Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-10T21:14:22.875Z Has data issue: false hasContentIssue false

8 - Reading, Writing, and Arithmetic in the Brain: Neural Specialization for Acquired Functions

Published online by Cambridge University Press:  17 July 2009

Thad A. Polk
Affiliation:
Associate Professor of Psychology University of Michigan, Ann Arbor, USA
J. Paul Hamilton
Affiliation:
Postdoctoral Fellow, Stanford Mood and Anxiety Disor-ders Laboratory Stanford University, Palo Alto, California, USA
Paul B. Baltes
Affiliation:
Max-Planck-Institut für Bildungsforschung, Berlin
Patricia A. Reuter-Lorenz
Affiliation:
University of Michigan, Ann Arbor
Frank Rösler
Affiliation:
Philipps-Universität Marburg, Germany
Get access

Summary

ABSTRACT

Different parts of the brain perform different, relatively self-contained functions. In many cases, this functional modularity is undoubtedly innately predetermined, but in other cases it seems likely that experience plays a significant role. We review evidence for experience-dependent neural modularity in three domains: reading, writing, and arithmetic. These skills are recent developments on an evolutionary time scale, they are not shared with nonhuman species, and they do not develop in humans without explicit, systematic instruction. It is therefore unlikely that their neural organization is innate. Nevertheless, findings from case studies of neurological patients and, more recently, from neuroimaging experiments suggest that the brains of educated adults do include neural modules dedicated to these functions.

READING, WRITING, AND ARITHMETIC IN THE BRAIN: NEURAL SPECIALIZATION FOR ACQUIRED FUNCTIONS

One of the central tenets of modern cognitive neuroscience is that the cortical architecture underlying cognition is organized into anatomically segregated subsystems (modules) that perform different functions. Most of the evidence for a modular organization comes from work with patients who are brain damaged. Focal brain lesions occasionally produce impairments that seem to affect a single behavioral function (e.g., color processing, visual object recognition, motor control on one side of the body) without significantly affecting others. A natural (although not always valid) interpretation of such dissociations is that the impaired function depends on a neural subsystem or module that is anatomically segregated from other functions and that is therefore vulnerable to selective damage.

Type
Chapter
Information
Lifespan Development and the Brain
The Perspective of Biocultural Co-Constructivism
, pp. 183 - 199
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, M. P., Fischer, R. S., & Friedman, R. (1992). Lesion localization in apractic agraphia. Archives of Neurology, 49 (3), 246–251CrossRefGoogle ScholarPubMed
Allison, T., McCarthy, G., Nobre, A., Puce, A., & Belger, A. (1994). Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. Cerebral Cortex, 4, 544–554CrossRefGoogle ScholarPubMed
Anderson, S. W., Damasio, A. R., & Damasio, H. (1990). Troubled letters but not numbers. Brain, 113, 749–766CrossRefGoogle Scholar
Arguin, M., & Bub, D. N. (1993). Single-character processing in a case of pure alexia. Neuropsychologia, 31, 435–458CrossRefGoogle Scholar
Beauvois, M. F., & Derouesne, J. (1981). Lexical or orthographic agraphia. Brain, 104, 21–49CrossRefGoogle ScholarPubMed
Binder, J. R., & Mohr, J. P. (1992). The topography of callosal reading pathways: A case-control analysis. Brain, 115, 1807–1826CrossRefGoogle ScholarPubMed
Cipolotti, L., Butterworth, B., & Denes, G. (1991). A specific deficit for numbers in a case of dense acalculia. Brain, 114, 2619–2637CrossRefGoogle Scholar
Cohen, L., Dehaene, S., Naccache, L., Lehericy, S., Dehaene-Lambertz, G., Henaff, M. A., & Michel, F. (2000). The visual word form area: Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain, 123, 291–307CrossRefGoogle ScholarPubMed
Collignon, R., Leclercq, C., & Mahy, J. (1977). Symptomatology of dyscalculia in the presence of cortical lesions. Acta Neurologica Belgica, 77 (5), 257–275Google ScholarPubMed
Coslett, H. B., & Saffran, E. M. (1989). Evidence for preserved reading in pure alexia. Brain, 112, 327–359CrossRefGoogle Scholar
Damasio, A. R., Damasio, H., & Hoesen, G. W. (1982). Prosopagnosia: Anatomic basis and behavioral mechanisms. Neurology, 32, 331–341CrossRefGoogle ScholarPubMed
Bastiani, P., & Barry, C. (1989). A cognitive analysis of an acquired dysgraphic patient with an allographic writing disorder. Cognitive Neuropsychology, 6 (1), 25–41CrossRefGoogle Scholar
Dehaene, S., & Cohen, L. (1991). Two mental calculation systems: A case study of severe acalculia with preserved approximation. Neuropsychologia, 29 (11), 1045–1074CrossRefGoogle ScholarPubMed
Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120Google Scholar
Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284, 970–974CrossRefGoogle ScholarPubMed
Dejerine, J. (1892). Contribution à l'étude anatomo-pathologique et clinique des différentes variétés de cécité verbale [Contribution to the anatomo-pathologic and clinical study of the different varieties of verbal blindness]. Mémoires de la Société de Biologie, 4, 61–90Google Scholar
Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270, 305–307CrossRefGoogle ScholarPubMed
Fisher, S. E., & DeFries, J. C. (2002). Developmental dyslexia: Genetic dissection of a complex cognitive trait. Nature Reviews Neuroscience, 3, 767–780CrossRefGoogle ScholarPubMed
Fodor, J. (1983). Modularity of mind.Cambridge, MA: MIT PressGoogle Scholar
Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44 (1–2), 43–74CrossRefGoogle ScholarPubMed
Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nature Neuroscience, 3, 191–197CrossRefGoogle ScholarPubMed
Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (1999). Activation of the middle fusiform “face area” increases with expertise in recognizing novel objects. Nature Neuroscience, 2, 568–573CrossRefGoogle ScholarPubMed
Geschwind, N. (1965). Disconnection syndromes in animals and man. Brain, 88, 237– 294, 585–644CrossRefGoogle Scholar
Goldstein, K. (1948). Language and language disturbances.New York: Grune & StrattonGoogle Scholar
Goodman, R. A., & Caramazza, A. (1986). Dissociation of spelling errors in written and oral spelling: The role of allographic conversion in writing. Cognitive Neuropsychology, 3 (2), 179–206CrossRefGoogle Scholar
Hanley, J. R., & Peters, S. (1996). A dissociation between the ability to print and write cursively in lower-case letters. Cortex, 32 (4), 737–745CrossRefGoogle ScholarPubMed
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293, 2425–2430CrossRefGoogle ScholarPubMed
Hecaen, H., Angelergues, R., & Houillier, S. (1961). Les variétés cliniques des acalculies au cours lésions retrorolandiques: Aproche statistique du problème [The clinical varieties of acalculias during retrorolandic lesions: Statistical approach to the problem]. Revue Neurologique, 105, 85–103Google Scholar
Howard, D., Patterson, K., Wise, R., Brown, W. D., Friston, K., Weiller, C., & Frackowiak, R. (1992). The cortical localization of the lexicons: Positron emission tomography evidence. Brain, 115, 1769–1782CrossRefGoogle ScholarPubMed
Kahn, H. J., & Whitaker, H. A. (1991). Acalculia: An historical review of localization. Brain and Cognition, 17 (2), 102–115CrossRefGoogle ScholarPubMed
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302–4311CrossRefGoogle ScholarPubMed
Katanoda, K., Yoshikawa, K., & Sugishita, M. (2001). A functional MRI study of the neural substrates for writing. Human Brain Mapping, 13, 34–42CrossRefGoogle Scholar
Kinsbourne, M., & Warrington, E. K. (1962). A disorder of simultaneous form perception. Brain, 85, 461–486CrossRefGoogle ScholarPubMed
Lewandowsky, M., & Stadelmann, E. (1908). Über einen bemerkenswerten Fall von Hirnblutung und über Rechenstörungen bei Herderkrankung des Gehirns [On a remarkable case of brain bleeding and on calculation disturbances in focal disease of the brain]. Journal fur Psychologie und Neurologie, 11, 249–265Google Scholar
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S. J., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences (USA), 97, 4398–4403CrossRefGoogle ScholarPubMed
Merzenich, M. M., & Kaas, J. H. (1982). Reorganization of mammalian somatosensory cortex following peripheral nerve injury. Trends in Neuroscience, 5, 434–436CrossRefGoogle Scholar
Ojemann, G. A. (1974). Mental arithmetic during human thalamic stimulation. Neuropsychologia, 12, 1–10CrossRefGoogle ScholarPubMed
Otsuki, M., Soma, Y., Arai, T., Otsuka, A., & Tsuji, S. (1999). Pure apraxic agraphia with abnormal writing stroke sequences: Report of a Japanese patient with a left superior parietal haemorrhage. Journal of Neurology, Neurosurgery and Psychiatry, 66 (2), 233–237CrossRefGoogle ScholarPubMed
Patterson, K. E., & Kay, J. (1982). Letter-by-letter reading: Psychological descriptions of a neurological syndrome. Quarterly Journal of Experimental Psychology, 34A, 411–441CrossRefGoogle Scholar
Peritz, G. (1918). Zur Pathopsychologie des Rechnens. Deutsche Zeitschrift fur Nervenheilkunde, 61, 234–340CrossRefGoogle Scholar
Petersen, S. E., Fox, P. T., Snyder, A. Z., & Raichle, M. E. (1990). Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli. Science, 249, 1041–1044CrossRefGoogle ScholarPubMed
Polk, T. A., & Farah, M. J. (1998). The neural localization of letter recognition: Behavioral, computational, and neuroimaging studies. Proceedings of the National Academy of Sciences (USA), 95, 847–852CrossRefGoogle Scholar
Polk, T. A., & Farah, M. J. (2002). Functional MRI evidence for an abstract, not visual, word-form area. Journal of Experimental Psychology: General, 131 (1), 65–72CrossRefGoogle Scholar
Polk, T. A., Reed, C. L., Keenan, J. M., Hogarth, P., & Anderson, C. A. (2001). A dissociation between symbolic number knowledge and analogue magnitude information. Brain and Cognition, 47 (3), 545–563CrossRefGoogle ScholarPubMed
Polk, T. A., Stallcup, M., Aguirre, G. K., Alsop, D. C., D'Esposito, M., Detre, J. A., & Farah, M. J. (2002). Neural specialization for letter recognition. Journal of Cognitive Neuroscience, 14 (2), 145–159CrossRefGoogle ScholarPubMed
Rapp, B. C., & Caramazza, A. (1991). Spatially determined deficits in letter and word processing. Cognitive Neuropsychology, 8 (3–4), 275–311CrossRefGoogle Scholar
Rossor, M. N., Warrington, E. K., & Cipolotti, L. (1995). The isolation of calculation skills. Journal of Neurology, 242 (2), 78–81CrossRefGoogle ScholarPubMed
Shallice, T. (1981). Phonological agraphia and the lexical route in writing. Brain, 104, 413–429CrossRefGoogle Scholar
Venneri, A., & Pestell, S. J. (2002). Independent representations for cursive and print style: Evidence from dysgraphia in Alzheimer's disease. Cognitive Neuropsychology, 19 (5), 387–400CrossRefGoogle ScholarPubMed
Warrington, E. K. (1982). The fractionation of arithmetical skills: A single case study. Quarterly Journal of Experimental Psychology, 34A, 31–51CrossRefGoogle Scholar
Warrington, E. K., & Shallice, T. (1980). Word-form dyslexia. Brain, 103, 99–112CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×