Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T01:50:02.693Z Has data issue: false hasContentIssue false

4 - Solar Thermal Energy

from Technologies for Decarbonising the Electricity Sector

Published online by Cambridge University Press:  08 October 2021

Kenneth G. H. Baldwin
Affiliation:
Australian National University, Canberra
Mark Howden
Affiliation:
Australian National University, Canberra
Michael H. Smith
Affiliation:
Australian National University, Canberra
Karen Hussey
Affiliation:
University of Queensland
Peter J. Dawson
Affiliation:
P. J. Dawson & Associates
Get access

Summary

Solar thermal technology provides a wide range of opportunities for climate-resilient global development. High-temperature concentrating solar thermal power (CSP) systems are used to generate flexible, dispatchable renewable electricity in large-scale grid-connected systems and could also soon be used as a heat source for industrial processes such as for desalinated water, fuels, chemical products and refined ores. Most CSP electricity systems include thermal energy storage units, allowing output to continue for hours after sunset. Solar thermal systems, which rely on heating up a working medium to operate, are distinct from solar photovoltaic (PV) technologies that directly convert solar photons into electric current. In addition to CSP, low-temperature solar thermal systems, used for domestic hot water and other applications, are briefly reviewed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrafiotis, C., von Storch, H., Roeb, M. and Sattler, C. (2014). Solar thermal reforming of methane feedstocks for hydrogen and syngas production: A review. Renewable and Sustainable Energy Reviews, 29I, 656682.CrossRefGoogle Scholar
A.T. Kearney (2010). Solar Thermal Electricity 2025. Dusseldorf: A.T. Kearney GmbH and ESTELA (European Solar Thermal Electricity Association). Available at: www.promes.cnrs.fr/uploads/pdfs/documentation/2010-Solar%20thermal%20electricity%202025%20ESTELA.pdf.Google Scholar
Bader, R. and Lipiński, W. (2017). Solar thermal processing. In Blanco, M. and Santigosa, L. R., eds., Advances in Concentrating Solar Thermal Research and Technology. Cambridge: Woodhead Publishing.Google Scholar
Ballestrín, J. and Marzo, A. (2012). Solar radiation attenuation in solar tower plants. Solar Energy, 86(1), 388392.CrossRefGoogle Scholar
Bracken, N., Macknick, J., Tovar-Hastings, A., Komor, P., Gerritsen, M. and Mehta, S. (2015). Concentrating Solar Power and Water Issues in the US Southwest. Technical report NREL/TP-6A50–61376. Golden, CO: Joint Institute for Strategic Energy Analysis. Available at: www.nrel.gov/docs/fy15osti/61376.pdf.CrossRefGoogle Scholar
Branker, K., Pathak, M. and Pearce, J. (2011). A review of solar photovoltaic levelized cost of electricity. Renewable and Sustainable Energy Reviews, 15(9), 44704482.CrossRefGoogle Scholar
Burkhardt, J. J., Heath, G. A. and Turchi, C. S. (2011). Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. Environmental Science & Technology, 45, 24572464.CrossRefGoogle ScholarPubMed
Burkhardt, J. J., Heath, G. and Cohen, E. (2012). Life cycle greenhouse gas emissions of trough and tower concentrating solar power electricity generation: Systematic review and harmonization. Journal of Industrial Ecology, 16(1), S93S109.CrossRefGoogle Scholar
Cao, C., Hu, J., Li, S., Wilcox, W. and Wang, Y. (2009). Intensified Fischer–Tropsch synthesis process with microchannel catalytic reactors. Catalysis Today, 140, 149156.CrossRefGoogle Scholar
Christensen, L. R. and Greene, W. H. (1976). Economies of scale in US electric power generation. Journal of Political Economy, 84, 655676.CrossRefGoogle Scholar
Cochran, J., Mai, T. and Bazilian, M. (2014). Meta-analysis of high penetration renewable energy scenarios. Renewable and Sustainable Energy Reviews, 29I, 246253.CrossRefGoogle Scholar
Cohen, G. E., Kearney, D. W. and Kolb, G. J. (1999). Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants. Technical report SAND99–1290. Albuquerque, NM: Sandia National Laboratories. Available at: www.osti.gov/servlets/purl/8378.CrossRefGoogle Scholar
CSP (Concentrating Solar Power) Alliance (2014). The Economic and Reliability Benefits of CSP with Thermal Energy Storage: Literature Review and Research Needs. Technical report. CSP Alliance. Available at: www.inship.eu/docs/TES%204%20the_economic_and_reliability_benefits_of_csp_with_thermal_storage_2014_09_09_final.pdf.Google Scholar
Deloitte (2011). Macroeconomic Impact of the Solar Thermal Electricity Industry in Spain. Consultants’ report. Seville: Protermosolar. Available at: www.solarthermalworld.org/sites/default/files/Macroeconomic_impact_of_the_Solar_Thermal_Electricity_Industry_in_Spain_Protermo_Solar_Deloitte_21x21.pdf.Google Scholar
Denholm, P. and Mehos, M. (2011). Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage. Technical report NREL/TP-6A20–52978. Golden, CO: National Renewable Energy Laboratory. Available at: www.nrel.gov/docs/fy12osti/52978.pdf.CrossRefGoogle Scholar
Denholm, P., Wan, Y.-H., Hummon, M. and Mehos, M. (2013). An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario. Technical report NREL/TP-6A20–58186. Golden, CO: National Renewable Energy Laboratory. Available at: www.nrel.gov/docs/fy13osti/58186.pdf.CrossRefGoogle Scholar
Denholm, P., Wan, Y.-H., Hummon, M. and Mehos, M. (2014). The value of CSP with thermal energy storage in the western United States. Energy Procedia, 49, 16221631.CrossRefGoogle Scholar
Dutton, J. M. and Thomas, A. (1984). Treating progress functions as a managerial opportunity. Academy of Management Review, 9, 235247.CrossRefGoogle Scholar
Eglinton, T., Hinkley, J., Beath, A. and Dell’Amico, M. (2013). Potential applications of concentrated solar thermal technologies in the Australian minerals processing and extractive metallurgical industry. Journal of the Minerals, Metals and Materials Society, 65, 17101720.CrossRefGoogle Scholar
Elliston, B., MacGill, I. and Diesendorf, M. (2013). Least cost 100% renewable electricity scenarios in the Australian National Electricity Market. Energy Policy, 59I, 270282.CrossRefGoogle Scholar
Elliston, B., MacGill, I. and Diesendorf, M. (2014). Comparing least cost scenarios for 100% renewable electricity with low emission fossil fuel scenarios in the Australian National Electricity Market. Renewable Energy, 66, 196204. Available at: https://arena.gov.au/assets/2017/06/Elliston_2014_5.pdf.CrossRefGoogle Scholar
ETH Zurich (2019). Carbon-neutral fuel made from sunlight and air. ETH Zürich. 13 June. Available at: https://ethz.ch/en/news-and-events/eth-news/news/2019/06/pr-solar-mini-refinery.html. Google Scholar
Green, A., Diep, C., Dunn, R. and Dent, J. (2015). High capacity factor CSP–PV hybrid systems. Energy Procedia, 69, 20492059. Available at: https://core.ac.uk/download/pdf/81170195.pdf.CrossRefGoogle Scholar
Hernández-Moro, J. and Martínez-Duart, J. (2013). Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution. Renewable and Sustainable Energy Reviews, 20I, 119132.CrossRefGoogle Scholar
Hertwich, E. G. and Zhang, X. (2009). Concentrating-solar biomass gasification process for a 3rd generation biofuel. Environmental Science & Technology, 43, 42074212.CrossRefGoogle Scholar
Hinkley, J., Curtin, B., Hayward, J. et al. (2011). Concentrating Solar Power: Drivers and Opportunities for Cost-Competitive Electricity. Commissioned report for the Commonwealth Government of Australia. Canberra: CSIRO. Available at: https://publications.csiro.au/rpr/download?pid=csiro:EP111647&dsid=DS3.Google Scholar
Hinkley, J. T., Hayward, J. A., Curtin, B. et al. (2013). An analysis of the costs and opportunities for concentrating solar power in Australia. Renewable Energy, 57, 653661.CrossRefGoogle Scholar
Hinkley, J. T., McNaughton, R. K., Pye, J. D., Lipiński, W. and Lovegrove, K. M. (2015). Current and future status of solar fuel technologies in Australia. Journal of the Japan Institute of Energy, 94, 182.Google Scholar
Hinkley, J. T., McNaughton, R. K., Pye, J., Saw, W. and Stechel, E. B. (2015). The challenges and opportunities for integration of solar syngas production with liquid fuel synthesis. Paper presented at 21st SolarPACES Conference, Cape Town, South Africa, 13–16 October.Google Scholar
Ho, C. K. (2016). Review of avian mortality studies at concentrating solar power plants. AIP Conference Proceedings, 1734, 070017.CrossRefGoogle Scholar
Ho, C. K., Sims, C. A. and Christian, J. M. (2014). Evaluation of Glare at the Ivanpah Solar Electric Generating System. Technical report SAND2014–15847. Albuquerque, NM: Sandia National Laboratories. Available at: https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2014/1415847.pdf.CrossRefGoogle Scholar
Ho, C. K., Wendelin, T., Horstman, L. and Yellowhair, J. (2016). A method to assess flux hazards at CSP plants to reduce avian mortality. Paper presented at 22nd SolarPACES Conference, Abu Dhabi, UAE, 11–14 October. Available at: www.researchgate.net/publication/317984020_A_method_to_assess_flux_hazards_at_CSP_plants_to_reduce_avian_mortality.Google Scholar
IRENA (International Renewable Energy Agency) (2012). Concentrating Solar Power. IRENA Working Paper. Renewable energy technologies: Cost analysis series Vol. 1: Power Sector. Issue 2/5. Abu Dhabi: International Renewable Energy Agency. Available at: https://irena.org/publications/2012/Jun/Renewable-Energy-Cost-Analysis – Concentrating-Solar-Power.Google Scholar
IRENA (2016). Power to Change: Solar and Wind Cost Reduction Potential to 2025. Abu Dhabi: International Renewable Energy Agency. Available at: www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA_Power_to_Change_2016.pdf.Google Scholar
IRENA (2019). Renewable Power Generation Costs in 2018. Abu Dhabi: International Renewable Energy Agency. Available at: www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_Renewable-Power-Generations-Costs-in-2018.pdf.Google Scholar
Jacobowitz, D. and Google (2013). Google’s Green PPAs: What, How, and Why. Technical report. Google. Available at: https://static.googleusercontent.com/media/www.google.com/en//green/pdfs/renewable-energy.pdf.Google Scholar
Jacobson, M. Z., Delucchi, M. A., Bauer, Z. A. et al. (2017). 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule, 1, 108121. Available at: https://web.stanford.edu/group/efmh/219amsar219n/Articles/I/CountriesWWS.pdf. CrossRefGoogle Scholar
Jorgensen, J., Denholm, P., Mehos, M. and Turchi, C. (2013). Estimating the Performance and Economic Value of Multiple Concentrating Solar Power Technologies in a Production Cost Model. Technical report NREL/TP-6A20–58645. Golden, CO: National Renewable Energy Laboratory. Available at: www.nrel.gov/docs/fy14osti/58645.pdf.CrossRefGoogle Scholar
Jorgenson, J., Denholm, P. and Mehos, M. (2014). Quantifying the value of concentrating solar power in a production cost model. In Proceedings of ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology, Vol. 1. ASME (American Society of Mechanical Engineers). Available at: https://asmedigitalcollection.asme.org/ES/ES2014/volume/45868.Google Scholar
Kempener, R., Burch, J., Brunner, C., Navntoft, C. and Mugnier, D. (2015). Solar Heat for Industrial Processes. Technology Brief E21. IEA (International Energy Agency)-ETSAP (Energy Technology Systems Analysis Programme) and IRENA (International Renewable Energy Agency). Available at: www.irena.org/publications/2015/Jan/Solar-Heat-for-Industrial-Processes.Google Scholar
Kolb, G. J., Ho, C. K., Mancini, T. R. and Gary, J. A. (2011). Power Tower Technology Roadmap and Cost Reduction Plan. Sandia report SAND2011–2419. Albuquerque, NM: Sandia National Laboratories. Available at: https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2011/112419.pdf.Google Scholar
Konstantin, P. and Kretschmann, J. (2010). Assessment of Technology Options for Development of Concentrating Solar Power in South Africa for The World Bank. Stuttgart: Fichtner. Available at: www.climateinvestmentfunds.org/sites/default/files/Presentation%20-%20WB%20(Eskom)%20Project%20-%202010_12_07%20.pdf. Google Scholar
Kulichenko, N. and Wirth, J. (2011). Regulatory and Financial Incentives for Scaling Up Concentrating Solar Power in Developing Countries . Energy and mining sector board Discussion Paper 24. Washington, DC: World Bank Group.CrossRefGoogle Scholar
Lienhard, J., Antar, M. A., Bilton, A., Blanco, J. and Zaragoza, G. (2012). Solar desalination. Annual Review of Heat Transfer, 15, 277347.CrossRefGoogle Scholar
Lilliestam, J. and Pitz-Paal, R. (2018). Concentrating solar power for less than USD 0.07 per kWh: Finally the breakthrough? Renewable Energy Focus, 26, 1721.CrossRefGoogle Scholar
Lilliestam, J., Labordena, M., Patt, A. and Pfenninger, S. (2017). Empirically observed learning rates for concentrating solar power and their responses to regime change. Nature Energy, 2, 17094.CrossRefGoogle Scholar
Lovegrove, K. (2013). The potential for solar fuels in Australia. Paper presented at the Solar Thermal Chemical and Industrial Processes Workshop, University of Adelaide, Australia, 7–8 February.Google Scholar
Lovegrove, K. and Pye, J. (2012). Fundamental principles of concentrating solar power (CSP) systems. In Lovegrove, K. and Stein, W., eds., Fundamental Principles of Concentrating Solar Power (CSP) Systems. Cambridge: Woodhead Publishing.CrossRefGoogle Scholar
Lovegrove, K., Watt, M., Passey, R., Pollock, G., Wyder, J. and Dowse, J. (2012). Realising the Potential of Concentrating Solar Power in Australia. Commissioned report for the Australian Solar Institute. Canberra: IT Power (Australia) Pty Ltd and the Australian Solar Institute.CrossRefGoogle Scholar
Lovegrove, K., Edwards, S., Jacobson, N. et al. (2015). Renewable Energy Options for Australian Industrial Gas Users: Background Technical Report. Background technical report ITP/A0142 rev. 2.0. Canberra: IT Power (Australia) Pty Ltd and ARENA (Australian Renewable Energy Agency). Available at: https://itpau.com.au/wp-content/uploads/2018/08/ITP_REOptionsForIndustrialGas_TechReport.compressed.pdf.Google Scholar
Macknick, J., Newmark, R., Heath, G. and Hallett, K. (2011). A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies. Technical report NREL/TP-6A20–50900. Golden, CO: National Renewable Energy Laboratory. Available at: www.nrel.gov/docs/fy11osti/50900.pdf.Google Scholar
Mendelsohn, M., Kreycik, C., Bird, L., Schwabe, P. and Cory, K. (2012). The Impact of Financial Structure on the Cost of Solar Energy. Technical report NREL/TP-6A20–53086. Golden, CO: National Renewable Energy Laboratory. Available at: www.nrel.gov/docs/fy12osti/53086.pdf.CrossRefGoogle Scholar
Moore, S. (2018). Sustainable Energy Transformations, Power and Politics: Morocco and the Mediterranean. London: Routledge.CrossRefGoogle Scholar
NREL (National Renewable Energy Laboratory) (n.d.). Concentrating solar power projects [data resource]. SolarPACES. Available at: www.nrel.gov/csp/solarpaces/.Google Scholar
Ortega, M., del Río, P. and Montero, E. A. (2013). Assessing the benefits and costs of renewable electricity: The Spanish case. Renewable and Sustainable Energy Reviews, 27, 294304.CrossRefGoogle Scholar
Patt, A., Pfenninger, S. and Lilliestam, J. (2013). Vulnerability of solar energy infrastructure and output to climate change. Climatic Change, 121, 93102.CrossRefGoogle Scholar
Pitz-Paal, R., Dersch, J., Milow, B. et al. (2005). ECOSTAR: European Concentrated Solar Thermal Road-Mapping. Roadmap document SES6-CT-2003-502578. DLR (German Aerospace Centre). Available at: www.promes.cnrs.fr/uploads/pdfs/ecostar/ECOSTAR.Roadmap.pdf.Google Scholar
Platzer, W. (2015). Combined solar thermal and photovoltaic power plants: An approach to 24h solar electricity? Paper presented at 21st SolarPACES Conference, Cape Town, South Africa, 13–16 October.CrossRefGoogle Scholar
Price, H. (2017). Dispatchable solar power: Adapting CSP to modern grid needs. Paper presented at 23rd SolarPACES Conference, Santiago, Chile, 26–29 September. Available at: www.solarpaces.org/wp-content/uploads/Hank-Price-Presentation.pdf.Google Scholar
Richert, T., Riffelmann, K.-J. and Nava, P. (2012). LCOE versus LCOE versus PPA bid price: How different financing parameters influence their values. Paper presented at 18th SolarPACES Conference, Marrakech, Morocco, 11–14 September.Google Scholar
Romero, M. and González-Aguilar, J. (2014). Solar thermal CSP technology. WIREs Energy and Environment, 3, 4259.CrossRefGoogle Scholar
Romero, M. and Steinfeld, A. (2012). Concentrating solar thermal power and thermochemical fuels. Energy & Environmental Science, 5, 92349245.CrossRefGoogle Scholar
Sargent and Lundy LLC Consulting Group (2003). Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts. Subcontractor report NREL/SR-550-34440. Golden, CO: National Renewable Energy Laboratory. Available at: www.nrel.gov/docs/fy04osti/34440.pdf.Google Scholar
Shahan, Z. (2013). CSP for 5.57 cents/kWh. CleanTechnica. 14 June. Available at: cleantechnica.com/2013/06/14/csp-for-5-57-centskwh/.Google Scholar
Slaughter, R. (2014). Port Augusta Solar Thermal Generation Feasibility Study: Final Balance of Study. Milestone 4 Report 105-RPT-006. Sydney: Alinta Energy. Available at: https://alintaenergy.com.au/Alinta/media/Documents/Alinta-Energy-Port-Augusta-Solar-Thermal-Generation-Feasibility-Study-Milestone-4-Summary-Report.pdf.Google Scholar
Staight, K. (2016). Sundrop Farms pioneering solar-powered greenhouse to grow food without fresh water. ABC News. 2 October. Available at: www.abc.net.au/news/2016-10-01/sundrop-farms-opens-solar-greenhouse-using-no-fresh-water/7892866. Google Scholar
Steinfeld, A. (2005). Solar thermochemical production of hydrogen: A review. Solar Energy 78, 603615.CrossRefGoogle Scholar
Stine, W. B. and Geyer, M. (2001). Power from the Sun. Available at: www.powerfromthesun.net/index.html.Google Scholar
Turchi, C. (2010). Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (SAM). Technical report NREL/TP-550e47605. Golden, CO: (NREL) National Renewable Energy Laboratory.CrossRefGoogle Scholar
Turchi, C., Mehos, M., Ho, C. K. and Kolb, G. J. (2010). Current and future costs for parabolic trough and power tower systems in the US market. Paper presented at 16th SolarPACES Conference, Perpignan, France, 21–24 September.Google Scholar
Viebahn, P., Kronshage, S., Trieb, F. and Lechon, Y. (2008). Final Report on Technical Data, Costs, and Life Cycle Inventories of Solar Thermal Power Plants. DLR (German Aerospace Centre) and CIEMAT (Spanish Centre for Energy, Environment and Technology). Available at: www.solarthermalworld.org/sites/gstec/files/concentratingsolarthermalpowerplants.pdf. Google Scholar
Viebahn, P., Esken, A., Höller, S., Luhmann, H., Pietzner, K. and Vallentin, D. (2010). RECCS Plus: Comparison of Renewable Energy Technologies (RE) with Carbon Dioxide Capture and Storage (CCS). Update and Expansion of the RECCS study. Final report of Wuppertal Institute. Berlin: German BMU (Federal Ministry for the Environment, Nature Conservation and Nuclear Safety). Available at: https://epub.wupperinst.org/frontdoor/deliver/index/docId/5001/file/5001_RECCSplus_en.pdf.Google Scholar
Viebahn, P., Lechon, Y. and Trieb, F. (2011). The potential role of concentrated solar power (CSP) in Africa and Europe: A dynamic assessment of technology development, cost development and life cycle inventories until 2050. Energy Policy, 39, 44204430.CrossRefGoogle Scholar
Vivar, M., Herrero, R., Antón, I. et al. (2010). Effect of soiling in CPV systems. Solar Energy, 84, 13271335.CrossRefGoogle Scholar
Voutchkov, N. (2016). Desalination: Past, present and future. International Water Association. 17 August. Available at: www.iwa-network.org/desalination-past-present-future.Google Scholar
Wang, Z., Roberts, R. R., Naterer, G. F. and Gabriel, K. S. (2012). Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies. International Journal of Hydrogen Energy, 37, 1628716301.CrossRefGoogle Scholar
Weiss, W. and Spörk-Dür, M. (2019). Solar Heat Worldwide. Technical report 2019 edition. Gleisdorf, Austria: SHC (Solar Heating and Cooling) Programme, International Energy Agency. Available at: www.iea-shc.org/Data/Sites/1/publications/Solar-Heat-Worldwide-2019.pdf.Google Scholar
Wentzel, M. and Pouris, A. (2007). The development impact of solar cookers: A review of solar cooking impact research in South Africa. Energy Policy, 35, 19091919.CrossRefGoogle Scholar
World Bank (2014). Demonstrating the viability of solar thermal power in Morocco. The World Bank. 15 April. Available at: www.worldbank.org/en/results/2014/04/15/demonstrating-the-viability-of-solar-thermal-power-in-morocco.Google Scholar
Zamfirescu, C. and Dincer, I. (2008). Using ammonia as a sustainable fuel. Journal of Power Sources, 185, 459465.CrossRefGoogle Scholar
Zedtwitz, P. and Steinfeld, A. (2003). The solar thermal gasification of coal: Energy conversion efficiency and CO2 mitigation potential. Energy, 28, 441456.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×