Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-01T11:12:42.361Z Has data issue: false hasContentIssue false

10 - Saturn’s Seasonally Changing Atmosphere

Thermal Structure, Composition and Aerosols

Published online by Cambridge University Press:  13 December 2018

Kevin H. Baines
Affiliation:
University of Wisconsin, Madison
F. Michael Flasar
Affiliation:
NASA-Goddard Space Flight Center
Norbert Krupp
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Tom Stallard
Affiliation:
University of Leicester
Get access

Summary

The longevity of Cassini’s exploration of Saturn’s atmosphere (a third of a Saturnian year) means that we have been able to track the seasonal evolution of atmospheric temperatures, chemistry and cloud opacity over almost every season, from solstice to solstice and from perihelion to aphelion. Cassini has built upon the decades-long ground-based record to observe seasonal shifts in atmospheric temperature, finding a thermal response that lags behind the seasonal insolation with a lag time that increases with depth into the atmosphere, in agreement with radiative climate models. Seasonal hemispheric contrasts are perturbed at smaller scales by atmospheric circulation, such as belt/zone dynamics, the equatorial oscillations and the polar vortices. Temperature asymmetries are largest in the middle stratosphere and become insignificant near the radiative-convective boundary. Cassini has also measured southern-summertime asymmetries in atmospheric composition, including ammonia (the key species forming the topmost clouds), phosphine and para-hydrogen (both disequilibrium species) in the upper troposphere; and hydrocarbons deriving from the UV photolysis of methane in the stratosphere (principally ethane and acetylene). These chemical asymmetries are now altering in subtle ways due to (i) the changing chemical efficiencies with temperature and insolation and (ii) vertical motions associated with large-scale overturning in response to the seasonal temperature contrasts. Similarly, hemispheric contrasts in tropospheric aerosol opacity and coloration that were identified during the earliest phases of Cassini’s exploration have now reversed, suggesting an intricate link between the clouds and the temperatures. Finally, comparisons of observations between Voyager and Cassini (both observing in early northern spring, one Saturn year apart) show tantalizing suggestions of non-seasonal variability. Disentangling the competing effects of radiative balance, chemistry and dynamics in shaping the seasonal evolution of Saturn’s temperatures, clouds and composition remains the key challenge for the next generation of observations and numerical simulations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, M. M., LeClair, A., Woodard, E. et al. (2013), Distribution of CO2 in Saturn’s atmosphere from Cassini/CIRS infrared observations. Astrophys. J., 776 (Oct.), 73.Google Scholar
Appleby, J. F. and Hogan, J. S. (1984), Radiative-convective equilibrium models of Jupiter and Saturn. Icarus, 59(Sept.), 336366.CrossRefGoogle Scholar
Armstrong, E. S., Moses, J. I., Fletcher, L. N. et al. (2014) (Nov.), The chemistry of ethene in the storm beacon region on Saturn. Page submitted of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46.Google Scholar
Atreya, S. K., Donahue, T. M. and Kuhn, W. R. (1977), The distribution of ammonia and its photochemical products on Jupiter. Icarus, 31, 348355.CrossRefGoogle Scholar
Atreya, S. K., Donahue, T. M., Nagy, A. F. et al. (1984), Theory, measurements, and models of the upper atmosphere and ionosphere of Saturn. Pages 239277 of: Gehrels, T., and Matthews, M. S. (eds), Saturn. Tucson: University of Arizona Press.Google Scholar
Atreya, S. K., Kuhn, W. R. and Donahue, T. M. (1980), Saturn: Tropospheric ammonia and nitrogen. Geophys. Res. Lett., 7, 474476.Google Scholar
Atreya, S. K. and Wong, A.-S. (2005), Coupled clouds and chemistry of the giant planets: A case for multiprobes. Space Sci. Rev., 116 (Jan.), 121136.Google Scholar
Atreya, S. K., Wong, M. H., Owen, T. C. et al. (1999), A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. Plan. & Space Sci., 47, 12431262.Google Scholar
Baines, K. H., Momary, T. W., Roos-Serote, M. et al. (2006), North vs. south on Saturn: Discovery of a pronounced hemispherical asymmetry in Saturn’s 5-micron emission and associated deep cloud structure by Cassini/VIMS. B.A.A.S., 38, 488.Google Scholar
Barnet, C. D., Beebe, R. F. and Conrath, B. J. (1992), A seasonal radiative-dynamic model of Saturn’s troposphere. Icarus, 98, 94107.Google Scholar
Bell, J. M.,Westlake, J. and Waite, J. H., Jr. (2011), Simulating the time-dependent response of Titan’s upper atmosphere to periods of magnetospheric forcing. Geophys. Res. Lett., 38, L06202.CrossRefGoogle Scholar
Bellucci, A., Sicardy, B., Drossart, P. et al. (2009), Titan solar occultation observed by Cassini/VIMS: Gas absorption and constraints on aerosol composition. Icarus, 201, 198216.Google Scholar
Bézard, B., Drossart, P., Encrenaz, T. et al. (2001a), Benzene on the Giant Planets. Icarus, 154 (Dec.), 492500.Google Scholar
Bézard, B., Drossart, P., Lellouch, E. et al. (1989), Detection of arsine in Saturn. Astrophys. J., 346, 509513.Google Scholar
Bézard, B., Feuchtgruber, H., Moses, J. I. et al. (1998), Detection of methyl radicals (CH-3) on Saturn. Astron. Astrophys., 334, L41L44.Google Scholar
Bézard, B. and Gautier, D. (1985), A seasonal climate model of the atmospheres of the giant planets at the Voyager encounter time: I. Saturn’s stratosphere. Icarus, 61, 296310.Google Scholar
Bézard, B., Gautier, D. and Conrath, B. (1984), A seasonal model of the Saturnian upper troposphere Comparison with Voyager infrared measurements. Icarus, 60, 274288.Google Scholar
Bézard, B., Lellouch, E., Strobel, D. et al. (2002), Carbon monoxide on Jupiter: Evidence for both internal and external sources. Icarus, 159, 95111.Google Scholar
Bézard, B., Moses, J. I., Lacy, J. et al. (2001b) (Nov.), Detection of Ethylene (C2H4) on Jupiter and Saturn in Non-Auroral Regions. Pages 1079 ff. of: Bulletin of the American Astronomical Society.Google Scholar
Bjoraker, G. L., Larson, H. P. and Fink, U. (1981), A study of ethane on Saturn in the 3 micron region. Astrophys. J., 248, 856862.Google Scholar
Bregman, J. D., Lester, D. F. and Rank, D. M. (1975), Observation of the nu-squared band of PH3 in the atmosphere of Saturn. Astrophys. J., 202.Google Scholar
Briggs, F. H. and Sackett, P. D. (1989), Radio observations of Saturn as a probe of its atmosphere and cloud structure. Icarus, 80, 77103.Google Scholar
Burgdorf, M. J., Orton, G. S., Encrenaz, T. et al. (2004), Far-infrared spectroscopy of the giant planets: measurements of ammonia and phosphine at Jupiter and Saturn and the continuum of Neptune. Advances in Space Research, 34, 22472250.Google Scholar
Caldwell, J. (1977), The atmosphere of Saturn: An infrared perspective. Icarus, 30(Mar.), 493510.CrossRefGoogle Scholar
Caldwell, J., Gillett, F. C., Nolt, I. G. et al. (1978), Spatially resolved infrared observations of Saturn: I. Equatorial limb scans at 20 microns. Icarus, 35 (Sept.), 308312.Google Scholar
Carlson, B. E., Caldwell, J. and Cess, R. D. (1980), A model of Saturn’s seasonal stratosphere at the time of the Voyager encounters. Journal of Atmospheric Sciences, 37 (Aug.), 18831885.Google Scholar
Carlson, R. W., Baines, K. H., Anderson, W. S. et al. (2012), (Oct.), Chromophores from Photolyzed Ammonia Reacting with Acetylene: Application to Jupiter’s Great Red Spot. Page #205.01 of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 44.Google Scholar
Cavalié, T., Billebaud, F., Dobrijevic, M. et al. (2009), First observation of CO at 345 GHz in the atmosphere of Saturn with the JCMT: New constraints on its origin. Icarus, 203 (Oct.), 531540.Google Scholar
Cavalié, T., Hartogh, P., Billebaud, F. et al. (2010), A cometary origin for CO in the stratosphere of Saturn? Astron. Astrophys, 510 (Feb.), A88.Google Scholar
Cess, R. D. and Caldwell, J. (1979), A Saturnian stratospheric seasonal climate model. Icarus, 38, 349357.Google Scholar
Conrath, B. J., Gierasch, P. J. and Leroy, S. S. (1990), Temperature and circulation in the stratosphere of the outer planets. Icarus, 83, 255281.Google Scholar
Conrath, B. J., Gierasch, P. J. and Ustinov, E. A. (1998), Thermal structure and para hydrogen fraction on the outer planets from Voyager IRIS measurements. Icarus, 135, 501517.Google Scholar
Conrath, B. J. and Pirraglia, J. A. (1983), Thermal structure of Saturn from Voyager infrared measurements: Implications for atmospheric dynamics. Icarus, 53, 286292.Google Scholar
Courtin, R., Gautier, D., Marten, A. et al. (1984), The composition of Saturn’s atmosphere at northern temperate latitudes from Voyager IRIS spectra – NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio. Astrophys. J., 287, 899916.Google Scholar
Davis, G. R., Griffin, M. J., Naylor, D. A. et al. (1996), ISO LWS measurement of the far-infrared spectrum of Saturn. Astron. Astrophys., 315, L393L396.Google Scholar
de Graauw, T., Feuchtgruber, H., Bézard, B. et al. (1997), First results of ISO-SWS observations of Saturn: detection of CO2, CH3C2 H, C4H2 and tropospheric H2O. Astron. Astrophys., 321, L13L16.Google Scholar
de Pater, I. and Massie, S. T. (1985), Models of the millimeter-centimeter spectra of the giant planets. Icarus, 62, 143171.Google Scholar
Del Genio, A. D., Achterberg, R. K., Baines, K. H. et al. (2009), Saturn Atmospheric Structure and Dynamics, In: Saturn from Cassini-Huygens. Springer. Chap. 6, pages 113159.CrossRefGoogle Scholar
Dobrijevic, M., Cavalié, T. and Billebaud, F. (2011), A methodology to construct a reduced chemical scheme for 2D-3D photochemical models: Application to Saturn. Icarus, 214, 275285.Google Scholar
Dobrijevic, M., Hébrard, E., Loison, J. C. et al. (2014), Coupling of oxygen, nitrogen, and hydrocarbon species in the photochemistry of Titan’s atmosphere. Icarus, 228, 324346.Google Scholar
Dowling, T. E., Greathouse, T. K., Sussman, M. G. et al. (2010) (Oct.), New Radiative Transfer Capability in the EPIC Atmospheric Model with Application to Saturn and Uranus. Page 1021 of: AAS/Division for Planetary Sciences Meeting Abstracts #42. Bulletin of the American Astronomical Society, vol. 42.Google Scholar
Edgington, S. G., Atreya, S. K., Trafton, L. M. et al. (1997), Phosphine mixing ratios and eddy mixing coefficients in the troposphere of Saturn. Bulletin of the American Astronomical Society, 29, 992.Google Scholar
Edgington, S. G., Atreya, S. K., Wilson, E. H. et al. (2012), Photochemistry in Saturn’s Ring Shadowed Atmosphere: Production Rates of Key Atmospheric Molecules and Preliminary Analysis of Observations. AGU Fall Meeting Abstracts, Dec., B1946.Google Scholar
Encrenaz, T., Owen, T. and Woodman, J. H. (1974), The abundance of ammonia on Jupiter, Saturn and Titan. Astron. Astrophys., 37 (Dec.), 4955.Google Scholar
Fegley, Jr., B. and Lodders, K. (1994), Chemical models of the deep atmospheres of Jupiter and Saturn. Icarus, 110 (July), 117154.Google Scholar
Fegley, B. and Prinn, R. G. (1985), Equilibrium and nonequilibrium chemistry of Saturn’s atmosphere: Implications for the observability of PH3, N2, CO, and GeH4. Astrophys. J., 299, 10671078.Google Scholar
Ferris, J. P. and Ishikawa, Y. (1988), Formation of HCN and acetylene oligomers by photolysis of ammonia in the presence of acetylene: Applications to the atmospheric chemistry of Jupiter. J. Am. Chem. Soc., 110, 43064312.Google Scholar
Fink, U., Larson, H. P., Bjoraker, G. L. et al. (1983), The NH3 spectrum in Saturn’s 5 micron window. ApJ, 268 (May), 880888.Google Scholar
Flasar, F. M., Achterberg, R. K., Conrath, B. J. et al. (2005), Temperatures, winds, and composition in the Saturnian system. Science, 307, 12471251.Google Scholar
Flasar, F. M., Kunde, V. G., Abbas, M. M. et al. (2004), Exploring the Saturn system in the thermal infrared: The composite infrared spectrometer. Space Science Reviews, 115, 169297.Google Scholar
Fletcher, L. N., Achterberg, R. K., Greathouse, T. K. et al. (2010), Seasonal change on Saturn from Cassini/CIRS observations, 2004–2009. Icarus, 208 (July), 337352.Google Scholar
Fletcher, L. N., Baines, K. H., Momary, T. W. et al. (2011), Saturn’s tropospheric composition and clouds from Cassini/VIMS 4.6–5.1 µm nightside spectroscopy. Icarus, 214 (Aug.), 510533.Google Scholar
Fletcher, L. N., Hesman, B. E., Achterberg, R. K. et al. (2012b), The origin and evolution of Saturn’s 2011–2012 stratospheric vortex. Icarus, 221 (Nov.), 560586.Google Scholar
Fletcher, L. N., Irwin, P. G. J., Achterberg, R. K. et al. (2016), Seasonal variability of Saturn’s tropospheric temperatures, winds and para-H2 from Cassini Far-IR Spectroscopy. Icarus, 264, 137159.Google Scholar
Fletcher, L. N., Irwin, P. G. J., Orton, G. S. et al. (2008), Temperature and composition of Saturn’s polar hot spots and hexagon. Science, 319 (Jan.), 7982.Google Scholar
Fletcher, L. N., Irwin, P. G. J., Sinclair, J. A. et al. (2015), Seasonal evolution of Saturn’s polar temperatures and composition. Icarus, 131153.Google Scholar
Fletcher, L. N., Irwin, P. G. J., Teanby, N. A. et al. (2007a), Characterising Saturn’s vertical temperature structure from Cassini/CIRS. Icarus, 189, 457478.Google Scholar
Fletcher, L. N., Irwin, P. G. J., Teanby, N. A. (2007b), The meridional phosphine distribution in Saturn’s upper troposphere from Cassini/CIRS observations. Icarus, 188 (May), 7288.Google Scholar
Fletcher, L. N., Irwin, P. G. J., Teanby, N. A. (2009), Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus, 202 (Aug.), 543564.Google Scholar
Fletcher, L. N., Swinyard, B., Salji, C. et al. (2012a), Sub-millimetre spectroscopy of Saturn’s trace gases from Herschel/SPIRE. Astron. Astrophys., 539 (Mar.), A44.Google Scholar
Fouchet, T., Guerlet, S., Strobel, D. F. et al. (2008), An equatorial oscillation in Saturn’s middle atmosphere. Nature, 453(7192), 200202.CrossRefGoogle ScholarPubMed
Fouchet, T., Lellouch, E. and Feuchtgruber, H. (2003), The hydrogen ortho-to-para ratio in the stratospheres of the giant planets. Icarus, 161, 127143.Google Scholar
Fouchet, T., Moses, J. I. and Conrath, B. J. (2009), Saturn: Composition and Chemistry, In: Saturn from Cassini-Huygens, Springer, Chap. 5, pages 83 ff.Google Scholar
Friedson, A. J. and Moses, J. I. (2012), General circulation and transport in Saturn’s upper troposphere and stratosphere. Icarus, 218 (Apr.), 861875.Google Scholar
Friedson, A. J., Wong, A.-S. and Yung, Y. L. (2002), Models for polar haze formation in Jupiter’s stratosphere. Icarus, 158, 389400.Google Scholar
Gans, B., Boyé-Péronne, S., Broquier, M. et al. (2011), Photolysis of methane revisited at 121.6 nm and at 118.2 nm: quantum yields of the primary products, measured by mass spectrometry. Physical Chemistry Chemical Physics, 13, 8140.Google Scholar
Gezari, D. Y., Mumma, M. J., Espenak, F. et al. (1989), New features in Saturn’s atmosphere revealed by high-resolution thermal infrared images. Nature, 342, 777780.Google Scholar
Gillett, F. C. and Forrest, W. J. (1974), The 7.5- to 13.5-MICRON spectrum of Saturn. Astrophys. J.l, 187(Jan.), L37.Google Scholar
Gillett, F. C. and Orton, G. S. (1975), Center-to-limb observations of Saturn in the thermal infrared. Astrophys. J., 195 (Jan.), L47L49.Google Scholar
Giver, L. P. and Spinrad, H. (1966), Molecular Hydrogen Features in the Spectra of Saturn and Uranus. Icarus, 5, 586589.Google Scholar
Gladstone, G. R., Allen, M. and Yung, Y. L. (1996), Hydrocarbon photochemistry in the upper atmosphere of Jupiter. Icarus, 119, 152.Google Scholar
Greathouse, T. K., Lacy, J. H., Bézard, B. et al. (2005), Meridional variations of temperature, C2H2 and C2H6 abundances in Saturn’s stratosphere at southern summer solstice. Icarus, 177, 1831.Google Scholar
Greathouse, T. K., Lacy, J. H., Bézard, B. (2006), The first detection of propane on Saturn. Icarus, 181 (Mar.), 266271.Google Scholar
Greathouse, T., Moses, J., Fletcher, L. et al. (2010) (May), Seasonal Temperature Variations in Saturn’s Stratosphere: Radiative Seasonal Model vs. Observations. Page 4806 of: EGU General Assembly Conference Abstracts. EGU General Assembly Conference Abstracts, vol. 12.Google Scholar
Greathouse, T. K., Strong, S., Moses, J. et al. (2008), A General Radiative Seasonal Climate Model Applied to Saturn, Uranus, and Neptune. AGU Fall Meeting Abstracts, Dec., P21B06.Google Scholar
Grossman, A. W., Muhleman, D. O. and Berge, G. L. (1989), High-resolution microwave images of Saturn. Science, 245, 12111215.Google Scholar
Guerlet, S., Fouchet, T., Bézard, B. et al. (2009), Vertical and meridional distribution of ethane, acetylene and propane in Saturn’s stratosphere from CIRS/Cassini limb observations. Icarus, 203, 214232.Google Scholar
Guerlet, S., Fouchet, T., Bézard, B. (2010), Meridional distribution of CH3C2 H and C4H2 in Saturn’s stratosphere from CIRS/Cassini limb and nadir observations. Icarus, 209 (Oct.), 682695.Google Scholar
Guerlet, S., Fouchet, T., Bézard, B. (2011), Evolution of the equatorial oscillation in Saturn’s stratosphere between 2005 and 2010 from Cassini/CIRS limb data analysis. Geophysical Research Letters, 38 (May), 9201.Google Scholar
Guerlet, S., Fouchet, T., Vinatier, S. et al. (2015), Stratospheric benzene and hydrocarbon aerosols detected in Saturn’s auroral regions. Astronomy and Astrophysics, 580 (Aug.), A89.Google Scholar
Guerlet, S., Spiga, A., Sylvestre, M. et al. (2014), Global climate modeling of Saturn’s atmosphere. Part I: Evaluation of the radiative transfer model. Icarus, 238 (Aug.), 110124.Google Scholar
Guillemin, J.-C., Janati, T. and Lassalle, L. (1995), Photolysis of phosphine in the presence of acetylene and propyne, gas mixtures of planetary interest. Advances in Space Research, 16, 8592.Google Scholar
Hanel, R., Conrath, B., Flasar, F. M. et al. (1981), Infrared observations of the Saturnian system from Voyager 1. Science, 212, 192200.Google Scholar
Hanel, R., Conrath, B., Flasar, F. M. (1982), Infrared observations of the Saturnian system from Voyager 2. Science, 215, 544548.Google Scholar
Hanel, R. A., Conrath, B. J., Jennings, D. E. et al. (2003), Exploration of the Solar System by Infrared Remote Sensing: Second Edition. Exploration of the Solar System by Infrared Remote Sensing, by Hanel, R. A. and Conrath, B. J. and Jennings, D. E. and Samuelson, R. E.. Cambridge: Cambridge University Press, April 2003.Google Scholar
Hartogh, P., Lellouch, E., Moreno, R. et al. (2011), Direct detection of the Enceladus water torus with Herschel. Astron. Astrophys, 532 (Aug.), L2.Google Scholar
Hébrard, E., Dobrijevic, M., Loison, J. C. et al. (2013), Photochemistry of C3Hp hydrocarbons in Titan’s stratosphere revisited. Astron. Astrophys., 552, A132.CrossRefGoogle Scholar
Hesman, B. E., Bjoraker, G. L., Sada, P. V. et al. (2012), Elusive Ethylene Detected in Saturn’s Northern Storm Region. Astrophys. J., 760 (Nov.), 24.Google Scholar
Hesman, B. E., Jennings, D. E., Sada, P. V. et al. (2009), Saturn’s latitudinal C2H2 and C2H6 abundance profiles from Cassini/CIRS and ground-based observations. Icarus, 202 (July), 249259.Google Scholar
Holton, J. R. (2004), An Introduction to Dynamic Meteorology. Academic Press.Google Scholar
Howett, C. J. A., Irwin, P. G. J., Teanby, N. A. et al. (2007), Meridional variations in stratospheric acetylene and ethane in the Saturnian atmosphere as determined from Cassini/CIRS measurements. Icarus, 190(2), 556572.Google Scholar
Hue, V., Cavalié, T., Dobrijevic, M. et al. (2015), 2D photochemical modeling of Saturn’s stratosphere. Part I: Seasonal variation of atmospheric composition without meridional transport. Icarus, 257 (Sept.), 163184.Google Scholar
Hurley, J., Fletcher, L. N., Irwin, P. G. J. et al. (2012), Latitudinal variation of upper tropospheric NH3 on Saturn derived from Cassini/CIRS far-infrared measurements. Plan. & Space Sci., 73 (Dec.), 347363.Google Scholar
Ingersoll, A. P., Beebe, R. F., Conrath, B. J. et al. (1984), Structure and dynamics of Saturn’s atmosphere. Saturn. Pages 195238.Google Scholar
Janssen, M. A., Ingersoll, A. P., Allison, M. D. et al. (2013), Saturn’s thermal emission at 2.2-cm wavelength as imaged by the Cassini RADAR radiometer. Icarus, 226 (Sept.), 522535.Google Scholar
Kalogerakis, K. S., Marschall, J., Oza, A. U. et al. (2008), The coating hypothesis for ammonia ice particles in Jupiter: Labora-tory experiments and optical modeling. Icarus, 196 (July), 202215.Google Scholar
Karkoschka, E. and Tomasko, M. (2005), Saturn’s vertical and latitudinal cloud structure 1991 – 2004 from HST imaging in 30 filters. Icarus, 179, 195221.Google Scholar
Karkoschka, E. and Tomasko, M. G. (1992), Saturn’s upper troposphere 1986–1989. Icarus, 97, 161181.Google Scholar
Karkoschka, E. and Tomasko, M. G. (1993), Saturn’s upper atmospheric hazes observed by the Hubble Space Telescope. Icarus, 106, 428441.CrossRefGoogle Scholar
Kaye, J. A. and Strobel, D. F. (1983a), Formation and photochemistry of methylamine in Jupiter’s atmosphere. Icarus, 55, 399419.Google Scholar
Kaye, J. A. and Strobel, D. F.(1983b), HCN formation on Jupiter: The coupled photochemistry of ammonia and acetylene. Icarus, 54, 417433.Google Scholar
Kaye, J. A. and Strobel, D. F. (1983c), Phosphine photochemistry in Saturn’s atmosphere. Geophys. Res. Lett., 10, 957960.Google Scholar
Kaye, J. A. and Strobel, D. F. (1984), Phosphine photochemistry in the atmosphere of Saturn. Icarus, 59 (Sept.), 314335.Google Scholar
Keane, T. C., Yuan, F. and Ferris, J. P. (1996), Potential Jupiter atmospheric constituents: Candidates for the mass spectrometer in the Galileo atmospheric probe. Icarus, 122, 205207.Google Scholar
Kerola, D. X., Larson, H. P. and Tomasko, M. G. (1997), Analysis of the near-IR spectrum of Saturn: A comprehensive radiative transfer model of its middle and upper troposphere. Icarus, 127, 190212.Google Scholar
Kim, J. H., Kim, S. J., Geballe, T. R. et al. (2006), High-resolution spectroscopy of Saturn at 3 microns: CH4, CH3D, C2H2, C2H6, PH3, clouds, and haze. Icarus, 185 (Dec.), 476486.Google Scholar
Kim, S. J. and Geballe, T. R. (2005), The 2.9–4.2 micron spectrum of Saturn: Clouds and CH4, PH3, and NH3. Icarus, 179, 449458.Google Scholar
Kim, S. J., Sim, C. K., Lee, D. W. et al. (2012), The three-micron spectral feature of the Saturnian haze: Implications for the haze composition and formation process. Planet. Space Sci., 65, 122129.Google Scholar
Krasnopolsky, V. A. (2014), Chemical composition of Titan’s atmosphere and ionosphere: Observations and the photochemical model. Icarus, 236, 8391.Google Scholar
Lane, A. L., Hord, C. W., West, R. A. et al. (1982), Photopolarimetry from Voyager 2: Preliminary results on Saturn, Titan, and the rings. Science, 215(Jan.), 537543.Google Scholar
Lara, L. M., Lellouch, E., González, M. et al. (2014), A time-dependent photochemical model for Titan’s atmosphere and the origin of H2O. Astron. Astrophys., 566, A143.Google Scholar
Laraia, A. L., Ingersoll, A. P., Janssen, M. A. et al. (2013), Analysis of Saturn’s thermal emission at 2.2-cm wavelength: Spatial distribution of ammonia vapor. Icarus, 226(Sept.), 641654.Google Scholar
Larson, H. P. (1980), Infrared spectroscopic observations of the outer planets, their satellites, and the asteroids. Annual Review of Astronomy and Astrophysics, 18, 4375.Google Scholar
Lavvas, P., Galand, M., Yelle, R. V. et al. (2011), Energy deposition and primary chemical products in Titan’s upper atmosphere. Icarus, 213, 233251.Google Scholar
Lebonnois, S. (2005), Benzene and aerosol production in Titan and Jupiter’s atmospheres: a sensitivity study. Planet. Space Sci., 53, 486497.Google Scholar
Lellouch, E., Bézard, B., Fouchet, T. et al. (2001), The deuterium abundance in Jupiter and Saturn from ISO-SWS observations. Astron. Astrophys., 370, 610622.Google Scholar
Lewis, J. S. and Fegley, M. B., Jr. (1984), Vertical distribution of disequilibrium species in Jupiter’s troposphere. Space Sci. Rev., 39(Oct.), 163192.Google Scholar
Lewis, J. S. and Prinn, R. G. (1984), Planets and Their Atmospheres: Origin and Evolution. Orlando: Academic Press.Google Scholar
Li, L., Achterberg, R. K., Conrath, B. J. et al. (2013), Strong temporal variation over one Saturnian year: From Voyager to Cassini. Scientific Reports, 3 (Aug.).Google Scholar
Li, L., Conrath, B. J., Gierasch, P. J. et al. (2010), Saturn’s emitted power. Journal of Geophysical Research (Planets), 115 (Nov.), 11002.Google Scholar
Li, L., Jiang, X., Ingersoll, A. P. et al. (2011), Equatorial winds on Saturn and the stratospheric oscillation. Nature Geoscience, 4 (Nov.), 750752.Google Scholar
Lindal, G. F., Sweetnam, D. N. and Eshleman, V. R. (1985), The atmosphere of Saturn: An analysis of the Voyager radio occultation measurements. Astron. J., 90, 11361146.Google Scholar
Lodders, K. and Fegley, B. (2002), Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars: I. Carbon, nitrogen, and oxygen. Icarus, 155 (Feb.), 393424.Google Scholar
Loison, J. C., Hébrard, E., Dobrijevic, M. et al. (2015), The neutral photochemistry of nitriles, amines and imines in the atmosphere of Titan. Icarus, 247 (Feb.), 218247.Google Scholar
Mandt, K. E., Gell, D. A., Perry, M. et al. (2012), Ion densities and composition of Titan’s upper atmosphere derived from the Cassini Ion Neutral Mass Spectrometer: Analysis methods and comparison of measured ion densities to photochemical model simulations. J. Geophys. Res., 117, E10006.Google Scholar
Massie, S. T. and Hunten, D. M. (1982), Conversion of para and ortho hydrogen in the Jovian planets. Icarus, 49, 213226.Google Scholar
Moos, H. W. and Clarke, J. T. (1979), Detection of acetylene in the Saturnian atmosphere, using the IUE satellite. Astrophys. J., 229, L107.Google Scholar
Moreno, R., Lellouch, E., Lara, L. M. et al. (2012), The abundance, vertical distribution and origin of H2O in Titan’s atmosphere: Herschel observations and photochemical modelling. Icarus, 221, 753767.Google Scholar
Moses, J. I., Armstrong, E. S., Fletcher, L. N. et al. (2014) (Nov.), Evolution of stratospheric chemistry in the Saturn storm beacon. Page submitted of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46.Google Scholar
Moses, J. I. and Greathouse, T. K. (2005), Latitudinal and seasonal models of stratospheric photochemistry on Saturn: Comparison with infrared data from IRTF/TEXES. Journal of Geophysical Research (Planets), 110 (Sept.), E09007.Google Scholar
Moses, J. I., Bézard, B., Lellouch, E. et al. (2000a), Photochemistry of Saturn’s atmosphere. I. Hydrocarbon chemistry and comparisons with ISO observations. Icarus, 143, 244298.Google Scholar
Moses, J. I., Fouchet, T., Bézard, B. et al. (2005), Photochemistry and diffusion in Jupiter’s stratosphere: Constraints from ISO observations and comparisons with other giant planets. Journal of Geophysical Research (Planets), 110 (Aug.), E08001.Google Scholar
Moses, J. I., Lellouch, E., Bézard, B. et al. (2000b), Photochemistry of Saturn’s atmosphere. II. Effects of an influx of external oxygen. Icarus, 145 (May), 166202.Google Scholar
Moses, J. I., Liang, M.-C., Yung, Y. L. et al. (2007) (Mar.), Two-Dimensional Photochemical Modeling of Hydrocarbon Abundances on Saturn. Page 2196 of: Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, vol. 38.Google Scholar
Moses, J. I., Visscher, C., Fortney, J. J. et al. (2011), Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. Astrophys. J., 737 (Aug.), 15.Google Scholar
Moses, J. I., Visscher, C., Keane, T. C. et al. (2010), On the abundance of non-cometary HCN on Jupiter. Faraday Discussions, 147, 103136.Google Scholar
Nava, D. F., Payne, W. A., Marston, G. et al. (1993), The reaction of atomic hydrogen with germane: Temperature dependence of the rate constant and implications for germane photochemistry in the atmospheres of Jupiter and Saturn. J. Geophys. Res., 98, 55315537.Google Scholar
Noll, K. S., Geballe, T. R. and Knacke, R. F. (1989), Arsine in Saturn and Jupiter. Astrophys. J., 338, L71L74.Google Scholar
Noll, K. S., Knacke, R. F., Geballe, T. R. et al. (1986), Detection of carbon monoxide in Saturn. ApJ Letters, 309 (Oct.), L91L94.Google Scholar
Noll, K. S., Knacke, R. F., Geballe, T. R. (1988), Evidence for germane in Saturn. Icarus, 75, 409422.Google Scholar
Noll, K. S. and Larson, H. P. (1990), The spectrum of Saturn from 1990–2230 cm−1: abundances of AsH3, CH3D, CO, GeH4, and PH3. Icarus, 89, 168189.Google Scholar
Noll, K. S. and Larson, H. P. (1991), The spectrum of Saturn from 1990 to 2230 cm−1: Abundances of AsH3, CH3D, CO, GeH4, NH3, and PH3. Icarus, 89(Jan.), 168189.Google Scholar
O’Donoghue, J., Stallard, T. S., Melin, H. et al. (2013), The domination of Saturn’s low-latitude ionosphere by ring ‘rain’. Nature, 496 (Apr.), 193195.Google Scholar
Ollivier, J. L., Billebaud, F., Drossart, P. et al. (2000), Seasonal effects in the thermal structure of Saturn’s stratosphere from infrared imaging at 10 microns. Astron. Astrophys., 356, 347356.Google Scholar
Orton, G. S., Baines, K. H., Cruikshank, D. et al. (2009v Review of Knowledge Prior to the Cassini-Huygens Mission and Concurrent Research, In: Saturn from Cassini-Huygens. Springer. Chap. 2, pages 954.Google Scholar
Orton, G. S. and Ingersoll, A. P. (1980), Saturn’s atmospheric temperature structure and heat budget. Journal of Geophysical Research, 85 (Nov.), 58715881.Google Scholar
Orton, G. S., Moses, J. I., Fletcher, L. N. et al. (2014), Mid-infrared spectroscopy of Uranus from the Spitzer infrared spectrometer: 2. Determination of the mean composition of the upper troposphere and stratosphere. Icarus, 243 (Nov.), 471493.CrossRefGoogle Scholar
Orton, G. S., Serabyn, E. and Lee, Y. T. (2000), Vertical distribution of PH3 in Saturn from observations of its 1–0 and 3–2 rotational lines. Icarus, 146, 4859.Google Scholar
Orton, G. S., Serabyn, E. and Lee, Y. T. (2001), Erratum, Volume 146, Number 1, pages 4859 (2000), in the article Vertical distribution of PH3 in Saturn from observations of its 1–0 and 3–2 rotational lines, Icarus, 149, 489490.Google Scholar
Orton, G. S. and Yanamandra-Fisher, P. A. (2005), Saturn’s temperature field from high-resolution middle-infrared imaging. Science, 307, 696698.Google Scholar
Orton, G. S., Yanamandra-Fisher, P. A., Fisher, B. M. et al. (2008), Semi-annual oscillations in Saturn’s low-latitude stratospheric temperatures. Nature, 453 (May), 196198.Google Scholar
Palotai, C., Dowling, T. E. and Fletcher, L. N. (2014), 3D Modeling of interactions between Jupiter’s ammonia clouds and large anticyclones. Icarus, 232, 141156.Google Scholar
Pérez-Hoyos, S., Sánchez-Lavega, A. and French, R. G. (2006), Short-term changes in the belt/zone structure of Saturn’s Southern Hemisphere (1996–2004). Astron. Astrophys., 460 (Dec.), 641645.Google Scholar
Pérez-Hoyos, S., Sánchez-Lavega, A., French, R. G. et al. (2005), Saturn’s cloud structure and temporal evolution from ten years of Hubble Space Telescope images (1994–2003). Icarus, 176, 155174.Google Scholar
Plessis, S., Carrasco, N., Dobrijevic, M. et al. (2012), Production of neutral species in Titan’s ionosphere through dissociative recombination of ions. Icarus, 219, 254266.Google Scholar
Prangé, R., Fouchet, T., Courtin, R. et al. (2006), Latitudinal variation of Saturn photochemistry deduced from spatially-resolved ultraviolet spectra. Icarus, 180, 379392.Google Scholar
Prinn, R. G. and Barshay, S. S. (1977), Carbon monoxide on Jupiter and implications for atmospheric convection. Science, 198, 10311034.Google Scholar
Prinn, R. G. and Fegley, B., Jr. (1981), Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae – Implications for satellite composition. Astrophys. J, 249 (Oct.), 308317.Google Scholar
Prinn, R. G., Larson, H. P., Caldwell, J. J. et al. (1984), Composition and chemistry of Saturn’s atmosphere. Saturn. Tucson: University of Arizona Press, pages 88149.Google Scholar
Prinn, R. G. and Owen, T. (1976), Chemistry and spectroscopy of the Jovian atmosphere. Pages 319371 of: Gehrels, T., (ed.), Jupiter. Tucson: University of Arizona Press.Google Scholar
Pryor, W. R. and Hord, C. W. (1991), A study of photopolarimeter system UV absorption data on Jupiter, Saturn, Uranus, and Neptune: Implications for auroral haze formation. Icarus, 91, 161172.Google Scholar
Rages, K. A. and Barth, E. L. (2012) (Oct.), Saturn Limb Hazes as Seen from Cassini. Page #500.05 of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 44.Google Scholar
Rieke, G. H. (1975), The thermal radiation of Saturn and its rings. Icarus, 26 (Sept.), 3744.Google Scholar
Roman, M. T., Banfield, D. and Gierasch, P. J. (2013), Saturn’s cloud structure inferred from Cassini ISS. Icarus, 225 (July), 93110.Google Scholar
Sada, P. V., Bjoraker, G. L., Jennings, D. E. et al. (2005), Observations of C2H6 and C2H2 in the stratosphere of Saturn. Icarus, 173, 499507.Google Scholar
Schinder, P. J., Flasar, F. M., Marouf, E. A. et al. (2011), Saturn’s equatorial oscillation: Evidence of descending thermal structure from Cassini radio occultations. Geophys. Res. Lett., 38 (Apr.), 8205.Google Scholar
Sinclair, J. A., Irwin, P. G. J., Fletcher, L. N. et al. (2013), Seasonal variations of temperature, acetylene and ethane in Saturn’s atmosphere from 2005 to 2010, as observed by Cassini-CIRS. Icarus, 225 (July), 257271.Google Scholar
Sinclair, J. A., Irwin, P. G. J., Fletcher, L. N. (2014), From Voyager-IRIS to Cassini-CIRS: Interannual variability in Saturn’s stratosphere? Icarus, 233 (May), 281292.Google Scholar
Spiga, A., Guerlet, S., Indurain, M. et al. (2014) (Nov.), An exploration of Saturn’s stratospheric dynamics through Global Climate Modeling. Page #508.09 of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46.Google Scholar
Sromovsky, L. A., Baines, K. H. and Fry, P. M. (2013), Saturn’s Great Storm of 2010–2011: Evidence for ammonia and water ices from analysis of VIMS spectra. Icarus, 226 (Sept.), 402418.Google Scholar
Stam, D. M., Banfield, D., Gierasch, P. J. et al. (2001), Near-IR Spectrophotometry of Saturnian Aerosols-Meridional and Vertical Distribution. Icarus, 152, 407422.Google Scholar
Strobel, D. F. (1975), Aeronomy of the major planets: Photochemistry of ammonia and hydrocarbons. Reviews of Geophysics and Space Physics, 13, 372382.Google Scholar
Strobel, D. F. (1977), NH3 and PH3 photochemistry in the Jovian atmosphere. Astrophys. J. Lett., 214, L97L99.Google Scholar
Strobel, D. F. (1983), Photochemistry of the reducing atmospheres of Jupiter, Saturn, and Titan. International Reviews in Physical Chemistry, 3, 145176.Google Scholar
Strobel, D. F. (2005), Photochemistry in outer solar system atmospheres. Space Science Reviews, 116, 155170.Google Scholar
Sugiyama, K., Nakajima, K., Odaka, M. et al. (2011), Intermittent cumulonimbus activity breaking the three-layer cloud structure of Jupiter. Geophys. Res. Lett., 38, L13201.Google Scholar
Sugiyama, K., Nakajima, K., Odaka, M. (2014), Numerical simulations of Jupiter’s moist convection layer: Structure and dynamics in statistically steady states. Icarus, 229 (Feb.), 7191.Google Scholar
Sylvestre, M., Guerlet, S., Fouchet, T. et al. (2015), Seasonal changes in Saturn’s stratosphere inferred from Cassini/CIRS limb observations. Icarus, 258 (Sept.), 224238.Google Scholar
Tautermann, C. S., Wellenzohn, B. and Clary, D. C. (2006), Rates of the reaction C2H3 + H2 C2H4 + H. Molecular Physics, 104, 151158.Google Scholar
Temma, T., Chanover, N. J., Simon-Miller, A. A. et al. (2005), Vertical structure modeling of Saturn’s equatorial region using high spectral resolution imaging. Icarus, 175, 464489.Google Scholar
Tokunaga, A. T., Caldwell, J., Gillett, F. C. et al. (1978), Spatially resolved infrared observations of Saturn: II. The temperature enhancement at the South Pole of Saturn. Icarus, 36 (Nov.), 216222.Google Scholar
Tokunaga, A. and Cess, R. D. (1977), A model for the temperature inversion within the atmosphere of Saturn. Icarus, 32 (Nov.), 321327.Google Scholar
Tokunaga, A. T., Dinerstein, H. L., Lester, D. F. et al. (1980), The phosphine abundance on Saturn derived from new 10-micrometer spectra. Icarus, 42, 7985.Google Scholar
Tokunaga, A., Knacke, R. F. and Owen, T. (1975), The detection of ethane on Saturn. Astrophys. J., 197, L77.Google Scholar
Tomasko, M. G. and Doose, L. R. (1984), Polarimetry and photometry of Saturn from Pioneer 11 Observations and constraints on the distribution and properties of cloud and aerosol particles. Icarus, 58, 134.Google Scholar
Tseng, W.-L. and Ip, W.-H. (2011), An assessment and test of Enceladus as an important source of Saturn’s ring atmosphere and ionosphere. Icarus, 212 (Mar.), 294299.Google Scholar
van der Tak, F., de Pater, I., Silva, A. et al. (1999), Time Variability in the Radio Brightness Distribution of Saturn. Icarus, 142 (Nov.), 125147.Google Scholar
Vander Auwera, J., Moazzen-Ahmadi, N. and Flaud, J.-M. (2007), Toward an Accurate Database for the 12 µm Region of the Ethane Spectrum. Astrophysical Journal, 662 (June), 750757.Google Scholar
Vasavada, A. R., Hörst, S. M., Kennedy, M. R. et al. (2006), Cassini imaging of Saturn: Southern hemisphere winds and vortices. Journal of Geophysical Research (Planets), 111(E10), 5004.Google Scholar
Visscher, C. and Fegley, B. J. (2005), Chemical Constraints on the Water and Total Oxygen Abundances in the Deep Atmosphere of Saturn. Astrophys. J., 623, 12211227.Google Scholar
Visscher, C., Lodders, K. and Fegley, B., Jr. (2006), Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars. II. Sulfur and Phosphorus. Astrophys. J. Letters, 648 (Sept.), 11811195.Google Scholar
Visscher, C. and Moses, J. I. (2011), Quenching of carbon monoxide and methane in the atmospheres of cool brown dwarfs and hot Jupiters. Astrophys. J., 738, 72.Google Scholar
Visscher, C., Moses, J. I. and Saslow, S. A. (2010), The deep water abundance on Jupiter: New constraints from thermochemical kinetics and diffusion modeling. Icarus, 209, 602615.Google Scholar
Visscher, C., Sperier, A. D., Moses, J. I. et al. (2009) (Mar.), Phosphine and ammonia photochemistry in Jupiter’s troposphere. Page 1201 of: Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, vol. 40.Google Scholar
Vuitton, V., Yelle, R. V. and Lavvas, P. (2009), Composition and chemistry of Titan’s thermosphere and ionosphere. Royal Society of London Philosophical Transactions Series A, 367, 729741.Google Scholar
Vuitton, V., Yelle, R. V., Lavvas, P. et al. (2012), Rapid association reactions at low pressure: Impact on the formation of hydrocarbons on Titan. Astrophys. J., 744, 11.Google Scholar
Weidenschilling, S. J. and Lewis, J. S. (1973), Atmospheric and cloud structures of the jovian planets. Icarus, 20, 465476.Google Scholar
Weisstein, E. W. and Serabyn, E. (1994), Detection of the 267 GHz J = 1–0 rotational transition of PH3 in Saturn with a new fourier transfer spectrometer. Icarus, 109, 367381.Google Scholar
Weisstein, E. W. and Serabyn, E. (1996), Submillimeter line search in Jupiter and Saturn. Icarus, 123, 2336.Google Scholar
West, R. A., Baines, K. H., Karkoschka, E. et al. (2009), Clouds and Aerosols in Saturn’s Atmosphere, In: Saturn from Cassini-Huygens. Springer. Chap. 7, pages 161179.Google Scholar
West, R. A. and Smith, P. H. (1991), Evidence for aggregate particles in the atmospheres of Titan and Jupiter. Icarus, 90 (Apr.), 330333.Google Scholar
West, R. A., Strobel, D. F. and Tomasko, M. G. (1986), Clouds, aerosols, and photochemistry in the Jovian atmosphere. Icarus, 65, 161217.Google Scholar
West, R. A., Tomasko, M. G., Smith, B. A. et al. (1982), Spatially resolved methane band photometry of Saturn: I. Absolute reflectivity and center-to-limb variations in the 6190-, 7250-, and 8900-A bands. Icarus, 51, 5164.Google Scholar
Westlake, J. H., Waite, J. H., Jr., Mandt, K. E. et al. (2012), Titan’s ionospheric composition and structure: Photochemical modeling of Cassini INMS data. J. Geophys. Res., 117, E01003.Google Scholar
Winkelstein, P., Caldwell, J., Kim, S. J. et al. (1983), A determination of the composition of the Saturnian stratosphere using the IUE. Icarus, 54, 309318.Google Scholar
Wong, A.-S., Lee, A. Y. T., Yung, Y. L. et al. (2000), Jupiter: Aerosol chemistry in the polar atmosphere. Astrophys. J. Lett., 534, L215L217.Google Scholar
Wong, A.-S., Yung, Y. L. and Friedson, A. J. (2003), Benzene and haze formation in the polar atmosphere of Jupiter. Geophys. Res. Lett., 30, 1447.Google Scholar
Yung, Y. L. and DeMore, W. B. (1999), Photochemistry of Planetary Atmospheres. Oxford: Oxford University Press.Google Scholar
Yung, Y. L., Drew, W. A., Pinto, J. P. et al. (1988), Estimation of the reaction rate for the formation of CH3O from H + H2CO: Implications for chemistry in the solar system. Icarus, 73, 516526.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×