Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-16T22:03:19.373Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  30 April 2022

Michael Rudolph
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Tours
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Mathematics of Finite Networks
An Introduction to Operator Graph Theory
, pp. 327 - 332
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Common Crawl Foundation. http://commoncrawl.org. 2020.Google Scholar
Albert, R., and Barabási, A.-L. 2000. Topology of evolving networks: local events and universality. Phys. Rev. Lett., 85, 5234.Google Scholar
Albert, R., and Barabási, A.-L. 2002. Statistical mechanics of complex networks. Rev. Mod. Phys., 74, 4797.Google Scholar
Albert, R., Hawoong, J., and Barabási, A. 1999. The diameter of the world wide web. Nature, 401, 130131.Google Scholar
Amaral, L.A.N., Scala, A., Barthélémy, M., and Stanley, H.E. 2000. The diameter of the world wide web. Proc. Natl. Acad. Sci. USA, 97, 1114911152.Google Scholar
An, Y., Janssen, J., and Milios, E. 2004. Characterizing and mining the citation graph of the computer science literature. Knowl. Inf. Syst., 6, 664678.Google Scholar
Appel, K., Haken, W., and Koch, J. 1977. Every planar map is four colorable. II: Reducibility. Illinois J. Math., 21, 491567.Google Scholar
Appel, K., and Haken, W. 1977. The solution of the four-color map problem. Sci. Am., 237, 108121.Google Scholar
Appel, K., Haken, W., and Koch, J. 1977. Every planar map is four colorable. I: Discharging. Illinois J. Math., 21, 429490.Google Scholar
Asratian, A.S., Denley, T.M.J., and Häggkvist, R. 1998. Bipartite Graphs and Their Applications. Cambridge University Press.Google Scholar
Azevedo, F.A.C., Carvalho, L.R.B., Grinberg, L.T., Farfel, J.M., Ferretti, R.E.L., Leite, R.E.P., Filho, W.J., Lent, R., and Herculano-Houzel, S. 2009. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol., 513, 532541.Google Scholar
Barabási, A.-L., and Albert, R. 1999. Emergence of scaling in random networks. Science, 286, 509512.Google Scholar
Barrat, A., and Weigt, M. 2000. On the properties of small-world network models. Eur. Phys. J. B, 13, 547560.Google Scholar
Barrat, A., Barthélemy, M., Pastor-Satorras, R., and Vespignani, A. 2004. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA, 101, 37473752.Google Scholar
Beer, T., and Enting, I.G. 1990. Fire spread and percolation modelling. Math. Comp. Mod., 13, 7796.CrossRefGoogle Scholar
Bianconi, G., and Barabási, A.-L. 2001a. Bose-Einstein condensation in complex networks. Phys. Rev. Lett., 86, 5632.Google Scholar
Bianconi, G., and Barabási, A.-L. 2001b. Competition and multiscaling in evolving networks. Europhys. Lett., 54, 436442.Google Scholar
Biggs, N. 1993. Algebraic Graph Theory. Cambridge University Press.Google Scholar
Bilke, S., and Peterson, C. 2001. Topological properties of citation and metabolic networks. Phys. Rev. E, 64, 036106.Google Scholar
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U. 2006. Complex networks: structure and dynamics. Phys. Rep., 424, 175308.Google Scholar
Bollobás, B. 1980. A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur. J. Combin., 1, 311316.Google Scholar
Bollobás, B. 2001. Random Graphs. 2nd ed. Cambridge University Press.Google Scholar
Braitenberg, V., and Schüz, A. 1998. Cortex: Statistics and Geometry of Neuronal Connectivity. 2nd ed. Springer.Google Scholar
Broadbent, S.R. 1964. In discussion of symposium on Monte Carlo methods. J. Roy. Stat. Soc. B, 16, 68.Google Scholar
Broadbent, S.R., and Hammersley, J.M. 1957. Percolation processes. I. Crystals and mazes. Proc. Camb. Philos. Soc., 53, 629641.Google Scholar
Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., and Wiener, J. 2000. Graph structure in the Web: experiments and models. Comput. Netw., 33, 309320.Google Scholar
Burt, R.S. 1976. Positions in networks. Soc. Forces, 55, 93122.Google Scholar
Callaway, D.S., Newman, M.E.J., Strogatz, S.H., and Watts, D.J. 2000. Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett., 85, 5468.Google Scholar
Chung, F., and Lu, L. 2002a. The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. USA, 99, 1587915882.Google Scholar
Chung, F., and Lu, L. 2002b. Connected components in random graphs with given expected degree sequences. Combinatorics, 6, 125145.Google Scholar
Cohn, P.M. 1981. Universal Algebra. Springer.Google Scholar
Conyon, M.J., and Muldoon, M.R. 2006. The small world of corporate boards. J. Bus. Finan. Account., 33, 13211343.Google Scholar
Davis, P.J. 1970. Circulant Matrices. Wiley.Google Scholar
Donato, D., Leonardi, S., Laura, L., Millozzi, S., Meyer, U., and Sibeyn, J.F. 2006. Algorithms and experiments for the webgraph. J. Graph Algorithms and Applications, 10, 219236.Google Scholar
Dorogovtsev, S.N., and Mendes, J.F.F. 2000. Scaling behaviour of developing and decaying networks. Europhys. Lett., 52, 33.Google Scholar
Dorogovtsev, S.N., Mendes, J.F.F., and Samukhin, A.N. 2000. Structure of growing networks with preferential linking. Phys. Rev. Lett., 85, 4633.Google Scholar
Durrett, R. 2006. Random Graph Dynamics. Cambridge University Press.Google Scholar
Erdős, P., and Rényi, A. 1959. On random graphs. I. Publicationes Mathematicae, 6, 290297.Google Scholar
Erdős, P., and Rényi, A. 1960. On the evolution of random graphs. Magyar Tudományos Akadémia Matematikai Kutató Intézetének Kőzleményei (Publ. Math. Inst. Hung. Acad. Sci., Ser. A), 5, 1761.Google Scholar
Erdős, P., and Rényi, A. 1961. On the evolution of random graphs. II. Bull. Inst. Int. Stat., 38, 343347.Google Scholar
Euclid. 1956. Book XIII. In: The Thirteen Books of the Elements, Vol. 3: Books X-XIII, 2nd, unabridged ed. Dover.Google Scholar
Euler, L. 1736. Solutio problematis ad geometriam situs pertinentis. Comment. Acad. Sci. U. Petrop, 8, 128140.Google Scholar
Fagiolo, G. 2007. Clustering in complex directed networks. Phys. Rev. E, 76, 026107.Google Scholar
Farkas, I., Derényi, I., Barabási, A.-L., and Vicsek, T. 2001. Spectra of “real-world” graphs: Beyond the semicircle law. Phys. Rev. E, 64, 26704.Google Scholar
FIDE. 2021. World Chess Federation Handbook. http://www.fide.com/fide/handbook.html.Google Scholar
Fine, T.L. 1999. Feedforward Neural Network Methodology. Springer.Google Scholar
Fronczak, A., Fronczak, P., and Hoł yst, J.A. 2004. Average path length in random networks. Phys. Rev. E, 70, 056110.Google Scholar
Garlaschelli, D., and Loffredo, M.I. 2004. Patterns of link reciprocity in directed networks. Phys. Rev. Lett., 93, 268701.Google Scholar
Gilbert, E.N. 1959. Random graphs. Ann. Math. Statist., 30, 11411144.Google Scholar
Gingl, A., Pennetta, C., Kiss, L.B., and Reggiani, L. 1996. Biased percolation and abrupt failure of electronic devices. Semicond. Sci. Technol., 11, 17701775.Google Scholar
Goh, K.-I., Kahng, B., and Kim, D. 2001. Spectra and eigenvectors of scale-free networks. Phys. Rev. E, 64, 051903.Google Scholar
Grimmett, G.R. 1999. Percolation. Springer.Google Scholar
Gross, J.T., and Yellen, J. 2006. Graph Theory and Its Applications. 2nd ed. CRC Press.Google Scholar
Guillaume, J.-L., and Latapy, M. 2002. The web graph: an overview. Actes d’ALGOTEL’02 (Quatrièmes Rencontres Francophones sur les aspects Algorithmiques des Télécommunications), Mèze, France.Google Scholar
Guimera, R., Mossa, S., Turtschi, A., and Amaral, L.A.N. 2005. The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc. Natl. Acad. Sci. USA, 102, 77947799.Google Scholar
Hagar, A. 2014. Discrete or Continuous?: The Quest for Fundamental Length in Modern Physics. Cambridge University Press.Google Scholar
Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., and Sporns, O. 2008. Mapping the structural core of human cerebral cortex. PLoS Biology, 6, e159.Google Scholar
Hammersley, J.M., and Morton, K.W. 1954. Poor man's Monte Carlo. J. Roy. Stat. Soc. B, 16, 2338.Google Scholar
Harary, F. 1969. Graph Theory. Addison-Wesley.Google Scholar
He, Y., Chen, Z.J., and Evans, A.C. 2007. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex, 17, 2407.Google Scholar
Holland, P.W., and Leinhardt, S. 1971. Transitivity in structural models of small groups. Small Gr. Res., 2, 107124.Google Scholar
Holme, P., and Kim, B.J. 2002. Growing scale-free networks with tunable clustering. Phys. Rev. E, 65, 026107.Google Scholar
Humphries, M.D., and Gurney, K. 2008. Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS ONE, 3, e0002051.Google Scholar
Kennedy, J.W., Quintas, L.V., and Sysło, M.M. 1985. The theorem on planar graphs. Hist. Math., 12, 350368.Google Scholar
Kőnig, D. 1936. Theorie der endlichen und unendlichen Graphen. Akademische Verlagsgesellschaft, Leipzig. Translated from German by Richard McCoart, Theory of finite and infinite graphs, Birkhäuser, 1990.Google Scholar
Kirman, A. 1997. The economy as an evolving network. J. Evol. Econ., 7, 339353.Google Scholar
Kötter, R. 2004. Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics, 2, 127144.Google Scholar
Kraitchik, M. 1953. Mathematical Recreations. 2nd revised ed. Dover Publications.Google Scholar
Krapivsky, P.L., and Redner, S. 2001. Organization of growing random networks. Phys. Rev. E, 63, 66123.Google Scholar
Krapivsky, P.L., Redner, S., and Leyvraz, F. 2000. Connectivity of growing random networks. Phys. Rev. Lett., 85, 4629.Google Scholar
Krapivsky, P.L., Rodgers, G.J., and Redner, S. 2001. Degree distributions of growing networks. Phys. Rev. Lett., 86, 5401.Google Scholar
Kuratowski, K. 1930. Sur le problème des courbes gauches en topology. Fund. Math., 15, 271283.Google Scholar
Lehmann, S., Lautrup, B., and Jackson, A.D. 2003. Citation networks in high energy physics. Phys. Rev. E, 68, 026113.Google Scholar
Li, M., Chen, H., Wang, J., Liu, F., Long, Z., Wang, Y., Iturria-Medina, Y., Zhang, J., Chunshui, Y., and Chen, H. 2014. Handedness- and hemisphere-related differences in small-world brain networks: a diffusion tensor imaging tractography study. Brain Connectivity, 4, 145.Google Scholar
Maynard, M. 2020. Neural Networks. Independently published.Google Scholar
Menger, K. 1952. You Will Like Geometry: Guidebook of the Illinois Institute of Technology Geometry Exhibit. Museum of Science and Industry, Chicago.Google Scholar
Meusel, R., Vigna, S., Lehmberg, O., and Bizer, C. 2015. The graph structure in the web - analyzed on different aggregation levels. The Journal of Web Science, 1, 3347.Google Scholar
Milgram, S. 1967. The small world problem. Psychol. Today, 1, 6167.Google Scholar
Miller, J.C. 2009. Percolation and epidemics in random clustered networks. Phys. Rev. E, 80, 020901.Google Scholar
Miller, J.C., and Hagberg, A. 2011. Efficient generation of networks with given expected degrees. Pages 115–126 of: Frieze, A., Horn, P., and Pralat, P. (eds), Algorithms and Models for the Web-Graph (WAW 2011).Google Scholar
Minkowski, H. 1967. Gesammelte Abhandlungen. Chelsea Publishing Co..Google Scholar
Modhaa, D.A., and Singh, R. 2010. Network architecture of the long-distance pathways in the macaque brain. Proc. Natl. Acad. Sci. USA, 107, 1348513490.Google Scholar
Montoya, J.M., and Solé, R.V. 2002. Small world patterns in food webs. J. Theor. Biol., 214, 405412.Google Scholar
Moore, C.M., and Newman, M.E.J. 2000. Epidemics and percolation in small-world networks. Phys. Rev. E, 61, 56785682.Google Scholar
Muller, L.E., Destexhe, A., and Rudolph-Lilith, M. 2014. Brain networks: small-worlds, after all? New J. Phys., 16, 105004.Google Scholar
Newman, M. 2010. Networks. 2nd ed. Oxford University Press.Google Scholar
Newman, M.E.J., Moore, C., and Watts, D.J. 2000. Mean-field solution of the small-world network model. Phys. Rev. Lett., 84, 3201.Google Scholar
Newman, M.E.J., Forrest, S., and Balthrop, J. 2002. Email networks and the spread of computer viruses. Phys. Rev. E, 66, 035101.Google Scholar
Nishizeki, T., and Chiba, N. 1988. Planar Graphs: Theory and Algorithms. Elsevier.Google Scholar
Pastor-Satorras, R., and Vespignani, A. 2001. Epidemic spreading in scale-free networks. Phys. Rev. Lett., 86, 32003203.Google Scholar
Price, D.J. de Solla. 1965. Networks of scientific papers. Science, 149, 510515.Google Scholar
Ravasz, E., and Barabási, A.-L. 2003. Hierarchical organization in complex networks. Phys. Rev. E, 67, 026112.Google Scholar
Reed, R., and Marks, R., II. 1999. Neural Smithing. MIT Press.Google Scholar
Rozenblat, C., Melançon, G., Bourqui, R., and Auber, D. 2013. Comparing Multilevel Clustering Methods on Weighted Graphs: The Case of Worldwide Air Passenger Traffic 2000–2004. Pages 141–154 of: Rozenblat, C., and Melançon, G. (eds.), Methods for Multilevel Analysis and Visualisation of Geographical Networks. Springer.Google Scholar
Rudolph-Lilith, M., and Muller, L.E. 2014. Aspects of randomness in neural graph structures. Biol. Cybern., 108, 381396.Google Scholar
Rudolph-Lilith, M., and Muller, L.E. 2015. On a link between Dirichlet kernels and central multinomial coefficients. Discrete Math., 338, 15671572.Google Scholar
Rudolph-Lilith, M., Destexhe, A., and Muller, L.E. 2012. Structual vulnerability of the nematode worm neural graph. arXiv:1208.3383v1 [cond-mat.dis-nn].Google Scholar
Sahimi, M. 1994. Applications of Percolation Theory. Taylor & Francis.Google Scholar
Scott, J.P. 2000. Social Network Analysis: A Handbook. SAGE Publications.Google Scholar
Seary, A.J., and Richards, W.D. 2003. Spectral Methods for Analyzing and Visualizing Networks: An Introduction (209–228). National Academy Press.Google Scholar
Serrano, M.A., and Boguñá, M. 2003. Topology of the world trade web. Phys. Rev. E, 68, 015101.Google Scholar
Stephan, K.E., Kamper, L., Bozkurt, A., Burns, G.A., Young, M.P., and Kötter, R. 2001. Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Philos. Trans. R. Soc. Lond. B Biol. Sci., 356, 11591186.Google Scholar
Tadić, B. 2001. Dynamics of directed graphs: the world-wide web. Physica A, 293, 273284.Google Scholar
Thomassen, C. 1981. Kuratowski's theorem. J. Graph Theor., 5, 225241.Google Scholar
van der Hofstad, R. 2010. New Perspectives on Stochastic Geometry. Oxford University Press.Google Scholar
von Niessen, W., and Blumen, A. 1986. Dynamics of forest fires as a directed percolation model. J. Phys. A, 19, L289L293.Google Scholar
Wasserman, S., and Faust, K. 1994. Social Network Analysis: Methods and Applications. Cambridge University Press.Google Scholar
Watts, D.J. 1999. Small Worlds. Princeton University Press.Google Scholar
Watts, D.J., and Strogatz, S.H. 1998. Collective dynamics of ‘small-world’ networks. Nature, 393, 440442.Google Scholar
West, D.B. 1995. Introduction to Graph Theory. Prentice-Hall.Google Scholar
Wood, D. 1894. Problem 5. Amer. Math. Monthly, 1, 211212.Google Scholar
Yook, S.H., Jeong, H., Barabási, A.-L., and Tu, Y. 2001. Weighted evolving networks. Phys. Rev. Lett., 86, 5835.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Michael Rudolph
  • Book: The Mathematics of Finite Networks
  • Online publication: 30 April 2022
  • Chapter DOI: https://doi.org/10.1017/9781316466919.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Michael Rudolph
  • Book: The Mathematics of Finite Networks
  • Online publication: 30 April 2022
  • Chapter DOI: https://doi.org/10.1017/9781316466919.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Michael Rudolph
  • Book: The Mathematics of Finite Networks
  • Online publication: 30 April 2022
  • Chapter DOI: https://doi.org/10.1017/9781316466919.012
Available formats
×