March 2, 2001)
Wooley, C. (2001) The myth of the “pristine environment”: past human impact on the Gulf of Alaska coast. Spill Science & Technology Bulletin, 7, 89–104CrossRefGoogle Scholar
Worden, R. H., Smalley, P. C. and Oxtoby, N. H. (1995) Gas souring by thermochemical sulfate reduction at 140°C. American Association of Petroleum Geologists Bulletin, 79, 854–63Google Scholar
Xiao, Y. (2001) Modeling the kinetics and mechanisms of petroleum and natural gas generation: a first principles approach. In: Molecular Modeling Theory and Applications in the Geosciences: Reviews in Mineralogy & Geochemistry, Vol. 42 (R. T. Cygan and J. D. Kubicki, eds.), The Geochemical Society and Mineralogical Society of America, Washington, DC, pp. 383–436CrossRef
Xiao, Y. and James, A. T. (1997) Is acid catalyzed isomerization responsible for the invariance in the isoheptanes of petroleum. In: Proceedings of the 18th International Meeting on Organic Geochemistry, September 22–26, 1997, Maastricht, The Netherlands. Forschungszentrum Jülich, Jülich, Germany, pp. 769–70
Xu, L., Reddy, C. M., Farrington, J. W., et al. (2001) Identification of a novel alkenone in Black Sea sediments. Organic Geochemistry, 32, 633–45CrossRefGoogle Scholar
Yaws, C. L., Pan, X. and Lin, X. (1993) Water solubility data for 151 hydrocarbons. Chemical Engineering, 100, 108–11Google Scholar
Yon, D. A., Maxwell, J. R. and Rybach, G. (1982) 2,6,10-Trimethyl-7-(3-methylbutyl)-dodecane, a novel sedimentary biological marker compound. Tetrahedron Letters, 23, 2143–6CrossRefGoogle Scholar
Yuen, G. U., Blair, N., Des Marais, D. J. and Chang, S. (1984) Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite. Nature, 307, 252–4CrossRefGoogle ScholarPubMed
Yuen, G. U., Pecore, J. A., Kerridge, J. F., et al. (1990) Carbon isotopic fractionation in Fischer–Tropsch type reactions. Lunar and Planetary Science, XⅪ, 1367–8Google Scholar
Yu, Z., Peng, P., Sheng, G. and Fu, J. (2000a) The carbon isotope study of biomarkers in the Maoming and the Jianghan Tertiary oil shale. Chinese Science Bulletin, 45, 90–6CrossRefGoogle Scholar
Yu, Z., Sheng, G., Fu, J. and Peng, P. (2000b) Determination of porphyrin carbon isotopic composition using gas chromatography–isotope ratio monitoring mass spectrometry. Journal of Chromatography A, 903, 183–91CrossRefGoogle Scholar
Zelt, F. B. (1985) Natural gamma-ray spectrometry, lithofacies, and depositional environments of selected Upper Cretaceous marine mudrocks, western United States, including Tropic Shale and Tununk Member of Mancos Shale. Ph. D. thesis, Princeton University, Princeton, NJ
Zhang, J., Quay, P. D. and Wilbur, D. O. (1995) Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochimica et Cosmochimica Acta, 59, 107–14CrossRefGoogle Scholar
Zumberge, J. E. (1987) Terpenoid biomarker distributions in low maturity crude oils. Organic Geochemistry, 11, 479–96CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • K. E. Peters, United States Geological Survey, California, C. C. Walters, J. M. Moldowan, Stanford University, California
  • Book: The Biomarker Guide
  • Online publication: 12 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511524868.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • K. E. Peters, United States Geological Survey, California, C. C. Walters, J. M. Moldowan, Stanford University, California
  • Book: The Biomarker Guide
  • Online publication: 12 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511524868.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • K. E. Peters, United States Geological Survey, California, C. C. Walters, J. M. Moldowan, Stanford University, California
  • Book: The Biomarker Guide
  • Online publication: 12 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511524868.016
Available formats
×