Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T21:37:41.868Z Has data issue: false hasContentIssue false

Part One - Dynamical Evolution

Published online by Cambridge University Press:  25 February 2017

Linda T. Elkins-Tanton
Affiliation:
Arizona State University
Benjamin P. Weiss
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Planetesimals
Early Differentiation and Consequences for Planets
, pp. 5 - 68
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Agnor, C. B., Canup, R. M., and Levison, H. F. 1999. On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus, 142, 219237.Google Scholar
Agnor, C. and Asphaug, E. 2004. Accretion efficiency during planetary collisions. Astrophysical Journal Letters, 613, L157.CrossRefGoogle Scholar
Alidibirov, M. and Dingwell, D. B. 1996. Magma fragmentation by rapid decompression. Nature, 380, 146148.CrossRefGoogle Scholar
Asphaug, E. 2010. Similar-sized collisions and the diversity of planets. Chemie der Erde, 70, 199219.Google Scholar
Asphaug, E. and Benz, W. (1996). Size, density, and structure of comet Shoemaker-Levy 9 inferred from the physics of tidal breakup. Icarus, 121, 225248.Google Scholar
Asphaug, E. and Reufer, A. (2013). Late origin of the Saturn system. Icarus, 223, 544565.CrossRefGoogle Scholar
Asphaug, E. and Reufer, A. (2014). Mercury and other iron-rich planetary bodies as relics of inefficient accretion. Nature Geosciences, 7, 564568.CrossRefGoogle Scholar
Asphaug, E., Agnor, C. B., and Williams, Q. 2006. Hit-and-run planetary collisions. Nature, 439, 155160.Google Scholar
Asphaug, E., Jutzi, M., and Movshovitz, N. 2011. Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters, 308, 369379.Google Scholar
Asphaug, E., Collins, G., and Jutzi, M. 2015. Global-scale impacts. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 661678.Google Scholar
Barucci, M. A., Belskaya, I. N., Fornasier, S., et al. 2012. Overview of Lutetia’s surface composition. Planetary and Space Science, 66, 2330.Google Scholar
Belton, M. J., Thomas, P., Veverka, J., et al., 2007. The internal structure of Jupiter family cometary nuclei from Deep Impact observations: The ‘talps’ or ‘layered pile’ model. Icarus, 187, 332344.CrossRefGoogle Scholar
Benz, W. and Asphaug, E. (1999). Catastrophic disruptions revisited. Icarus, 142, 520.CrossRefGoogle Scholar
Benz, W., Cameron, A. G. W., and Melosh, H. J. 1989. The origin of the Moon and the single impact hypothesis, III. Icarus, 81, 113131.CrossRefGoogle Scholar
Binzel, R. P., Burbine, T. H., and Bus, J. 1996. Groundbased reconnaissance of asteroid 253 Mathilde: Visible wavelength spectrum and meteorite comparison. Icarus, 119, 447449.Google Scholar
Blundy, J., Cashman, K. and Humphreys, M. 2006. Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature, 443, 7680.Google Scholar
Bonsor, A., Leinhardt, Z. M., Carter, P. J., et al. (2015). A collisional origin to Earth’s non-chondritic composition? Icarus, 247, 291300.CrossRefGoogle Scholar
Bottke, W. F., Durda, D. D., Nesvorný, D., et al. 2005. The fossilized size distribution of the main asteroid belt. Icarus, 175, 111140.CrossRefGoogle Scholar
Bryson, J. F. J., Nichols, C. I. O., Herrero-Albillos, J., et al. 2015. Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature, 517, 472475.Google Scholar
Burbine, T. H., Meibom, A., and Binzel, R. P. 1996. Mantle material in the main belt: Battered to bits? Meteoritics & Planetary Science, 31, 607620.CrossRefGoogle Scholar
Canup, R. M. and Asphaug, E. (2001). Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature, 412, 708712.Google Scholar
Canup, R. M. 2005. A giant impact origin of Pluto-Charon. Science, 307, 546–50.Google Scholar
Chambers, J. E. and Wetherill, G. W. 1998. Making the terrestrial planets: N-Body integrations of planetary embryos in three dimensions. Icarus, 136, 304327.Google Scholar
Chambers, J. E. 2013. Late-stage planetary accretion including hit-and-run collisions and fragmentation. Icarus, 224, 4356.Google Scholar
Chandrasekhar, S. 1969. Ellipsoidal Figures of Equilibrium. New Haven, CT: Yale University Press.Google Scholar
Ciesla, F. J., Davison, T. M., Collins, G. S., and O’Brien, D. P. 2013. Thermal consequences of impacts in the early solar system. Meteoritics & Planetary Science, 48, 25592576.CrossRefGoogle Scholar
Clenet, H., Jutzi, M., Barrat, J. A., et al. 2014. A deep crust–mantle boundary in the asteroid 4 Vesta. Nature, 511, 303306.Google Scholar
Consolmagno, G. J., Golabek, G. J., Turrini, D., et al. 2015. Is Vesta an intact and pristine protoplanet? Icarus. 254, 190201.Google Scholar
Cuzzi, J. N., Hogan, R. C., and Bottke, W. F. 2010. Towards initial mass functions for asteroids and Kuiper belt objects. Icarus, 208, 518538.Google Scholar
Darwin, G. H. 1879. A tidal theory of the evolution of satellites. Observatory, 3,7984.Google Scholar
Davis, D. R., Chapman, C. R., Weidenschilling, S. J., and Greenberg, R. 1985. Collisional history of asteroids: Evidence from Vesta and the Hirayama families. Icarus, 62, 3053.Google Scholar
DeMeo, F. E., Binzel, R. P., Slivan, S. M., and Bus, S. J. 2009. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160180.CrossRefGoogle Scholar
Dohnanyi, J. W. 1969. Collisional models of asteroids and their debris. Journal of Geophysical Research, 74, 25312554.Google Scholar
Durda, D. D., Greenberg, R., and Jedicke, R. 1998. Collisional models and scaling laws: A new interpretation of the shape of the main-belt asteroid size distribution. Icarus, 135, 431440.Google Scholar
Farinella, P., Paolicchi, P., and Zappala, V. 1982. The asteroids as outcomes of catastrophic collisions. Icarus, 52, 409433.CrossRefGoogle Scholar
Fu, R. R. and Elkins-Tanton, L. T. 2014. The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth and Planetary Science Letters, 390, 128137.Google Scholar
Golabek, G. J., Jutzi, M., Gerya, T. V., and Asphaug, E. 2014. Towards coupled giant impact and long term interior evolution models. European Planetary Science Congress 2014, EPSC Abstracts, 9, EPSC2014-433.Google Scholar
Holsapple, K. A. and Housen, K. R. 1986. Scaling laws for the catastrophic collisions of asteroids. Memorie della Societa Astronomica Italiana 57, 6585.Google Scholar
Jackson, A. P. and Wyatt, M. C. 2012. Debris from terrestrial planet formation: the Moon-forming collision. Monthly Notices of the Royal Astronomical Society, 425, 657679.Google Scholar
Jaeger, R. R. and Lipschutz, M. E. 1967. Implications of shock effects in iron meteorites. Geochimica et Cosmochimica Acta, 31, 18111832.Google Scholar
Johnson, B. C., Minton, D. A., Melosh, H. J., and Zuber, M. T. 2015. Impact jetting as the origin of chondrules. Nature, 51, 339341.CrossRefGoogle Scholar
Jutzi, M. and Asphaug, E. 2015. The shape and structure of cometary nuclei as a result of low-velocity accretion. Science, 348, 13551358.Google Scholar
Haack, H., Scott, E. R., Rasmussen, K. L., 1996. Thermal and shock history of mesosiderites and their large parent asteroid. Geochimica et Cosmochimica Acta, 60, 26092619.CrossRefGoogle Scholar
Kaasalainen, M., Torppa, J., and Piironen, J. 2002. Models of twenty asteroids from photometric data. Icarus, 159, 369395.CrossRefGoogle Scholar
Keil, K., Haack, H., and Scott, E. R. D. 1994. Catastrophic fragmentation of asteroids: Evidence from meteorites. Planetary and Space Science, 42, 11091122.Google Scholar
Kokubo, E. and Ida, S. 1998. Oligarchic growth of protoplanets. Icarus 131, 171178.Google Scholar
Krot, A.N., Amelin, Y., Cassen, P., and Meibom, A. 2005. Young chondrules in CB chondrites from a giant impact in the early solar system. Nature, 436, 989992.Google Scholar
Leinhardt, Z. M., Marcus, R. A., and Stewart, S. T., 2010. The formation of the collisional family around the dwarf planet Haumea. Astrophysical Journal, 714, 17891799.Google Scholar
Marinova, M. M., Aharonson, O., and Asphaug, E. 2008. Mega-impact formation of the Mars hemi- spheric dichotomy. Nature, 453, 12161219.CrossRefGoogle Scholar
McSween, H. Y. 1999. Meteorites and Their Parent Planets. Cambridge: Cambridge University Press.Google Scholar
Melosh, H. J. 2007. A hydrocode equation of state for SiO2. Meteoritics & Planetary Science, 42, 20792098.Google Scholar
Morris, M. A. and Desch, S. J. 2010. Thermal histories of chondrules in solar nebula shocks. Astrophysical Journal, 722, 1474.CrossRefGoogle Scholar
Moskovitz, N. A. and Walker, R. J. 2011. Size of the group IVA iron meteorite core: Constraints from the age and composition of Muonionalusta. Earth and Planetary Science Letters, 308, 410416.Google Scholar
Nimmo, F. and Kleine, T. 2015. Early differentiation and core formation: processes and timescales. In The Early Earth: Accretion and Differentiation, ed. Badro, J. and Walter, M.. New York: John Wiley & Sons, 83.CrossRefGoogle Scholar
O’Brien, D.P. and Greenberg, R. 2003. Steady-state distributions for collisional populations: analytical solution with size-dependent strength, Icarus, 164, 334345.Google Scholar
O’Brien, D. P., Morbidelli, A., and Levison, H. F. 2006. Terrestrial planet formation with strong dynamical friction. Icarus, 184, 3958.Google Scholar
Ogihara, M., Kobayashi, H., Inutsuka, S.-i., and Suzuki, T. K. 2015. Formation of terrestrial planets in disks evolving via disk winds and implications for the origin of the solar system’s terrestrial planets. Astronomy & Astrophysics, 578, A36.CrossRefGoogle Scholar
Ostro, S. J., Hudson, R. S., and Nolan, M. C., et. al. 2000. Radar observations of asteroid (216) Kleopatra. Science, 288, 836839.CrossRefGoogle ScholarPubMed
Peplowski, P. N., Evans, L. G., Hauck, S. A. 2nd, et al. 2011. Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science, 333, 1850.Google Scholar
Raymond, S. N., Quinn, T., and Lunine, J. I. 2007. High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability. Astrobiology, 7, 6684.Google Scholar
Reddy, V., Le Corre, L., and O’Brien, D. P. et al., 2012. Delivery of dark material to Vesta via carbonaceous chondritic impacts. Icarus, 221, 544559.CrossRefGoogle Scholar
Reufer, A., Meier, M. M. M., Benz, W., and Wieler, R. 2012. A hit-and-run giant impact scenario. Icarus, 221, 296299.Google Scholar
Rodionov, V. N., Adushkin, V. V., Kostyuchenko, V. N., et. al. 1972. Mechanical Effect of an Underground Nuclear Explosion. Los Alamos, New Mexico: United States Atomic Energy Commission. UCRL-Trans-10676.Google Scholar
Safronov, V. S. and Zvjagina, E. V. 1969. Relative sizes of the largest bodies during the accumulation of planets. Icarus, 10, 109.Google Scholar
Sahijpal, S., Soni, P., and Gupta, G. 2007. Numerical simulations of the differentiation of accreting planetesimals with 26Al and 60Fe as the heat sources. Meteoritics & Planetary Science, 42, 15291548.Google Scholar
Sanders, I. S. and Scott, E. R. D. 2012. The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteoritics & Planetary Science, 47, 21702192.CrossRefGoogle Scholar
Schenk, P. M., Asphaug, E., McKinnon, W. B., Melosh, H. J., and Weissman, P. R. 1996. Cometary nuclei and tidal disruption: The geologic record of crater chains on Callisto and Ganymede. Icarus, 121, 249274.Google Scholar
Scott, E. R. D. and Krot, A. N. 2003. Chondrites and their components. Treatise on Geochemistry, 1, 143200.Google Scholar
Scott, E. R. D., Keil, K., Goldstein, J. I., et al. 2015. Early impact history and dynamical origin of differentiated meteorites and asteroids. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 573596.Google Scholar
Sekine, Y. and Genda, H. 2012. Giant impacts in the Saturnian system: A possible origin of diversity in the inner mid-sized satellites. Planetary and Space Science, 63–64, 133138.Google Scholar
Sharp, T. G. and de Carli, P. S. 2006. Shock effects in meteorites. In Meteorites and the Early Solar System II, edLauretta, . D. S. and McSween, H. Y.. Tucson, AZ: University of Arizona Press, 653677.CrossRefGoogle Scholar
Sierks, H., Lamy, P., Barbieri, C., et al. 2011. Images of asteroid 21 Lutetia: a remnant planetesimal from the early solar system. Science, 334, 487490.Google Scholar
Solomatov, V. and Stevenson, D. J. 1993. Suspension in convective layers and style of differentiation in a terrestrial magma ocean. Journal of Geophysical Research, 98, 53755390.Google Scholar
Sorby, H. C., 1864. On the microscopic structure of meteorites. Philospohical Magazine, 28, 157159.Google Scholar
Stevenson, D. J. 1989. Spontaneous small-scale melt segregation in partial melts undergoing deformation. Geophysical Research Letters, 16, 10671070.Google Scholar
Stewart, S. T. and Leinhardt, Z. M. 2012. Collisions between gravity-dominated bodies. II. The diversity of impact outcomes during the end stage of planet formation. Astrophysics Journal, 751, 32.Google Scholar
Thompson, S. and Lauson, H. 1972. Sandia National Laboratories Technical Report, SC-RR- 710714, Sandia National Laboratories, Albuquerque, NM.Google Scholar
Veverka, J., Thomas, P., Harch, A., et al. 1997. NEAR’s flyby of 253 Mathilde: Images of a C asteroid. Science, 278, 21092114.Google Scholar
Voorhees, P. W. and Glicksman, M. E. 1984. Solution to the multi-particle diffusion problem with applications to Ostwald ripening – II. Computer simulations. Acta Metallurgica, 32, 20132030.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., et al., 2011. A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.CrossRefGoogle ScholarPubMed
Wasson, J. T. 1990. Ungrouped iron meteorites in Antarctica: Origin of anomalously high abundance. Science, 249, 900902.Google Scholar
Weidenschilling, S. J. 1977. The distribution of mass in the planetary system and solar nebula. Astrophysics and Space Science, 51, 153158.Google Scholar
Weiss, B. P., Elkins-Tanton, L. T., Barucci, M. A., et al. 2012. Possible evidence for partial differentiation of asteroid Lutetia from Rosetta. Planetary and Space Science, 66, 137146.Google Scholar
Wetherill, G. W. 1985. Occurrence of giant impacts during the growth of the terrestrial planets. Science, 228, 877879.Google Scholar
Williams, Q. 2009. Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores. Earth and Planetary Science Letters, 284, 564569.Google Scholar
Wilson, L. and Keil, K., 1991. Consequences of explosive eruptions on small solar system bodies – the case of the missing basalts on the aubrite parent body. Earth and Planetary Science Letters, 104, 505512.Google Scholar
Wood, J. A. 1964. The cooling rates and parent planets of several iron meteorites. Icarus, 3, 429.Google Scholar
Yang, J., Goldstein, J. I., and Scott, E. R. D. 2007. Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature, 446, 888891.Google Scholar

References

Anders, E. 1965. Fragmentation history of asteroids. Icarus, 4, 399408.Google Scholar
Asphaug, E., Collins, G., and Jutzi, M. 2015. Global-scale impacts. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 661678.Google Scholar
Benz, W. and Asphaug, E., 1999. Catastrophic disruptions revisited. Icarus, 142, 520.Google Scholar
Binzel, R. P., Bus, S. J., Burbine, T. H., and Sunshine, J. M. 1996. Spectral properties of near-Earth asteroids: Evidence for sources of ordinary chondrite meteorites. Science, 273, 946948.Google Scholar
Bottke, W. F., Durda, D. D., Nesvorný, D., et al., 2005a. The fossilized size distribution of the main asteroid belt. Icarus, 175, 111140.Google Scholar
Bottke, W. F., Durda, D. D., Nesvorný, D., et al. 2005b. Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus, 179, 6394.Google Scholar
Bottke, W. F., Durda, D. D., Nesvorný, D., et al., 2005c, The origin and evolution of stony meteorites. In Dynamics of Populations of Planetary Systems, ed. Kneževi, Z. and Milani, A.. Cambridge: Cambridge University Press, 357374.Google Scholar
Bottke, W. F., Nesvorný, D., Grimm, R. E., et al. 2006. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821824.Google Scholar
Bottke, W. F., Levison, H. F., Nesvorný, D., and Dones, L. 2007. Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus, 190, 203223.Google Scholar
Bottke, W. F., Vokrouhlický, D., Minton, D., et al. 2012. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature, 485, 7881.Google Scholar
Bottke, W. F., Vokrouhlický, D., Marchi, S., et al. 2015a. Dating the Moon-forming impact event with asteroidal meteorites. Science, 348, 321323.CrossRefGoogle ScholarPubMed
Bottke, W. F., Broz, M., O’Brien, D. P., et al., 2015b. The collisional evolution of the asteroid belt. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 701724.Google Scholar
Brown, P. G., Assink, J. D., Astiz, L., et al., 2013. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 503, 238241.Google Scholar
Brož, M., Morbidelli, A., and Bottke, W.F., et al. 2013. Constraining the cometary flux through the asteroid belt during the Late Heavy Bombardment, Astronomy & Astrophysics, 551, A117.Google Scholar
Burbine, T. H., McCoy, T. J., Meibom, , et al. 2002. Meteoritic parent bodies: Their number and identification. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press, 653667.CrossRefGoogle Scholar
Buczkowski, D. L., Wyrick, D. Y., Iyer, K. A., et al. 2012. Large-scale troughs on Vesta: A signature of planetary tectonics. Geophysical Research Letters, 39, L18205.Google Scholar
Bus, S. J. and Binzel, R. P. 2002. Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy. Icarus, 158, 146177.Google Scholar
Carruba, V., Burns, J. A., Bottke, W., and Nesvorný, D. 2003. Orbital evolution of the Gefion and Adeona asteroid families: close encounters with massive asteroids and the Yarkovsky effect. Icarus, 162, 308327.CrossRefGoogle Scholar
Carvano, J. M., Hasselmann, P. H., Lazzaro, D., and Mothé-Diniz, T. 2010. SDSS-based taxonomic classification and orbital distribution of main belt asteroids. Astronomy & Astrophysics, 510, A43.Google Scholar
Chambers, J. E. and Wetherill, G. W. 1998. Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus, 136, 304327.Google Scholar
Cibulková, H., Brož, M., and Benavidez, P. G. 2014. A six-part collisional model of the main asteroid belt. Icarus, 241, 358372.Google Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. 2012. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651654.Google Scholar
Cuzzi, J. N., Hogan, R. C., and Bottke, W. F. 2010. Towards initial mass functions for asteroids and Kuiper belt objects. Icarus, 208, 518538.CrossRefGoogle Scholar
D’Angelo, G. and Marzari, F. 2012. Outward migration of Jupiter and Saturn in evolved gaseous disks. Astrophysical Journal, 757, 50.Google Scholar
Davison, T. M., O’Brien, D. P., Ciesla, F., et al. 2013. The early impact histories of meteorite parent bodies. Meteoritics & Planetary Science, 48, 18941918.Google Scholar
Davis, D. R., Durda, D. D., Marzari, F., et al. 2002. Collisional evolution of small body populations. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press, 545558.Google Scholar
DeMeo, F. E., Binzel, R. P., Slivan, S. M., and Bus, S. J. 2009. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160180.Google Scholar
DeMeo, F. E. and Carry, B. 2014. Solar system evolution from compositional mapping of the asteroid belt. Nature, 505, 629634.Google Scholar
Durda, D. D., Bottke, W. F., Enke, B. L., et al. 2004. The formation of asteroid satellites in large impacts: Results from numerical simulations. Icarus, 170, 243257.Google Scholar
Durda, D. D., Bottke, W. F., Nesvorný, D., et al. 2007. Size-frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: Comparison with observed asteroid families, Icarus 186, 498516.Google Scholar
Eugster, O. 2003. Cosmic-ray exposure ages of meteorites and lunar rocks and their significance. Chemie der Erde, 63, 330.CrossRefGoogle Scholar
Fowler, J. W. and Chillemi, J. R. 1992. IRAS asteroid data processing. In The IRAS Minor Planet Survey, ed. Tedesco, E. F. (Technical Report PL-TR-92-2049), Hanscom Air Force Base, MA: Phillips Laboratory, 1743.Google Scholar
Fraser, W. C., Brown, M. E., Morbidelli, A., et al., 2014. The absolute magnitude distribution of Kuiper belt objects. Astrophysical Journal, 782, 100.Google Scholar
Gradie, J. and Tedesco, E. 1982. Compositional structure of the asteroid belt. Science, 216, 14051407.Google Scholar
Güttler, C., Blum, J., Zsom, A., et al. 2009. The first phase of protoplanetary dust growth: The bouncing barrier. Geochimica et Cosmochimica Acta Supplement, 73, 482.Google Scholar
Harris, A. W. and D’Abramo, G. 2015. The population of near-Earth asteroids. Icarus, 257, 302312.Google Scholar
Harris, A. W., Boslough, M. Chapman, C. R., et al. 2015. Asteroid impacts and modern civilization: Can we prevent a catastrophe? In Asteroids IV, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press, 835854.Google Scholar
Hartmann, W. K. and Hartmann, A. C. 1968. Asteroid collisions and evolution of asteroidal mass distribution and meteoritic flux. Icarus, 8, 361381.Google Scholar
Hayashi, C. 1981. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Progress of Theoretical Physics Supplement, 70, 3553.Google Scholar
Heppenheimer, T. A. 1980. Secular resonances and the origin of eccentricities of Mars and the asteroids. Icarus, 41, 7688.Google Scholar
Hiroi, T., Zolensky, M. E., and Pieters, C. M. 2001. The Tagish Lake meteorite: A possible sample from a D-type asteroid. Science, 293, 22342236.Google Scholar
Ip, W.-H. 1987. Gravitational stirring of the asteroid belt by Jupiter zone bodies. Beitraegezur Geophysik, 96, 4451.Google Scholar
Ivanov, B. A., Neukum, G., Bottke, W. F., and Hartmann, W. K. 2002. The comparison of size-frequency distributions of impact craters and asteroids and the planetary cratering rate. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press, 89101.Google Scholar
Izidoro, A., Raymond, S. N., Morbidelli, A., and Winter, O. C. 2015. Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Monthly Notices of the Royal Astronomical Society, 453, 36193634.Google Scholar
Jacobson, S. A., Morbidelli, A., Raymond, S. N., et al. 2014. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature, 508, 8487.Google Scholar
Jacobson, S. A. and Morbidelli, A. 2014. Lunar and terrestrial planet formation in the Grand Tack scenario. Philosophical Transactions of the Royal Society of London A, 372, #174.Google Scholar
Jaumann, R., Williams, D. A., Buczkowski, D. L., et al., 2012. Vesta’s shape and morphology. Science 336, 687690.Google Scholar
Jedicke, R., Larsen, J., and Spahr, T, 2002. Observational selection effects in asteroid surveys. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press, 7188.Google Scholar
Johansen, A., Henning, T., and Klahr, H. 2006. Dust sedimentation and self-sustained Kelvin–Helmholtz turbulence in protoplanetary disk midplanes. Astrophysical Journal, 643, 12191232.Google Scholar
Johansen, A., Oishi, J. S., Mac Low, M.-M., et al. 2007. Rapid planetesimal formation in turbulent circumstellar disks. Nature, 448, 10221025.Google Scholar
Johansen, A., Mac Low, M.-M., Lacerda, P., and Bizzarro, M. 2015. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Science Advances, 1, 1500109.Google Scholar
Lecar, M. and Franklin, F., 1997. The solar nebula, secular resonances, gas drag, and the asteroid belt. Icarus, 129, 134146.Google Scholar
Kenyon, S. J. and Luu, J. X., 1999. Accretion in the early outer solar system. Astrophysical Journal, 526, 465470.Google Scholar
Levison, H. F., Bottke, W. F., Gounelle, M., et al. 2009. Contamination of the asteroid belt by primordial trans-neptunian objects. Nature, 460, 364366.CrossRefGoogle ScholarPubMed
Levison, H. F., Kretke, K. A., and Duncan, M. J. 2015a. Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322324.Google Scholar
Levison, H. F., Kretke, K. A., Walsh, K., and Bottke, W. F. 2015b. Growing the terrestrial planets from the gradual accumulation of submeter-sized objects. Proceedings of the National Academy of Sciences of the United States of America, 112, 1418014185.CrossRefGoogle ScholarPubMed
Kretke, K. A., Lin, D. N. C., 2007. Grain retention and formation of planetesimals near the snow line in MRI-driven turbulent protoplanetary disks. Astrophysical Journal, 664, L55L58.Google Scholar
Kuiper, G. P., Fugita, Y. F., Gehrels, T., et al. 1958. Survey of asteroids. Astrophysical Journal Supplement Series, 3, 289.Google Scholar
Mainzer, A., Trilling, D., and Usui, F., 2015. Space-based infrared studies of asteroids. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 89106.Google Scholar
Marchi, S., McSween, H. Y., O’Brien, D. P., et al. 2012. The violent collisional history of asteroid 4 Vesta. Science, 336, 690693.Google Scholar
Marchi, S., Bottke, W. F., Cohen, B. A., 2013. High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geoscience 6, 303307.Google Scholar
Masiero, J., Mainzer, A. K., and Grav, T. 2011. Main belt asteroids with WISE/NEOWISE I: Preliminary albedos and diameters. Astrophysical Journal, 741, 68.Google Scholar
Masiero, J. R., DeMeo, F., Kasuga, T. and Parker, A. H. 2015. Asteroid family physical properties. In Asteroids IV, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press, 323340.Google Scholar
Masset, F. and Snellgrove, M. 2001. Reversing type II migration: resonance trapping of a lighter giant protoplanet. Monthly Notices of the Royal Astronomical Society, 320, L55-L59.Google Scholar
McEwen, A. S., Moore, J. M., and Shoemaker, E. M. 1997. The Phanerozoic impact cratering rate: Evidence from the far side of the Moon. Journal of Geophysical Research, 102, 92319242.Google Scholar
Morbidelli, A. and Gladman, B. 1998. Orbital and temporal distributions of meteorites originating in the asteroid belt. Meteoritics & Planetary Science, 33, 9991016.Google Scholar
Morbidelli, A. and Vokrouhlický, D.,2003. The Yarkovsky-driven origin of near-Earth asteroids. Icarus, 163, 120134.Google Scholar
Morbidelli, A. and Crida, A., 2007. The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus, 191, 158171.Google Scholar
Morbidelli, A., Bottke, W. F., Nesvorný, D., and Levison, H. F. 2009. Asteroids were born big. Icarus, 204, 558573.Google Scholar
Morbidelli, A., Brasser, R., Gomes, R., et al., 2010. Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astronomical Journal, 140, 13911401.Google Scholar
Morbidelli, A., Lambrechts, M., Jacobson, S., and Bitsch, B., 2015a. The great dichotomy of the solar system: small terrestrial embryos and massive giant planet cores. Icarus, 258, 418429.Google Scholar
Morbidelli, A., Walsh, K. J., O’Brien, D. P., et al., 2015b. Dynamical evolution of the asteroid belt. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 493508.Google Scholar
Mothé-Diniz, T., Carvano, J. M. á., and Lazzaro, D. 2003. Distribution of taxonomic classes in the main belt of asteroids. Icarus, 162, 1021.Google Scholar
Nagasawa, M., Tanaka, H., and Ida, S. 2000. Orbital evolution of asteroids during depletion of the solar nebula. Astronomical Journal,, 119, 14801497.Google Scholar
Nagasawa, M., Ida, S., and Tanaka, H. 2001. Origin of high orbital eccentricity and inclination of asteroids. Earth, Planets, and Space, 53, 10851091.Google Scholar
Nagasawa, M., Ida, S., and Tanaka, H. 2002. Excitation of orbital inclinations of asteroids during depletion of a protoplanetary disk: Dependence on the disk configuration. Icarus, 159, 322327.Google Scholar
Nesvorný, D., Youdin, A. N., Richardson, D. C., 2010. Formation of Kuiper belt binaries by gravitational collapse. Astronomical Journal, 140, 785793.Google Scholar
Nesvorný, D., Vokrouhlický, D., Bottke, W. F., et al., 2011. Observed binary fraction sets limits on the extent of collisional grinding in the Kuiper belt. Astronomical Journal, 141, 159.Google Scholar
Nesvorný, D., Brož, M., Carruba, V. 2015. Identification and dynamical properties of asteroid families. In Asteroids IV, ed. Michel, P., DeMeo, F. E., and Bottke, W. F. Jr. Tucson, AZ: University of Arizona Press. Tucson, pp. 297322.Google Scholar
Noll, K. S., Parker, A. H., and Grundy, W. M. 2014. All bright cold classical KBOs are binary. AAS/Division for Planetary Sciences Meeting Abstracts, 46, 507.05.Google Scholar
O’Brien, D. P., Morbidelli, A., and Levison, H. F. 2006. Terrestrial planet formation with strong dynamical friction. Icarus, 184, 3958.Google Scholar
O’Brien, D. P., Morbidelli, A., and Bottke, W. F. 2007. The primordial excitation and clearing of the asteroid belt: Revisited. Icarus, 191, 434452.CrossRefGoogle Scholar
Ogihara, M., Kobayashi, H., Inutsuka, S.-i., Suzuki, T. K., 2015. Formation of terrestrial planets in disks evolving via disk winds and implications for the origin of the solar system’s terrestrial planets. Astronomy & Astrophysics, 579, A65.Google Scholar
Parker, A., Ivezi, Ž., Jurić, M., et al. 2008. The size distributions of asteroid families in the SDSS Moving Object Catalog 4. Icarus, 198, 138155.Google Scholar
Parker, A. H., Kavelaars, J. J., Petit, J.-M., et al. 2011. Characterization of seven ultra-wide trans-neptunian binaries. Astrophysical Journal, 743, 1.Google Scholar
Petit, J., Morbidelli, A., and Valsecchi, G. B. 1999. Large scattered planetesimals and the excitation of the small body belts. Icarus, 141, 367387.Google Scholar
Petit, J., Morbidelli, A., and Chambers, J. 2001. The primordial excitation and clearing of the asteroid belt. Icarus, 153, 338347.Google Scholar
Petit, J., Chambers, J., Franklin, F., and Nagasawa, M., 2002. Primordial excitation and depletion of the main belt. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press, 711738.Google Scholar
Petit, J.-M., Mousis, O., 2004. KBO binaries: How numerous were they? Icarus, 168, 409419.Google Scholar
Pierens, A. and Nelson, R. P. 2008. Constraints on resonant-trapping for two planets embedded in a protoplanetary disc. Astronomy & Astrophysics, 482, 333340.Google Scholar
Pierens, A. and Raymond, S. N. 2011. Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula. Astronomy & Astrophysics, 533, A131.Google Scholar
Raymond, S. N., O’Brien, D. P., Morbidelli, A., and Kaib, N. A. 2009. Building the terrestrial planets: Constrained accretion in the inner solar system. Icarus, 203, 644662.Google Scholar
Rabinowitz, D. Helin, L. E., Lawrence, K., and Pravdo., S., 2000. A Reduced estimate of the number of kilometre-sized near-Earth asteroids. Nature 403, 165166Google Scholar
Russell, C. T., McSween, H. Y., Jaumann, R., and Raymond, C. A.. 2015. The Dawn mission to Vesta and Ceres. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 419432.Google Scholar
Schenk, P., O’Brien, D. P., Marchi, D., et al., 2012. The geologically recent giant impact basins at Vesta’s south pole. Science 336, 694697.Google Scholar
Scott, E. R. D., Keil, K., Goldstein, J. I., et al. 2015. Early impact history and dynamical origin of differentiated meteorites and asteroids. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 573596.Google Scholar
Stewart, G. R. and Ida, S. 2000. Velocity evolution of planetesimals: Unified analytical formulas and comparisons with N-body simulations. Icarus, 143, 2844.Google Scholar
Stöffler, D. and Ryder, G. 2001. Stratigraphy and isotope ages of lunar geologic units: Chronological standard for the inner solar system. Space Science Reviews, 96, 954.Google Scholar
Stokes, G. H., Yeomans, D. K., Bottke, W. F., et al., 2003, Report of the Near-Earth Object Science Definition Team: A Study to Determine the Feasibility of Extending the Search for Near-Earth Objects to Smaller Limiting Diameters. NASA-OSS-Solar System Exploration Division.Google Scholar
Tanaka, H., Takeuchi, T., Ward, W. R., 2002. Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. Astrophysical Journal, 565, 12571274.Google Scholar
Tholen, D. J., 1984. Asteroid taxonomy from cluster analysis of photometry. Ph.D. Thesis. University of Arizona, Tucson.Google Scholar
Turrini, D., Magni, G., Coradini, A., 2011. Probing the history of solar system through the cratering records on Vesta and Ceres. Monthly Notices of the Royal Astronomical Society, 413, 24392466.Google Scholar
Turrini, D., Coradini, A., and Magni, G. 2012. Jovian early bombardment: Planetesimal erosion in the inner asteroid belt. Astrophysical Journal, 750, 8.Google Scholar
Villeneuve, J., Chaussidon, M., Libourel, G., 2009. Homogeneous distribution of 26Al in the Solar System from the Mg isotopic composition of chondrules. Science 325, 985.Google Scholar
Vokrouhlický, D., Broz, M., and Bottke, W. F., et al. 2006. Yarkovsky/YORP chronology of asteroid families. Icarus, 182, 118142.Google Scholar
Vokrouhlický, D., Bottke, W. F., Chesley, S. R., et al. 2015. The Yarkovsky and YORP effects. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 509532.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., et al., 2011. A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.Google Scholar
Ward, W. R., 1981. Solar nebula dispersal and the stability of the planetary system. I: Scanning secular resonance theory. Icarus, 47, 234264.Google Scholar
Ward, W. R., 2001. Early erosion of the asteroid belt. Abstract presented at Asteroids 2001 meeting, June 2001, Palermo, Italy.Google Scholar
Weidenschilling, S. J. 1977a. The distribution of mass in the planetary system and solar nebula.Astrophysics and Space Science, 51, 153158.Google Scholar
Weidenschilling, S. J. 1977b. Aerodynamics of solid bodies in the solar nebula. Monthly Notices of the Royal Astronomical Society, 180, 5770.Google Scholar
Weidenschilling, S. J., Spaute, D., Davis, D. R., et al. 1997. Accretional evolution of a planetesimal swarm. Icarus, 128, 429455.Google Scholar
Weidenschilling, S. J., 2011. Initial sizes of planetesimals and accretion of the asteroids. Icarus 214, 671684.Google Scholar
Wetherill, G. W. 1989. Origin of the asteroid belt. Asteroids II, ed. Binzel, R.P., Gehrels, T., and Matthews, M. F.. Tucson, AZ: University of Arizona Press, 661680.Google Scholar
Wetherill, G. W. 1992. An alternative model for the formation of the asteroids. Icarus, 100, 307325.CrossRefGoogle Scholar
Wetherill, G. W. and Stewart, G. R. 1993. Formation of planetary embryos: Effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus, 106, 190209.Google Scholar
Wilhelms, D. E., Oberbeck, V. R., and Aggarwal, H. R., 1978. Size–frequency distributions of primary and secondary lunar impact craters. Lunar and Planetary Science Conference, 9, 12561258.Google Scholar
Wilhelms, D.E. 1987. The geologic history of the Moon. US Geologicak Survey Professional Paper, 1348.Google Scholar
Youdin, A. N. and Goodman, J. 2005. Streaming instabilities in protoplanetary disks. Astrophysical Journal, 620, 459469.Google Scholar
Youdin, A. and Johansen, A., 2007. Protoplanetary disk turbulence driven by the streaming instability: linear evolution and numerical methods. Astrophysical Journal, 662, 613626.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×