Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-20T01:19:16.824Z Has data issue: false hasContentIssue false

Chapter 1 - Preterm and Low-Birth-Weight Birth

Published online by Cambridge University Press:  27 July 2018

Jacobus Donders
Affiliation:
Mary Free Bed Rehabilitation Hospital
Scott J. Hunter
Affiliation:
University of Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarnoudse-Moens, C. S. H., Weisglas-Kuperus, N., van Goudoever, J., & Oosterlaan, J. (2009). Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birthweight children. Pediatrics, 124(2), 717728.CrossRefGoogle ScholarPubMed
Aarnoudse-Moens, C. S., Oosterlaan, J., Duivenvoorden, H. J., van Goudoever, J. B., & Weisglas-Kuperus, N. (2011). Development of preschool and academic skills in children born very preterm. Journal of Pediatrics, 158(1), 5156.CrossRefGoogle ScholarPubMed
Als, H. (2009). NIDCAP: Testing the effectiveness of a relationship-based comprehensive intervention. Pediatrics, 124(4), 12081210.CrossRefGoogle ScholarPubMed
American College of Obstetrics and Gynecology. (2008).ACOG Committee Opinion No. 404 April 2008. Late-preterm infants. Obstetrics & Gynecology, 111(4), 10291032. doi:10.1097/AOG.0b013e31817327d0Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.Google Scholar
Anderson, P. J., De Luca, C. R., Hutchinson, E., Spencer-Smith, M. M., Roberts, G., Doyle, L. W., & Victorian Infant Collaborative Study Group. (2011). Attention problems in a representative sample of extremely preterm/extremely low birth weight children. Developmental Neuropsychology, 36(1), 5773. doi:10.1080/87565641.2011.540538CrossRefGoogle Scholar
Anderson, P., Doyle, L. W., & the Victorian Infant Collaborative Study Group. (2003). Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. Journal of the American Medical Association, 289(24), 32643272.CrossRefGoogle ScholarPubMed
Arpino, C., Compagnone, E., Montanaro, M. L., Cacciatore, D., De Luca, A., Cerulli, A., Di Girolamo, S., & Curatolo, P. (2010). Preterm birth and neurodevelopmental outcome: A review. Childs Nervous System, 26(9), 11391149. doi:10.1007/s00381-010-1125-yCrossRefGoogle ScholarPubMed
Ashton, D. D. (2010). Elective delivery at less than 39 weeks. Current Opinion in Obstetrics and Gynecology, 22, 506510.CrossRefGoogle ScholarPubMed
Ball, G., Boardman, J. P., Rueckert, D., Aljabar, P., Arichi, T., Merchant, N., … Counsell, S. J. (2012). The effect of preterm birth on thalamic and cortical development. Cerebral Cortex, 22, 10161024.CrossRefGoogle ScholarPubMed
Baron, I. S., Kerns, K. A., Muller, U., Ahronovich, M. D., & Litman, F. R. (2012). Executive functions in extremely low birth weight and late-preterm preschoolers: Effects on working memory and response inhibition. Child Neuropsychology, 18(6), 586599. doi:10.1080/09297049.2011.631906CrossRefGoogle ScholarPubMed
Baron, I. S., Litman, L., Ahronovich, M. D., & Baker, R. (2012). Late preterm birth: A review of medical and neuropsychological childhood outcomes. Neuropsychological Review, 22, 438450.CrossRefGoogle ScholarPubMed
Baron, I. S., & Rey-Casserly, C. (2010). Extremely preterm birth outcome: A review of four decades of cognitive research. Neuropsychology Review, 20(4), 430452. doi:10.1007/s11065-010-9132-zCrossRefGoogle ScholarPubMed
Bäuml, J. G., Daamen, M., Meng, C., Neitzel, J., Scheef, L., Jaekel, J., … Sorg, C. (2015). Correspondence between aberrant intrinsic network connectivity and gray matter volume in the ventral brain of preterm born adults. Cerebral Cortex. 25(11), 41354145. doi:10.1093/cercor/bhu133CrossRefGoogle ScholarPubMed
Bayley, N. (1993). Bayley scales of infant development (2nd ed.). San Antonio, TX: The Psychological Corporation.Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16(6), 300304. doi:10.1111/j.1467-8721.2007.00525.xCrossRefGoogle Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis-stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135(6), 885908.CrossRefGoogle ScholarPubMed
Benzies, K., Magill-Evans, J., Hayden, K., & Ballantyne, M. (2013). Key components of early intervention programs for preterm infants and their parents: A systematic review and meta-analysis. BMC Pregnancy and Childbirth, 13(Suppl 1), S10.CrossRefGoogle ScholarPubMed
Bhutta, A. T., Cleves, M. A., Casey, P. H., Cradock, M. M., & Anand, K. J. S. (2002). Cognitive and behavioral outcomes of school-aged children who were born preterm. A meta-analysis. Journal of the American Medical Association, 288(6), 728737.CrossRefGoogle ScholarPubMed
Biederman, J., Petty, C. R., Dolan, C., Hughes, S., Mick, E., Monuteaux, M. C., & Faraone, S. V. (2008). The long-term longitudinal course of oppositional defiant disorder and conduct disorder in ADHD boys: Findings from a controlled 10-year prospective longitudinal follow-up study. Psychological Medicine, 38(7), 10271036.CrossRefGoogle ScholarPubMed
Bilgin, A., & Wolke, D. (2015). Maternal sensitivity in parenting preterm children: A meta-analysis. Pediatrics, 136(1), 20143570.CrossRefGoogle ScholarPubMed
Blanc, A. K., & Wardlaw, T. (2005). Monitoring low birth weight: An evaluation of international estimates and updated estimation procedure. Bulletin of the World Health Organization, 83, 161240.Google ScholarPubMed
Bora, S., Pritchard, V. E., Chen, Z., Inder, T. E., & Woodward, L. J. (2014). Neonatal cerebral morphometry and later risk of persistent inattention/hyperactivity in children born very preterm. Journal of Child Psychology and Psychiatry, 55(7), 828838. doi:10.1111/jcpp.12200CrossRefGoogle ScholarPubMed
Bora, S., Pritchard, V. E., Moor, S., Austin, N. C., & Woodward, L. J. (2011). Emotional and behavioural adjustment of children born very preterm at early school age. Journal of Paediatrics and Child Health, 47(12), 863869. doi:10.1111/j.1440-1754.2011.02105.xCrossRefGoogle ScholarPubMed
Bos, A. F., Van Braeckel, Koenraad N. J. A, Hitzert, M. M., Tanis, J. C., & Roze, E. (2013). Development of fine motor skills in preterm infants. Development Medicine & Child Neurology, 55(Suppl 4), 14.CrossRefGoogle ScholarPubMed
Boyle, E. M. (2012). The late and moderate preterm baby. Seminars in Fetal and Neonatal Medicine, 17(3), 119. doi:http://dx.doi.org/10.1016/j.siny.2012.02.005CrossRefGoogle ScholarPubMed
Boyle, E. M., Poulsen, G., Field, D. J., Kurinczuk, J. J., Wolke, D., Alfirevic, Z., & Quigley, M. A. (2012). Effects of gestational age at birth on health outcomes at 3 and 5 years of age: Population based cohort study. British Medical Journal, 344. doi:10.1136/bmj.e896CrossRefGoogle ScholarPubMed
Breeman, L. D., Jaekel, J., Baumann, N., Bartmann, P., & Wolke, D. (2015). Preterm cognitive function into adulthood. Pediatrics, 136(3), 415423. doi:10.1542/peds.2015-0608CrossRefGoogle ScholarPubMed
Breeman, L. D., Jaekel, J., Baumann, N., Bartmann, P., & Wolke, D. (2016). Attention problems in very preterm children from childhood to adulthood: The Bavarian Longitudinal Study. Journal of Child Psychology and Psychiatry, 57(2), 132140. doi:10.1111/jcpp.12456CrossRefGoogle ScholarPubMed
Burnett, A. C., Anderson, P. J., Cheong, J., Doyle, L. W., Davey, C. G., & Wood, S. J. (2011). Prevalence of psychiatric diagnoses in preterm and full-term children, adolescents and young adults: A meta-analysis. Psychological Medicine, 41(12), 24632474. doi:10.1017/s003329171100081xCrossRefGoogle Scholar
Centers for Disease Control and Prevention. (2016). CDC report of live births from 2014. Retrieved from www.cdc.gov/reproductivehealth/data_stats/state-profiles.htm:Google Scholar
Cheong, J. L. Y., & Doyle, L. W. (2012). Increasing rates of prematurity and epidemiology of late preterm birth. Journal of Paediatrics and Child Health, 48(9), 784788. doi:10.1111/j.1440-1754.2012.02536.xCrossRefGoogle ScholarPubMed
Darlow, B. A., Horwood, L. J., Pere-Bracken, H. M., & Woodward, L. J. (2013a). Psychosocial outcomes of young adults born very low birth weight. Pediatrics, 132(6), E1521E1528. doi:10.1542/peds.2013-2024CrossRefGoogle ScholarPubMed
Day, K. L., Van Lieshout, R. J., Vaillancourt, T., Saigal, S., Boyle, M. H., & Schmidt, L. A. (2015). Peer victimization in extremely low birth weight survivors. Clinical Pediatrics, 54(14), 13391345. doi:10.1177/0009922815580770CrossRefGoogle ScholarPubMed
Delobel-Ayoub, M., Arnaud, C., White-Koning, M., Casper, C., Pierrat, V., Garel, M., … Larroque, B. (2009). Behavioral problems and cognitive performance at 5 years of age after very preterm birth: The EPIPAGE study. Pediatrics, 123(6), 14851492. doi:10.1542/peds.2008-1216CrossRefGoogle ScholarPubMed
De Schuymer, L., De Groote, I., Desoete, A., & Roeyers, H. (2012). Gaze aversion during social interaction in preterm infants: A function of attention skills? Infant Behavior and Development, 35(1), 129139.CrossRefGoogle ScholarPubMed
D’Onofrio, B. M., Class, Q. A., Rickert, M. E., Larsson, H., Langstrom, N., & Lichtenstein, P. (2013). Preterm birth and mortality and morbidity: A population-based quasi-experimental study. JAMA Psychiatry (Chicago, Ill.), 70(11), 12311240. doi:10.1001/jamapsychiatry.2013.2107CrossRefGoogle ScholarPubMed
Doyle, L. W., Anderson, P. J., Battin, M., Bowen, J. R., Brown, N., Callanan, C., … Woodward, L. J. (2014). Long term follow up of high risk children: Who, why and how? BMC Pediatrics, 14(1), 279. doi:10.1186/1471-2431-14-279CrossRefGoogle ScholarPubMed
Editorial. (2014). Child deaths in high-income countries [Editorial]. Lancet, 384(9946), 830.CrossRefGoogle Scholar
Elsabbagh, M., Divan, G., Koh, Y.-J., Kim, Y. S., Kauchali, S., Marcín, C., … Fombonne, E. (2012). Global prevalence of autism and other pervasive developmental disorders. Autism Research, 5(3), 160179. doi:10.1002/aur.239CrossRefGoogle ScholarPubMed
Eryigit Madzwamuse, S., Baumann, N., Jaekel, J., Bartmann, P., & Wolke, D. (2015). Neuro-cognitive performance of very preterm or very low birth weight adults at 26 years. Journal of Child Psychology and Psychiatry, 56(8), 857864. doi:10.1111/jcpp.12358CrossRefGoogle ScholarPubMed
Eryigit-Madzwamuse, S., Strauss, V. Y.-C., Baumann, N., Bartmann, P., & Wolke, D. (2015). Personality of adults who were born very preterm. Archives of Disease in Childhood – Fetal and Neonatal Edition. doi:10.1136/archdischild-2014-308007CrossRefGoogle Scholar
Farooqi, A., Hagglof, B., Sedin, G., Gothefors, L., & Serenius, F. (2007). Mental health and social competencies of 10- to 12-year-old children born at 23 to 25 weeks of gestation in the 1990s: A Swedish national prospective follow-up study. Pediatrics, 120(1), 118133. doi:10.1542/peds.2006-2988CrossRefGoogle ScholarPubMed
Felderhoff-Müser, U., Bittigau, P., Sifringer, M., Jarosz, B., Korobowicz, E., Mahler, L., … Ikonomidou, C. (2004). Oxygen causes cell death in the developing brain. Neurobiological Disorders, 17(2), 273282.Google Scholar
Feldman, R., & Eidelman, A. I. (2007). Maternal postpartum behavior and the emergence of infant-mother and infant-father synchrony in preterm and full-term infants: The role of neonatal vagal tone. Developmental Psychobiology, 49(3), 290302.CrossRefGoogle ScholarPubMed
Feldman, R., Rosenthal, Z., & Eidelman, A. I. (2014). Maternal-preterm skin-to-skin contact enhances child physiologic organization and cognitive control across the first 10 years of life. Biological Psychiatry, 75, 5664.CrossRefGoogle ScholarPubMed
Finke, K., Neitzel, J., Bäuml, J. G., Redel, P., Müller, H. J., Meng, C., … Sorg, C. (2015). Visual attention in preterm born adults: Specifically impaired attentional sub-mechanisms that link with altered intrinsic brain networks in a compensation-like mode. NeuroImage, 107, 95106. doi:http://dx.doi.org/10.1016/j.neuroimage.2014.11.062CrossRefGoogle Scholar
Forcada-Guex, M., Pierrehumbert, B., Borghini, A., Moessinger, A., & Muller-Nix, C. (2006). Early dyadic patterns of mother-infant interactions and outcomes of prematurity at 18 months. Pediatrics, 118(1), e107e114.CrossRefGoogle ScholarPubMed
Geldof, C. J. A., van Wassenaer, A. G., de Kieviet, J. F., Kok, J. H., & Oosterlaan, J. (2012). Visual perception and visual-motor integration in very preterm and/or very low birth weight children: A meta-analysis. Research in Developmental Disabilities, 33(2), 726736.CrossRefGoogle ScholarPubMed
Goldenberg, R. L., Culhane, J. F., Iams, J. D., & Romero, R. (2008). Epidemiology and causes of preterm birth. The Lancet, 371(9606), 7584.CrossRefGoogle ScholarPubMed
Gopel, W., Kribs, A., Ziegler, A., Laux, R., Hoehn, T., Wieg, C., … on behalf of the German Neonatal Network (2011). Avoidance of mechanical ventilation by surfactant treatment of spontaneously breathing preterm infants (AMV): An open-label, randomised, controlled trial. The Lancet, 378(9803), 16271634. doi:10.1016/s0140-6736(11)60986-0CrossRefGoogle ScholarPubMed
Grunewaldt, K. H., Lohaugen, G. C., Austeng, D., Brubakk, A. M., & Skranes, J. (2013). Working memory training improves cognitive function in VLBW preschoolers. Pediatrics, 131(3), e747754. doi:10.1542/peds.2012-1965.CrossRefGoogle ScholarPubMed
Hack, M. (2009). Adult outcomes of preterm children. Journal of Developmental & Behavioral Pediatrics, 30(5), 460470.CrossRefGoogle ScholarPubMed
Hack, M. (2013). Psychosocial development of adolescent preterm children. Early Human Development, 89(4), 197198. doi:10.1016/j.earlhumdev.2013.01.011CrossRefGoogle ScholarPubMed
Hack, M., Hudson, G. T., Schluchter, M., Andreias, L., Drotar, D., & Klein, N. (2009). Behavioral outcomes of extremely low birth weight children at age 8 years. Journal of Developmental & Behavioral Pediatrics, 30, 122130.CrossRefGoogle ScholarPubMed
Hall, J., Jaekel, J., & Wolke, D. (2012). Gender distinctive impacts of prematurity and small for gestational age on age 6 attention problems. Child and Adolescent Mental Health, 17(4), 238245. doi:10.1111/j.1475-3588.2012.00649.x.CrossRefGoogle ScholarPubMed
Hall, J., & Wolke, D. (2012). A comparison of prematurity and small for gestational age as risk factors for age 6–13 year emotional problems. Early Human Development 88(10), 797804. doi:10.1016/j.earlhumdev.2012.05.005CrossRefGoogle ScholarPubMed
Halliday, H. L. (2008). Surfactants: Past, present and future. Journal of Perinatology, 28(S1), S47S56. doi:10.1038/jp.2008.50CrossRefGoogle ScholarPubMed
Heckman, J. J. (2006). Skill formation and the economics of investing in disadvantaged children. Science, 312(5782), 19001902. doi:10.1126/science.1128898CrossRefGoogle ScholarPubMed
Hedlund, R. (1998). The Neurobehavioral Curriculum for Early Intervention. Retrieved 04/06/2017, from Washington Research Institute http://www.ibaip.orgGoogle Scholar
Hedlund, R., & Tatarka, M. (1988). The infant behavioral assessment. Seattle: The Washington Research Institute.Google Scholar
Heinonen, K., Eriksson, J. G., Kajantie, E., Pesonen, A.-K., Barker, D. J., Osmond, C., & Raikkonen, K. (2013). Late-preterm birth and lifetime socioeconomic attainments: The Helsinki birth cohort study. Pediatrics, 132(4), 647655. doi:10.1542/peds.2013-0951CrossRefGoogle ScholarPubMed
Hille, E. T. M., den Ouden, A. L., Saigal, S., Wolke, D., Lambert, M., Whitaker, A., … Paneth, N. (2001). Behavioural problems in children who weigh 1000 g or less at birth in four countries. The Lancet, 357(9269), 16411643.CrossRefGoogle ScholarPubMed
Himpens, E., Van den Broeck, C., Oostra, A., Calders, P., & Vanhaesebrouck, P. (2008). Prevalence, type, distribution, and severity of cerebral palsy in relation to gestational age: A meta-analytic review. Developmental Medicine & Child Neurology, 50(5), 334340. doi:10.1111/j.1469-8749.2008.02047.xCrossRefGoogle ScholarPubMed
Hutchinson, E. A., De Luca, C. R., Doyle, L. W., Roberts, G., & Anderson, P. J. (2013). School-age outcomes of extremely preterm or extremely low birth weight children. Pediatrics, 131(4), e1053e1061. doi:10.1542/peds.2012-2311CrossRefGoogle ScholarPubMed
Jaekel, J. (2016). Commentary: Supporting preterm children’s parents matters–A reflection on Treyvaud et al. (2016). Journal of Child Psychology and Psychiatry, 57(7), 822823.CrossRefGoogle ScholarPubMed
Jaekel, J., Baumann, N., & Wolke, D. (2013). Effects of gestational age at birth on cognitive performance: A function of cognitive workload demands. PLoS One, 8(5), e65219.CrossRefGoogle ScholarPubMed
Jaekel, J., Pluess, M., Belsky, J., & Wolke, D. (2015). Effects of maternal sensitivity on low birth weight children’s academic achievement: A test of differential susceptibility versus diathesis stress. Journal of Child Psychology and Psychiatry, 56(6), 693701. doi:10.1111/jcpp.12331CrossRefGoogle ScholarPubMed
Jaekel, J., & Wolke, D. (2014). Preterm birth and dyscalculia. The Journal of Pediatrics, 164(6), 13271332. doi:10.1016/j.jpeds.2014.01.069CrossRefGoogle ScholarPubMed
Jaekel, J., Wolke, D., & Bartmann, P. (2013). Poor attention rather than hyperactivity/impulsivity predicts academic achievement in very preterm and fullterm adolescents. Psychological Medicine, 43, 183196. doi:10.1017/S0033291712001031.CrossRefGoogle ScholarPubMed
Jaekel, J., Wolke, D., & Chernova, J. (2012). Mother and child behaviour in very preterm and term dyads at 6 and 8 years. Developmental Medicine & Child Neurology, 54 (8), 716723.CrossRefGoogle ScholarPubMed
Johnson, S., Fawke, J., Hennessy, E. M., Rowell, V., Thomas, S., Wolke, D., & Marlow, N. (2009). Neurodevelopmental disability through 11 years of age in children born before 26 weeks of gestation. Pediatrics, 124(2), e249e257.CrossRefGoogle ScholarPubMed
Johnson, S., Gilmore, C., Gallimore, I., Jaekel, J., & Wolke, D. (2015). The long-term consequences of preterm birth: What do teachers know? Developmental Medicine & Child Neurology, 57(6), 571577. doi:10.1111/dmcn.12683CrossRefGoogle ScholarPubMed
Johnson, S., Hennessy, E., Smith, R., Trikic, R., Wolke, D., & Marlow, N. (2009). Academic attainment and special educational needs in extremely preterm children at 11 years of age: The EPICure study. Archives of Disease in Childhood - Fetal and Neonatal Edition, 94(4), F283F289. doi:10.1136/adc.2008.152793CrossRefGoogle ScholarPubMed
Johnson, S., Hollis, C., Kochhar, P., Hennessy, E., Wolke, D., & Marlow, N. (2010a). Autism spectrum disorders in extremely preterm children. Journal of Pediatrics, 156(4), 525U527. doi:10.1016/j.jpeds.2009.10.041CrossRefGoogle ScholarPubMed
Johnson, S., Hollis, C., Kochhar, P., Hennessy, E., Wolke, D., & Marlow, N. (2010b). Psychiatric disorders in extremely preterm children: Longitudinal finding at age 11 years in the EPICure study. Journal of the American Academy of Child and Adolescent Psychiatry, 49(5), 453463. doi:10.1016/j.jaac.2010.02.002Google ScholarPubMed
Johnson, S., & Marlow, N. (2011). Preterm birth and childhood psychiatric disorders. Pediatric Research, 69(5), 11R18R. doi:10.1203/PDR.0b013e318212faa0CrossRefGoogle ScholarPubMed
Johnson, S., & Marlow, N. (2014). Growing up after extremely preterm birth: Lifespan mental health outcomes. Seminars in Fetal & Neonatal Medicine, 19(2), 97104. doi:10.1016/j.siny.2013.11.004CrossRefGoogle ScholarPubMed
Johnson, S., Strauss, V., Gilmore, C., Jaekel, J., Marlow, N., & Wolke, D. (2016). Learning disabilities among extremely preterm children without neurosensory impairment: Comorbidity, neuropsychological profiles and scholastic outcomes. Early Human Development, 103, 6975. doi:10.1016/j.earlhumdev.2016.07.009CrossRefGoogle ScholarPubMed
Johnson, S., & Wolke, D. (2013). Behavioural outcomes and psychopathology during adolescence. Early Human Development, 89(4), 199207.CrossRefGoogle ScholarPubMed
Johnson, S., Wolke, D., Hennessy, E., & Marlow, N. (2011). Educational outcomes in extremely preterm children: Neuropsychological correlates and predictors of attainment. Developmental Neuropsychology, 36(1), 7495.CrossRefGoogle ScholarPubMed
Jolles, D., & Crone, E. A. (2012). Training the developing brain: A neurocognitive perspective. Frontiers in Human Neuroscience, 6. doi:10.3389/fnhum.2012.00076CrossRefGoogle Scholar
Jones, K. M., Champion, P. R., & Woodward, L. J. (2013). Social competence of preschool children born very preterm. Early Human Development, 89(10), 795802. doi:10.1016/j.earlhumdev.2013.06.008CrossRefGoogle ScholarPubMed
Joseph, R. M., O’Shea, T. M., Allred, E. N., Heeren, T., Hirtz, D., Jara, H., … Kuban, K. C. K. (2016). Neurocognitive and academic outcomes at age 10 years of extremely preterm newborns. Pediatrics, 137(4), 19. doi:10.1542/peds.2015-4343CrossRefGoogle ScholarPubMed
Joseph, R. M., O’Shea, T. M., Allred, E. N., Heeren, T., Hirtz, D., Paneth, N., … Kuban, K. C. (2017). Prevalence and associated features of autism spectrum disorder in extremely low gestational age newborns at age 10 years. Autism Research, 10(2), 224232. doi:10.1002/aur.1644CrossRefGoogle ScholarPubMed
Kapellou, O., Counsell, S. J., Kennea, N., Dyet, L., Saeed, N., Stark, J., … Edwards, A. D. (2006). Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Med, 3(8), e265.CrossRefGoogle ScholarPubMed
Kerr-Wilson, C. O., Mackay, D. F., Smith, G. C., & Pell, J. P. (2012). Meta-analysis of the association between preterm delivery and intelligence. Journal of Public Health (Oxford), 34(2), 209216. doi:10.1093/pubmed/fdr024CrossRefGoogle ScholarPubMed
Kidokoro, H., Anderson, P. J., Doyle, L. W., Woodward, L. J., Neil, J. J., & Inder, T. E. (2014). Brain injury and altered brain growth in preterm infants: Predictors and prognosis. Pediatrics, 134(2), e444453. doi:10.1542/peds.2013-2336CrossRefGoogle ScholarPubMed
Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Science, 14(7), 317324.CrossRefGoogle ScholarPubMed
Koldewijn, K., van Wassenaer, A., Wolf, M.-J., Meijssen, D., Houtzager, B., Beelen, A., … Nollet, F. (2009). A neurobehavioral intervention and assessment program in very low birth weight infants: outcome at 24 months. Journal of Pediatrics, 156(3), 359365. doi:10.1016/j.jpeds.2009.09.009CrossRefGoogle ScholarPubMed
Larroque, B., Ancel, P. Y., Marchand-Martin, L., Cambonie, G., Fresson, J., Pierrat, V., … Marret, S. (2011). Special care and school difficulties in 8-year-old very preterm children: The Epipage cohort study. PLoS One, 6(7), e21361. doi:10.1371/journal.pone.0021361CrossRefGoogle ScholarPubMed
Lipkind, H. S., Slopen, M. E., Pfeiffer, M. R., & McVeigh, K. H. (2012). School-age outcomes of late preterm infants in New York City. American Journal of Obstetrics and Gynecology, 206(3), 222.e221222.e226.CrossRefGoogle ScholarPubMed
Litt, J. S., Gerry Taylor, H., Margevicius, S., Schluchter, M., Andreias, L., & Hack, M. (2012). Academic achievement of adolescents born with extremely low birth weight. Acta Paediatrica, 101(12), 12401245.CrossRefGoogle ScholarPubMed
Lohaugen, G. C. C., Antonsen, I., Haberg, A., Gramstad, A., Vik, T., Brubakk, A. M., & Skranes, J. (2011). Computerized working memory training improves function in adolescents born at extremely low birth weight. Journal of Pediatrics, 158(4), 555U556. doi:10.1016/j.jpeds.2010.09.060CrossRefGoogle ScholarPubMed
Lord, C., Rutter, M., DiLavore, P. C., Risi, S., Gotham, K., & Bishop, S. (2012). Autism diagnostic observation schedule, 2nd ed. Torrance, CA: Western Psychological Services.Google Scholar
Lund, L. K., Vik, T., Lydersen, S., Lohaugen, G. C., Skranes, J., Brubakk, A. M., & Indredavik, M. S. (2012). Mental health, quality of life and social relations in young adults born with low birth weight. Health and Quality of Life Outcomes, 10, 146. doi:10.1186/1477-7525-10-146CrossRefGoogle ScholarPubMed
Lund, L. K., Vik, T., Skranes, J., Brubakk, A.-M., & Indredavik, M. S. (2011). Psychiatric morbidity in two low birth weight groups assessed by diagnostic interview in young adulthood. Acta Paediatrica, 100(4), 598604. doi:10.1111/j.1651-2227.2010.02111.xCrossRefGoogle ScholarPubMed
Luu, T. M., Ment, L., Allan, W., Schneider, K., & Vohr, B. R. (2011). Executive and memory function in adolescents born very preterm. Pediatrics, 127(3), e639e646. doi:10.1542/peds.2010-1421CrossRefGoogle ScholarPubMed
MacKay, D. F., Smith, G. C. S., Dobbie, R., & Pell, J. P. (2010). Gestational age at delivery and special educational need: Retrospective cohort study of 407,503 schoolchildren. PLoS Med, 7(6), e1000289.CrossRefGoogle Scholar
Mannisto, T., Vaarasmaki, M., Sipola-Leppanen, M., Tikanmaki, M., Matinolli, H.-M., Pesonen, A.-K., … Kajantie, E. (2015). Independent living and romantic relations among young adults born preterm. Pediatrics, 135(2), 290297. doi:10.1542/peds.2014-1345CrossRefGoogle ScholarPubMed
March of Dimes. (2016). 2015 premature birth report card. Retrieved 8/30/2016. http://www.marchofdimes.org/materials/premature-birth-report-card-united-states.pdfGoogle Scholar
March of Dimes, PMNCH, Save the Children, & WHO. (2012). Born too soon: The global action report on preterm birth. Geneva: World Health Organization.Google Scholar
March of Dimes. (2007). Born Too Soon: Premature Birth in the U.S. Black Population. White Plains, NY: Author.Google Scholar
McCormick, M. C., Brooks-Gunn, J., Buka, S. L., Goldman, J., Yu, J., Salganik, M., … Casey, P. H. (2006). Early intervention in low birth weight premature infants: Results at 18 years of age for the Infant Health and Development Program. Pediatrics, 117(3), 771780.CrossRefGoogle ScholarPubMed
Meher, S., & Alfirevic, Z. (2014). Choice of primary outcomes in randomised trials and systematic reviews evaluating interventions for preterm birth prevention: A systematic review. BJOG: An International Journal of Obstetrics & Gynaecology, 121(10), 11881194.CrossRefGoogle ScholarPubMed
Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of “far transfer.” Perspectives on Psychological Science, 11(4), 512534. doi:doi:10.1177/1745691616635612CrossRefGoogle ScholarPubMed
Miller, S. P., & Ferriero, D. M. (2009). From selective vulnerability to connectivity: Insights from newborn brain imaging. Trends in Neurosciences, 32(9), 496505. doi:http://dx.doi.org/10.1016/j.tins.2009.05.010CrossRefGoogle ScholarPubMed
Moore, T., Hennessy, E. M., Myles, J., Johnson, S., Draper, E. S., Costeloe, K. L., & Marlow, N. (2012). Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: The EPICure studies. BMJ, 345. doi:10.1136/bmj.e7961CrossRefGoogle ScholarPubMed
Moster, D., Lie, R. T., & Markestad, T. (2008). Long-term medical and social consequences of preterm birth. New England Journal of Medicine, 359(3), 262273. doi:10.1056/NEJMoa0706475CrossRefGoogle ScholarPubMed
Mulder, H., Pitchford, N. J., Hagger, M. S., & Marlow, N. (2009). Development of executive function and attention in preterm children: A systematic review. Developmental Neuropsychology, 34(4), 393421. doi:10.1080/87565640902964524CrossRefGoogle ScholarPubMed
Mulder, H., Pitchford, N. J., & Marlow, N. (2010). Processing speed and working memory underlie academic attainment in very preterm children. Archives of Disease in Childhood - Fetal and Neonatal Edition, 95(4), F267F272. doi:10.1136/adc.2009.167965CrossRefGoogle ScholarPubMed
Muller-Nix, C., Forcada-Guex, M., Pierrehumbert, B., Jaunin, L., Borghini, A., & Ansermet, F. (2004). Prematurity, maternal stress, and mother-child interactions. Early Human Development, 79, 145158.CrossRefGoogle ScholarPubMed
Nordhov, S. M., Rønning, J. A., Dahl, L. B., Ulvund, S. E., Tunby, J., & Kaaresen, P. I. (2010). Early intervention improves cognitive outcomes for preterm infants: Randomized controlled trial. Pediatrics, 126(5), e1088e1094. doi:10.1542/peds.2010-0778CrossRefGoogle ScholarPubMed
Nosarti, C. (2013). Structural and functional brain correlates of behavioral outcomes during adolescence. Early Hum Dev, 89(4), 221227. doi:10.1016/j.earlhumdev.2013.02.002CrossRefGoogle ScholarPubMed
Nosarti, C., Murray, R. M., & Hack, M. E. (2010). Neurodevelopmental outcomes of preterm birth. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Nosarti, C., Reichenberg, A., Murray, R. M., Cnattingius, S., Lambe, M. P., Yin, L., … Hultman, C. M.(2012). Preterm birth and psychiatric disorders in young adult life. Archives of General Psychiatry, 69(6), 610617. doi:10.1001/archgenpsychiatry.2011.1374CrossRefGoogle ScholarPubMed
Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 7579. doi:10.1038/nn1165CrossRefGoogle ScholarPubMed
Orchinik, L. J., Taylor, H. G., Espy, K. A., Minich, N., Klein, N., Sheffield, T., & Hack, M. (2011). Cognitive outcomes for extremely preterm/extremely low birth weight children in kindergarten. Journal of the International Neuropsychological Society, 17(6), 10671079. doi:10.1017/s135561771100107xCrossRefGoogle ScholarPubMed
Orton, J., Spittle, A., Doyle, L., Anderson, P. J., & Boyd, R. (2009). Do early intervention programmes improve cognitive and motor outcomes for preterm infants after discharge? A systematic review. Developmental Medicine & Child Neurology, 51(11), 851859.CrossRefGoogle ScholarPubMed
Pascoe, L., Roberts, G., Doyle, L. W., Lee, K. J., Thompson, D. K., Seal, M. L., … Anderson, P. J. (2013). Preventing academic difficulties in preterm children: A randomised controlled trial of an adaptive working memory training intervention – IMPRINT study. BMC Pediatrics, 13:144.CrossRefGoogle ScholarPubMed
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 7389. doi:10.1146/annurev-neuro-062111-150525CrossRefGoogle ScholarPubMed
Peterson, B. S. (2003). Brain imaging studies of the anatomical and functional consequences of preterm birth for human brain development. Annals of the New York Academy of Sciences, 1008(1), 219237. doi:10.1196/annals.1301.023CrossRefGoogle ScholarPubMed
Petrou, S., Johnson, S., Wolke, D., & Marlow, N. (2013). The association between neurodevelopmental disability and economic outcomes during mid-childhood. Child Care Health and Development, 39(3), 345357. doi:10.1111/j.1365-2214.2012.01368.xCrossRefGoogle ScholarPubMed
Petrou, S., & Khan, K. (2012). Economic costs associated with moderate and late preterm birth: Primary and secondary evidence. Seminars in Fetal and Neonatal Medicine, 17(3), 170178. doi:http://dx.doi.org/10.1016/j.siny.2012.02.001CrossRefGoogle ScholarPubMed
Pinto-Martin, J. A., Levy, S. E., Feldman, J. F., Lorenz, J. M., Paneth, N., & Whitaker, A. H. (2011). Prevalence of autism spectrum disorder in adolescents born weighing < 2000 grams. Pediatrics, 128(5), 883891. doi:10.1542/peds.2010-2846CrossRefGoogle ScholarPubMed
Poulsen, G., Wolke, D., Kurinczuk, J. J., Boyle, E. M., Field, D., Alfirevic, Z., & Quigley, M. A. (2013). Gestational age and cognitive ability in early childhood: A population-based cohort study. Paediatric and Perinatal Epidemiology, 27(4), 371379. doi:10.1111/ppe.12058CrossRefGoogle ScholarPubMed
Prager, S., Singer, B. B., Bendix, I., Schlager, G. W., Bertling, F., Ceylan, B., … Ergün, S. (2013). CEACAM1 expression in oligodendrocytes of the developing rat brain shows a spatiotemporal relation to myelination and is altered in a model of encephalopathy of prematurity. Development Neuroscience, 35(2–3), 226240.CrossRefGoogle Scholar
Quigley, M., Poulsen, G., Boyle, E. M., Wolke, D., Field, D., Alfirevic, Z., & Kurinczuk, J. J. (2012). Early term and late preterm birth is associated with poorer school performance at age 5 years: A cohort study. Archives of Disease in Childhood – Fetal and Neonatal Edition. doi:10.1136/archdischild-2011-300888CrossRefGoogle Scholar
Raisanen, S., Gissler, M., Saari, J., Kramer, M., & Heinonen, S. (2013). Contribution of risk factors to extremely, very and moderately preterm births – register-based analysis of 1,390,742 singleton births. PLoS One, 8(4). doi:e6066010.1371/journal.pone.0060660CrossRefGoogle Scholar
Rauh, V. A., Nurcombe, B., Achenbach, T., & Howell, C. (1990). The Mother-Infant Transaction Program. The content and implications of an intervention for the mothers of low-birthweight infants. Clinics in Perinatology, 17(1), 3145.CrossRefGoogle ScholarPubMed
Raz, S., Debastos, A. K., Newman, J. B., & Batton, D. (2010). Extreme prematurity and neuropsychological outcome in the preschool years. Journal of the International Neuropsychological Society, 16(1), 169179. doi:10.1017/S1355617709991147CrossRefGoogle ScholarPubMed
Ritchie, K., Bora, S., & Woodward, L. J. (2015). Social development of children born very preterm: A systematic review. Developmental Medicine & Child Neurology, 57(10), 899918. doi:10.1111/dmcn.12783CrossRefGoogle ScholarPubMed
Roberts, G., Quach, J., Spencer-Smith, M., Anderson, P. J., Gathercole, S., Gold, L., … Wake, M. (2016). Academic outcomes 2 years after working memory training for children with low working memory: A randomized clinical trial. JAMA Pediatrics, 170(5), e154568. doi:10.1001/jamapediatrics.2015.4568CrossRefGoogle ScholarPubMed
Roisman, G. I., Newman, D. A., Fraley, R. C., Haltigan, J. D., Groh, A. M., & Haydon, K. C. (2012). Distinguishing differential susceptibility from diathesis–stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24(02), 389409. doi:10.1017/S0954579412000065CrossRefGoogle ScholarPubMed
Rubens, C. E., Sadovsky, Y., Muglia, L., Gravett, M. G., Lackritz, E., & Gravett, C. (2014). Prevention of preterm birth: Harnessing science to address the global epidemic. Science Translational Medicine, 6(262), 262sr265-262sr265.CrossRefGoogle ScholarPubMed
Rutter, M., LeCouteur, A., & Lord, C. (2003, 2008). Autism diagnostic interview, revised (ADI®-R). Los Angeles, CA: Western Psychological Services.Google Scholar
Saigal, S. (2014). Preemie voices. Victoria, British Colombia: FriesenPress.Google Scholar
Saigal, S., Day, K. L., Van Lieshout, R. J., Schmidt, L. A., Morrison, K. M., & Boyle, M. H. (2016). Health, wealth, social integration, and sexuality of extremely low-birth-weight prematurely born adults in the fourth decade of life. JAMA Pediatrics, 170(7), 678686. doi:10.1001/jamapediatrics.2016.0289CrossRefGoogle ScholarPubMed
Saigal, S., & Doyle, L. W. (2008). An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet, 371, 261269.CrossRefGoogle ScholarPubMed
Saigal, S., van Ouden, L., Wolke, D., Hoult, L., Paneth, N., Streiner, D. L., … Pinto-Martin, J. (2003). School-age outcomes in children who were extremely low birth weight from four international population-based cohorts. Pediatrics, 112(4), 943950.CrossRefGoogle ScholarPubMed
Samara, M., Marlow, N., & Wolke, D. (2008). Pervasive behavior problems at 6 years of age in a total-population sample of children born at <=25 weeks of gestation. Pediatrics, 122(3), 562573. doi:10.1542/peds.2007-3231CrossRefGoogle Scholar
Scott, M. N., Taylor, H. G., Fristad, M. A., Klein, N., Espy, K. A., Minich, N., & Hack, M. (2012). Behavior disorders in extremely preterm/extremely low birth weight children in kindergarten. Journal of Developmental and Behavioral Pediatrics, 33(3), 202213. doi:10.1097/DBP.0b013e3182475287CrossRefGoogle ScholarPubMed
Shapiro-Mendoza, C. K., & Lackritz, E. M. (2012). Epidemiology of late and moderate preterm birth. Seminars in Fetal and Neonatal Medicine, 17(3), 120125. doi:http://dx.doi.org/10.1016/j.siny.2012.01.007CrossRefGoogle ScholarPubMed
Simms, V., Cragg, L., Gilmore, C., Marlow, N., & Johnson, S. (2013). Mathematics difficulties in children born very preterm: Current research and future directions. Archives of Disease in Childhood - Fetal and Neonatal Edition, 98(5), F457F463. doi:10.1136/archdischild-2013-303777CrossRefGoogle ScholarPubMed
Somhovd, M. J., Hansen, B. M., Brok, J., Esbjorn, B. H., & Greisen, G. (2012). Anxiety in adolescents born preterm or with very low birthweight: A meta-analysis of case-control studies. Dev Med Child Neurol, 54(11), 988994. doi:10.1111/j.1469-8749.2012.04407.xCrossRefGoogle ScholarPubMed
Soveri, A., Antfolk, J., Karlsson, L., Salo, B., & Laine, M. (2017). Working memory training revisited: A multi-level meta-analysis of n-back training studies. Psychonomic Bulletin & Review, 24(4):10771096. doi:10.3758/s13423-016-1217-0CrossRefGoogle ScholarPubMed
Spittle, A., Orton, J., Anderson, P., Boyd, R., & Doyle, L. (2012). Early developmental intervention programmes post-hospital discharge to prevent motor and cognitive impairments in preterm infants. Cochrane Database System Review, 12, Cd005495. doi:10.1002/14651858.CD005495.pub3Google ScholarPubMed
Spittle, A. J., Cheong, J., Doyle, L. W., Roberts, G., Lee, K. J., Lim, J., … Anderson, P. J. (2011). Neonatal white matter abnormality predicts childhood motor impairment in very preterm children. Developmental Medicine & Child Neurology, 53(11), 10001006. doi:10.1111/j.1469-8749.2011.04095.xCrossRefGoogle ScholarPubMed
Takeuchi, H., Sekiguchi, A., Taki, Y., Yokoyama, S., Yomogida, Y., Komuro, N., … Kawashima, R. (2010). Training of working memory impacts structural connectivity. Journal of Neuroscience, 30(9), 32973303. doi:10.1523/jneurosci.4611-09.2010CrossRefGoogle ScholarPubMed
Taylor, H. G. (2016). Low birth weight. In Morgan, J. E. & Ricker, J. H. (Eds.), Textbook of clinical neuropsychology (pp. 308332). New York, NY: Taylor & Francis.Google Scholar
Taylor, H. G., Espy, K. A., & Anderson, P. J. (2009). Mathematics deficiencies in children with very low birth weight or very preterm birth. Developmental Disabilities Research Reviews, 15(1), 5259. doi:10.1002/ddrr.51CrossRefGoogle ScholarPubMed
Taylor, H. G., Filipek, P. A., Juranek, J., Bangert, B., Minich, N., & Hack, M. (2011). Brain volumes in adolescents with very low birth weight: Effects on brain structure and associations with neuropsychological outcomes. Developmental Neuropsychology, 36(1), 96117. doi:10.1080/87565641.2011.540544CrossRefGoogle ScholarPubMed
Tessier, R., Charpak, N., Giron, M., Cristo, M., de Calume, Z. F., & Ruiz-Pelaez, J. G. (2009). Kangaroo Mother Care, home environment and father involvement in the first year of life: A randomized controlled study. Acta Paediatrica, 98(9), 14441450. doi:10.1111/j.1651-2227.2009.01370.xCrossRefGoogle ScholarPubMed
Treyvaud, K., Anderson, V. A., Howard, K., Bear, M., Hunt, R. W., Doyle, L. W., … Anderson, P. J. (2009). Parenting behavior is associated with the early neurobehavioral development of very preterm children. Pediatrics, 123(2), 555561. doi:10.1542/peds.2008-0477CrossRefGoogle ScholarPubMed
Treyvaud, K., Ure, A., Doyle, L. W., Lee, K. J., Rogers, C. E., Kidokoro, H., … Anderson, P. J. (2013). Psychiatric outcomes at age seven for very preterm children: Rates and predictors. Journal of Child Psychology and Psychiatry, 54(7), 772779. doi:10.1111/jcpp.12040CrossRefGoogle ScholarPubMed
van der Kooy-Hofland, V. A. C., van der Kooy, J., Bus, A. G., van Ijzendoorn, M. H., & Bonsel, G. J. (2012). Differential susceptibility to early literacy intervention in children with mild perinatal adversities: Short- and long-term effects of a randomized control trial. Journal of Educational Psychology, 104(2), 337349. doi:10.1037/a0026984CrossRefGoogle Scholar
Vanderveen, J. A., Bassler, D., Robertson, C. M., & Kirpalani, H. (2009). Early interventions involving parents to improve neurodevelopmental outcomes of premature infants: A meta-analysis. Journal of Perinatology, 29(5), 343351. doi:10.1038/jp.2008.229CrossRefGoogle ScholarPubMed
Van Lieshout, R. J., Boyle, M. H., Saigal, S., Morrison, K., & Schmidt, L. A. (2015). Mental health of extremely low birth weight survivors in their 30s. Pediatrics, 135(3), 452459. doi:10.1542/peds.2014-3143CrossRefGoogle ScholarPubMed
Volpe, J. J. (2009). Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. The Lancet Neurology, 8(1), 110124.CrossRefGoogle ScholarPubMed
Volpe, J. J., Kinney, H. C., Jensen, F. E., & Rosenberg, P. A. (2011). The developing oligodendrocyte: Key cellular target in brain injury in the premature infant. International Journal of Developmental Neuroscience, 29(4), 423440. doi:10.1016/j.ijdevneu.2011.02.012CrossRefGoogle ScholarPubMed
Waxman, J., Van Lieshout, R. J., Saigal, S., Boyle, M. H., & Schmidt, L. A. (2013). Still cautious: Personality characteristics of extremely low birth weight adults in their early 30s. Personality and Individual Differences, 55(8), 967971. doi:http://dx.doi.org/10.1016/j.paid.2013.08.003CrossRefGoogle Scholar
Wechsler, D. (1989). Wechsler preschool and primary scale of intelligence – revised. San Antonio, TX: The Psychological Corporation.Google Scholar
Westerberg, H., & Klingberg, T. (2007). Changes in cortical activity after training of working memory – A single-subject analysis. Physiology & Behavior, 92(1–2), 186192. doi:10.1016/j.physbeh.2007.05.041CrossRefGoogle ScholarPubMed
Westrupp, E. M., Northam, E., Doyle, L. W., Callanan, C., & Anderson, P. J. (2011). Adult psychiatric outcomes of very low birth weight survivors. Australian and New Zealand Journal of Psychiatry, 45(12), 10691077.CrossRefGoogle ScholarPubMed
Wolke, D. (2011). Preterm and low birth weight children. In Howlin, P., Charman, T., & Ghaziuddin, M. (Eds.), The SAGE handbook of developmental disorders (pp. 497527). London: Sage Publications.CrossRefGoogle Scholar
Wolke, D. (2016). Born extremely low birth weight and health related quality of life into adulthood. Journal of Pediatrics, 179, 1112.e11. doi:10.1016/j.jpeds.2016.09.012CrossRefGoogle ScholarPubMed
Wolke, D., Baumann, N., Strauss, V., Johnson, S., & Marlow, N. (2015). Bullying of preterm children and emotional problems at school age: Cross-culturally invariant effects. Journal of Pediatrics, 166(6), 14171422. doi:10.1016/j.jpeds.2015.02.055CrossRefGoogle ScholarPubMed
Wolke, D., Chernova, J., Eryigit-Madzwamuse, S., Samara, M., Zwierzynska, K., & Petrou, S. (2013). Self and parent perspectives on health-related quality of life of adolescents born very preterm. Journal of Pediatrics, 163(4), 10201026.e1022. doi:10.1016/j.jpeds.2013.04.030CrossRefGoogle ScholarPubMed
Wolke, D., Jaekel, J., Hall, J., & Baumann, N. (2013). Effects of sensitive parenting on the academic resilience of very preterm and very low birth weight adolescents. Journal of Adolescent Health, 53(5), 642647.CrossRefGoogle ScholarPubMed
Wolke, D., & Meyer, R. (1999). Cognitive status, language attainment, and prereading skills of 6-year-old very preterm children and their peers: The Bavarian Longitudinal Study. Developmental Medicine & Child Neurology, 41, 94109.Google ScholarPubMed
Wolke, D., Strauss, V. Y.-C., Johnson, S., Gilmore, C., Marlow, N., & Jaekel, J. (2015). Universal gestational age effects on cognitive and basic mathematic processing: 2 cohorts in 2 countries. Journal of Pediatrics, 166(6), 14101416.e2. doi:10.1016/j.jpeds.2015.02.065CrossRefGoogle ScholarPubMed
Woodward, L. J., Anderson, P. J., Austin, N. C., Howard, K., & Inder, T. E. (2006). Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. New England Journal of Medicine, 355(7), 685694.CrossRefGoogle ScholarPubMed
Woodward, L. J., Clark, C. A. C., Bora, S., & Inder, T. E. (2012). Neonatal white matter abnormalities an important predictor of neurocognitive outcome for very preterm children. PLoS One, 7(12), e51879. doi:10.1371/journal.pone.0051879CrossRefGoogle ScholarPubMed
Woodward, L. J., Clark, C. A., Pritchard, V. E., Anderson, P. J., & Inder, T. E. (2011). Neonatal white matter abnormalities predict global executive function impairment in children born very preterm. Developmental Neuropsychology, 36(1), 2241. doi:10.1080/87565641.2011.540530CrossRefGoogle ScholarPubMed
Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white: Neuroimaging changes in brain structure during learning. Nature Neuroscience, 15(4), 528536. doi:10.1038/nn.3045CrossRefGoogle ScholarPubMed
Zuckerman, M. (1999). Vulnerability to psychopathology: A biosocial model. Washington, DC: American Psychological Association.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×