Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T01:25:50.025Z Has data issue: false hasContentIssue false

5 - Mercury’s Internal Magnetic Field

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

The MESSENGER mission provided a wealth of discoveries regarding Mercury’s present and past magnetic field and completed the first-order characterization of the magnetic fields of the solar system’s inner planets. MESSENGER demonstrated that Mercury is the only inner planet other than Earth to possess a global magnetic field generated by fluid motions in its liquid iron core. The field possesses some similarities to that of Earth, particularly its dipolar nature, but it is more than a factor of 100 weaker at the surface and unlike Earth’s field is highly asymmetric about the geographic equator. This structure constrains the dynamo process that generates the field and in turn the compositional and thermal structure of Mercury’s interior. Measurements made by MESSENGER less than 100 km above the planetary surface revealed signatures of crustal magnetization, at least some of which were acquired in a very ancient global magnetic field. Electric currents flow in the planet’s interior as a result of the dynamic interactions of the global magnetic field with the solar wind. These currents provide information on the radius of Mercury’s electrically conductive core, as well as the conductivity structure of the crust and mantle, which in turn reflects interior composition and temperature. 
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 114 - 143
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acuña, M. H., Connerney, J. E. P., Ness, N. F., Lin, R. P., Mitchell, D., Carlson, C. W., McFadden, J., Anderson, K. A., Rème, H., Mazelle, C., Vignes, D., Wasilewski, P. and Cloutier, P. (1999). Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science, 284, 790793, doi:10.1126/science.284.5415.790.Google Scholar
Aharonson, O., Zuber, M. T. and Solomon, S. C. (2004). Crustal remanence in an internally magnetized non-uniform shell: A possible source for Mercury’s magnetic field? Earth Planet. Sci. Lett., 218, 261268, doi:10.1016/S0012-821X(03)00682-4.Google Scholar
Alekseev, I. I. and Shabansky, V. P. (1972). A model of a magnetic field in the geomagnetosphere. Planet. Space. Sci., 20, 117–113, doi:10.1016/0032-0633(72)90146-8.CrossRefGoogle Scholar
Alexeev, I. I., Belenkaya, E. S., Bobrovnikov, S. Y., Slavin, J. A. and Sarantos, M. (2008). Paraboloid model of Mercury’s magnetosphere. J. Geophys. Res., 113, A12210, doi:10.1029/2008JA013368.CrossRefGoogle Scholar
Alexeev, I. I., Belenkaya, E. S., Slavin, J. A., Korth, H., Anderson, B. J., Baker, D. N., Boardsen, S. A., Johnson, C. L., Purucker, M. E., Sarantos, M. and Solomon, S. C. (2010). Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys. Icarus, 209, 2339, doi:10.1016/j.icarus.2010.01.024.CrossRefGoogle Scholar
Anderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H. and Slavin, J. A. (2007). The Magnetometer instrument on MESSENGER. Space Sci. Rev., 131, 417450, doi:10.1007/s11214-007-9246-7.Google Scholar
Anderson, B. J., Acuña, M. H., Korth, H., Purucker, M. E., Johnson, C. L., Slavin, J. A., Solomon, S. C. and McNutt, R. L. Jr. (2008). The structure of Mercury’s magnetic field from MESSENGER’s first flyby. Science, 321, 8285, doi:10.1126/science.1159081.Google Scholar
Anderson, B. J., Acuña, M. H., Korth, H., Slavin, J. A., Uno, H., Johnson, C. L., Purucker, M. E., Solomon, S. C., Raines, J. M., Zurbuchen, T. H., Gloeckler, G. and McNutt, R. L. Jr. (2010). The magnetic field of Mercury. Space Sci. Rev., 152, 307339, doi:10.1007/s11214-009-9544-3.CrossRefGoogle Scholar
Anderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., Solomon, S. C., McNutt, R. L. Jr., Raines, J. M. and Zurbuchen, T. H. (2011). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333, 18591862, doi:10.1126/science.1211001.CrossRefGoogle ScholarPubMed
Anderson, B. J., Johnson, C. L., Korth, H., Winslow, R. M., Borovsky, J. E., Purucker, M. E., Slavin, J. A., Solomon, S. C., Zuber, M. T. and McNutt, R. L. Jr. (2012). Low-degree structure in Mercury’s planetary magnetic field. J. Geophys. Res., 117, E00L12, doi:10.1029/2012JE004159.Google Scholar
Anderson, B. J., Johnson, C. L. and Korth, H. (2013). A magnetic disturbance index for Mercury’s magnetic field derived from MESSENGER Magnetometer data. Geochem. Geophys. Geosyst., 14, 38753886, doi:10.1002/ggge.20242.CrossRefGoogle Scholar
Anderson, B. J., Johnson, C. L., Korth, H., Slavin, J. A., Winslow, R. M., Phillips, R. J., McNutt, R. L. Jr. and Solomon, S. C. (2014). Steady-state field-aligned currents at Mercury. Geophys. Res. Lett., 41, 74447452, doi:10.1002/2014GL061677.Google Scholar
Anderson, B. J., Korth, H., Johnson, C. L., Phillips, R. J., Philpott, L. C. and Solomon, S. C. (2016). Closure of Birkeland currents at Mercury: Constraints on the electrical conductivity of the crust and mantle. Lunar Planet. Sci., 47, abstract 1243.Google Scholar
Andrews, B. G., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., Ho, G. C., Kelley, J. S., Koehn, P. L., LeFevere, T. W., Livi, S. S., Lundgren, R. A. and Raines, J. M. (2007). The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft. Space Sci. Rev., 131, 523556, doi:10.1007/s11214-007-9272-5.Google Scholar
Aster, R. C., Borchers, B. and Thurber, C. H. (2013). Parameter Estimation and Inverse Problems, 2nd edn. Oxford: Academic Press.Google Scholar
Aubert, J., Johnson, C. L. and Tarduno, J. A. (2010). Observations and models of the long-term evolution of Earth’s magnetic field. Space Sci. Rev., 155, 337370, doi:10.1007/s11214-010-9684-5.CrossRefGoogle Scholar
Backus, G., Parker, R. and Constable, C. (1996). Foundations of Geomagnetism. Cambridge: Cambridge University Press.Google Scholar
Bartels, J. (1936). The eccentric dipole approximating the Earth’s magnetic field. Terr. Magn. Atmos. Electr., 41, 225250, doi:10.1029/TE041i003p00225.Google Scholar
Baumjohann, W. and Treumann, R. A. (1996), Basic Space Plasma Physics. London: Imperial College Press.Google Scholar
Benna, M., Anderson, B. J., Baker, D. N., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Killen, R. M., Korth, H., Krimigis, S. M., Purucker, M. E., McNutt, R. L. Jr., Raines, J. M., McClintock, W. E., Sarantos, M., Slavin, J. A., Solomon, S. C. and Zurbuchen, T. H. (2010). Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby. Icarus, 209, 310, doi:10.1016/j.icarus.2009.11.036.CrossRefGoogle Scholar
Bloxham, J., Gubbins, D. and Jackson, A. (1989). Geomagnetic secular variation. Phil. Trans. Roy. Soc. London A, 329, 415502, doi:10.1098/rsta.1989.0087.Google Scholar
Busse, F. H. (2002). Convective flows in rapidly rotating spheres and their dynamo action. Phys. Fluids, 14, 13011314, doi:10.1063/1.1455626.Google Scholar
Cao, H., Aurnou, J. M., Wicht, J., Dietrich, W., Soderlund, K. M. and Russell, C. T. (2014). A dynamo explanation for Mercury’s anomalous magnetic field. Geophys. Res. Lett., 41, 2014GL060196, doi:10.1002/2014gl060196.Google Scholar
Chabot, N. L., Wollack, E. A., Klima, R. L. and Minitti, M. E. (2014). Experimental constraints on Mercury’s core composition, Icarus, 390, 199208, doi:10.1016/j.epsl.2014.01.004.Google Scholar
Chassefière, E., Langlais, B., Quesnel, Y. and Leblanc, F. (2013). The fate of early Mars’ lost water: The role of serpentinization. J. Geophys. Res. Planets, 118, 11231134, doi:10.1002/jgre.20089.Google Scholar
Chen, B., Li, J. and Hauck, S. A. II (2008). Non-ideal liquidus curve in the Fe–S system and Mercury’s snowing core. Geophys. Res. Lett., 35, L07201, doi:10.1029/2008gl033311.CrossRefGoogle Scholar
Christensen, U. R. (2006). A deep dynamo generating Mercury’s magnetic field. Nature, 444, 10561058, doi:10.1038/nature05342.Google Scholar
Christensen, U. R. and Wicht, J. (2008). Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn. Icarus, 196, 1634, doi:10.1016/j.icarus.2008.02.013.CrossRefGoogle Scholar
Cisowski, S. M., Collinson, D. W., Runcorn, S. K., Stephenson, A. and Fuller, M. (1983). A review of lunar paleointensity data and implications for the origin of lunar magnetism. J. Geophys. Res., 88, A691A704.CrossRefGoogle Scholar
Connerney, J. E. P. (2015). Planetary magnetism. In Physics of Terrestrial Planets and Moons, ed. Spohn, T.. Treatise on Geophysics, 2nd edn, Vol. 10, ed. Schubert, G.. Amsterdam, Oxford: Elsevier, pp. 195237, doi:10.1016/B978-0-444-53802-4.00171-8.Google Scholar
Connerney, J. E. P. and Ness, N. F. (1988). Mercury’s magnetic field and interior. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 494513.Google Scholar
Connerney, J. E. P., Acuña, M. H., Wasilewski, P. J., Ness, N. F., Rème, H., Mazelle, C., Vignes, D., Lin, R. P., Mitchell, D. L. and Cloutier, P. A. (1999). Magnetic lineations in the ancient crust of Mars. Science, 284, 794798, doi:10.1126/science.284.5415.794.CrossRefGoogle ScholarPubMed
Conzelmann, V. and Spohn, T. (1999). New thermal evolution models suggesting a hot, partially molten Mercurian interior. Bull. Amer. Astron. Soc., 31, 31st DPS Meeting Program, Padua, Italy, abstract 18.02.Google Scholar
Correia, A. C. M. and Laskar, J. (2009). Mercury’s capture into the 3/2 spin–orbit resonance including the effect of core–mantle friction. Icarus, 201, 111.Google Scholar
Cournède, C., Gattacceca, J. and Rochette, P. (2012). Magnetic study of large Apollo samples: Possible evidence for an ancient centered dipolar field on the Moon. Earth Planet. Sci. Lett., 331, 3142, doi:10.1016/j.epsl.2012.03.004.CrossRefGoogle Scholar
DiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zuburchen, T. H., Raines, J. M., Baker, D. N., McNutt, R. L. Jr. and Solomon, S. C. (2013). MESSENGER observations of magnetopause structure and dynamics at Mercury. J. Geophys. Res. Space Physics, 118, 9971008, doi:10.1002/jgra.50123.Google Scholar
Dunlop, D. J. and Arkani-Hamed, J. (2005). Magnetic minerals in the Martian crust. J. Geophys. Res., 110, E12S04, doi:10.1029/2005JE002404.Google Scholar
Fuller, M. and Cisowski, S. M. (1987). Lunar paleomagnetism. In Geomagnetism, Vol. 2, ed. Jacobs, J. A.. Orlando, FL: Academic Press, pp. 307455.Google Scholar
Garrick-Bethell, I., Weiss, B. P., Shuster, D. L. and Buz, J. (2009). Early lunar magnetism. Science, 323, 356359, doi:10.1126/science.1166804.Google Scholar
Gattacceca, J. and Rochette, P. (2004). Toward a robust normalized magnetic paleointensity method applied to meteorites. Earth Planet. Sci. Lett., 227, 377393, doi:10.1016/j.epsl.2004.09.013.Google Scholar
Gattacceca, J., Boustie, M., Hood, L., Cuq-Lelandais, J.-P., Fuller, M., Bezaeva, N. S., de Resseguier, T. and Berthe, L. (2010a). Can the lunar crust be magnetized by shock: Experimental groundtruth. Earth Planet. Sci. Lett., 299, 4253, doi:10.1016/j.epsl.2010.08.011.Google Scholar
Gattacceca, J., Boustie, M., Lima, E. A., Weiss, B. P., de Resseguier, T. and Cuq-Lelandais, J.-P. (2010b). Unraveling the simultaneous shock magnetization and demagnetization of rocks. Phys. Earth Planet. Inter., 182, 4249, doi:10.1016/j.pepi.2010.06.009.Google Scholar
Giampieri, G. and Balogh, A. (2002). Mercury’s thermoelectric dynamo model revisited. Planet. Space Sci., 50, 757762, doi:10.1016/S0032-0633(02)00020-X.Google Scholar
Glassmeier, K.-H., Auster, H.-U. and Motschmann, U. (2007a). A feedback dynamo generating Mercury’s magnetic field. Geophys. Res. Lett., 34, L22201, doi:10.1029/2007GL031662.Google Scholar
Glassmeier, K.-H., Grosser, J., Auster, U., Constantinescu, D., Narita, Y. and Stellmach, S. (2007b). Electromagnetic induction effects and dynamo action in the Hermean system. Space Sci. Rev., 132, 511527, doi:10.1007/s11214-007-9244-9.Google Scholar
Grosser, J., Glassmeier, K.-H. and Stadelmann, A. (2004). Induced magnetic field effects at planet Mercury. Planet. Space Sci., 52, 12511260, doi:10.1016/j.pss.2004.08.005.Google Scholar
Grott, M., Breuer, D. and Laneuville, M. (2011). Thermo-chemical evolution and global contraction of Mercury. Earth. Planet. Sci. Lett. 307, 135146, doi:10.1016/j.epsl.2011.04.040.Google Scholar
Gubbins, D. (1977). Energetics of the Earth’s core. J. Geophys., 43, 453464.Google Scholar
Gubbins, D., Alfè, D., Masters, G., Price, G. D. and Gillan, M. J. (2003). Can the Earth’s dynamo run on heat alone? Geophys. J. Int., 155, 609622, doi:10.1046/j.1365-246X.2003.02064.x.Google Scholar
Haines, G. V. (1985). Spherical harmonic cap analysis, J. Geophys. Res., 90, 25832591, doi:10.1029/JB090iB03p02583.Google Scholar
Harder, H. and Schubert, G. (2001). Sulfur in Mercury’s core? Icarus, 151, 118122, doi:10.1006/icar.2001.6586.CrossRefGoogle Scholar
Hauck, S. A. II, Dombard, A. J., Phillips, R. J. and Solomon, S. C. (2004). Internal and tectonic evolution of Mercury. Earth Planet. Sci. Lett., 222, 713728, doi:10.1016/j.epsl.2004.03.037.CrossRefGoogle Scholar
Hauck, S. A. II, Solomon, S. C. and Smith, D. A. (2007). Predicted recovery of Mercury’s internal structure by MESSENGER. Geophys. Res. Lett., 34, L18201, doi:10.1029/2007GL030793.Google Scholar
Hauck, S. A. II, Margot, J.-L., Solomon, S. C., Phillips, R. J., Johnson, C. L., Lemoine, F. G., Mazarico, E., McCoy, T. J., Padovan, S., Peale, S. J., Perry, M. E., Smith, D. E. and Zuber, M. T. (2013). The curious case of Mercury’s internal structure. J. Geophys. Res. Planets, 118, 12041220, doi:10.1002/jgre.20091.CrossRefGoogle Scholar
Heimpel, M., Aurnou, J. M., Al-Shamali, F. M. and Gomez Perez, N. (2005). A numerical study of dynamo action as a function of spherical shell geometry. Earth Planet. Sci. Lett., 236, 542557, doi:10.1016/j.epsl.2005.04.032.Google Scholar
Herbert, F., Wiskerchen, M., Sonnet, C. P. and Chao, J. K. (1976). Solar wind induction in Mercury: Constraints on the formation of a magnetosphere. Icarus, 28, 489500, doi:10.1016/0019-1035(76)90122-6.Google Scholar
Herrick, R. R. and Rumpf, M. E. (2011). Postimpact modification by volcanic or tectonic processes as the rule, not the exception, for Venusian craters. J. Geophys. Res., 116, E02004, doi:10.1029/2010JE003722.Google Scholar
Heyner, D., Wicht, J., Gomez-Perez, N., Schmitt, D., Auster, H.-U. and Glassmeier, K.-H. (2011). Evidence from numerical experiments for a feedback dynamo generating Mercury’s magnetic field. Science, 334, 16901693, doi:10.1126/science.1207290.Google Scholar
Heyner, D., Nabert, C., Liebert, E. and Glassmeier, K.-H. (2016). Concerning reconnection–induction balance at the magnetopause of Mercury, J. Geophys. Res. Space Physics, 121, 29352961, doi:10.1002/2015JA021484.Google Scholar
Hood, L. L. (2011). Central magnetic anomalies of Nectarian-aged lunar impact basins: Probable evidence for an early core dynamo. Icarus, 211, 11091128, doi:10.1016/j.icarus.2010.08.012.Google Scholar
Hood, L. L. (2015). Initial mapping of Mercury’s crustal magnetic field: Relationship to the Caloris impact basin. Geophys. Res. Lett., 42, 10,565–10,572, doi:10.1002/2015GL066451.Google Scholar
Hood, L. L. (2016). Magnetic anomalies concentrated near and within Mercury’s impact basins: Early mapping and interpretation. J. Geophys. Res. Planets, 121, 10161025, doi:10.1002/2016JE005048.Google Scholar
Hood, L. L. and Artemieva, N. A. (2008). Antipodal effects of lunar basin-forming impacts: Initial 3D simulations and comparisons with observations. Icarus, 193, 485502, doi:10.1016/j.icarus.2007.08.023.Google Scholar
Hood, L. L. and Huang, Z. (1991). Formation of magnetic anomalies antipodal to lunar impact basins: Two-dimensional model calculations. J. Geophys. Res., 96, 98379846, doi:10.1029/91JB00308.Google Scholar
Hood, L. L. and Schubert, G. (1979). Inhibition of solar wind impingement on Mercury by planetary induction currents. J. Geophys. Res., 84, 26412647, doi:10.1029/JA084iA06p02641.Google Scholar
Hood, L. L., Coleman, P. J. Jr. and Wilhelms, D. E. (1979). The Moon: Sources of the crustal magnetic anomalies. Science, 204, 5357, doi:10.1126/science.204.4388.53.CrossRefGoogle ScholarPubMed
Hood, L. L., Richmond, N. C. and Spudis, P. D. (2013). Origin of strong lunar magnetic anomalies: Further mapping and examinations of LROC imagery in regions antipodal to young large impact basins. J. Geophys. Res. Planets, 118, 12651284, doi:10.1002/jgre.20078.Google Scholar
Hulot, G., Sabaka, T. J., Olsen, N. and Fournier, A. (2015). The present and future geomagnetic field. In Geomagnetism, ed. Kono, M.. Treatise on Geophysics, 2nd edn, Vol. 5, ed. Schubert, G.. Amsterdam, Oxford: Elsevier, pp. 3378, doi:10.1016/B978-0-444-53802-4.00096-8.Google Scholar
Janhunen, P. and Kallio, E. (2004). Surface conductivity of Mercury provides current closure and may affect magnetospheric symmetry. Ann. Geophys., 22, 18291837, doi:10.5194/angeo-22-1829-2004.CrossRefGoogle Scholar
Jia, X., Slavin, J. A., Gombosi, T. I., Daldorff, L. K. S., Toth, G. and Holst, B. (2015). Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. J. Geophys. Res. Space Physics, 120, 47634775, doi:10.1002/2015JA021143.Google Scholar
Johnson, C. L. and McFadden, P. L. (2015). Time-averaged field and paleosecular variation. In Geomagnetism, ed. Kono, M.. Treatise on Geophysics, 2nd edn, Vol. 5, ed. Schubert, G.. Amsterdam, Oxford: Elsevier, pp. 385417, doi:10.1016/B978-0-444-53802-4.00105-6.Google Scholar
Johnson, C. L., Purucker, M. E., Korth, H., Anderson, B. J., Winslow, R. M., Al Asad, M. M. H., Slavin, J. A., Alexeev, I. I., Phillips, R. J., Zuber, M. T. and Solomon, S. C. (2012). MESSENGER observations of Mercury’s magnetic field structure. J. Geophys. Res., 117, E00L14, doi:10.1029/2012JE004217.Google Scholar
Johnson, C. L., Phillips, R. J., Purucker, M. E., Anderson, B. J., Byrne, P. K., Denevi, B. W., Feinberg, J. M., Hauck, S. A. II, Head, J. W. III, Korth, H., James, P. B., Mazarico, E., Neumann, G. A., Philpott, L. C., Siegler, M. A., Tsyganenko, N. A. and Solomon, S. C. (2015). Low-altitude magnetic field measurements by MESSENGER reveal Mercury’s ancient crustal field. Science, 348, 892895, doi:10.1126/science.aaa8720.Google Scholar
Johnson, C. L., Philpott, L. C., Anderson, B. J., Korth, H., Hauck, S. A. II, Heyner, D., Phillips, R. J., Winslow, R. M. and Solomon, S. C. (2016a). MESSENGER observations of induced magnetic fields in Mercury’s core. Geophys. Res. Lett., 43, 24362444, doi:10.1002/2015GL067370.Google Scholar
Johnson, C. L., Phillips, R. J., Philpott, L. C., Anderson, B. J., Byrne, P. K., Denevi, B. W., Fan, K., Feinberg, J. M., Hauck, S. A. II, Head, J. W. III, Korth, H., Mazarico, E., Neumann, G. A., Purucker, M. E., Strauss, B. M. and Solomon, S. C. (2016b). Mercury’s lithospheric magnetic field. Lunar Planet. Sci., 47, abstract 1391.Google Scholar
Kabin, K., Gombosi, T. I., DeZeeuw, D. L. and Powell, K. G. (2000). Interaction of Mercury with the solar wind. Icarus, 143, 397406, doi:10.1006/icar.1999.6252.Google Scholar
Kletetschka, G., Wasilewski, P. J. and Taylor, P. T. (2000). Mineralogy of the sources for magnetic anomalies on Mars. Meteorit. Planet. Sci., 35, 895899, doi:10.1111/j.1945-5100.2000.tb01478.x.Google Scholar
Korth, H., Anderson, B. J., Acuña, M. H., Slavin, J. A., Tsyganenko, N. A., Solomon, S. C. and McNutt, R. L. Jr. (2004). Determination of the properties of Mercury’s magnetic field by the MESSENGER mission. Planet. Space. Sci., 52, 733746, doi:10.1016/j.pss.2003.12.008.Google Scholar
Korth, H., Anderson, B. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Johnson, C. L., Purucker, M. E., Winslow, R. M., Solomon, S. C. and McNutt, R. L. Jr. (2011). Plasma pressure in Mercury’s equatorial magnetosphere derived from MESSENGER Magnetometer observations. Geophys. Res. Lett., 38, L22201, doi:10.1029/2011GL049451.Google Scholar
Korth, H., Anderson, B. J., Johnson, C. L., Winslow, R. M., Slavin, J. A., Purucker, M. E., Solomon, S. C. and McNutt, R. L. Jr. (2012). Characteristics of the plasma distribution in Mercury’s equatorial magnetosphere derived from MESSENGER Magnetometer observations. J. Geophys. Res., 117, A00M07, doi:10.1029/2012JA018052.Google Scholar
Korth, H., Anderson, B. J., Gershman, D. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Solomon, S. C. and McNutt, R. L. Jr. (2014). Plasma distribution in Mercury’s magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations. J. Geophys. Res. Space Physics, 119, 29172932, doi:10.1002/2013JA019567.Google Scholar
Korth, H., Tsyganenko, N. A., Johnson, C. L., Philpott, L. C., Anderson, B. J., Al Asad, M. M., Solomon, S. C. and McNutt, R. L. Jr. (2015). Modular model for Mercury’s magnetospheric magnetic field confined within the average observed magnetopause. J. Geophys. Res. Space Physics, 120, 45034518, doi:10.1002/2015JA021022.CrossRefGoogle ScholarPubMed
Kother, L., Hammer, M. D., Finlay, C. C. and Olsen, N. (2015). An equivalent source method for modelling the global lithospheric magnetic field. Geophys. J. Int., 203, 553566, doi:10.1093/gji/ggv317.CrossRefGoogle Scholar
Labrosse, S. (2003). Thermal and magnetic evolution of the Earth’s core. Phys. Earth Planet. Inter., 140, 127143, doi:10.1016/j.pepi.2003.07.006.Google Scholar
Labrosse, S., Poirier, J.-P. and Le Mouël, J.-L. (2001). The age of the inner core. Earth Planet. Sci. Lett., 190, 111123, doi:10.1016/j.pepi.2003.07.006.Google Scholar
Langel, R. A. and Hinze, W. J. (1998). The Magnetic Field of the Earth’s Lithosphere. Cambridge: Cambridge University Press, 445 pp.Google Scholar
Leblanc, F. and Johnson, R. E. (2003). Mercury’s sodium exosphere. Icarus, 164, 261281, doi:10.1016/S0019-1035(03)00147-7.Google Scholar
Leblanc, F. and Johnson, R. E. (2010). Mercury exosphere I. Global circulation model of its sodium component. Icarus, 209, 280300, doi:10.1016/j.icarus.2010.04.020.Google Scholar
Lepping, R. P., Ness, N. F. and Behannon, K. W. (1979). Summary of Mariner 10 Magnetic Field and Trajectory Data for Mercury I and III Encounters, NASA-TM 80600. Greenbelt, MD: NASA Goddard Space Flight Center.Google Scholar
Lillis, R. J., Frey, H. V. and Manga, M. (2008). Rapid decrease in martian crustal magnetization in the Noachian era: Implications for the dynamo and climate of early Mars. Geophys. Res. Lett., 35, L14203, doi:10.1029/2008GL034338.Google Scholar
Lin, R. P., Mitchell, D. L., Curtis, D. W., Anderson, K. A., Carlson, C. W., McFadden, J., Acuña, M. H., Hood, L. L. and Binder, A. (1998). Lunar surface magnetic fields and their interaction with the solar wind: Results from Lunar Prospector. Science, 281, 14801484, doi:10.1126/science.281.5382.1480.Google Scholar
Manglik, A., Wicht, J. and Christensen, U. R. (2010). A dynamo model with double diffusive convection for Mercury’s core. Earth Planet. Sci. Lett., 289, 619628, doi:10.1016/j.epsl.2009.12.007.Google Scholar
Margot, J. L., Peale, S. J., Jurgens, R. F., Slade, M. A. and Holin, I. V. (2007). Large longitude libration of Mercury reveals a molten core. Science, 316, 710714, doi:10.1126/science.1140514.Google Scholar
Margot, J. L., Peale, S. J., Solomon, S. C., Hauck, S. A. II, Ghigo, F. D., Jurgens, R. F., Yseboodt, M., Giorgini, J. D., Padovan, S. and Campbell, D. B. (2012). Mercury’s moment of inertia from spin and gravity data. J. Geophys. Res., 117, E00L09, doi:10.1029/2012JE004161.CrossRefGoogle Scholar
Mayaud, P. N. (1980). Derivation, Meaning, and Use of Geomagnetic Indices. Geophysical Monograph 22. Washington, DC: American Geophysical Union, doi:10.1029/GM022.Google Scholar
Mayhew, M. A. (1979). Inversion of satellite magnetic anomaly data. J. Geophys., 45, 119128.Google Scholar
McKinnon, W. B., Zahnle, K. J., Ivanov, B. A. and Melosh, H. J. (1997). Cratering on Venus: Models and observations. In Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. Bougher, S. W., Hunten, D. M. and Phillips, R. J.. Tucson, AZ: University of Arizona Press, pp. 9691014.Google Scholar
Milbury, C., Schubert, G., Raymond, C. A., Smrekar, S. E. and Langlais, B. (2012). The history of Mars’ dynamo as revealed by modeling magnetic anomalies near Tyrrhenus Mons and Syrtis Major. J. Geophys. Res., 117, E10007, doi:10.1029/2012JE004099.Google Scholar
Ness, N. F., Behannon, K. W., Lepping, R. P., Whang, Y. C. and Schatten, K. H. (1974). Magnetic field observations near Mercury: Preliminary results from Mariner 10. Science, 185, 151160, doi:10.1126/science.185.4146.151.Google Scholar
Ness, N. F., Behannon, K. W., Lepping, R. P. and Whang, Y. C. (1975). Magnetic field of Mercury confirmed. Nature, 255, 204205, doi:10.1038/255204a0.Google Scholar
Ness, N. F., Behannon, K. W., Lepping, R. P. and Whang, Y. C. (1976). Observations of Mercury’s magnetic field. Icarus, 28, 479488, doi:10.1016/0019-1035(76)90121-4.CrossRefGoogle Scholar
Nimmo, F. (2015). Energetics of the core. In Core Dynamics, ed. Olsen, P.. Treatise on Geophysics, 2nd edn, Vol. 8, ed. Schubert, G.. Amsterdam, Oxford: Elsevier, pp. 2755, doi:10.1016/B978-0-444-53802-4.00139-1.Google Scholar
Odstrcil, D. (2003). Modeling 3-D solar wind structure. Adv. Space Res., 32, 497506, doi:10.1016/S0273-1177(03)00332-6.CrossRefGoogle Scholar
Oliveira, J. S., Langlais, B., Pais, M. A. and Amit, H. (2015), A modified Equivalent Source Dipole method to model partially distributed magnetic field measurements, with application to Mercury. J. Geophys. Res. Planets, 120, 10751094, doi:10.1002/2014JE004734.Google Scholar
Olsen, N. (1999). Induction studies with satellite data. Surv. Geophys., 20, 309340, doi:10.1023/A:1006611303582.Google Scholar
Olsen, N., Glassmeier, K.-H. and Jia, X. (2010). Separation of the magnetic field into external and internal parts. Space Sci. Rev., 152, 135157, doi:10.1007/s11214-009-9563-0.Google Scholar
Opdyke, N. D. and Henry, K. W. (1969) A test of the dipole hypothesis. Earth Planet. Sci. Lett., 6, 139151, doi:10.1016/0012-821X(69)90132-0.Google Scholar
Parker, R. L. (1994). Geophysical Inverse Theory. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Parkinson, W. D. (1983). Introduction to Geomagnetism. Edinburgh, UK: Scottish Academic Press.Google Scholar
Paschmann, G. and Daly, P. W. (eds.) (1998). Analysis Methods for Multi-spacecraft Data. ISSI Scientific Report Series, 1. Noordwijk, the Netherlands: European Space Agency.Google Scholar
Phillips, R. J., Raubertas, R. F., Arvidson, R. E., Sarkar, I. C., Herrick, R. R., Izenberg, N. and Grimm, R. E. (1992). Impact craters and Venus resurfacing history. J. Geophys. Res., 97, 15,923–15,948, doi:10.1029/92JE01696.Google Scholar
Philpott, L. C., Johnson, C. L., Winslow, R. M., Anderson, B. J., Korth, H., Purucker, M. E. and Solomon, S. C. (2014). Constraints on the secular variation of Mercury’s magnetic field from the combined analysis of MESSENGER and Mariner 10 data. Geophys. Res. Lett., 41, 66276634, doi:10.1002/2014GL061401.Google Scholar
Plattner, A. and Simons, F. J. (2015). High resolution local magnetic field models for the martian south pole from Mars Global Surveyor data. J. Geophys. Res. Planets, 120, 15431566, doi:10.1002/2015JE004869.Google Scholar
Proudman, J. (1916). On the motion of solids in a liquid possessing vorticity. Proc. R. Soc. London A, 92, 408424.Google Scholar
Purucker, M. E., Sabaka, T. J., Solomon, S. C., Anderson, B. J., Korth, H., Zuber, M. T. and Neumann, G. A. (2009). Mercury’s internal magnetic field: Constraints on large- and small-scale fields of crustal origin. Earth Planet. Sci. Lett., 285, 340346, doi:10.1016/j.epsl.2008.12.017.Google Scholar
Raines, J. M., Gershman, D. J., Zurbuchen, T. H., Sarantos, M., Slavin, J. A., Gilbert, J. A., Korth, H., Anderson, B. J., Gloeckler, G., Krimigis, S. M., Baker, D. N., McNutt, R. L. Jr. and Solomon, S. C. (2013). Distribution and compositional variations of plasma ions in Mercury’s space environment: The first three Mercury years of MESSENGER observations. J. Geophys. Res. Space Physics, 118, 16041619, doi:10.1029/2012ja018073.Google Scholar
Rikitake, T. (1966). Electromagnetism and the Earth’s Interior, Developments in Solid Earth Geophysics, Vol. 2. Amsterdam: Elsevier.Google Scholar
Robbins, S. J., Hynek, B. M., Lillis, R. J. and Bottke, W. F. (2013). Large impact crater histories of Mars: The effect of different model crater age techniques. Icarus, 225, 173184, doi:10.1016/j.icarus.2013.03.019.Google Scholar
Russell, C. T., Baker, D. N. and Slavin, J. A. (1988). The magnetosphere of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 514561.Google Scholar
Schaber, G. G., Strom, R. G., Moore, H. J., Soderblom, L. A., Kirk, R. L., Chadwick, D. J. Dawson, D. D., Gaddis, L. R., Boyce, J. M. and Russell, J. (1992). Geology and distribution of impact craters on Venus: What are they telling us? J. Geophys. Res., 97, 13,257–13,302, doi:10.1029/92JE01246.Google Scholar
Schubert, G., Ross, M. N., Stevenson, D. J. and Spohn, T. (1988). Mercury’s thermal history and the generation of its magnetic field. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 429460.Google Scholar
Schubert, G., Russell, C. T. and Moore, W. B. (2000). Geophysics: Timing of the martian dynamo. Nature, 408, 666667, doi:10.1038/35047163.Google Scholar
Siegler, M. A., Bills, B. G. and Paige, D. A. (2013). Orbital eccentricity driven temperature variation at Mercury’s poles. J. Geophys. Res. Planets, 118, 930937.Google Scholar
Slavin, J. A. and Holzer, R. E. (1979). The effect of erosion on the solar wind stand-off distance at Mercury. J. Geophys. Res., 84, 20762082, doi:10.1029/JA084iA05p02076.Google Scholar
Slavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Raines, J. M., Zurbuchen, T. H., Jia, X. Z., Baker, D. N., Glassmeier, K. H., Livi, S. A., Boardsen, S. A., Cassidy, T. A., Sarantos, M., Sundberg, T., Masters, A., Johnson, C. L., Winslow, R. M., Anderson, B. J., Korth, H., McNutt, R. L. Jr. and Solomon, S. C. (2014). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. J. Geophys. Res. Space Physics, 119, 80878116, doi:10.1002/2014ja020319.Google Scholar
Soderlund, K.-M. and Schubert, G. (2016). Evolution of Mercury’s core dynamo. Lunar Planet. Sci., 47, abstract 2262.Google Scholar
Solomon, S. C. (1976). Some aspects of core formation in Mercury. Icarus, 28, 509521, doi:10.1016/0019-1035(76)90124-X.Google Scholar
Srnka, L. J. (1976). Magnetic dipole moment of a spherical shell with TRM acquired in a field of internal origin. Phys. Earth Planet. Inter., 11, 184190, doi:10.1016/0031-9201(76)90062-5.Google Scholar
Stanley, S. and Glatzmaier, G. (2010). Dynamo models for planets other than Earth. Space Sci. Rev., 152, 617649, doi:10.1007/s11214-009-9573-y.Google Scholar
Stanley, S., Bloxham, J., Hutchison, W. E. and Zuber, M. T. (2005). Thin shell dynamo models consistent with Mercury’s weak observed magnetic field. Earth Planet. Sci. Lett., 234, 2738, doi:10.1016/j.epsl.2005.02.040.Google Scholar
Stephenson, A. (1976). Crustal remanence and the magnetic moment of Mercury. Earth Planet. Sci. Lett., 28, 454458, doi:10.1016/0012-821X(76)90206-5.Google Scholar
Stevenson, D. J. (1987). Mercury’s magnetic field: A thermoelectric dynamo? Earth Planet. Sci. Lett., 82, 114120, doi:10.1016/0012-821X(87)90111-7.Google Scholar
Stevenson, D. J. (2003). Planetary magnetic fields. Earth Planet. Sci. Lett., 208, 111, doi:10.1016/S0012-821X(02)01126-3.Google Scholar
Strauss, B. E., Feinberg, J. M. and Johnson, C. L. (2016). Magnetic mineralogy of the Mercurian lithosphere, J. Geophys. Res. Planets, 121, 22252238, doi:10.1002/2016JE005054.Google Scholar
Suess, S. T. and Goldstein, B. E. (1979). Compression of the hermaean magnetosphere by the solar wind. J. Geophys. Res., 84, 33063312, doi:10.1029/JA084iA07p03306.Google Scholar
Takahashi, F. and Matsushima, M. (2006). Dipolar and non-dipolar dynamos in thin spherical shell geometry with implications for the magnetic field of Mercury. Geophys. Res. Lett., 33, L10202, doi:10.1029/2006GL025792.Google Scholar
Tarduno, J. A., Blackman, E. G. and Mamajek, E. E. (2014). Detecting the oldest geodynamo and attendant shielding from the solar wind: Implications for habitability. Phys. Earth Planet. Inter., 233, 6887, doi:10.1016/j.pepi.2014.05.007.Google Scholar
Tarduno, J. A., Cottrell, R. D., Davis, W. J., Nimmo., F., Bono., R. K. (2015). A Hadean to Paleoarchaean geodynamo recorded by single zircon crystals. Science, 349, 521524, doi:10.1126/science.aaa9114.CrossRefGoogle Scholar
Taylor, G. (1917). Motion of solids in fluids when the flow is not irrotational. Proc. Roy. Soc. London A, 93, 99113, doi:10.1098/rspa.1917.0007.Google Scholar
Tian, Z., Zuber, M. T. and Stanley, S. (2015). Magnetic field modeling for Mercury using dynamo models with a stable layer and laterally variable heat flux. Icarus, 260, 263268, doi:10.1016/j.icarus.2015.07.019.Google Scholar
Thébault, E., Finlay, C. C, Beggan, C. D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., Brocco, L., Canet, E., Chambodut, A., Chulliat, A., Coïsson, P., Civet, F., Du, A., Fournier, A, Fratter, I., Gillet, N., Hamilton, B., Hamoudi, M., Hulot, G., Jager, T., Korte, M., Kuang, W., Lalanne, X., Langlais, B., Léger, J.-M., Lesur, V., Lowes, F. J., Macmillan, S., Mandea, M., Manoj, C., Maus, S., Olsen, N., Petrov, V., Ridley, V., Rother, M., Sabaka, T. J., Saturnino, D., Schachtschneider, R., Sirol, O., Tangborn, A., Thomson, A., Tøffner-Clausen, L., Vigneron, P., Wardinski, I. and Zvereva, T. (2015). International Geomagnetic Reference Field: The 12th generation. Earth Planets Space, 67, 19 pp., doi:10.1186/s40623-015-0228-9.Google Scholar
Tosi, N., Grott, M., Plesa, A.-C. and Breuer, D. (2013). Thermochemical evolution of Mercury’s interior. J. Geophys. Res. Planets, 118, 24742487, doi:10.1002/jgre.20168.Google Scholar
Trávníček, P. M., Hellinger, P. and Schriver, D. (2007). Structure of Mercury’s magnetosphere for different pressure of the solar wind: Three-dimensional hybrid simulations. Geophys. Res. Lett., 34, L05104, doi:10.1029/2006GL028518.CrossRefGoogle Scholar
Tsyganenko, N. A. (1995). Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause. J. Geophys. Res., 100, 55995612, doi:10.1029/94JA03193.Google Scholar
Uno, H. (2009). New constraints on Mercury’s internal magnetic field. M.Sc. thesis, The University of British Columbia, Vancouver, BC, Canada.Google Scholar
Uno, H., Johnson, C. L., Anderson, B. J., Korth, H. and Solomon, S. C. (2009). Modeling Mercury’s internal magnetic field with smooth inversions. Earth Planet. Sci. Lett., 285, 328339, doi:10.1016/j.epsl.2009.02.032.Google Scholar
Verhoeven, O., Tarits, P., Vacher, P., Rivoldini, A. and Van Hoolst, T. (2009). Composition and formation of Mercury: Constraints from future electrical conductivity measurements. Planet. Space Sci., 57, 296305, doi:10.1016/j.pss.2008.11.015.Google Scholar
Vilim, R., Stanley, S. and Hauck, S. A. II (2010). Iron snow zones as a mechanism for generating Mercury’s weak observed magnetic field. J. Geophys. Res., 115, E11003,; doi:10.1029/2009JE003528.Google Scholar
von Frese, R. R. B., Hinze, W. J. and Braile, L. W. (1981). Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion. Earth. Planet. Sci. Lett., 53, 6983, doi:10.1016/0012-821X(81)90027-3.Google Scholar
Weiss, B. P. and Tikoo, S. M. (2014). The lunar dynamo. Science, 346, 1198, doi:10.1126/science.1246753.Google Scholar
Wicht, J. and Tilgner, A. (2010). Theory and modeling of planetary dynamos. Space Sci. Rev., 152, 501542, doi:10.1007/s11214-010-9638-y.Google Scholar
Wieczorek, M. A., Weiss, B. P. and Stewart, S. T. (2012). An impactor origin for lunar magnetic anomalies. Science, 335, 12121215, doi:10.1126/science.1214773.Google Scholar
Williams, J.-P., Aharonson, O. and Nimmo, F. (2007). Powering Mercury’s dynamo. Geophys. Res. Lett. 34, L21201, doi:10.1029/2007GL031164.Google Scholar
Winslow, R. M. (2014). Investigation of Mercury’s magnetospheric and surface magnetic fields. Ph.D. thesis, The University of British Columbia, Vancouver, BC, Canada.Google Scholar
Winslow, R. M., Johnson, C. L., Anderson, B. J., Korth, H., Slavin, J. A., Purucker, M. E. and Solomon, S. C. (2012). Observations of Mercury’s northern cusp region with MESSENGER’s Magnetometer. Geophys. Res. Lett., 39, L08112, doi:10.1029/2012GL051472.Google Scholar
Winslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., Baker, D. N. and Solomon, S. C. (2013). Mercury’s magnetopause and bow shock from MESSENGER Magnetometer observations. J. Geophys. Res. Space Physics, 118, 22132227, doi:10.1002/jgra.50237.Google Scholar
Winslow, R. M., Johnson, C. L., Anderson, B. J., Gershman, D. J., Raines, J. M., Lillis, R. J., Korth, H., Slavin, J. A., Solomon, S. C., Zurbuchen, T. H. and Zuber, M. T. (2014). Mercury’s surface magnetic field determined from proton-reflection magnetometry. Geophys. Res. Lett., 41, 44634470, doi:10.1002/2014GL060258.Google Scholar
Wurz, P., Whitby, J. A., Rohner, U., Martín-Fernández, J. A., Lammer, H. and Kolb, C. (2010). Self-consistent modelling of Mercury’s exosphere by sputtering, micro-meteorite impact and photon-stimulated desorption. Planet. Space Sci., 58, 15991616, doi:10.1016/j.pss.2010.08.003.Google Scholar
Zurbuchen, T. H., Raines, J. M., Slavin, J. A., Gershman, D. J., Gilbert, J. A., Gloeckler, G., Anderson, B. J., Baker, D. N., Korth, H., Krimigis, S. M., Sarantos, M., Schriver, D., McNutt, R. L. Jr. and Solomon, S. C. (2011). MESSENGER observations of the spatial distribution of planetary ions near Mercury. Science, 333, 18621865, doi:10.1126/science.1211302.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×