Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T17:26:39.977Z Has data issue: false hasContentIssue false

13 - Physiological and Biochemical Processes Related to Ageing and Senescence in Plants

from Part III - Senescence in Plants

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ameisen, J. C. (2002). On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differentiation, 9, 367–93.CrossRefGoogle ScholarPubMed
Anfodillo, T., Carraro, V., Carrer, M., et al. (2006) Convergent tapering of xylem conduits in different woody species. New Phytologist, 169, 279–90.CrossRefGoogle ScholarPubMed
Angelier, F., Weimerskirch, H., Dano, S. & Chastel, O. (2007). Age, experience and reproductive performance in a long-lived bird: a hormonal perspective. Behavioural Ecology and Sociobiology, 61, 611–21.CrossRefGoogle Scholar
Ashok, B. & Ali, R. (1999). The aging paradox: free radical theory of aging. Experimental Gerontology, 34, 293303.CrossRefGoogle ScholarPubMed
Austad, S. N. (2001). An experimental paradigm for the study of slowly aging organisms. Experimental Gerontology, 36, 599605.CrossRefGoogle Scholar
Bartelink, H. H. (1997). Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Annales des Sciences Forestieres, 54, 3950.CrossRefGoogle Scholar
Boege, K., Barton, K. E. & Dirzo, R. (2011). Influence of tree ontogeny on plant-herbivore interactions. In Size and Age-Related Changes in Tree Structure and Function, ed. Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. (pp. 193214) (Dordrecht: Springer).CrossRefGoogle Scholar
Bond, B. J., Czarnomski, N. M., Cooper, C., et al. (2007). Developmental decline in height growth in Douglas fir. Tree Physiology, 27, 441–53.CrossRefGoogle ScholarPubMed
Brown, J. H., Gillooly, J. F., Allen, A. P., et al. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771–89.Google Scholar
Bryant, J. P. & Julkunen-Tiitto, R. (1995). Ontogenetic development of chemical defense by seedling resin birch: energy cost of defense production. Journal of Chemical Ecology, 21, 883–96.CrossRefGoogle ScholarPubMed
Caswell, H. (2001). Matrix Population Models: Analysis, Construction and Interpretation (2nd edn.) (Sunderland, MA: Sinauer Associates).Google Scholar
Caswell, H. & Salguero-Gómez, R (2013). Age, stage, and senescence in plants. Journal of Ecology, 3, 585–95.Google Scholar
Cochran, M. E. & Ellner, S. P. (1992). Simple methods for calculating age-based life history parameters for stage-structured populations. Ecological Monographs, 62, 345–64.CrossRefGoogle Scholar
Chabot, B. F. & Hicks, D. J. (1982). The ecology of leaf life span. Annual Review of Ecology and Systematics, 13, 229–59.CrossRefGoogle Scholar
Chapin, F. S. III, Matson, P. A. & Vitousek, P. M. (2012). Plant carbon budgets. In Principles of Terrestrial Ecosystem Ecology (pp. 157–81) (New York: Springer).Google Scholar
Close, D. C., Davies, N. W. & Beadle, C.L. (2001). Temporal variation of tannins (galloylglucoses), flavonols and anthocyanins in leaves of Eucalyptus nitens seedlings: implications for light attenuation and antioxidant activities. Australian Journal of Plant Physiology, 28, 269–78.Google Scholar
Coyea, M. R. & Margolis, H. A. (1992). Factors affecting the relationship between sapwood area and leaf area in balsam fir. Canadian Journal of Forest Research, 22, 1684–93.CrossRefGoogle Scholar
Dangl, J. L., Dietrich, R. A. & Thomas, H. (2000). Senescence and programmed cell death. In Biochemistry and Molecular Biology of Plants, ed. Buchanan, B. B., Gruissem, W. & Jones, R. L. (pp. 10441100) (Rockville, MD: ASPP).Google Scholar
Davies, P. J. (2010). Plant Hormones: Biosynthesis, Signal Transduction, Action! (Dordrecht: Springer).CrossRefGoogle Scholar
Dietze, M. C., Sala, A., Carbone, M. S., et al. (2014). Nonstructural carbon in woody plants. Annual Review of Plant Biology, 65, 667–87.CrossRefGoogle ScholarPubMed
Donaldson, J. R., Stevens, M. T., Barnhill, H. R. & Lindroth, R. L. (2006). Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides). Journal of Chemical Ecology, 32, 1415–29.CrossRefGoogle ScholarPubMed
England, J. R. & Attiwill, P. M. (2006). Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species, Eucalyptus regnans F. Muell. Trees, 20, 7990.CrossRefGoogle Scholar
Evans, G. C. (1972). The Quantitative Analysis of Plant Growth (Berkeley: University of California Press).Google Scholar
Fageria, N. K. (2009). The Use of Nutrients in Crops Plants (Boca Raton, FL: CRC Press, Taylor & Francis Group).Google Scholar
Finkelstein, R., Gampala, S. & Rock, C. (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell, 14, S1545.CrossRefGoogle ScholarPubMed
Fritz, R. S., Hochwender, C. G., Lewkiewicz, D. A., et al. (2001). Seedling herbivory by slugs in a willow hybrid system: developmental changes in damage, chemical defense, and plant performance. Oecologia, 129, 8797.CrossRefGoogle Scholar
Galoch, E. (1985). Comparison of the content of growth regulators in juvenile and adult plants of birch (Betula verrucosa Ehrh.). Acta Physiologia Plantarum, 7, 205–15.Google Scholar
García, M. B. & Antor, R. J. (1995). Age and size structure in populations of a long-lived dioecious geophyte: Borderea pyrenaica (Dioscoreaceae). International Journal of Plant Sciences, 156, 236–43.CrossRefGoogle Scholar
Gartner, B. L. & Meinzer, F. C. (2005). Structure-function relationships in sapwood water transport and storage. In Vascular Transport in Plants, ed. Zwieniecki, M. & Holbrook, N. M. (pp. 307–31) (Oxford: Elsevier/Academic Press).Google Scholar
Goldschmidt, E. E. (2014). Plant grafting: new mechanisms, evolutionary implications. Frontiers in Plant Science, 5, 727.CrossRefGoogle ScholarPubMed
Goodyear, C. P. (1997). Fish age determination from length: an evaluation of three methods using simulated data. Fisheries Bulletin, 95, 3946.Google Scholar
Gjerdrum, P. (2003). Heartwood in relation to age and growth rate in Pinus sylvestris L. in Scandinavia. Forestry, 76, 413–24.CrossRefGoogle Scholar
Haberer, G. & Kieber, J. J. (2002). New insights into a classic phytohormone. Plant Physiology, 128, 354–62.CrossRefGoogle ScholarPubMed
Haffner, V., Enjalric, F., Lardet, L. & Carron, M.P. (1991). Maturation of woody plants: a review of metabolic and genomic aspects. Annals of Forest Science, 48, 616–30.Google Scholar
Halliwell, B. & Gutteridge, J. M. C. (1989). Free Radicals in Biology and Medicine. (Oxford University Press).Google Scholar
Hamid, H. & Mencuccini, M. (2009). Age- and size-related changes in physiological characteristics and chemical composition of Acer pseudoplatanus and Fraxinus excelsior trees. Tree Physiology, 29, 2738.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1966). Moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology, 11, 298300.CrossRefGoogle ScholarPubMed
Harman, D. (1981). The aging process. Proceedings of the National Academy of Sciences of the United States of America, 78, 7123–8.Google ScholarPubMed
Harper, J. L. (1977). Population Biology of Plants (New York: Academic Press).Google Scholar
Hellkvist, J., Richards, G. P. & Jarvis, P. G. (1974). Water potential and tissue water relations in Sitka spruce trees measured with the pressure chamber. Journal of Applied Ecology, 11, 637–67.CrossRefGoogle Scholar
Higuchi, T. (1997). Biochemistry and Molecular Biology of Wood (Berlin: Springer).CrossRefGoogle Scholar
Hillis, W. (1968). Chemical aspects of heartwood formation. Wood Science and Technology, 2, 241–59.CrossRefGoogle Scholar
Hillis, W. (1987). Heartwood and Tree Exudates (Berlin: Springer-Verlag).CrossRefGoogle Scholar
Hölttä, T., Kurppa, M. & Nikinmaa, E. (2013). Scaling of xylem and phloem transport capacity and resource usage with tree size. Frontiers in Plant Science, 4(496), 119.CrossRefGoogle ScholarPubMed
Ishii, H. (2011). How do changes in leaf/shoot morphology and crown architecture affect growth and physiological function of tall trees? In Size and Age-Related Changes in Tree Structure and Function, ed. Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. (pp. 215–32) (Dordrecht: Springer).Google Scholar
Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 505, 169–73.CrossRefGoogle ScholarPubMed
Jones, O. R., Gaillard, J.-M., Tuljapurkar, S., et al. (2008). Senescence rates are determined by ranking on the fast–slow life-history continuum. Ecology Letters, 11, 664–73.CrossRefGoogle ScholarPubMed
Juvany, M., Müller, M. & Munné-Bosch, S. (2013). Photo-oxidative stress in emerging and senescing leaves: a mirror image? Journal of Experimental Botany, 64, 3087–98.CrossRefGoogle Scholar
Jyske, T. & Hölttä, T. (2014). Comparison of phloem and xylem hydraulic architecture in Picea abies stems. New Phytologist, 205, 102–15.Google ScholarPubMed
Karban, R. & Myers, J. H. (1989). Induced plant responses to herbivory. Annual Review of Ecology and Systematics, 20, 331–48.CrossRefGoogle Scholar
King, D. A. (2011). Size-related changes in tree proportions and their potential influence on the course of height growth. In Size and Age-Related Changes in Tree Structure and Function, ed. Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. (pp. 165–91) (Dordrecht: Springer).Google Scholar
Kitin, P., Fujii, T., Abe, H. & Takata, K. (2009). Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica. Annals of Botany, 103, 1145–57.CrossRefGoogle ScholarPubMed
Lambers, H. & Ribas-Carbo, M. (eds.) (2005). Plant respiration: from cell to ecosystem. In Advances in Photosynthesis and Respiration, Vol.18 (Dordrecht: Springer).Google Scholar
Larson, D. W. (2001). The paradox of great longevity in a short-lived tree species. Experimental Gerontology 36, 651–73.CrossRefGoogle Scholar
Mäkelä, A. & Valentine, H. T. (2006). The quarter-power scaling model does not imply size-invariant hydraulic resistance in plants. Journal of Theoretical Biology, 243, 283–5.CrossRefGoogle Scholar
Matsuzaki, J., Norisada, M., Kodaira, J., et al. (2005). Shoots grafted into the upper crowns of tall Japanese cedar (Cryptomeria japonica D. Don) show foliar gas exchange characteristics similar to those of intact shoots. Trees, 19, 198203.CrossRefGoogle Scholar
McDowell, N., Barnard, H., Bond, B. J., et al. (2002). The relationship between tree height and leaf area: sapwood area ratio. Oecologia, 132, 1220.CrossRefGoogle ScholarPubMed
Medawar, P. B. (1952). An Unsolved Problem in Biology (London: Lewis).Google Scholar
Mencuccini, M. & Grace, J. (1995). Climate influences the leaf-area sapwood area ratio in Scots pine. Tree Physiology, 15, 110.CrossRefGoogle ScholarPubMed
Mencuccini, M. & Grace, J. (1996). Developmental patterns of aboveground xylem conductance in a Scots pine (Pinus sylvestris L.) age sequence. Plant, Cell and Environment, 19, 939–48.CrossRefGoogle Scholar
Mencuccini, M. (2002). Hydraulic constraints in the functional scaling of trees. Tree Physiology, 22, 553–65.CrossRefGoogle ScholarPubMed
Mencuccini, M. (2003). The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant, Cell and Environment, 26, 163–82.CrossRefGoogle Scholar
Mencuccini, M., Martinez-Vilalta, J., Vanderklein, D., et al. (2005). Size-mediated ageing reduces vigour in tall trees. Ecology Letters, 8, 1183–90.CrossRefGoogle Scholar
Mencuccini, M., Martínez-Vilalta, J., Hamid, H. A., et al. (2007). Evidence for age- and size-mediated controls of tree growth from grafting studies. Tree Physiology, 27, 463–73.CrossRefGoogle ScholarPubMed
Mencuccini, M., Hölttä, T. & Martínez-Vilalta, J. (2011). Comparative criteria for models of the vascular transport systems of tall trees. In Size and Age-Related Changes in Tree Structure and Function, ed. Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. (pp. 309–39) (Dordrecht: Springer).Google Scholar
Mencuccini, M., Oñate, M., Rico, L., et al. (2014). No signs of meristem senescence in old Scots pine. Journal of Ecology, 102, 555–65.CrossRefGoogle Scholar
Metcalf, C. J. E., McMahon, S. M., Salguero-Gómez, R. & Jongejans, E. (2013). IPMpack: an R package for Integral Projection Models. Methods in Ecology and Evolution, 4, 195200.CrossRefGoogle Scholar
Mooney, H. A. (1972). The carbon balance of plants. Annual Review of Ecology and Systematics, 3, 315–46.CrossRefGoogle Scholar
Morales, M., García, M. B., Munné-Bosch, S. & Alegre, L. (2013). Photo-oxidative stress markers reveal absence of physiological deterioration with ageing in Borderea pyrenaica, an extraordinarily long-lived herb. Journal of Ecology, 101, 555–65.CrossRefGoogle Scholar
Morales, M., Munné-Bosch, S. & Alegre, L. (2015). Secret of long life lies underground. New Phytologist, 205, 463–7.CrossRefGoogle ScholarPubMed
Munné-Bosch, S., Jubany-Marí, T. & Alegre, L. (2001). Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant, Cell and Environment, 24, 1319–27.CrossRefGoogle Scholar
Munné-Bosch, S. & Alegre, L. (2002). Plant aging increases oxidative stress in chloroplasts. Planta, 214, 608–15.Google ScholarPubMed
Munné-Bosch, S. & Lalueza, P. (2007). Age-related changes in oxidative stress markers and abscisic acid levels in a drought-tolerant shrub, Cistus clusii grown under Mediterranean field conditions. Planta, 225, 1039–49.CrossRefGoogle Scholar
Nakaba, S., Sano, Y., Kubo, T. & Funada, R. (2006). The positional distribution of cell death of ray parenchyma in a conifer, Abies sachalinensis. Plant Cell Reports, 25, 1143–8.CrossRefGoogle Scholar
Nakaba, S., Kubo, T. & Funada, R (2008). Differences in patterns of cell death between ray parenchyma cells and ray tracheids in the conifers Pinus densiflora and Pinus rigida. Trees, 22, 623–30.CrossRefGoogle Scholar
Niklas, K. J. (1992). Plant Biomechanics (University of Chicago Press).Google Scholar
Nobuchi, T. & Hasegawa, J. (1994). Radial distribution of heartwood phenols and the cytological changes of ray parenchyma cells associated with heartwood formation in Japanese red pine (Pinus densiflora Sieb. et Zucc.). Bulletin of the Kyoto University Forests, 66, 132–42.Google Scholar
Oñate, M., García, M. B. & Munné-Bosch, S. (2012). Age and sex-related changes in cytokinins, auxins and abscisic acid in a centenarian relict herbaceous perennial. Planta, 235, 349–54.CrossRefGoogle Scholar
Oñate, M. & Munné-Bosch, S. (2008). Meristem aging is not responsible for age-related changes in growth and abscisic acid levels in the Mediterranean shrub, Cistus clusii. Plant Biology, 10, 148–55.CrossRefGoogle Scholar
Kozlowski, T. T. & Pallardy, S.G. (2010). Physiology of Woody Plants (Burlington, MA: Academic Press).Google Scholar
Pandalai, R. C., Nair, G. M. & Shah, J. J. (1985). Ultrastructure of ray parenchyma cells in the wood of Melia azedarach L. (Meliacae). Wood Science and Technology, 19, 201–9.CrossRefGoogle Scholar
Paschalidis, K. A. & Roubelakis-Angelakis, K. A. (2005). Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant: correlations with age, cell division/expansion, and differentiation. Plant Physiology, 138, 142–52.CrossRefGoogle ScholarPubMed
Peek, M. S. (2007). Explaining variation in fine root life span. Progress in Botany, 68, 382–98.CrossRefGoogle Scholar
Petit, G., Anfodillo, T. & Mencuccini, M. (2008). Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus L.) trees. New Phytologist, 177, 653–64.CrossRefGoogle Scholar
Petty, J. A. (1972). Aspiration of bordered pits in conifer wood. Proceedings of the Royal Society of London Series B: Biological Sciences, 181, 395406.Google Scholar
Poorter, L. & Rozendaal, D. M. A. (2008). Leaf size and leaf display of thirty-eight tropical tree species. Oecologia, 158, 3546.CrossRefGoogle ScholarPubMed
Poorter, L., Wright, S. J., Paz, H., et al. (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908–20.CrossRefGoogle ScholarPubMed
Quirino, B. F., Noh, Y., Himelblau, E. & Amasino, R.M. (2000). Molecular aspects of leaf senescence. Trends in Plant Science, 5, 278–82.CrossRefGoogle ScholarPubMed
Rajjou, L., Duval, M., Gallardo, K., et al. (2012). Seed germination and vigor. Annual Review in Plant Biology, 63, 507–33.CrossRefGoogle ScholarPubMed
Rey, M., Tiburcio, A. F., Díaz-Sala, C. & Rodríguez, R. (1994). Endogenous polyamine concentrations in juvenile, adult and in vitro reinvigorated hazel. Tree Physiology, 14, 191200.CrossRefGoogle ScholarPubMed
Rustin, P., Kleist-Retzow, J., Vajo, Z., et al. (2000). For debate: defective mitochondria, free radicals, cell death, aging-reality or myth-ochondria? Mechanisms of Aging and Development, 114, 201–6.CrossRefGoogle ScholarPubMed
Ryan, M. G., Bond, B. J., Law, B. E., et al. (2000). Transpiration and whole-tree conductance in ponderosa pine trees of different heights. Oecologia, 124, 553–60.CrossRefGoogle ScholarPubMed
Ryan, M. G., Phillips, N. & Bond, B. J. (2006). The hydraulic limitation hypothesis revisited. Plant, Cell and Environment, 29, 367–81.CrossRefGoogle ScholarPubMed
Sala, A., Fouts, W. & Hoch, G. (2011). Carbon storage in trees: does relative carbon supply decrease with tree size. In Size and Age-Related Changes in Tree Structure and Function, ed. Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. (pp. 287–30) (Dordrecht: Springer).Google Scholar
Sala, A. & Mencuccini, M. (2014). Plump trees win under drought. Nature Climate Change, 4, 666–7.CrossRefGoogle Scholar
Salguero-Gómez, R. & Casper, B. B. (2010). Keeping plant shrinkage in the demographic loop. Journal of Ecology, 98, 312–23.CrossRefGoogle Scholar
Salguero-Gómez, R. & Casper, B. B. (2011). A hydraulic explanation for size-specific plant shrinkage: developmental hydraulic sectoriality. New Phytologist, 189, 229–40.CrossRefGoogle ScholarPubMed
Schenk, H. J., Espino, S., Goedhart, C. M., et al. (2008). Hydraulic integration and shrub growth form linked across continental aridity gradients. Proceedings of the National Academy of Sciences of the United States of America, 105, 11248–53.Google ScholarPubMed
Shinozaki, K., Yoda, K., Hozumi, K. & Kira, T. (1964a). A quantitative analysis of plant form-the pipe model theory: I. Basic analysis. Japanese Journal of Ecology, 14, 97105.Google Scholar
Shinozaki, K., Yoda, K., Hozumi, K. & Kira, T. (1964b). A quantitative analysis of plant form-the pipe model theory: II. Further evidence of the theory and its application in forest ecology. Japanese Journal of Ecology, 14, 133–9.Google Scholar
Scholander, P. F., Hammel, H. T., Hemmingsen, E. A. & Bradstreet, E. D. (1964). Pressure and osmotic potential in leaves of mangroves and some other plants. Proceedings of the National Academy of Sciences of the United States of America, 52, 119–25.Google ScholarPubMed
Scholz, F. G., Phillips, N. G., Bucci, S. J., et al. (2011). Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size. In Size and Age-Related Changes in Tree Structure and Function, ed. Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. (pp. 341–61) (Dordrecht: Springer).Google Scholar
Spicer, R. (2005). Senescence in secondary xylem: heartwood formation as an active developmental program. In Vascular Transport in Plants, ed. Holbrook, N. & Zwieniecki, M. (pp. 457–75) (Oxford: Elsevier/Academic Press).Google Scholar
Steppe, K., Niinemets, U. & Teskey, R. O. (2011). Tree size- and age-related changes in leaf physiology and their influence on carbon gain. In Size and Age-Related Changes in Tree Structure and Function, ed. Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. (pp. 235–53) (Dordrecht: Springer).Google Scholar
Szymanski, M., Pazdrowski, W., Kazmierczak, K., et al. (2008). Axial and radial variation in the proportions of sapwood and heartwood in stems of common oak (Quercus robur L.) depending on site type, age class and social class of tree position. Acta Scientiarum Polonorum, 7, 4558.Google Scholar
Tiburcio, A. F., Campos, J. L., Figueras, X. & Besford, R. T. (1993). Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regulation, 12, 331–40.CrossRefGoogle Scholar
Tyree, M. T. & Zimmerman, M. H. (2002). Xylem Structure and the Ascent of Sap (Berlin: Springer).CrossRefGoogle Scholar
Tuljapurkar, S. (1990). Population Dynamics in Variable Environments (Berlin: Springer).CrossRefGoogle Scholar
Valdés, A. E., Centeno, M. L., Espinel, S. & Fernández, B. (2002). Could plant hormones be the basis of maturation indices in Pinus radiata? Plant Physiology and Biochemistry, 40, 211–16.CrossRefGoogle Scholar
Valdés, A. E., Fernández, B. & Centeno, M. L. (2004). Hormonal changes throughout maturation and ageing in Pinus pinea. Plant Physiology and Biochemistry, 42, 335–40.CrossRefGoogle ScholarPubMed
Valdés, A. E., Centeno, M. L. & Fernández, B. (2005). Age-related changes in the hormonal status of Pinus radiata needle fascicle meristem. Plant Science, 167, 373–8.Google Scholar
Vanderklein, D., Martínez-Vilalta, J., Lee, S. & Mencuccini, M. (2007). Plant size, not age, regulates growth and gas exchange in grafted Scots pine trees. Tree Physiology, 27, 71–9.CrossRefGoogle Scholar
Watson, M. A. & Lu, Y. (2004). Factors regulating senescence in the annual shoots of perennial plants. In Cell Death in Plants, ed. Nooden, L. D. (pp. 259–69) (New York: Academic Press).Google Scholar
Webber, B. L. & Woodrow, I. E. (2009). Chemical and physical plant defence across multiple ontogenetic history stages in a tropical rainforest understorey tree. Journal of Ecology, 97, 761–71.CrossRefGoogle Scholar
West, G. B., Brown, J. H. & Enquist, B. J. (1999). The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science, 284, 1677–9.CrossRefGoogle ScholarPubMed
West, P. W. (2009). Tree and Forest Measurement (Berlin: Springer-Verlag).CrossRefGoogle Scholar
Westoby, M., Warton, D. & Reich, P. (2000). The time value of leaf area. American Naturalist, 155, 649–56.CrossRefGoogle ScholarPubMed
Westoby, M., Falster, D. S., Moles, A., et al. (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125–59.CrossRefGoogle Scholar
Wilkes, J. (1991). Heartwood development and its relationship to growth in Pinus radiata. Wood Science and Technology, 25, 8590.CrossRefGoogle Scholar
Williams, G. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Yang, J. C., Zhang, J. H., Wang, Z. Q., et al. (2003). Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during rain filling. Plant, Cell and Environment, 26, 1621–31.CrossRefGoogle Scholar
Yang, K. C., Hazenberg, G., Bradfield, G. E. & Maze, J. R. (1985). Vertical variation of sapwood thickness in Pinus banksiana lanb and Larix laricina (Du Roi) K. Koch. Canadian Journal of Forest Research, 15, 822–8.CrossRefGoogle Scholar
Yang, K. C. & Hazenberg, G. (1991a). Relationship between tree age and sapwood heartwood width in Populus tremuloides Michx. Wood and Fiber Science, 23, 247–52.Google Scholar
Yang, K. C. & Hazenberg, G. (1991b). Sapwood and heartwood width in relationship to tree age in Pinus banksiana. Canadian Journal of Forest Research, 21, 521–5.CrossRefGoogle Scholar
Yang, K. C. (1993). Survival rate and nuclear irregularity index of sapwood ray parenchyma cells in 4 tree species. Canadian Journal of Forest Research, 23, 673–9.CrossRefGoogle Scholar
Yoder, B. J., Ryan, M. G., Waring, H., et al. (1994). Evidence of reduced photosynthetic rates in old trees. Forest Science, 40, 513–27.Google Scholar
Zaffari, G. R., Peres, L. E. P. & Kerbauy, G. B. (1998). Endogenous levels of cytokinins, indolacetic acid, abscisic acid and pigments in variegated somaclones of micropopagated banana leaves. Journal of Plant Growth Regulation, 17, 5961.CrossRefGoogle Scholar
Zotz, G., Wilhelm, K. & Becker, A. (2011). Heteroblasty: a review. Botanical Review, 77, 109–51.CrossRefGoogle Scholar
Zuidema, P. A., Jongejans, E., Chien, P. D., et al. (2010). Integral Projection Models for trees: a new parameterization method and a validation of model output. Journal of Ecology, 98, 345–55.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×