Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T17:39:32.168Z Has data issue: false hasContentIssue false

Section 6 - Monitoring

Published online by Cambridge University Press:  19 June 2018

Arun Gupta
Affiliation:
Addenbrooke’s Hospital, Cambridge
Adrian Gelb
Affiliation:
University of Cambridge San Francisco/University of California, San Francisco
Derek Duane
Affiliation:
Addenbrooke’s Hospital, Cambridge
Ram Adapa
Affiliation:
Addenbrooke’s Hospital, Cambridge
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further Reading

Aries, M.J., Czosnyka, M., Budohoski, K.P., et al: Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012 August; 40(8):24562463.CrossRefGoogle ScholarPubMed
Castellani, G., Zweifel, C., Kim, D.J., et al: Plateau waves in head injured patients requiring neurocritical care. Neurocrit Care 2009; 11:143150.CrossRefGoogle ScholarPubMed
Czosnyka, M., Guazzo, E., Whitehouse, M., et al: Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir (Wien) 1996; 138(5):531541.CrossRefGoogle ScholarPubMed
Czosnyka, M., Smielewski, P., Kirkpatrick, P., et al: Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 1997 July; 41(1):1117.CrossRefGoogle ScholarPubMed
Dias, C., Maia, I., Cerejo, A., et al: Pressures, flow, and brain oxygenation during plateau waves of intracranial pressure. Neurocrit Care 2014 August; 21(1):124132.Google Scholar
Donnelly, J., Czosnyka, M., Harland, S., et al: Cerebral haemodynamics during experimental intracranial hypertension. J Cereb Blood Flow Metab 2016 March 18.Google Scholar
Koskinen, L.O., Grayson, D., Olivecrona, M.: The complications and the position of the Codman MicroSensor™ ICP device: An analysis of 549 patients and 650 sensors. Acta Neurochir (Wien) 2013 November; 155(11):21412148.Google Scholar
Lazaridis, C., DeSantis, S.M., Smielewski, P., et al: Patient-specific thresholds of intracranial pressure in severe traumatic brain injury. J Neurosurg 2014 April; 120(4):893900.CrossRefGoogle ScholarPubMed
Lu, C.W., Czosnyka, M., Shieh, J.S., Smielewska, A., Pickard, J.D., Smielewski, P.: Complexity of intracranial pressure correlates with outcome after traumatic brain injury. Brain 2012 August; 135(Pt 8):23992408.Google Scholar
Robba, C., Bacigaluppi, S., Cardim, D., et al: Non-invasive assessment of intracranial pressure. Acta 2015 October 30. Review.CrossRefGoogle Scholar
Vik, A., Nag, T., Fredriksli, O.A., et al: Relationship of “dose” of intracranial hypertension to outcome in severe traumatic brain injury. J Neurosurg 2008 October; 109(4):678684.CrossRefGoogle ScholarPubMed
Zweifel, C., Castellani, G., Czosnyka, M., et al: Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients. J Neurotrauma 2010 November; 27(11):19511958.Google Scholar

Further Reading

Coles, J.P., Minhas, P.S., Fryer, T.D., et al: Effect of hyperventilation on cerebral blood flow in traumatic head injury: Clinical relevance and monitoring correlates. Crit Care Med 2002;30:19501959.Google Scholar
Croughwell, N.D., White, W.D., Smith, L.R., et al: Jugular bulb saturation and mixed venous saturation during cardiopulmonary bypass. J Card Surg 1995;10:503508.CrossRefGoogle ScholarPubMed
Dearden, N.M., Midgley, S.: Technical considerations in continuous jugular venous oxygen saturation measurement. Acta Neurochir 1993; 59(Suppl):9197.Google Scholar
Feldman, Z., Robertson, C.S.: Monitoring of cerebral hemodynamics with jugular bulb catheters. Crit Care Clin 1997; 13:5177.Google Scholar
Gupta, A.K., Bullock, M.R.: Monitoring the injured brain in the intensive care unit: Present and future. Hosp Med 1998; 59:704713.Google Scholar
Obrist, W.D., Langfitt, T.W., Jaggi, J.L., Cruz, J., Gennarelli, T.A.: Cerebral blood flow and metabolism in comatose patients with acute head injury: Relationship to intracranial hypertension. J Neurosurg 1984;61:245253.CrossRefGoogle ScholarPubMed
Robertson, C.S., Narayan, R.K., Gokaslan, Z., et al: Cerebral arteriovenous oxygen difference as an estimate of cerebral blood flow in comatose patients. J Neurosurg 1989;70:222230.CrossRefGoogle ScholarPubMed
Robertson, C.S., Gopinath, S.P., Goodman, J.C., et al: SjvO2 monitoring in head injured patients. J Neurotrauma 1995;1:891896.Google Scholar
Sheinberg, M., Kanter, M.J., Robertson, C.S, et al: Continuous monitoring of jugular venous oxygen saturation in head injured patients. J Neurosurg 1992; 76(2):212217.Google Scholar

Further Reading

Meng, L., Gelb, A.W.: Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology 2015; 122(1):196205.CrossRefGoogle ScholarPubMed
Meng, L., Hou, W., Chui, J., Han, R., Gelb, A.W.: Cardiac output and cerebral blood flow: The integrated regulation of brain perfusion in adult humans. Anesthesiology 2015; 123(5):11981208.Google Scholar

Further Reading

Hutchinson, P.J., O’Connell, M.T., Al-Rawi, P.G., et al: Clinical cerebral microdialysis: A methodological study. J Neurosurg 2000; 93(1):3743.CrossRefGoogle ScholarPubMed
Vespa, P., Bergsneider, M., Hattori, N., et al: Metabolic crisis without brain ischemia is common after traumatic brain injury: A combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 2005; 25(6):763774.Google Scholar
Hlatky, R., Valadka, A.B., Goodman, J.C., et al: Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma 2004; 21(7):894906.CrossRefGoogle ScholarPubMed
Reinstrup, P., Stahl, N., Mellergard, P., et al: Intracerebral microdialysis in clinical practice: Baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 2000; 47(3):701709; discussion 709710.Google ScholarPubMed
Engstrom, M., Polito, A., Reinstrup, P., et al: Intracerebral microdialysis in severe brain trauma: The importance of catheter location. J Neurosurg 2005; 102(3):460469.Google Scholar
Hutchinson, P.J., Jalloh, I., Helmy, A., et al: Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Med 2015; 41(9):15171528.Google Scholar
Timofeev, I., Carpenter, K.L., Nortje, J., et al: Cerebral extracellular chemistry and outcome following traumatic brain injury: A microdialysis study of 223 patients. Brain 2011; 134:484494.CrossRefGoogle ScholarPubMed
Sarrafzadeh, A., Haux, D., Sakowitz, O., et al: Acute focal neurological deficits in aneurysmal subarachnoid hemorrhage: Relation of clinical course, CT findings, and metabolite abnormalities monitored with bedside microdialysis. Stroke 2003; 34(6):13821388.Google Scholar
Shannon, R.J., Carpenter, K.L., Guilfoyle, M.R., et al: Cerebral microdialysis in clinical studies of drugs: Pharmacokinetic applications. J Pharmacokinet Pharmacodyn 2013; 40(3):343358.Google Scholar
Helmy, A., Carpenter, K.L., Menon, D.K., et al: The cytokine response to human traumatic brain injury: Temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab 2011; 31(2):658670.CrossRefGoogle ScholarPubMed

Further Reading

Lall, R., Lall, R.R., Hauptman, J.S., et al: Intraoperative neurophysiological monitoring in spine surgery: Indications, efficacy, and role of the preoperative checklist. Neurosurg Focus 2012; 33:110.Google Scholar
Lieberman, , Feiner, J., Lyon, R., et al: Effect of hemorrhage and hypotension on transcranial motor-evoked potentials in swine. Anesthesiology 2013; 119:11091119.CrossRefGoogle ScholarPubMed
Lotto, M., Banoub, M., Schubert, A., et al: Effects of anesthetic agents and physiologic changes on intraoperative motor evoked potentials. J Neurosurg Anesthesiol 2004; 16:3242.Google Scholar
Lyon, , Feiner, J., Lieberman, J.A., et al: Progressive suppression of motor evoked potentials during general anesthesia: The phenomenon of ‘Anesthetic Fade’. J Neurosurg Anesthesiol 2005; 17:1319.Google Scholar
Rabai, F., Sessions, R., Seubert, C.N., et al: Neurophysiological monitoring and spinal cord integrity. Best Pract Res Clin Anaesthesiol 2016; 30:5368.CrossRefGoogle ScholarPubMed
Shils, J., Sloan, T.: Intraoperative neuromonitoring. Int Anesthesiol Clin 2015; 53:5373.Google Scholar
Simon, M.: Neurophysiologic intraoperative monitoring of the vestibulocochlear nerve. J Clin Neurophysiol 2011; 28:566581.Google Scholar

Further Reading

Brown, E.N., Lydic, R., Schiff, N.D.: General anesthesia, sleep, and coma. N Engl J Med 2010 December 30; 363(27):26382650.Google Scholar
Marchant, N1., Sanders, R., Sleigh, J., et al: How electroencephalography serves the anesthesiologist. Clin EEG Neurosci 2014 January; 45(1):2232. Epub 2014 January 10.CrossRefGoogle ScholarPubMed
Mashour, G.A., Avidan, M.S.: Variability indices of processed electroencephalography and electromyography. Anesth Analg 2012 April; 114(4):713714.CrossRefGoogle ScholarPubMed
Mashour, G.A., Avidan, M.S.: Intraoperative awareness: Controversies and non-controversies. Br J Anaesth 2015 July; 115(Suppl 1):i20–i26. Epub 2015 March 3. Review.Google Scholar
Purdon, P.L., Pavone, K.J., Akeju, O., et al: The Ageing brain: Age-dependent changes in the electroencephalogram during propofol and sevoflurane general anaesthesia. Br J Anaesth 2015 July; 115(Suppl 1):i46–i57.Google Scholar
Purdon, P.L., Sampson, A., Pavone, K.J., Brown, E.N.: Clinical electroencephalography for anesthesiologists: Part I: Background and basic signatures. Anesthesiology 2015 October; 123(4):937960.CrossRefGoogle ScholarPubMed

Further Reading

Alexandrov, A.V., Sloan, M.A., Tegeler, C.H., et al: Practice standards for transcranial Doppler (TCD) ultrasound. Part II. Clinical indications and expected outcomes. J Neuroimag 2012; 22(3):215224.Google Scholar
Allmendinger, A.M., Tang, E.R., Lui, Y.W., et al: Imaging of stroke: Part 1, Perfusion CT–overview of imaging technique, interpretation pearls, and common pitfalls. Am J Roentgenol 2012; 198(1):5262.Google Scholar
Budohoski, K.P., Guilfoyle, M., Helmy, A., et al: The pathophysiology and treatment of delayed cerebral ischaemia following subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2014; 85(12):13431353.Google Scholar
Cremers, C.H.P., van der Schaaf, I.C., Wensink, E., et al: CT perfusion and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: A systematic review and meta-analysis. J Cereb Blood Flow Metab 2014; 34(2):200207.Google Scholar
Kumar, G., Shahripour, R.B., Harrigan, M.R.: Vasospasm on transcranial Doppler is predictive of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: A systematic review and meta-analysis. J Neurosurg 2016; 124(5):12571264.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×