Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T00:50:47.102Z Has data issue: false hasContentIssue false

Part III - High-Altitude Migration Strategies

Published online by Cambridge University Press:  20 April 2017

Herbert H. T. Prins
Affiliation:
Wageningen Universiteit, The Netherlands
Tsewang Namgail
Affiliation:
Snow Leopard Conservancy India Trust
Get access
Type
Chapter
Information
Bird Migration across the Himalayas
Wetland Functioning amidst Mountains and Glaciers
, pp. 217 - 316
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Dinges, M. (2000). Windsysteme und Thermik im Gebirge. Starnberg: Selbst-verlag.Google Scholar
Egger, J. et al. (2000). Diurnal winds in the Himalayan Kali Gandaki Valley, Part I. Monthly Weather Review, 128, 11061122.2.0.CO;2>CrossRefGoogle Scholar
Enfield, D.B. (2016). Meteorology – climate – jet stream. Encyclopedia Britannica www.britannica.com/science/climate-meteorology/Jet-streams#toc53304 (accessed 20 July 2016).Google Scholar
Hawkes, L.A. et al. (2011). The trans-Himalayan flights of Bar-Headed Geese (Anser indicus). Proceedings of the National Academy of Science USA, 108, 95169519.CrossRefGoogle ScholarPubMed
Laybourne, R.C. (1974). Collision between a vulture and an aircraft at an altitude of 37,000 feet. The Wilson Bulletin (Wilson Ornithological Society), 86: 461462.Google Scholar
Zängl, G., Egger, J. & Wirth, V. (2001). Diurnal winds in the Himalayan Kali Gandaki Valley, Part II. Monthly Weather Review, 129, 10621080.Google Scholar

References

Brauchle, J. & Hein, D. (2014). On the top of the world. German Aerospace Magazine, 142/143, 4144.Google Scholar
Doernbrack, A., Heise, R. & Kuettner, J. (2006). Waves and rotors. Promet, 32, 1824.Google Scholar
Egger, J., Bajracharya, S., Egger, U., et al. (2000). Diurnal winds in the Himalayan Kali Gandaki Valley. Part I: Observations. Monthly Weather Review, 128, 11061122.2.0.CO;2>CrossRefGoogle Scholar
Hawkes, L.A., Balachandran, S., Batbayar, N., et al. (2012). The paradox of extreme high-altitude migration in Bar-Headed Geese Anser indicus. Proceedings of the Royal Society B, Biological Sciences, 280, 20122114.Google Scholar
Heise, R. & Etling, D. (2014). Gravity waves and rotors. Promet, 39(Suppl. 2), 3644.Google Scholar
Hindman, E. (1994). Soaring birds of Mt. Everest. OSTIV-Technical Soaring, 18(Suppl. 1), 2.Google Scholar
Hindman, E., Liechti, O. & Lert, P. (2002), Soar Mt. Everest. OSTIV-Technical Soaring, 26(Suppl. 4), 114116.Google Scholar
Kaihe, Li (1999). A probe of soaring a straight distance of 2000 km. OSTIV-Technical Soaring, 23 (Suppl. 1), 7.Google Scholar
Kuettner, J.P. (1947). Über die Flugtechnik einiger Hochgebirgsvögel. Kosmos, 43, 384389.Google Scholar
Kuettner, J.P. (1985). The 2 000 km wave flight. Soaring, 3, 2127.Google Scholar
Lilienthal, O. (1889). Bird Flight as a Basis of Aviation: A Contribution Towards a System of Aviation, London/New York 1911 (Der Vogelflug als Grundlage der Fliegekunst: Ein Beitrag zur Systematik der Flugtechnik, Berlin, R. Gaertners Verlagsbuchhandlung, OLM 9072.Google Scholar
Nachtigall, W. (1985). Warum die Vögel fliegen? Hamburg: Rasch und Röhring Verlag.Google Scholar
Oberson, J. (2015). SoarGFS, the output of the famous GFS model adapted to soaring prediction around the world, Poster/Lecture, OSTIV Meteorological Panel Meeting, Winterthur: ZHAW.Google Scholar
OSTIV (1993). Handbook of Meteorological Forecasting for Soaring Flight, World Meteorological Organization, WMO-No495, 158.Google Scholar
OSTIV (2008). Weather Forecasting for Soaring Flight, World Meteorological Organization, WMO-No. 1038.Google Scholar
OSTIV (2009). Weather Forecasting for Soaring Flight, World Meteorological Organization, WMO-No. 1038, 76 pGoogle Scholar
Reinhardt, M.E., Neininger, B., Kuettner, J.P., et.al. (1985). First results of airborne measurements of the mountain valley circulation in the Kali Gandaki Valley, Nepal, by motorglider, OSTIV Publication XVIII Rieti, Italy.Google Scholar
Shamoun-Baranes, J., Liechti, O., Yom-Tov, Y., Leshem, Y. (2003). Using a convection model to predict altitudes of white stork migration over central Israel. Boundary-Layer Meteorology, 107, 673681.Google Scholar
Ultsch, A. & Heise, R. (2010). Data mining to distinguish wave from thermal climbs in flight data, Abstract/Lecture 34th Annual Conference of the German Classification Society (GfKl), Karlsruhe.Google Scholar
www.ostiv.org – website retrieved 2015-01-25Google Scholar
www.fai.org/records – website Class D (Gliding) – retrieved 2015-01-25Google Scholar

References

Bishop, C.M. (1997). Heart mass and the maximum cardiac output of birds and mammals: implications for estimating the maximum aerobic power input of flying animals. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 352, 447456.Google Scholar
Bishop, C.M., Spivey, R.J., Hawkes, L.A., et al. (2015). The roller coaster flight strategy of Bar-headed Geese conserves energy during Himalayan migrations. Science, 347, 250254.Google Scholar
Boutilier, R.G. (2001). Mechanisms of cell survival in hypoxia and hypothermia. Journal of Experimental Biology, 204, 31713181.Google Scholar
Butler, P.J., West, N.H. & Jones, D.R. (1977). Respiratory and cardiovascular responses of the pigeon to sustained, level flight in a wind tunnel. Journal of Experimental Biology, 71, 726.Google Scholar
Engel, S., Bowlin, M.S. & Hedenström, A. (2010). The role of wind-tunnel studies in integrative research on migration biology. Integrative and Comparative Biology, 50, 323335.CrossRefGoogle ScholarPubMed
Faraci, F.M. (1991). Adaptations to hypoxia in birds: how to fly high. Annual Review of Physiology, 53, 5970.CrossRefGoogle ScholarPubMed
Faraci, F.M. & Fedde, M.R. (1986). Regional circulatory responses to hypocapnia and hypercapnia in Bar-headed Geese. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 250, R499R504.Google Scholar
Frappell, P.B., Dotta, A. & Mortola, J.P. (1992). Metabolism during normoxia, hyperoxia, and recovery in newborn rats. Canadian Journal of Physiology and Pharmacology, 70, 408411.Google Scholar
Grocott, M.P.W., Martin, D.S., Levett, D.Z.H., McMorrow, R., Windsor, J. & Montgomery, H.E. (2009). Arterial blood gases and oxygen content in climbers on Mount Everest. New England Journal of Medicine, 360, 140149.Google Scholar
Grubb, B., Colacino, J.M. & Schmidt-Nielsen, K. (1978). Cerebral blood flow in birds: effect of hypoxia. American Journal of Physiology – Heart and Circulatory Physiology, 234, H230H234.Google Scholar
Hawkes, L.A., Balachandran, S., Batbayar, N., et al. (2011). The Trans-Himalayan flights of Bar-Headed Geese (Anser indicus). Proceedings of the National Academy of Sciences, 108, 95169519.CrossRefGoogle ScholarPubMed
Hawkes, L.A., Balachandran, S., Batbayar, N., et al. (2012) The paradox of extreme high altitude migration in Bar-headed Geese Anser indicus. Proceedings of the Royal Society B.CrossRefGoogle Scholar
Hawkes, L.A., Butler, P.J., Frappell, P.B., et al. (2014). Maximum running speed of captive Bar-headed Geese is unaffected by severe hypoxia. PLoS ONE, 9, e94015.Google Scholar
Imray, C., Wright, A., Subudhi, A. & Roach, R. (2010) Acute mountain sickness: pathophysiology, prevention, and treatment. Progress in Cardiovascular Diseases, 52, 467484.CrossRefGoogle ScholarPubMed
Jenni, L. & Jenni-Eiermann, S. (1998). Fuel supply and metabolic constraints in migrating birds. Journal of Avian Biology, 29, 521528.Google Scholar
Jones, J.H., Effman, E.L. & Schmidt-Nielsen, K. (1985). Lung volume changes during respiration in ducks. Respiration Physiology, 9, 1525.Google Scholar
Maina, J.N. & West, J.B. (2005) Thin and strong! The bioengineering dilemma in the structural and functional design of the blood-gas barrier. Physiological Reviews, 85, 811844.Google Scholar
Martin, D.S., Levett, D.Z.H., Grocott, M.P.W. & Montgomery, H.E. (2010) Variation in human performance in the hypoxic mountain environment. Experimental Physiology, 95, 463470.Google Scholar
Mathieu-Costello, O., Suarez, R.K. & Hochachka, P.W. (1992). Capillary-to-fiber geometry and mitochondrial density in hummingbird flight muscle. Respiration Physiology, 89, 113132.Google Scholar
Meir, J.U. & Milsom, W.K. (2013). High thermal sensitivity of blood enhances oxygen delivery in the high-flying Bar-headed Goose. Journal of Experimental Biology, 216, 21722175.Google Scholar
Neubauer, J.A., Melton, J.E. & Edelman, N.H. (1990). Modulation of respiration during brain hypoxia. Journal of Applied Physiology, 68, 441451.Google Scholar
Petschow, D., Wurdinger, I., Baumann, R., Duhm, J., Braunitzer, G. & Bauer, C. (1977). Causes of high blood O2 affinity of animals living at high altitude. Journal of Applied Physiology, 42, 139143.CrossRefGoogle ScholarPubMed
Piiper, J. & Scheid, P. (1972). Maximum gas transfer efficacy of models for fish gills, avian lungs and mammalian lungs. Respiration Physiology, 14, 115124.Google Scholar
Powell, F.L. (2000). Respiration. In Whittow, G.C. (ed.) Sturkie’s Avian Physiology. London: Academic Press. Pages 301336.Google Scholar
Powell, F.L & Scheid, P. (1989). Physiology of gas exchange in the avian respiratory system. In King, A.S. & McLelland, J. (eds.) Form and Function in Birds Vol 4. London: Academic Press. Pages 393437.Google Scholar
Prins, H.H.T. & Van Wieren, S.E. (2004). Number, population structure and habitat use of Bar-headed Geese Anser indicus in Ladakh (India) during the brood-rearing period. Acta Zoologica Sinica, 50, 738744.Google Scholar
Ramirez, J.M., Folkow, L.P. & Blix, A.S. (2007). Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annual Review of Physiology, 69, 113143.CrossRefGoogle ScholarPubMed
Scheid, P., Slama, H. & Piiper, J. (1972). Mechanisms of unidirectional flow in parabronchi of avian lungs: measurements in duck lung preparations. Respiration Physiology, 14, 8395.Google Scholar
Scott, G.R., Egginton, S., Richards, J.G. & Milsom, W.K. (2009). Evolution of muscle phenotype for extreme high altitude flight in the Bar-headed Goose. Proceedings of the Royal Society B: Biological Sciences, 276, 36453653.CrossRefGoogle ScholarPubMed
Scott, G.R., Hawkes, L.A., Frappell, P.B., Butler, P.J., Bishop, P.J. & Milsom, W.K. (2015). Review: How Bar-Headed Geese fly over the Himalayas. Physiology, 30, 107115.CrossRefGoogle ScholarPubMed
Scott, G.R. & Milsom, W.K. (2006). Flying high: a theoretical analysis of the factors limiting exercise performance in birds at altitude. Respiratory Physiology & Neurobiology, 154, 284301.Google Scholar
Scott, G.R. & Milsom, W.K. (2007). Control of breathing and adaptation to high altitude in the Bar-headed Goose. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 293, R379R391.CrossRefGoogle ScholarPubMed
Scott, G.R., Schulte, P.M., Egginton, S., Scott, A.L.M., Richards, J.G. & Milsom, W.K. (2011). Molecular evolution of cytochrome c oxidase underlies high-altitude adaptation in the Bar-Headed Goose. Molecular Biology and Evolution, 28, 351363.Google Scholar
Storz, J.F. (2007). Hemoglobin function and physiological adaptation to hypoxia in high-altitude mammals. Journal of Mammalogy, 88, 2431.CrossRefGoogle Scholar
Swan, L.W. (1961). Ecology of the high Himalayas. Scientific American, 205, 6878.Google Scholar
Ward, S., Bishop, C.M., Woakes, A.J. & Butler, P.J. (2002). Heart rate and the rate of oxygen consumption of flying and walking barnacle geese (Branta leucopsis) and Bar-headed Geese (Anser indicus). Journal of Experimental Biology, 205, 33473356.Google Scholar
Weber, R.E. (2007). High-altitude adaptations in vertebrate hemoglobins. Respiratory Physiology & Neurobiology, 158, 132142.Google Scholar
West, J.B. (2006). Human responses to extreme altitudes. Integrative and Comparative Biology, 46, 2534.CrossRefGoogle ScholarPubMed
West, J.B. (2009). Comparative physiology of the pulmonary blood-gas barrier: the unique avian solution. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 297, R1625R1634.Google Scholar

References

Alerstam, T. (1991). Bird flight and optimal migration. Trends in Ecology and Evolution, 6, 210215.Google Scholar
Alerstam, T. (2001). Detours in bird migration. Journal of Theoretical Biology, 209, 319331.Google Scholar
Alerstam, T. (2003). Bird migration speed. In Berthold, P., Gwinner, E. & Sonnenschein, E., eds., Avian Migration. Springer Berlin Heidelberg, pp. 253267.Google Scholar
Atkinson, D.M., Deadman, P., Dudycha, D. & Traynor, S. (2005). Multi-criteria evaluation and least-cost path analysis for an arctic all-weather road. Applied Geography, 25, 287307.CrossRefGoogle Scholar
Berg, J.M., Tymoczko, J.L. & Stryer, L. (2002). Biochemistry, 5th edn. New York: W. H. Freeman.Google Scholar
Berthold, P., Bossche, W v d, Fiedler, W., et al. (2001). Der Zug des Weisstorchs (Ciconia ciconia): eine besondere Zugform auf Grund neuer Ergebnisse. J Ornithologie, 42, 7392.CrossRefGoogle Scholar
Bishop, C.M., Spivey, R.J., Hawkes, L.A., et al. (2015). The roller coaster flight strategy of Bar-headed Geese conserves energy during Himalayan migrations. Science, 347, 250254.Google Scholar
Bolshakov, C.V. (2003). Nocturnal migration of passerines in the desert-highland zone of western Central Asia: selected aspects. In Berthold, P., Gwinner, E. & Sonnenschein, E., eds., Avian Migration. Springer Berlin Heidelberg, pp. 225236.CrossRefGoogle Scholar
Both, C. & Visser, M.E. (2001). Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature, 411, 296298.Google Scholar
Chappel, M.A. & Dlugoz, E.M. (2009) Aerobic capacity and running performance across a 1.6 km altitude difference in two sciurid rodents. The Journal of Experimental Biology, 212, 610619.Google Scholar
Collischonn, W. & Pilar, J.V. (2000). A direction dependent least-cost-path algorithm for roads and canals. International Journal of Geographical Information Science, 14, 397406.CrossRefGoogle Scholar
Duerr, A.E., Miller, T.A., Lanzone, M., et al. (2012). Testing an emerging paradigm in migration ecology shows surprising differences in efficiency between flight modes. PLoS ONE, 7 (4), e35548.CrossRefGoogle ScholarPubMed
Duriez, O., Kato, A., Tromp, C., et al. (2014). How cheap is soaring flight in raptors? A preliminary investigation in freely-flying vultures. PLoS One, 9, e84887.CrossRefGoogle ScholarPubMed
Faraci, F.M. (1986). Circulation during hypoxia in birds. Comparative Biochemistry and Physiology, 85A, 613620.Google Scholar
Gudmundsson, G.A., Benvenuti, S., Alerstam, T., Papi, F., Lilliendahl, K. & Akesson, S. (1995). Examining the Limits of Flight and Orientation Performance: Satellite Tracking of Brent Geese Migrating across the Greenland Ice-Cap. Proceedings of the Royal Society B, 261, 7379.Google Scholar
Hawkes, L.A., Balachandran, S., Batbayar, N., et al. (2012). The paradox of extreme high-altitude migration in Bar-headed Geese Anser indicus. Proceedings of the Royal Society B, 280: 20122114.Google Scholar
Hawkes, L.A., Butler, P.J., Frappell, , et al. (2014). Maximum running speed of captive Bar-headed Geese is unaffected by severe hypoxia. PLoS ONE, 9, e94015.CrossRefGoogle ScholarPubMed
Laybourne, R.C. (1974). Collision between a vulture and an aircraft at an altitude of 37,000 feet. The Wilson Bulletin, 86, 461462.Google Scholar
Lee, J. & Stucky, D. (1998). On applying viewshed analysis for determining least-cost paths on digital elevation models. International Journal of Geographical Information Systems, 12, 891905.Google Scholar
Newton, R.L. Jr, Han, H., Zderic, T. & Hamilton, M. (2013). The energy expenditure of sedentary behavior: a whole room calorimeter study. PLoS ONE, 8 (5), e63171.Google Scholar
Pennycuick, C.J. (1969). The mechanics of bird migration. Ibis, 111, 525556.Google Scholar
Pennycuick, C.J. (1989). Bird Flight Performance: A Practical Calculation Manual. New York: Oxford University Press.Google Scholar
Pennycuick, C.J. (2008) Modelling the Flying Bird. London: Elsevier (Academic Press).Google Scholar
Pennycuick, C.J. & Rezende, M.A. (1984). The specific power output of aerobic muscle, related to the power density of mitochondria. Journal of Experimental Biology, 108, 377392.CrossRefGoogle Scholar
Rosenkilde, M., Morville, T., Andersen, , et al. (2015). Inability to match energy intake with energy expenditure at sustained near-maximal rates of energy expenditure in older men during a 14-d cycling expedition. The American Journal of Clinical Nutrition, 102(6), 13981405.Google Scholar
Scott, G.R. (2011). Elevated performance: the unique physiology of birds that fly at high altitudes. Journal of Experimental Biology, 214, 24552462.Google Scholar
Scott, G.R. & Milsom, W.K. (2006) Flying high: a theoretical analysis of the factors limiting exercise performance in birds at altitude. Respiratory Physiology & Neurobiology, 154, 284301.Google Scholar
Si, Y., Xin, Q., Boer, W.F., Gong, P., Ydenberg, R.C. & Prins, H.H.T. (2015). Do Arctic breeding geese track or overtake a green wave during spring migration? Scientific Reports, 5, 8749. 10.1038/srep08749.Google Scholar
Stervander, M., Lindström, Ǻ., Jonzén, N. & Andersson, A. (2005). Timing of spring migration in birds: long-term trends, North Atlantic Oscillation and the significance of different migration routes. Journal of Avian Biology, 36, 210221.Google Scholar
Weber, J.M. (2011). Metabolic fuels: regulating fluxes to select mix. Journal of Experimental Biology, 214, 286294.Google Scholar
Weber, R.E. (2007). High-altitude adaptations in vertebrate hemoglobins. Respiratory Physiology & Neurobiology, 158, 132142.Google Scholar
West, J.B., Lahiri, S., Maret, K.H., Peters, R.M. & Pizzo, C.J. (1983). Barometric pressures at extreme altitudes on Mt. Everest: physiological significance. Journal of Applied Physiology, 54, 11881194.CrossRefGoogle ScholarPubMed
Yamaguchi, N., Hiraoka, E., Fujita, M., et al. (2008). Spring migration routes of mallards (Anas platyrhynchos) that winter in Japan, determined from satellite telemetry. Zoological Science, 25, 875881.Google Scholar

References

Anderson, J.T. & Smith, L.M. (1998). Protein and energy production in playas: implications for migratory bird management. Wetlands, 18, 437446.Google Scholar
Aryal, A., Sathyakumar, S. & Kreigenhofer, B. (2010). Opportunistic animal’s diet depends on prey availability: spring dietary composition of the red fox (Vulpes vulpes) in the Dhorpatan hunting reserve, Nepal. Journal of Ecology and the Natural Environment, 2, 5963.Google Scholar
Bancroft, G.T., Gawlik, D.E. & Rutchey, K. (2002). Distribution of wading birds relative to vegetation and water depths in the northern Everglades of Florida, USA. Waterbirds, 25, 265277.CrossRefGoogle Scholar
Bournaud, M., Cellot, B., Richoux, P. & Berrahou, A. (1996). Macroinvertebrate community structure and environmental characteristics along a large river: congruity of patterns for identification to species or family. Journal of the North American Benthological Society, 15, 232253.Google Scholar
Chandan, P., Chatterjee, A. & Gautam, P. (2008). Management of Himalayan high altitude wetlands. A case study of Tso Moriri and Tso Kar Wetlands in Ladakh, India. The 12th World Lake Conference: 14461452.Google Scholar
Collier, K.J. (1995). Environmental factors affecting the taxonomic composition of aquatic macroinvertebrate communities in lowland waterways of Northland, New Zealand. New Zealand Journal of Marine and Freshwater Research, 29, 453465.Google Scholar
Colwell, M.A. & Taft, O.W. (2000). Waterbird communities in managed wetlands of varying water depth. Waterbirds, 23, 4555.Google Scholar
Davis, C.A. & Smith, L.M. (1998). Ecology and management of migrant shorebirds in the Playa Lakes Region of Texas. Wildlife Monographs, 140, 345.Google Scholar
Dillon, M.E., Frazier, M.R. & Dudley, R. (2006). Into thin air: physiology and evolution of alpine insects. Integrative and Comparative Biology, 46, 4961.Google Scholar
Duffy, W.G. & LaBar, D.J. (1994). Aquatic invertebrate production in southeastern USA wetlands during winter and spring. Wetlands, 14, 8897.Google Scholar
Füreder, L., Ettinger, R., Boggero, A., Thaler, B. & Thies, H. (2006). Macroinvertebrate diversity in Alpine lakes: effects of altitude and catchment properties. Hydrobiologia, 562, 123144.Google Scholar
Geroudet, P. (1954). Des oiseaux migrateurs trouvés sur la glacier de Kumbu dans l’Himalaya. Nos Oiseaux, 22, 254.Google Scholar
Gill, R.E., Piersma, T., Hufford, G., Servranckx, R. & Riegen, A. (2005). Crossing the ultimate ecological barrier: evidence for an 11000-km-long non-stop flight from Alaska to New Zealand and eastern Australia by Bar-tailed Godwits. The Condor, 107, 120.Google Scholar
Green, M., Alerstam, T., Clausen, P., Drent, R. & Ebbinge, B.S. (2002). Dark-bellied Brent Geese Branta bernicla bernicla as recorded by satellite telemetry, do not minimize flight distance during spring migration. Ibis, 144, 106121.Google Scholar
Guija, B., Chatterjee, A., Gautam, P. & Chandan, P. (2003). Wetlands and lakes at the top of the world. Mountain Research and Development, 23, 219221.CrossRefGoogle Scholar
Havas, M. & Hutchinson, T.C. (1982). Aquatic invertebrates from the Smoking Hills, N.W.T.: effect of pH and metals on mortality. Canadian Journal of Fisheries and Aquatic Science, 39, 890903.Google Scholar
Hoback, W.W. & Stanley, D.W. (2001). Insects in hypoxia. Journal of Insect Physiology, 47, 533542.CrossRefGoogle ScholarPubMed
Jacobsen, D. (2008). Low oxygen pressure as a driving factor for the altitudinal decline in taxon richness of stream macro invertebrates. Oecologia, 154, 795807.Google Scholar
Jacobsen, D., Schultz, R. & Encalada, A. (1997). Structure and diversity of stream invertebrate assemblages: the influence of temperature with altitude and latitude. Freshwater Biology, 38, 247261.Google Scholar
Kaminski, R.M. & Prince, H.H. (1981). Dabbling duck activity and foraging responses to aquatic macroinvertebrates. The Auk, 98, 115126.Google Scholar
Kefford, B.J., Papas, P.J. & Nugegoda, D. (2003). Relative salinity tolerance of macroinvertebrates from the Barwon River, Victoria, Australia. Marine and Freshwater Research, 54, 755765.Google Scholar
Loayza-Muro, R.A., Marticorena-Ruiz, J.K., Palomino, E.J., et al. (2013). Persistence of Chironomids in metal polluted Andean high altitude streams: does melanin play a role? Environmental Science & Technology, 47, 601607.Google Scholar
Miserendino, M.L. (2001). Macroinvertebrate assemblages in Andean Patagonian rivers and streams: environmental relationships. Hydrobiologia, 444, 147158.CrossRefGoogle Scholar
Mitchell, D.W. & Grubaugh, J.W. (2005). Impacts of shorebirds on macroinvertebrates in the Lower Mississippi Alluvial Valley. The American Midland Naturalist, 15, 188200.Google Scholar
Moreau, R. (1972). The Palearctic-African Bird Migration Systems. London: Academic Press.Google Scholar
Namgail, T., Rawat, G.S., Mishra, C., Van Wieren, S.E. & Prins, H.H.T. (2012). Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas. Journal of Plant Research, 125, 93101.Google Scholar
Namgail, T. & Yom-Tov, Y. (2009). Elevational range and timing of breeding in the birds of Ladakh: the effects of body mass, status and diet. Journal of Ornithology, 150, 505510.Google Scholar
Patra, A., Santra, K.B. & Manna, C.K. (2010). Relationship among the abundance of waterbird species diversity, macrophytes, macroinvertebrates and physico-chemical characteristics in Santragachi Jheel, Howrah, W.B., India. Acta Zoologica Bulgarica, 62, 277300.Google Scholar
Paul, A.L. & Ferl, R.J. (2006). The biology of low atmospheric pressure – implications for exploration mission design and advanced life support. Gravitational and Space Biology, 19, 317.Google Scholar
Piersma, T., Bruinzeel, L., Drent, R., et al. (1996). Variability in basal metabolic rate of a long-distance migrant shorebird (Red knot, Calidris canutus) reflects shifts in organ sizes. Physiological Zoology, 69, 191217.Google Scholar
Piersma, T., Hoekstra, R., Dekkinga, A., et al. (1993). Scale and intensity of intertidal habitat use by knots Calidris canutus in the western Waddensea in relation to food, friends and foes. Netherlands Journal of Sea Research, 31, 331357.Google Scholar
Piersma, T., Verkuil, Y. & Tulp, I. (1994). Resources for long-distance migration of Knots Calidris canutus islandica and C. c. canutus: how broad is the temporal exploitation window of benthic prey in the western and eastern Wadden Sea? Oikos, 71, 393407.Google Scholar
Philip, G. & Mathew, J. (2005). Climato-tectonic impression on trans Himalayan lakes: a case study of Kyun Tso basin of the Indus Suture Zone in NW Himalaya using remote sensing techniques. Current Science, 89, 19411947.Google Scholar
Plante, C. & Downing, J.A. (1989). Production of freshwater invertebrate populations in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 46, 14891498.Google Scholar
Prins, H.H.T. & Van Wieren, S.E. (2004). Number, population structure and habitat use of Bar-headed Geese Anser indicus in Ladakh (India) during the brood-rearing period. Acta Zoologica Sinica, 50, 738744.Google Scholar
Rawat, G.S. & Adhikari, B.S. (2005). Floristics and distribution of plant communities across moisture and topographic gradients in Tso Kar basin, Changthang plateau, eastern Ladakh. Arctic, Antarctic, and Alpine research, 37, 539544.Google Scholar
Ricciardi, A. & Bourget, E. (1998). Weight-to-weight conversion factors for marinebenthic macroinvertebrates. Marine Ecology Progress Series, 163, 245251.Google Scholar
Romaniszyn, E.D., Hutchens, J.J., & Bruce Wallace, J. (2007). Aquatic and terrestrial invertebrate drift in southern Appalachian Mountain streams: implications for trout food resources. Freshwater Biology, 52, 111.Google Scholar
Rosenberg, D.M., Davies, I.J., Cobb, D.G., & Wiens, A.P. (1997). Protocols for Measuring Biodiversity: Benthic Macro-invertebrates in Fresh Waters. University Crescent, Manitoba.Google Scholar
Scheibler, E.E., Claps, M.C. & Roig-Juñent, S.A. (2014). Temporal and altitudinal variations in benthic macroinvertebrate assemblages in an Andean river basin of Argentina. Journal of Limnology, 73, 92108.Google Scholar
Schummer, M.L., Petrie, S.A. & Bailey, R.C. (2008). Interaction between macroinvertebrate abundance and habitat use by diving ducks during winter on Northeastern Lake Ontario. Journal of Great Lakes Research, 34, 5471.Google Scholar
Sergio, F., Tanferna, A., De Stephanis, R., et al. (2014). Individual improvements and selective mortality shape lifelong migratory performance. Nature, 515, 410413.Google Scholar
Tumbiolo, M.L., & Downing, J.A. (1994). An empirical model for the prediction of secondary production in marine benthic invertebrate populations. Marine Ecology-Progress Series, 114, 165174.Google Scholar
Verberk, W.C.E.P., Bilton, D.T., Calosi, P. & Spicer, J.I. (2011). Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology, 92, 15651572.Google Scholar
Walker, I.R. & Mathewes, R.W. (1989).Chironomidae (Diptera) remains in surficial lake sediments from the Canadian Cordillera: analysis of the fauna across an altitudinal gradient. Journal of Paleolimnology, 2, 6180.Google Scholar
Wang, J., Yang, D., Zhang, Y., et al. (2011). Do patterns of bacterial diversity along salinity gradients differ from those observed for macroorganisms? PLoS ONE 6(11): e27597.Google Scholar
Weber, C. (1973). Biological field and laboratory methods for measuring the quality of surface waters and effluents. EPA-670/4-73-001.Google Scholar
Wen, Z., Mian-Ping, Z., Xian-Zhong, X., Xi-Fang, L., Gan-Lin, G. & Zhi-Hui, H. (2005). Biological and ecological features of saline lakes in northern Tibet, China. Hydrobiologia, 541, 189203.Google Scholar
Wentworth, C.K. (1922). A scale of grade and class terms for clastic sediments. The Journal of Geology, 30, 377392.Google Scholar
Wojciechowski, M.S., Yosef, R. & Pinshow, B. (2014). Body composition of north and southbound migratory blackcaps is influenced by the lay-of-the-land ahead. Journal of Avian Biology, 45, 264272.Google Scholar
Yali, S., Xin, Q., de Boer, W.F., Gong, P. Ydenberg, R.C. & Prins, H.H.T. (2015). Decision rules based on plant phenology in timing the spring migration of Arctic breeding geese. Scientific Reports: SREP-14-06997B.Google Scholar
Yamaguchi, N., Hiraoka, E., Fujita, M., et al. (2008). Spring migration routes of mallards (Anas platyrhynchos) that winter in Japan, determined from satellite telemetry. Zoological Science, 25, 875881.Google Scholar

References

Alerstam, T. (2001). Detours in bird migration. Journal of Theoretical Biology, 209, 319331.Google Scholar
Alerstam, T. & Hedenström, A. (1998). The development of bird migration theory. Journal of Avian Biology, 29, 343369.Google Scholar
Alerstam, T., Hedenström, A. & Akesson, S. (2003). Long-distance migration: evolution and determinants. Oikos, 103, 247260.Google Scholar
Alerstam, T. & Lindström, Å. (1990). Optimal bird migration: the relative importance of time, energy and safety. In Gwinner, E., ed., Bird Migration: Physiology and Ecophysiology, Berlin: Springer-Verlag, pp. 331351.Google Scholar
Beauchamp, G. (2014). Social Predation: How Group Living Benefits Predators and Prey. New York: Academic Press.Google Scholar
Bednarz, J.C. & Kerlinger, P. (1989). Monitoring hawk populations by counting migrants. National Wildlife Federation Scientific and Technical Series Supplement No. 13, 328342.Google Scholar
Bishop, C.M., Spivey, R.J., Hawkes, L.A., et al. (2015). The roller coaster flight strategy of Bar-headed Geese conserves energy during Himalayan migrations. Science, 347, 250254.Google Scholar
Brown, J.S. & Kotler, B.P. (2007). Foraging and the ecology of fear. In Stephens, D.W., Brown, J.S. & Ydenberg, R.C., eds., Foraging: Behaviour and Ecology. Chicago: University of Chicago Press, pp. 437482.Google Scholar
Burns, J.G. & Ydenberg, R.C. (2002). The effects of wing loading and gender on the escape flights of Least Sandpipers (Calidris minutilla) and Western Sandpipers (Calidris mauri). Behavioural Ecology Sociobiology, 52, 128136.Google Scholar
Cimprich, D.A., Woodrey, M.S. & Moore, F.R. (2005). Passerine migrants respond to variation in predation risk during stopover. Animal Behaviour, 69, 11731179.Google Scholar
Clark, C.W. & Butler, R.W. (1999). Fitness components of avian migration: a dynamic model of Western Sandpiper migration. Evolutionary Ecology Research, 1, 443457.Google Scholar
Cooper, W.E. & Blumstein, D.T., eds. (2015). Escaping from Predators: An Integrative View of Escape Decisions. Cambridge: Cambridge University Press.Google Scholar
Cresswell, W. (1994). Age-dependent choice of redshank (Tringa tetanus) feeding location – profitability or risk? Journal of Animal Ecology, 63, 589600.Google Scholar
Cresswell, W. (1996). Surprise as a winter hunting strategy in Sparrowhawks Accipiter nisus, peregrines Falco peregrinus and Merlins F. columbarius. Ibis, 138, 684692.Google Scholar
Dekker, D. & Ydenberg, R.C. (2004). Raptor predation on wintering Dunlins in relation to the tidal cycle. Condor, 106, 415419.Google Scholar
Díaz, M., Møller, A.P., Flensted-Jensen, E., et al. (2013). The geography of fear: a latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS One, 8(5), e64634.Google Scholar
Drake, A.E.G., Rock, C.A., Quinlan, S.P., Martin, M. & Green, D.J. (2014). Wind speed during migration influences the survival, timing of breeding, and productivity of a Neotropical migrant, Setophaga petechia. PLoS One, 9, e97152.Google Scholar
Drent, R., Both, C., Green, M., Madsen, J. & Piersma, T. (2003). Pay-offs and penalties of competing migratory schedules. Oikos, 103, 274292.Google Scholar
Eichhorn, G., Drent, R.H., Stahl, J., Leito, A. & Alerstam, T. (2009). Skipping the Baltic: the emergence of a dichotomy of alternative spring migration strategies in Russian Barnacle Geese. Journal of Animal Ecology, 78, 6372.Google Scholar
Ellis, D.H., Bednarz, J.C., Smith, D.G. & Flemming, S.P. (1993). Social foraging classes in raptorial birds. BioScience, 43, 1420.Google Scholar
Frederick, W.G. & Cooper, W.E. (2007). Optimal flight initiation distance. Journal of Theoretical Biology, 224, 5967.Google Scholar
Hedenström, A. & Alerstam, T. (1997). Optimum fuel loads in migratory birds: distinguishing between time and energy minimization. Journal of Theoretical Biology, 189, 227234.Google Scholar
Hedenström, A. & Rosén, M. (2001). Predator versus prey: on aerial hunting and escape strategies in birds. Behavioural Ecology, 12, 150156.Google Scholar
Heintzelman, D.S. (1975). Autumn Hawk Flights: The Migrations in Eastern North America. New Brunswick, NJ: Rutgers University Press.Google Scholar
Hope, D.D., Lank, D.B., Smith, B.D. & Ydenberg, R.C. (2011). Migration of two calidrid sandpiper species on the predator landscape: how stopover time and hence migration speed vary with proximity to danger. Journal of Avian Biology, 42, 523530.Google Scholar
Hope, D.D., Lank, D.B. & Ydenberg, R.C. (2014). Mortality-minimizing sandpipers vary stopover behaviour dependent on age and geographic proximity to migrating predators. Behavioural Ecology Sociobiology, 68, 827838.Google Scholar
Houston, A.I. (1998). Models of optimal avian migration: state, time and predation. Journal of Avian Biology, 29, 395404.Google Scholar
Hunt, W.G., Rogers, R.R. & Slowe, D.J. (1975). Migratory and foraging behaviour of Peregrine Falcons on the Texas coast. Canadian Field-Naturalist, 89, 111123.Google Scholar
Ibanez, C., Juste, J., Garcia-Mudarra, J.L. & Agirre-Mendi, P.T. (2001). Bat predation on nocturnally migrating birds. Proceedings of the National Academy of Science (US), 98, 97009702.Google Scholar
Inzunza, E.R. (2005). The raptor population index (RPI) project in its second year. Hawk Migration Studies, 32, 46.Google Scholar
Jamieson, S.E., Ydenberg, R.C. & Lank, D.B. (2014). Does predation danger on southward migration curtail parental investment by female Western Sandpipers? Animal Migration, 2, 3443.Google Scholar
Jonker, R.M., Eichhorn, G., Van Langevelde, F. & Bauer, S. (2010). Predation danger can explain changes in timing of migration: the case of the Barnacle Goose. PLoS One, e11369.Google Scholar
Kang, C.-K., Moon, J.-Y., Lee, S.-I. & Jablonski, P.G. (2012). Camouflage through an active choice of a resting spot and body orientation in moths. Journal of Evolutionary Biology 25, 16951702.Google Scholar
Kerlinger, P. (1989). Flight Strategies of Migrating Hawks. Chicago: University of Chicago Press.Google Scholar
Kotler, B.P. & Brown, J.S. (2007). Community ecology. In Stephens, D.W., Brown, J.S. & Ydenberg, R.C., eds., Foraging: Behaviour and Ecology. Chicago: University of Chicago Press, pp. 397436.Google Scholar
Kullberg, C. (1998). Does diurnal variation in body mass affect take-off ability in wintering willow tits? Animal Behaviour, 56, 227233.Google Scholar
Kullberg, C., Fransson, T. & Jacobsson, S. (1996). Impaired predator evasion in fat blackcaps (Sylvia atricapilla). Proceedings of the Royal Society, London, Series B, 265, 16591664.Google Scholar
Kurvers, R.H.J.M., Straates, K., Ydenberg, R.C., Van Wieren, S.E., Swierstra, P. & Prins, H.H.T. (2014). Social information use by Barnacle Geese Branta leucopsis, an experiment revisited. Ardea, 102, 173180.Google Scholar
Lank, D.B., Butler, R.W., Ireland, J. & Ydenberg, R.C. (2003). Effects of predation danger on migratory strategies of sandpipers. Oikos, 103, 303319.Google Scholar
Lank, D.B. & Ydenberg, R.C. (2003). Death and danger at migratory stopovers: problems with ‘predation risk’. Journal of Avian Biology, 34, 225228.Google Scholar
Lehikoinen, A. (2011). Advanced autumn migration of Sparrowhawk has increased the predation risk of long-distance migrants in Finland. PLoS ONE, 6(5), e20001.Google Scholar
Lima, S.L. (1986). Predation risk and unpredictable feeding conditions: determinants of body mass in birds. Ecology, 67, 377385.Google Scholar
Lima, S.L. (1998). Stress and decision making under the risk of predation: recent developments from behavioural, reproductive, and ecological perspectives. Advances in the Study of Behaviour, 27, 215290.Google Scholar
Lima, S.L. & Bednekoff, P.A. (1999). Temporal variation in danger drives antipredator behaviour: the predation risk allocation hypothesis. American Naturalist, 153, 649659.CrossRefGoogle ScholarPubMed
Lima, S.L. & Dill, L.M. (1990). Behavioural decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology, 68, 619640.Google Scholar
Lind, J., Fransson, T., Jacobsson, S. & Kullberg, C. (1999). Reduced take-off ability in robins due to migratory fuel load. Behavioural Ecology and Sociobiology, 46, 6570.Google Scholar
Lindström, A. (1989). Finch flock size and risk of hawk predation at a migratory stopover site. Auk, 106, 225232.Google Scholar
Lindström, A. (1990). The role of predation risk in stopover habitat selection in migrating bramblings, Fringilla montifringilla. Behavioural Ecology, 1, 102106.Google Scholar
Lok, E.K., Esler, D., Takekawa, J.Y., et al. (2012). Spatiotemporal associations between Pacific herring spawn and surf scoter spring migration: evaluating a ‘silver wave’ hypothesis. Marine Ecology Progress Series, 457, 139150.Google Scholar
Maillet, D. & Weber, J.M. (2006). Performance-enhancing role of dietary fatty acids in a long-distance migrant shorebird: the semipalmated sandpiper. Journal of Experimental Biology, 209, 26862695.Google Scholar
Metcalfe, N.B. & Ure, S.E. (1995). Diurnal variation in flight performance and hence potential predation risk in small birds. Proceedings of the Royal Society, London, Series B, 261, 395400.Google Scholar
Møller, A.P., Grim, T., Ibáñez-Álamo, J.D., Markó, G. & Tryjanowski, P. (2013). Change in flight initiation distance between urban and rural habitats following a cold winter. Behavioural Ecology, 24, 12111217.Google Scholar
Møller, A.P. & Ibáñez-Álamo, J.D. (2012). Escape behaviour of birds provides evidence of predation being involved in urbanization. Animal Behaviour, 84, 341348.Google Scholar
Moore, F.R., Kerlinger, P. & Simons, T.R. (1990). Stopover on a gulf-coast barrier island by spring trans-gulf migrants. Wilson Bulletin, 102, 487500.Google Scholar
Newton, I. (2008). The Ecology of Bird Migration. London: Academic Press.Google Scholar
Pennycuick, C.J. (1989). Bird Flight Performance: A Practical Calculation Manual. Oxford: Oxford University Press.Google Scholar
Piersma, T. (1998). Phenotypic flexibility during migration: optimization of organ size contingent on the risks and rewards of fueling and flight? Journal of Avian Biology, 29, 511520.Google Scholar
Piersma, T. & Jr. Gill, R.E. (1998). Guts don’t fly: small digestive organs in obese Bar-Tailed Godwits. Auk, 115, 196203.Google Scholar
Pomeroy, A.C. (2006). Trade-offs between food abundance and predation danger in spatial usage of a stopover site by Western Sandpipers, Calidris mauri. Oikos, 112, 629637.Google Scholar
Pomeroy, A.C., Butler, R.W. & Ydenberg, R.C. (2006). Experimental evidence that migrants adjust usage at a stopover site to trade off food and danger. Behavioural Ecology, 17, 10411045.Google Scholar
Preisser, E.L., Bolnick, D.I. & Benard, M.F. (2005). Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology, 86, 501509.Google Scholar
Prins, H.H.T. & Iason, G. (1989). Dangerous lions and nonchalant buffalo. Behaviour, 108, 262296.Google Scholar
Schmaljohann, H. & Dierschke, V. (2005). Optimal bird migration and predation risk: a field experiment with Northern Wheatears Oenanthe oenanthe. Journal of Animal Ecology, 74, 131138.Google Scholar
Si, Y., Xin, Q., de Boer, W.F., Gong, P., Ydenberg, R.C. & Prins, H.H.T. (2015). Do arctic breeding geese track or overtake a green wave during spring migration? Scientific Reports, 5, 8749.Google Scholar
Sillet, T.S. & Holmes, R.T. (2002). Variation in survivorship of a migratory songbird throughout its annual cycle. Journal of Animal Ecology, 71, 296308.Google Scholar
Sutherland, W.J. (1998). Evidence for flexibility and constraint in migration systems. Journal of Avian Biology, 29, 441446.Google Scholar
Takekawa, J.Y., Heath, S.R., Douglas, D.C., et al. (2009). Geographic variation in Bar-headed Geese Anser indicus: connectivity of wintering area and breeding grounds across a broad front. Wildfowl, 59, 100123.Google Scholar
Therrien, J.-F., Gauthier, G., Korpimaki, E. & Béty, J. (2014). Predation pressure by avian predators suggests summer limitation of small-mammal populations in the Canadian arctic. Ecology, 95, 5667.Google Scholar
Tourenq, C., Combreau, O., Pole, S.B., et al. (2004). Monitoring of Asian Houbara Bustard Chlamydotis macqueenii populations in Kazakhstan reveals dramatic decline. Oryx, 38, 6267.Google Scholar
Van der Veen, I.T. (1999). Trade-off between Starvation and Predation: Weight-Watching in Yellowhammers. PhD thesis, Uppsala, Sweden: Uppsala University.Google Scholar
Van der Veen, I.T. & Lindström, K.M. (2000). Escape flights of yellowhammers and greenfinches: more than just physics. Animal Behaviour, 59, 593601.Google Scholar
Veasey, J.S., Metcalfe, N.B. & Houston, D.C. (1998). A reassessment of the effect of body mass upon flight speed and predation risk in birds. Animal Behaviour, 56, 883889.Google Scholar
Walter, H. (1979). Eleonora’s Falcon: Adaptations to Prey and Habitat in a Social Raptor. Chicago: University of Chicago Press.Google Scholar
Wiedner, D.S., Kerlinger, P., Sibley, S.A., et al. (1992). Visible morning flight of neotropical landbird migrants at Cape May, New Jersey. Auk, 109, 500510.Google Scholar
Williams, T.D., Guglielmo, C.G., Egler, O. & Martyniuk, C.J. (1999). Plasma lipid metabolites provide information on mass change over several days in captive Western Sandpipers. Auk, 116, 9941000.Google Scholar
Witter, M.S., Cuthill, I.C. & Bonser, R.H.C. (1994). Experimental investigations of mass-dependent predation risk in the European starling, Sturnus vulgaris. Animal Behaviour, 48, 201222.Google Scholar
Worcester, R. & Ydenberg, R. (2008). Cross-continental patterns in the timing of southward Peregrine Falcon migration in North America. Journal of Raptor Research, 42, 1319.Google Scholar
Xu, C., Barrett, J., Lank, D.B. & Ydenberg, R.C. (2015). Large and irregular population fluctuations in migratory Pacific (Calidris alpina pacifica) and Atlantic (C. a. hudsonica) Dunlins are driven by density-dependence and climatic factors. Population Ecology, 57, 551567.Google Scholar
Ydenberg, R.C., Butler, R.W. & Lank, D.B. (2007). Effects of predator landscapes on the evolutionary ecology of routing, timing and molt by long-distance migrants. Journal of Avian Biology, 38, 523529.Google Scholar
Ydenberg, R.C., Butler, R.W., Lank, D.B., Guglielmo, C.G., Lemon, M. & Wolf, N. (2002). Trade-offs, condition dependence, and stopover site selection by migrating sandpipers. Journal of Avian Biology, 33, 4755.Google Scholar
Ydenberg, R.C., Butler, R.W., Lank, D.B., Smith, B.D. & Ireland, J. (2004). Western Sandpipers have altered migration tactics as peregrine falcon populations have recovered. Proceedings of the Royal Society of London B, 271, 12631269.Google Scholar
Ydenberg, R.C. & Dill, L.M. (1986). The economics of fleeing from predators. Advances in the Study of Behaviour, 16, 229249.Google Scholar
Zimmerman, J.L. (1990). Cheyenne Bottoms: Wetland in Jeopardy. Lawrence: University Press of Kansas.Google Scholar

References

Bishop, C.M., Spivey, R.J., Hawkes, L.A., et al. (2015). The roller coaster flight strategy of Bar-headed Geese conserves energy during Himalayan migrations. Science, 347, 250254.Google Scholar
Colwell, R.K. & Lees, D.C. (2000). The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology & Evolution, 15, 7076.Google Scholar
Combreau, O., Launay, F., Al Bowardi, M. & Gubin, B. (1999). Outward migration of Houbara Bustards from two breeding areas in Kazakhstan. The Condor, 101, 159164.Google Scholar
Cramp, S. (1988). Handbook of the Birds of Europe, the Middle East and North Africa: Ihe Birds of the Western Palearctic. In Cramp, S., ed., Vol. IV Flycatchers to Thrushes. Oxford: Oxford University Press.Google Scholar
Cramp, S. & Simmons, K.E.L. (1985). Handbook of the Birds of Europe, the Middle East and North Africa: The Birds of the Western Palearctic. In Cramp, S. & Simmons, K.E.L., eds., Vol. III Waders to Gulls. Oxford: Oxford University Press, pp. 1913.Google Scholar
Cresswell, W. (2008). Non-lethal effects of predation in birds. Ibis, 150, 317.Google Scholar
Currie, D.J., Mittelbach, G.G., Cornell, H.V., et al. (2004). A critical review of species-energy theory. Ecology Letters, 7, 11211134.Google Scholar
Dekker, D. (2009). Hunting Tactics of Peregrines and Other Falcons. PhD thesis, Wageningen University.Google Scholar
Den Besten, J.W. (2004). Migration of Steppe Eagles Aquila nipalensis and other raptors along the Himalayas past Dharamsala, India, in autumn 2001 and spring 2002. Forktail, 20, 913.Google Scholar
George, T.L. (1987). Greater land bird densities on island vs. mainland: relation to nest predation level. Ecology, 68, 13931400.Google Scholar
Grimmett, R., Inskipp, C. & Inskipp, T. (1999). Pocket Guide to the Birds of the Indian Subcontinent. New Delhi: Oxford University Press.Google Scholar
Harrison, J.A. & Martinez, P. (1995). Measurement and mapping of avian diversity in southern Africa: implications for conservation planning. Ibis, 137, 410417.Google Scholar
Hawkins, B.A., Diniz-Filho, J.A.F., Jaramillo, C.A. & Soeller, S.A. (2007). Climate, niche conservatism, and the global bird diversity gradient. American Naturalist, 170, S16S27.Google Scholar
Hawkins, B.A. & Porter, E.E. (2003). Does herbivore diversity depend on plant diversity? The case of California butterflies. American Naturalist, 161, 4049.Google Scholar
Jonker, R.M., Eichhorn, G., Van Langevelde, F. & Bauer, S. (2010). Predation danger can explain changes in timing of migration: the case of the Barnacle Goose. PLoS ONE, 5(6), e1136g.Google Scholar
Kattan, G.H. & Franco, P. (2004). Bird diversity along elevational gradients in the Andes of Colombia: area and mass effects. Global Ecology and Biogeography, 13, 451458.Google Scholar
Lank, D.B., Butler, R.W., Ireland, J. & Ydenberg, R.C. (2003). Effects of predation danger on migration strategies of sandpipers. Oikos, 103, 303319.Google Scholar
Lawton, J.H., Lewinsohn, T.M. & Compton, S.G. (1993). Patterns of diversity for the insect herbivores on bracken. In Ricklefs, R. E. and Schluter, D. (eds.) Species Diversity in Ecological Communities: Historic and Geographic Perspectives. University of Chicago Press, Chicago, pp. 178184.Google Scholar
Lepage, D. (2015). Checklist of the birds of Ladakh. Avibase, the world bird data base. Retrieved 9 April 2015, from http://avibase.bsc-eoc.org/checklist.jsp?lang=EN&region=inwhjk01&list-howardmoore.Google Scholar
Lomolino, M.V. (2001). Elevation gradients of species density – historical and prospective views. Global Ecology and Biogeography, 10, 313.Google Scholar
MacArthur, R., Recher, H. & Cody, M. (1966). On the relation between habitat selection and species diversity. The American Naturalist, 100, 319332.Google Scholar
MacGillivray, M. (1832). Remarks on the phenogamic vegetation of the river Dee, in Aberdeenshire. Memoires of the Wernian Natural History Society, 6, 539556.Google Scholar
Mani, M.S. (1978). Ecology & Phytogeography of High-Altitude Plants of the Northwest Himalaya. London: Chapman & Hall.Google Scholar
McCain, C.M. (2007). Area and mammalian elevational diversity. Ecology, 88, 7686.Google Scholar
McCain, C.M. (2009). Global analysis of bird elevational diversity. Global Ecology and Biogeography, 18, 346360.Google Scholar
McLure, H.E. (1974). Migration and Survival of the Birds of Asia. Bangkok.Google Scholar
Mishra, C. (2001). High Altitude Survival: Conflicts between Pastoralism and Wildlife in the Trans-Himalaya. PhD thesis, Wageningen University, Wageningen, The Netherlands.Google Scholar
Namgail, T., Rawat, G., Mishra, C., Van Wieren, S. & Prins, H.H.T. (2012). Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas. Journal of Plant Research, 125, 93101.Google Scholar
Namgail, T. & Yom-Tov, Y. (2009). Elevational range and timing of breeding in the birds of Ladakh: the effects of body mass, status and diet. Journal of Ornithology, 150, 505510.Google Scholar
Olff, H., Ritchie, M.E. & Prins, H.H.T. (2002). Global environmental controls of diversity in large herbivores. Nature, 415, 901904.Google Scholar
Pfister, O. (2004). Birds and Mammals of Ladakh. New Delhi: Oxford University Press.Google Scholar
Prins, H.H.T. & Van Wieren, S.E. (2004). Number, population structure and habitat use of Bar-headed Geese Anser indicus in Ladakh (India) during the brood-rearing period. Acta Zoologica Sinica, 50, 738744.Google Scholar
Rahbek, C. (1997). The relationship among area, elevation, and regional species richness in neotropical birds. The American Naturalist, 149, 875902.Google Scholar
Rosenzweig, M.L. (1968). Net primary productivity of terrestrial communities: predictions from climatological data. The American Naturalist, 102, 6774.Google Scholar
Scott, G.R. & Milsom, W.K. (2007). Control of breathing and adaptation to high altitude in the Bar-headed Goose. American Journal of Physiology Regulatory Integrative and Comparative Physiology, 293, R379R391.Google Scholar
Scott, G.R., Schulte, P.M., Egginton, S., Scott, A.L.M., Richards, J.G. & Milsom, W.K. (2011). Molecular evolution of cytochrome c oxidase underlies high-altitude adaptation in the Bar-Headed Goose. Molecular Biology and Evolution, 28, 351363.Google Scholar
Takekawa, J.Y., Heath, S., David, C.D., et al. (2009). Geographic variation in Bar-Headed Geese Anser indicus: connectivity of wintering areas and breeding grounds across a broad front. Wildfowl, 59, 100123.Google Scholar
Terborgh, J. (1977). Bird species diversity on an Andean elevational gradient. Ecology, 58, 10071019.Google Scholar
Tilman, D., Pacala, S.W., Ricklefs, R.T. & Schluter, D. (1993). The maintenance of species richness in plant communities. In Ricklefs, R.E. & Schluter, D., eds., Species Diversity in Ecological Communities. Chicago: University of Chicago Press, pp. 1325.Google Scholar
Tramer, E.J. (1974). On latitudinal gradients in avian diversity. Condor, 76, 123130.Google Scholar
Vetaas, O.R. & Grytnes, J.A. (2002). Distribution of vascular plant species richness and endemic richness along Himalayan elevation gradient in Nepal. Global Ecology and Biogeography, 11, 291301.Google Scholar
Voous, K.H. (1960). Atlas of European Birds. London: Nelson.Google Scholar
Williams, C.T. & Delany, S.N. (1985). Migration through the north-west Himalaya – some results of the Southampton University Ladakh Expeditions. Part 1. Oriental Bird Club Bulletin, 2, 1014.Google Scholar
Williams, C.T. & Delany, S.N. (1986). Migration through the north-west Himalaya – some results of the Southampton University Ladakh Expeditions. Part 2. Oriental Bird Club Bulletin, 3, 1116.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×