Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T10:16:47.626Z Has data issue: false hasContentIssue false

Chapter 5 - Drug-Induced Gastrointestinal Disease

Published online by Cambridge University Press:  06 June 2020

Roger M. Feakins
Affiliation:
Royal Free London NHS Foundation Trust, London, UK
Get access

Summary

The assessment of gastrointestinal (GI) specimens from immunosuppressed patients can be challenging, particularly because of the increased likelihood of multiple diseases and of rarer diseases. This chapter documents and presents the wide range of luminal GI pathologies that can develop in the three main groups of immunosuppressed patients, i.e. HIV/AIDS patients, individuals with primary immunodeficiencies, and patients receiving iatrogenic immunosuppression. These GI pathologies include infections, neoplasms, drug-related injuries, and diseases that are more specific to certain groups of immunosuppressed patients such as graft-versus-host disease in bone marrow transplant recipients.

Type
Chapter
Information
Non-Neoplastic Pathology of the Gastrointestinal Tract
A Practical Guide to Biopsy Diagnosis
, pp. 65 - 83
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

De Petris, G, Gatius Caldero, S, Chen, L, et al. Histopathological changes in the gastrointestinal tract due to medications: an update for the Surgical Pathologist (Part I of II). Int J Surg Pathol. 2014;22:120–8.Google ScholarPubMed
Parfitt, JR, Driman, DK. Pathological effects of drugs on the gastrointestinal tract: a review. Hum Pathol. 2007;38:527–36.Google Scholar
Misdraji, J. Drug-induced pathology of the upper gastrointestinal tract. Diagnostic Histopathology. 2008;14(9):411–18.CrossRefGoogle Scholar
Abid, S, Mumtaz, K, Jafri, W, et al. Pill-induced esophageal injury: endoscopic features and clinical outcomes. Endoscopy. 2005;37(8):740–4.Google Scholar
Abraham, SC, Cruz-Correa, M, Lee, LA, Yardley, JH, Wu, TT. Alendronate-associated esophageal injury: pathologic and endoscopic features. Mod Pathol. 1999;12:1152–7.Google Scholar
Pace, F, Greco, S, Pallotta, S, Bossi, D, Trabucchi, E, Bianchi Porro, G. An uncommon cause of corrosive esophageal injury. World J Gastroenterol. 2008;14(4):636–7.Google Scholar
Deng, B, Wang, RW, Jiang, YG, et al. Prevention and management of complications after colon interposition for corrosive esophageal burns. Dis Esophagus. 2008;21(1):5762.CrossRefGoogle ScholarPubMed
Ramasamy, K, Gumaste, VV. Corrosive ingestion in adults. J Clin Gastroenterol. 2003;37(2):119–24.CrossRefGoogle ScholarPubMed
Kochhar, R, Sethy, PK, Kochhar, S, Nagi, B, Gupta, NM. Corrosive induced carcinoma of esophagus: report of three patients and review of literature. J Gastroenterol Hepatol. 2006;21(4):777–80.Google Scholar
Chen, Z, Scudiere, JR, Montgomery, E. Medication-induced upper gastrointestinal tract injury. J Clin Pathol. 2009;62(2):113–9.Google Scholar
Kaye, P, Abdulla, K, Wood, J, et al. Iron-induced mucosal pathology of the upper gastrointestinal tract: a common finding in patients on oral iron therapy. Histopathology. 2008;53:311–7.CrossRefGoogle ScholarPubMed
Marginean, EC, Bennick, M, Cyczk, J, Robert, ME, Jain, D. Gastric siderosis: patterns and significance. Am J Surg Pathol. 2006;30:514–20.CrossRefGoogle ScholarPubMed
Lanza, FL. Gastrointestinal adverse effects of bisphosphonates: etiology, incidence and prevention. Treat Endocrinol. 2002;1(1):3743.CrossRefGoogle ScholarPubMed
Bauer, DC, Black, D, Ensrud, K, et al. Upper gastrointestinal tract safety profile of alendronate: the fracture intervention trial. Arch Intern Med. 2000;160(4):517–25.Google Scholar
Shakweh, M, Bravo-Osuna, I, Ponchel, G. Comparative in vitro study of oesophageal adhesiveness of different commercial formulations containing alendronate. Eur J Pharm Sci. 2007;31(5):262–70.CrossRefGoogle ScholarPubMed
Owen, DA. Gastritis and carditis. Mod Pathol. 2003;16(4):325–41.Google Scholar
Srivastava, A, Lauwers, GY. Pathology of non-infective gastritis. Histopathology. 2007;50(1):1529.Google Scholar
Genta, RM. Differential diagnosis of reactive gastropathy. Semin Diagn Pathol. 2005;22(4):273–83.Google Scholar
Chiba, T, Sato, K, Endo, M, et al. Upper gastrointestinal disorders induced by non-steroidal anti-inflammatory drugs. Hepatogastroenterology. 2005;52(64):1134–8.Google ScholarPubMed
Matsukuma, K, Gui, D, Olson, KA, Tejaswi, S, Clayton, EF, Thai, A. OsmoPrep-associated gastritis: a histopathologic mimic of iron pill gastritis and mucosal calcinosis. Am J Surg Pathol. 2016;40(11):1550–6.CrossRefGoogle ScholarPubMed
Iacobuzio-Donahue, CA, Lee, EL, Abraham, SC, Yardley, JH, Wu, TT. Colchicine toxicity: distinct morphologic findings in gastrointestinal biopsies. Am J Surg Pathol. 2001;25:1067–73.CrossRefGoogle ScholarPubMed
Greenson, JK, Trinidad, SB, Pfeil, SA, et al. Gastric mucosal calcinosis. Calcified aluminum phosphate deposits secondary to aluminum-containing antacids or sucralfate therapy in organ transplant patients. Am J Surg Pathol. 1993;17(1):4550.CrossRefGoogle ScholarPubMed
Sjoquist, KM, Goldstein, D, Bester, L. A serious complication of selected internal radiation therapy: case report and literature review. Oncologist. 2010;15(8):830–5.CrossRefGoogle ScholarPubMed
Newland, LR, Walsh, A, Gilbert, DR, Buckland, ME. Selective internal radiation therapy: a case of SIR-Sphere associated duodenal ulceration. Pathology. 2007;39(5):526–8.CrossRefGoogle ScholarPubMed
Ogawa, F, Mino-Kenudson, M, Shimizu, M, Ligato, S, Lauwers, GY. Gastroduodenitis associated with yttrium 90-microsphere selective internal radiation: an iatrogenic complication in need of recognition. Arch Pathol Lab Med. 2008;132(11):1734–8.CrossRefGoogle ScholarPubMed
Konda, A, Savin, MA, Cappell, MS, Duffy, MC. Radiation microsphere-induced GI ulcers after selective internal radiation therapy for hepatic tumors: an underrecognized clinical entity. Gastrointest Endosc. 2009;70(3):561–7.Google Scholar
Naymagon, S, Warner, RR, Patel, K, et al. Gastroduodenal ulceration associated with radioembolization for the treatment of hepatic tumors: an institutional experience and review of the literature. Dig Dis Sci. 2010;55(9):2450–8.CrossRefGoogle ScholarPubMed
Wells, JJ, Nostrant, TT, Wilson, JA, Gyves, JW. Gastroduodenal ulcerations in patients receiving selective hepatic artery infusion chemotherapy. Am J Gastroenterol. 1985;80(6):425–9.Google ScholarPubMed
Shike, M, Gillin, JS, Kemeny, N, Daly, JM, Kurtz, RC. Severe gastroduodenal ulcerations complicating hepatic artery infusion chemotherapy for metastatic colon cancer. Am J Gastroenterol. 1986;81(3):176–9.Google Scholar
Petras, RE, Hart, WR, Bukowski, RM. Gastric epithelial atypia associated with hepatic arterial infusion chemotherapy: its distinction from early gastric carcinoma. Cancer. 1985;56(4):745–50.Google Scholar
Brien, TP, Farraye, FA, Odze, RD. Gastric dysplasia-like epithelial atypia associated with chemoradiotherapy for esophageal cancer: a clinicopathologic and immunohistochemical study of 15 cases. Mod Pathol. 2001;14(5):389–96.Google Scholar
Hruban, RH, Yardley, JH, Donehower, RC, Boitnott, JK. Taxol toxicity. Epithelial necrosis in the gastrointestinal tract associated with polymerized microtubule accumulation and mitotic arrest. Cancer. 1989;63(10):1944–50.Google Scholar
Rowinsky, EK, Donehower, RC. Paclitaxel (Taxol). N Engl J Med. 1995;332(15):1004–14.Google Scholar
De Petris, G, Gatius Caldero, S, Chen, L, et al. Histopathological changes in the gastrointestinal tract due to medications: an update for the surgical pathologist (Part II of II). Int J Surg Pathol. 2014;22:202–11.Google Scholar
Maier, H, Hehemann, K, Vieth, M. Celiac disease-like enteropathy due to antihypertensive therapy with the angiotensin-II receptor type 1 inhibitor eprosartan. Cesk Patol. 2015;51(2):87–8.Google Scholar
Goldstein, NS, Underhill, J. Morphologic features suggestive of gluten sensitivity in architecturally normal duodenal biopsy specimens. Am J Clin Pathol. 2001;116(1):6371.Google Scholar
Shmidt, E, Smyrk, TC, Boswell, CL, Enders, FT, Oxentenko, AS. Increasing duodenal intraepithelial lymphocytosis found at upper endoscopy: time trends and associations. Gastrointest Endosc. 2014;80(1):105–11.Google Scholar
Lauwers, GY, Fasano, A, Brown, IS. Duodenal lymphocytosis with no or minimal enteropathy: much ado about nothing? Mod Pathol. 2015;28(Suppl 1):S22–9.Google Scholar
Kakar, S, Nehra, V, Murray, JA, Dayharsh, GA, Burgart, LJ. Significance of intraepithelial lymphocytosis in small bowel biopsy samples with normal mucosal architecture. Am J Gastroenterol. 2003;98(9):2027–33.Google Scholar
Rubio-Tapia, A, Herman, ML, Ludvigsson, JF, et al. Severe spruelike enteropathy associated with olmesartan. Mayo Clin Proc. 2012;87:732–8.Google Scholar
Papadimitriou, JC, Cangro, CB, Lustberg, A. Histologic features of mycophenolate mofetil-related colitis: a graft-versus-host disease-like pattern. Int J Surg Pathol. 2003;11:295302.Google Scholar
Shulman, HM, Kleiner, D, Lee, SJ, et al. Histopathologic diagnosis of chronic graft-versus-host disease: National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: II. Pathology Working Group Report. Biol Blood Marrow Transplant. 2006;12:3147.CrossRefGoogle ScholarPubMed
Lee, FD. Importance of apoptosis in the histopathology of drug related lesions in the large intestine. J Clin Pathol. 1993;46:118–22.Google Scholar
Parfitt, JR, Jayakumar, S, Driman, DK. Mycophenolate mofetil-related gastrointestinal mucosal injury: variable injury patterns, including graft-versus-host disease-like changes. Am J Surg Pathol. 2008;32:1367–72.Google Scholar
Weclawiak, H, Ould-Mohamed, A, Bournet, B. Duodenal villous atrophy: a cause of chronic diarrhea after solid-organ transplantation. Am J Transplant. 2011;11:575–82.Google Scholar
Cotter, MB, AbuShanab, A, Merriman, R, McCormick, A, Sheahan, K. Coeliac-like duodenal pathology in orthotopic liver transplant patients on mycophenolic acid therapy. Histopathology. 2015;66(4):500–7.Google Scholar
Behling, KC, Foster, DM, Edmonston, TB, Witkiewicz, AK. Graft-versus-host disease-like pattern in mycophenolate mofetil related colon mucosal injury: Role of FISH in establishing the diagnosis. Case Rep Gastroenterol. 2009;3:418–23.Google Scholar
Allison, AC, Eugui, EM. Immunosuppressive and other effects of mycophenolic acid and an ester prodrug, mycophenolate mofetil. Immunol Rev. 1993;136:528.Google Scholar
Selbst, MK, Ahrens, WA, Robert, ME. Spectrum of histologic changes in colonic biopsies in patients treated with mycophenolate mofetil. Mod Pathol. 2009;22:737–43.Google Scholar
Behrend, M. Adverse gastrointestinal effects of mycophenolate mofetil: aetiology, incidence and management. Drug Saf. 2001;24:645–63.Google Scholar
Behrend, M, Braun, F. Enteric-coated mycophenolate sodium: tolerability profile compared with mycophenolate mofetil. Drugs. 2005;65:1037–50.CrossRefGoogle ScholarPubMed
Ducloux, D, Ottignon, Y, Semhoun-Ducloux, S, at al. Mycophenolate mofetil-induced villous atrophy. Transplantation. 1998;66:1115–6.Google Scholar
Liapis, G, Boletis, J, Skalioti, C, et al. Histological spectrum of mycophenolate mofetil-related colitis: association with apoptosis. Histopathology. 2013;63:649–58.Google Scholar
Lee, S, de Boer, WB, Subramaniam, K, Kumarasinghe, MP. Pointers and pitfalls of mycophenolate-associated colitis. J Clin Pathol. 2013;66:811.Google Scholar
Théophile, H, David, XR, Miremont-Salamé, G, Haramburu, F. Five cases of sprue-like enteropathy in patients treated by olmesartan. Dig Liver Dis. 2014;46(5):465–9.Google Scholar
Burbure, N, Lebwohl, B, Arguelles-Grande, C, Green, PH, Bhagat, G, Lagana, S. Olmesartan-associated sprue-like enteropathy: a systematic review with emphasis on histopathology. Hum Pathol. 2016;50:127–34.Google Scholar
Dreifuss, SE, Tomizawa, Y, Farber, NJ, Davison, JM, Sohnen, AE. Spruelike enteropathy associated with olmesartan: an unusual case of severe diarrhea. Case Rep Gastrointest Med. 2013;2013:618071.Google Scholar
Stanich, PP, Yearsley, M, Meyer, MM. Olmesartan-associated sprue-like enteropathy. J Clin Gastroenterol. 2013;47(10):894–5.CrossRefGoogle ScholarPubMed
Rostom, A, Murray, JA, Kagnoff, MF. American Gastroenterological Association (AGA) Institute technical review on the diagnosis and management of celiac disease. Gastroenterology. 2006;131(6):1981–2002.Google Scholar
Marthey, L, Cadiot, G, Seksik, P, et al. Olmesartan-associated enteropathy: results of a national survey. Aliment Pharmacol Ther. 2014;40(9):1103–9.Google Scholar
Cyrany, J, Vasatko, T, Machac, J, Nova, M, Szanyi, J, Kopacova, M. Letter: telmisartan-associated enteropathy – is there any class effect? Aliment Pharmacol Ther. 2014;40(5):569–70.Google Scholar
Herman, ML, Rubio-Tapia, A, Marietta, E, Wu, TT, Murray, JA. Severe enteropathy in a patient on valsartan. Am J Gastroenterol. 2013;108(Suppl 1):S3202.CrossRefGoogle Scholar
Attia, P, Phan, GQ, Maker, AV, et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol. 2005;23:6043–53.Google Scholar
Sznol, M, Callahan, MK, Yuan, J, Wolchok, J. Key issues in the management of gastrointestinal immune-related adverse events associated with ipilimumab administration. Commun Oncol. 2013;10:351–8.Google Scholar
Fecher, LA, Agarwalab, SS, Hodic, FS, Weberd, JS. Ipilimumab and its toxicities: a multidisciplinary approach. Oncologist. 2013;18:733–43.Google Scholar
Beck, KE, Blansfield, JA, Tran, KQ, et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte–associated antigen 4. J Clin Oncol. 2006;24:2283–9.Google Scholar
Sanderson, K, Scotland, R, Lee, P, et al. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J Clin Oncol. 2005;23:741–50.Google Scholar
O’Regan, KN, Jagannathan, JP, Ramaiya, N, Hodi, FS. Radiologic aspects of immune-related tumor response criteria and patterns of immune-related adverse events in patients undergoing ipilimumab therapy. AJR Am J Roentgenol. 2011;197:W241–6.Google Scholar
Verschraegen, C. The monoclonal antibody to cytotoxic T lymphocyte antigen 4, ipilimumab, in the treatment of melanoma. Cancer Manag Res. 2012;4:18.Google Scholar
Oble, DA, Mino-Kenudson, M, Goldsmith, J, et al. Alpha-CTLA-4 mAb-associated panenteritis: a histologic and immunohistochemical analysis. Am J Surg Pathol. 2008;32:1130–7.Google Scholar
Kaehler, KC, Piel, S, Livingstone, E, Schilling, B, Hauschild, A, Schadendorf, D. Update on immunologic therapy with anti- CTLA-4 antibodies in melanoma: identification of clinical and biological response patterns, immune-related adverse events, and their management. Semin Oncol. 2010;37:485–98.Google Scholar
Abraham, SC, Bhagavan, BS, Lee, LA, Rashid, A, Wu, TT. Upper gastrointestinal tract injury in patients receiving kayexalate (sodium polystyrene sulfonate) in sorbitol: clinical, endoscopic, and histopathologic findings. Am J Surg Pathol. 2001;25:637–44.CrossRefGoogle ScholarPubMed
Swanson, BJ, Limketkai, BN, Liu, TC, et al. Sevelamer crystals in the gastrointestinal tract (GIT): a new entity associated with mucosal injury. Am J Surg Pathol. 2013;37:1686–93.Google Scholar
Joo, M, Bae, WK, Kim, NH, Han, SR. Colonic mucosal necrosis following administration of calcium polystryrene sulfonate (Kalimate) in a uremic patient. J Korean Med Sci. 2009;24:1207–11.Google Scholar
Greenson, JK, Stern, RA, Carpenter, SL, Barnett, JL. The clinical significance of focal active colitis. Hum Pathol. 1997;28(6):729–33.Google Scholar
Marginean, EC. The ever-changing landscape of drug-induced injury of the lower gastrointestinal tract. Arch Pathol Lab Med. 2016;140(8):748–58.CrossRefGoogle ScholarPubMed
Volk, EE, Shapiro, BD, Easley, KA, Goldblum, JR. The clinical significance of a biopsy-based diagnosis of focal active colitis: a clinicopathologic study of 31 cases. Mod Pathol. 1998;11(8):789–94.Google ScholarPubMed
Geboes, K, De Hertogh, G, Ectors, N. Drug-induced pathology in the large intestine. Curr Diagn Pathol. 2006;12(4):239–47.Google Scholar
Shetty, S, Anjarwalla, SM, Gupta, J, et al. Focal active colitis: a prospective study of clinicopathological correlations in 90 patients. Histopathology. 2011;59(5):850–6.Google Scholar
Ruiz-Tovar, J, Candela, F, Oliver, I, Calpena, R. Sigmoid colon stenosis: a long-term sequelae of cocaine-induced ischemic colitis. Am Surg. 2010;76:E178–9.Google Scholar
Lingamfelter, DC, Knight, LD. Sudden death from massive gastrointestinal hemorrhage associated with crack cocaine use: case report and review of the literature. Am J Forensic Med Pathol. 2010;31:98–9.Google Scholar
Linder, JD, Mönkemüller, KE, Raijman, I, Johnson, L, Lazenby, AJ, Wilcox, CM. Cocaine-associated ischemic colitis. South Med J. 2000;93:909–13.Google Scholar
Rodman, RE, Willson, TD, Connolly, MM, Podbielski, FJ. Ischemic colitis secondary to ergotamine use: a case study. Case Rep Gastroenterol. 2011;5:14.Google Scholar
Elder, K, Lashner, BA, Al Solaiman, F. Clinical approach to colonic ischemia. Cleve Clin J Med. 2009;76:401–9.Google Scholar
Frossard, JL, Spahr, L, Queneau, PE, Armenian, B, Bründler, MA, Hadengue, A. Ischemic colitis during pregnancy and contraceptive medication. Digestion. 2001;64:125–7.CrossRefGoogle ScholarPubMed
Preventza, OA, Lazarides, K, Sawyer, MD. Ischemic colitis in young adults: a single-institution experience. J Gastrointest Surg. 2001;5:388–92.Google Scholar
Longstreth, GF, Yao, JF. Diseases and drugs that increase risk of acute large bowel ischemia. Clin Gastroenterol Hepatol. 2010;8(1):4954.CrossRefGoogle ScholarPubMed
Tsesmeli, NE, Savopoulos, ChG, Koliouskas, DP, et al. Colonic toxicity of antidepressants: an unusual case of a 48-year-old patient with transient ischemic colitis. Int J Colorectal Dis. 2007;22(8):985–6.Google Scholar
Vernay, J. Quetiapine-induced ischemic colitis: a case report. Presse Med. 2015;44(5):538–41.Google Scholar
Cuny, P, Houot, M, Ginisty, S, et al. Quetiapine and anticholinergic drugs induced ischaemic colitis: a case study. Encephale. 2017;43(1):81–4.Google Scholar
Linsley, KR, Williams, O. Clozapine-associated colitis: case report and review of the literature. J Clin Psychopharmacol. 2012;32(4):564–6.Google Scholar
Martínez Díaz-Caneja, C, González-Molinier, M, Conejo Galindo, J, Moreno Iñiguez, M. Severe bowel ischemia due to clozapine with complete remission after withdrawal. J Clin Psychopharmacol. 2010;30(4):463–5.Google Scholar
Peyrière, H, Roux, C, Ferard, C, et al. Antipsychotics-induced ischaemic colitis and gastrointestinal necrosis: a review of the French pharmacovigilance database. Pharmacoepidemiol Drug Saf. 2009;18(10):948–55.Google Scholar
Upala, S, Wijarnpreecha, K, Jaruvongvanich, V, Bischof, E, Sanguankeo, A. Antipsychotics-induced ischemic colitis. Am J Emerg Med. 2015;33(11):1716.CrossRefGoogle ScholarPubMed
Okpara, N, Aswad, B, Baffy, G. Eosinophilic colitis. World J Gastroenterol. 2009;15(24):2975–9.Google Scholar
Gonsalves, N. Food allergies and eosinophilic gastrointestinal illness. Gastroenterol Clin North Am. 2007;36(1):7591.CrossRefGoogle ScholarPubMed
Turner, KO, Sinkre, RA, Neumann, WL, Genta, RM. Primary colonic eosinophilia and eosinophilic colitis in adults. Am J Surg Pathol. 2017;41(2):225–33.Google Scholar
Jiménez-Sáenz, M, González-Cámpora, R, Linares-Santiago, E, Herrerías-Gutiérrez, JM. Bleeding colonic ulcer and eosinophilic colitis: a rare complication of nonsteroidal anti-inflammatory drugs. J Clin Gastroenterol. 2006;40:84–5.Google Scholar
Report; C. clozapine: eosinophilic colitis. Reactions Wkly. 2012;1392:18.Google Scholar
Karmacharya, R, Mino, M, Pirl, WF. Clozapine-induced eosinophilic colitis. Am J Psychiatry. 2005;162(7):1386–7.Google Scholar
Friedberg, JW, Frankenburg, FR, Burk, J, Johnson, W. Clozapine-caused eosinophilic colitis. Ann Clin Psychiatry. 1995;7(2):97–8.Google Scholar
Anttila, VJ, Valtonen, M. Carbamazepine-induced eosinophilic colitis. Epilepsia. 1992;33(1):119–21.CrossRefGoogle ScholarPubMed
Lange, P, Oun, H, Fuller, S, Turney, JH. Eosinophilic colitis due to rifampicin. Lancet. 1994;344(8932):1296–7.Google Scholar
Saeed, SA, Integlia, MJ, Pleskow, RG, et al. Tacrolimus-associated eosinophilic gastroenterocolitis in pediatric liver transplant recipients: role of potential food allergies in pathogenesis. Pediatr Transplant. 2006;10(6):730–5.Google Scholar
Martin, DM, Goldman, JA, Gilliam, J, Nasrallah, SM. Gold-induced eosinophilic enterocolitis: response to oral cromolyn sodium. Gastroenterology. 1981;80(6):1567–70.Google Scholar
Pardi, DS, Kelly, CP. Microscopic colitis. Gastroenterology. 2011;140(4):1155–65.Google Scholar
Cotter, TG, Pardi, DS. Editorial: additional evidence for drug-induced microscopic colitis. Aliment Pharmacol Ther. 2016;43(12):1343–4.Google Scholar
Pisani, LF, Tontini, GE, Vecchi, M, Pastorelli, L. Microscopic colitis: what do we know about pathogenesis? Inflamm Bowel Dis. 2016;22(2):450–8.Google Scholar
Masclee, GM, Coloma, PM, Kuipers, EJ, Sturkenboom, MC. Increased risk of microscopic colitis with use of proton pump inhibitors and non-steroidal anti-inflammatory drugs. Am J Gastroenterol. 2015;110(5):749–59.Google Scholar
Riddell, RH, Tanaka, M, Mazzoleni, G. NSAIDs as a possible cause of collagenous colitis: a case control study. Gut. 1992;33:683–6.Google Scholar
Thomson, RD, Lestina, LS, Bensen, SP, Toor, A, Maheshwari, Y, Ratcliffe, NR. Lansoprazole-associated microscopic colitis: a case series. Am J Gastroenterol. 2002;97:2908–13.Google Scholar
Beaugerie, L, Pardi, DS. Review article: drug-induced microscopic colitis – proposal for a scoring system and review of the literature. Aliment Pharmacol Ther. 2005;22(4):277–84.Google Scholar
Bonderup, OK, Fenger-Grøn, M, Wigh, T, Pedersen, L, Nielsen, GL. Drug exposure and risk of microscopic colitis: a nationwide Danish case-control study with 5751 cases. Inflamm Bowel Dis. 2014;20(10):1702–7.Google Scholar
Fernández-Bañares, F, de Sousa, MR, Salas, A, et al. Epidemiological risk factors in microscopic colitis: a prospective case-control study. Inflamm Bowel Dis. 2013;19(2):411–7.Google Scholar
Verhaegh, BP, de Vries, F, Masclee, AA, et al. High risk of drug-induced microscopic colitis with concomitant use of NSAIDs and proton pump inhibitors. Aliment Pharmacol Ther. 2016;43(9):1004–13.Google Scholar
Bordin, G. Ticlopidine induced microscopic colitis. The relevance of medical history in diagnosis. Should we need evidence based proofs to accept it? J Med Person. 2012;10:7780.Google Scholar
Wilcox, GM, Mattia, AR. Microscopic colitis associated with omeprazole and esomeprazole exposure. J Clin Gastroenterol. 2009;43:551–3.Google Scholar
Chande, N, Driman, DK. Microscopic colitis associated with lansoprazole: report of 2 cases and review of the literature. Scand J Gastroenterol. 2007;42:530–3.Google Scholar
Piche, T, Raimondi, V, Schneider, S, Hébuterne, X, Rampal, P. Acarbose and lymphocytic colitis. Lancet. 2000;356:1246.Google Scholar
O’Toole, A, Coss, A, Holleran, G. Microscopic colitis: clinical characteristics, treatment and outcomes in an Irish population. Int J Colorectal Dis. 2014;29:799803.Google Scholar
Yagi, K, Endo, S, Nakamura, A, Sekine, A. Clinical course of drug-induced collagenous colitis and histological changes after drug withdrawal in a Japanese case series. Eur J Gastroenterol Hepatol. 2012;24(9):1105–9.Google Scholar
Hyde, GM, Jewell, DP, Warren, BF. Histological changes associated with the use of intravenous cyclosporin in the treatment of severe ulcerative colitis may mimic dysplasia. Colorectal Dis. 2002;4:455–8.Google Scholar
McCarthy, AJ, Lauwers, GY, Sheahan, K. Iatrogenic pathology of the intestines. Histopathology. 2015;66(1):1528.Google Scholar
Cappell, MS. Colonic toxicity of administered drugs and chemicals. Am J Gastroenterol. 2004;99:1175–90.Google Scholar
Dial, S, Delaney, JA, Barkun, AN, Suissa, S. Use of gastric acid-suppressive agents and the risk of community-acquired Clostridium difficile-associated disease. JAMA. 2005;294:2989–95.Google Scholar
Hurley, BW, Nguyen, CC. The spectrum of pseudomembranous enterocolitis and antibiotic-associated diarrhea. Arch Intern Med. 2002;162:2177–84.Google Scholar
Arnold, CA, Limketkai, BN, Liu, TC, et al. Renvela crystals in the gastrointestinal (GI) tract: a new entity. Mod Pathol. 2013;26:144a.Google Scholar
Anon. Intestinal alpha-glucosidase inhibitors: abdominal gas cysts. Prescrire Int. 2012;21:212–13.Google Scholar
Shimojima, Y, Ishii, W, Matsuda, M, Tojo, K, Watanabe, R, Ikeda, S. Pneumatosis cystoides intestinalis in neuropsychiatric systemic lupus erythematosus with diabetes mellitus: case report and literature review. Mod Rheumatol. 2011;21:415–19.Google Scholar
Kojima, K, Tsujimoto, T, Fujii, H, et al. Pneumatosis cystoides intestinalis induced by the α-glucosidase inhibitor miglitol. Intern Med. 2010;49:1545–8.Google Scholar
Tsujimoto, T, Shioyama, E, Moriya, K, et al. Pneumatosis cystoides intestinalis following alpha-glucosidase inhibitor treatment: a case report and review of the literature. World J Gastroenterol. 2008;14:6087–92.Google Scholar
Maeda, A, Nakata, M, Shimizu, K, . et al. Pneumatosis intestinalis after gefitinib therapy for pulmonary adenocarcinoma: a case report. World J Surg Oncol. 2016;14(1):175.Google Scholar
Iwasaku, M, Yoshioka, H, Korogi, Y, et al. Pneumatosis cystoides intestinalis after gefitinib therapy for pulmonary adenocarcinoma. J Thorac Oncol. 2012;7(1):257.Google Scholar
Coriat, R, Ropert, S, Mir, O, et al. Pneumatosis intestinalis associated with treatment of cancer patients with the vascular growth factor receptor tyrosine kinase inhibitors sorafenib and sunitinib. Invest New Drugs. 2011;29(5):1090–3.Google Scholar
Jarkowski, A 3rd, Hare, R, Francescutti, V, Wilkinson, N, Khushalani, N. Case report of pneumatosis intestinalis secondary to sunitinib treatment for refractory gastrointestinal stromal tumor. Anticancer Res. 2011;31(10):3429–32.Google Scholar
Goldstein, JL, Cryer, B. Gastrointestinal injury associated with NSAID use: a case study and review of risk factors and preventative strategies. Drug Healthc Patient Saf. 2015;22(7):3141.Google Scholar
Price, AB. Pathology of drug-associated gastrointestinal disease. Br J Clin Pharmacol. 2003;56:477–82.Google Scholar
Deshpande, V, Hsu, M, Kumarasinghe, MP, GY L. The clinical significance of incidental chronic colitis: a study of 17 cases. Am J Surg Pathol. 2010;34:463–9.Google Scholar
Gentric, A, Pennec, YL. Diclofenac-induced pseudomembranous colitis. Lancet. 1992;340:126–7.Google Scholar
Romero-Gómez, M, García, ES, Fernández, MC. Pseudomembranous colitis induced by diclofenac. J Clin Gastroenterol. 1998;26:228.Google Scholar
Lang, J, Price, AB, Levi, AJ, Burke, M, Gumpel, JM, Bjarnason, I. Diaphragm disease: pathology of disease of the small intestine induced by non-steroidal anti-inflammatory drugs. J Clin Pathol. 1988;41:516–26.Google Scholar
Hakeem, A, Subramonia, S, Badrinath, K, Menon, A. NSAIDs-induced diaphragm-like colonic strictures: a case report. BMJ Case Rep. 2009. DOI:10.1136/bcr.02.2009.1595.Google Scholar
Aloysius, MM, Kaye, PV, Lobo, DN. Non-steroidal anti-inflammatory drug (NSAID)-induced colonic strictures and perforation: a case report. Dig Liver Dis. 2006;38:276–8.Google Scholar
Püspök, A, Kiener, HP, Oberhuber, G. Clinical, endoscopic, and histologic spectrum of nonsteroidal anti-inflammatory drug-induced lesions in the colon. Dis Colon Rectum. 2000;43:685–91.Google Scholar
Lazaraki, G, Chatzimavroudis, G, Pilpilidis, I, et al. Endoscopic balloon dilatation of NSAID-induced sigmoid diaphragm-stricture. Ann Gastroenterol. 2007;20:142–5.Google Scholar
Higuchi, K, Umegaki, E, Watanabe, T, et al. Present status and strategy of NSAIDs-induced small bowel injury. J Gastroenterol. 2009;44:879–88.Google Scholar
Yousfi, MM, De Petris, G, Leighton, JA, et al. Diaphragm disease after use of nonsteroidal anti-inflammatory agents: first report of diagnosis with capsule endoscopy. J Clin Gastroenterol. 2004;38:686–91.Google Scholar
Weidner, AS, Panarelli, NC, Geyer, JT, et al. Idelalisib-associated colitis: histologic findings in 14 patients. Am J Surg Pathol. 2015;39(12):1661–7.Google Scholar
Louie, CY, DiMaio, MA, Matsukuma, KE, Coutre, SE, Berry, GJ, Longacre, TA. Idelalisib-associated enterocolitis: clinicopathologic features and distinction from other enterocolitides. Am J Surg Pathol. 2015;39(12):1653–60.Google Scholar
Aldoss, I, Gaal, K, Al Malki, MM, et al. Dasatinib-Induced colitis after allogeneic stem cell transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2016;22(10):1900–3.Google Scholar
Kmira, Z, Nesrine, BS, Houneida, Z, et al. Severe hemorrhagic colitis in a patient with chronic myeloid leukemia in the blastic phase after dasatinib use. World J Gastrointest Pathophysiol. 2013;4(3):5962.Google Scholar
Shimokaze, T, Mitsui, T, Takeda, H, et al. Severe hemorrhagic colitis caused by dasatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia. Pediatr Hematol Oncol. 2009;26(6):448–53.Google Scholar
Erkut, M, Erkut, N, Ersoz, S, Arslan, M, Sonmez, M. A case of acute colitis with severe rectal bleeding in a patient with chronic myeloid leukemia after dasatinib use. Acta Haematol. 2010;123(4):205–6.Google Scholar
Ono, Y, Mori, T, Kato, J, et al. Hemorrhagic colonic ulcers caused by dasatinib for chronic myelogenous leukemia. Int J Hematol. 2010;92(3):556–8.Google Scholar
Leung, Y, Urbanski, SJ, Schindel, L, Myers, RP. Ischemic colitis during pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Can J Gastroenterol. 2006;20:661–3.Google Scholar
Baik, SJ, Kim, TH, Yoo, K, Moon, IH, Cho, MS. Ischemic colitis during interferon-ribavirin therapy for chronic hepatitis C: a case report. World J Gastroenterol. 2012;18:4233–6.Google Scholar
Tada, H, Saitoh, S, Nakagawa, Y, et al. Ischemic colitis during interferon-alpha treatment for chronic active hepatitis C. J Gastroenterol. 1996;31(4):582–4.Google Scholar
Okanoue, T, Sakamoto, S, Itoh, Y, et al. Side effects of high-dose interferon therapy for chronic hepatitis C. J Hepatol. 1996;25(3):283–91.Google Scholar
Kawaguchi, T1, Ide, T, Itou, M, et al. Ischaemic colitis during interferon treatment for chronic hepatitis C: report of two cases and literature review. J Viral Hepat. 2012;19(2):e220–4.Google Scholar
Punnam, SR, Pothula, VR, Gourineni, N, Punnam, A, Ranganathan, V. Interferon-ribavirin-associated ischemic colitis. J Clin Gastroenterol. 2008;42(3):323–5.Google Scholar
Sarkar, S, Mitchell, KA, Lim, JK, Oikonomou, I, Jakab, S. Colitis following initiation of sofosbuvir and simeprevir for genotype 1 hepatitis C. ACG Case Rep J. 2015;3(1):42–4.Google Scholar
Zopf, S, Kremer, AE, Neurath, MF, Siebler, J. Advances in hepatitis C therapy: what is the current state: what come’s next? World J Hepatol. 2016;8(3):139–47.Google Scholar
Lawitz, E, Sulkowski, MS, Ghalib, R, et al. Simeprevir plus sofosbuvir, with or without ribavirin, to treat chronic infection with hepatitis C virus genotype 1 in non-responders to pegylated interferon and ribavirin and treatment-naive patients: the COSMOS randomised study. Lancet. 2014;384(9956):1756–65.Google Scholar
Izzo, I, Zanotti, P, Chirico, C, et al. Colitis during new direct-acting antiviral agents (DAAs) therapy with sofosbuvir, simeprevir and ribavirin for genotype 1b hepatitis C. Infection. 2016;44(6):811–12.Google Scholar
Prescott, K, Costner, M, Cohen, S, Kazi, S. Tumor necrosis factor-alpha inhibitor associated ulcerative colitis. Am J Med Sci. 2007;333(3):137–9.Google Scholar
Yazisiz, V, Avci, AB, Erbasan, F, Yildirim, B, Terzioğlu, E. Development of Crohn’s disease following anti-tumour necrosis factor therapy (etanercept). Colorectal Dis. 2008;10(9):953–4.Google Scholar
Seminerio, J, McGrath, K, Arnold, CA, Voltaggio, L, Singhi, AD. Medication-associated lesions of the GI tract. Gastrointest Endosc. 2014;79(1):140–50.Google Scholar
El Fassi, D, Nielsen, CH, Kjeldsen, J, et al. Ulcerative colitis following B lymphocyte depletion with rituximab in a patient with Graves’ disease. Gut. 2008;57:714–5.Google Scholar
Ardelean, DS, Gonska, T, Wires, S, et al. Severe ulcerative colitis after rituximab therapy. Pediatrics. 2010;126:e243–6.Google Scholar
Keir, ME, Butte, MJ, Freeman, GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677704.Google Scholar
Ascierto, PA, Marincola, FM. 2015: The Year of Anti-PD-1/PD-L1s Against Melanoma and Beyond. EBioMed. 2015;19(2):92–3.Google Scholar
McDermott, DF, Atkins, MB. PD-1 as a potential target in cancer therapy. Cancer Med. 2013;2(5):662–73.Google Scholar
Sunshine, J, Taube, JM. PD-1/PD-L1 inhibitors. Curr Opin Pharmacol. 2015;23:32–8.Google Scholar
Hamid, O, Robert, C, Daud, A, Hodi, FS, Hwu, WJ, Kefford, R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44.Google Scholar
McDermott, DF, Sosman, JA, Sznol, M, et al. Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long-term safety, clinical activity, and immune correlates from a phase Ia study. J Clin Oncol. 2016;34 (8):833–42.Google Scholar
Gonzalez, RS, Salaria, SN, Bohannon, CD, Huber, AR, Feely, MM, Shi, C. PD-1 inhibitor gastroenterocolitis: case series and appraisal of ‘immunomodulatory gastroenterocolitis’. Histopathology. 2017;70(4):558–67.Google Scholar
Colvin, HS, Barakat, T, Moussa, O, et al. Nicorandil associated anal ulcers: an estimate of incidence. Ann R Coll Surg Engl. 2012;94(3):170–2.CrossRefGoogle ScholarPubMed
Watson, A, Al-Ozairi, O, Fraser, A, Loudon, M, O’Kelly, T. Nicorandil associated anal ulceration. Lancet. 2002;360(9332):546–7.Google Scholar
Lee, BC, Allen, PB, Caddy, GR, Mainie, I. Nicorandil associated colonic ulceration: case series of an increasingly recognized complication. Dig Dis Sci. 2011;56(8):2404–8.Google Scholar
Egred, M, Andron, M, Morrison, WL. Nicorandil may be associated with gastrointestinal ulceration. BMJ. 2006;332(7546):889.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×