Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-05T17:26:05.328Z Has data issue: false hasContentIssue false

10 - Explaining Extraordinary Life Spans

The Proximate and Ultimate Causes of Differential Life Span in Social Insects

from Part II - Senescence in Animals

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aamodt, R. M. (2009). Age-and caste-dependent decrease in expression of genes maintaining DNA and RNA quality and mitochondrial integrity in the honeybee wing muscle. Experimental Gerontology, 44(9), 586–93.CrossRefGoogle ScholarPubMed
Amdam, G. & Page, R. (2005). Intergenerational transfers may have decoupled physiological and chronological age in a eusocial insect. Ageing Research Reviews, 4(3), 398408.CrossRefGoogle Scholar
Amdam, G. V., Aase, A. L. T. O., Seehuus, S. C., et al. (2005). Social reversal of immunosenescence in honey bee workers. Experimental Gerontology, 40(12), 939–47.CrossRefGoogle ScholarPubMed
Amdam, G. V., Norberg, K., Hagen, A., & Omholt, S. W. (2003a). Social exploitation of vitellogenin. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 17991802.CrossRefGoogle ScholarPubMed
Amdam, G. V. & Omholt, S. W. (2002). The regulatory anatomy of honeybee lifespan. Journal of Theoretical Biology, 216, 209–28.CrossRefGoogle ScholarPubMed
Amdam, G. V. & Omholt, S. W. (2003). The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. Journal of Theoretical Biology, 223(4), 451–64.CrossRefGoogle ScholarPubMed
Amdam, G. V., Rueppell, O., Fondrk, M. K., et al. (2009). The nurse’s load: early-life exposure to brood-rearing affects behavior and lifespan in honey bees (Apis mellifera). Experimental Gerontology, 44(6), 467–71.CrossRefGoogle ScholarPubMed
Amdam, G. V., Simões, Z. L. P., Hagen, A., et al. (2004). Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Experimental Gerontology, 39(5), 767–73.CrossRefGoogle ScholarPubMed
Amdam, G. V., Simões, Z. L. P., Guidugli, K. R., et al. (2003b). Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMC biotechnology, 3(1), 1.CrossRefGoogle ScholarPubMed
Baker, N., Wolschin, F. & Amdam, G. V. (2012). Age-related learning deficits can be reversible in honeybees Apis mellifera. Experimental Gerontology, 47(10), 764–72.CrossRefGoogle ScholarPubMed
Baudisch, A. & Vaupel, J. W. (2010). Senescence vs sustenance: evolutionary-demographic models of aging. Demographic Research, 23(23), 655–68.CrossRefGoogle Scholar
Behrends, A. & Scheiner, R. (2010). Learning at old age: a study on winter bees. Frontiers in Behavioral Neuroscience, 4, article 15.Google Scholar
Behrends, A., Scheiner, R., Baker, N. & Amdam, G. V. (2007). Cognitive aging is linked to social role in honey bees (Apis mellifera). Experimental Gerontology, 42(12), 1146–53.CrossRefGoogle ScholarPubMed
Bell, W. J. (1973). Factors controlling initiation of vitellogenesis in a primitively social bee, Lasioglossum zephyrum (Hymenoptera: Halictidae). Insectes Sociaux, 20(3), 253–60.CrossRefGoogle Scholar
Beye, M., Hasselmann, M., Fondrk, M. K., et al. (2003). The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell, 114(4), 419–29.CrossRefGoogle ScholarPubMed
Blagosklonny, M. V. (2007). Paradoxes of aging. Cell Cycle, 6(24), 29973003.CrossRefGoogle ScholarPubMed
Bownes, M., Lineruth, K. & Mauchline, D. (1991). Egg production and fertility in Drosophila depend upon the number of yolk-protein gene copies. Molecular and General Genetics, 228(1–2), 324–7.CrossRefGoogle ScholarPubMed
Byrne, B. M., Gruber, M. & Ab, G. (1989). The evolution of egg yolk proteins. Progress in Biophysics and Molecular Biology, 53(1), 3369.CrossRefGoogle ScholarPubMed
Carey, J. R. (2001). Demographic mechanisms for the evolution of long life in social insects. Experimental Gerontology, 36, 713–22.CrossRefGoogle ScholarPubMed
Chapuisat, M. & Keller, L. (2002). Division of labour influences the rate of ageing in weaver ant workers. Proceedings of the Royal Society of London Series B: Biological Sciences, 269(1494), 909–13.CrossRefGoogle ScholarPubMed
Corona, M., Hughes, K. A., Weaver, D. B., & Robinson, G. E. (2005). Gene expression patterns associated with queen honey bee longevity. Mechanisms of Ageing and Development, 126(11), 1230–8.CrossRefGoogle ScholarPubMed
Corona, M., Velarde, R. A., Remolina, S., et al. (2007). Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proceedings of the National Academy of Sciences of the United States of America, 104(17), 7128–33.Google ScholarPubMed
Dietzl, G., Chen, D., Schnorrer, F., et al. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in drosophila. Nature, 448(7150), 151–6.CrossRefGoogle ScholarPubMed
Doonan, R., McElwee, J. J., Matthijssens, F., et al. (2008). Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes & Development, 22(23), 3236–41.CrossRefGoogle ScholarPubMed
Doums, C., Moret, Y., Benelli, E. & Schmid-Hempel, P. (2002). Senescence of immune defence in Bombus workers. Ecological Entomology, 27(2), 138–44.CrossRefGoogle Scholar
Duffy, J. B. (2002). GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis, 34, 115.CrossRefGoogle ScholarPubMed
Dukas, R. (2008). Mortality rates of honey bees in the wild. Insectes Sociaux, 55(3), 252–5.CrossRefGoogle Scholar
Ferreira, P. G., Patalano, S., Chauhan, R., et al. (2013). Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes. Genome Biology, 14(2), R20.CrossRefGoogle ScholarPubMed
Finkel, T. & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–47.CrossRefGoogle ScholarPubMed
Flatt, T. (2011). Survival costs of reproduction in Drosophila. Experimental Gerontology, 46(5), 369–75.CrossRefGoogle ScholarPubMed
Gapper, C. & Dolan, L. (2006). Control of plant development by reactive oxygen species. Plant Physiology, 141(2), 341–5.CrossRefGoogle ScholarPubMed
Gems, D. & Doonan, R. (2009). Antioxidant defense and aging in C. elegans. Cell Cycle, 8(11), 1681–7.CrossRefGoogle ScholarPubMed
Gems, D. & Partridge, L. (2013). Genetics of longevity in model organisms: debates and paradigm shifts. Annual Review of Physiology, 75, 621–44.CrossRefGoogle ScholarPubMed
Gordon, D. M. & Kulig, A. (1998). The effect of neighbours on the mortality of harvester ant colonies. Journal of Animal Ecology, 67(1), 141–8.CrossRefGoogle Scholar
Gräff, J., Jemielity, S., Parker, J. D., et al. (2007). Differential gene expression between adult queens and workers in the ant Lasius niger. Molecular Ecology, 16(3), 675–83.CrossRefGoogle ScholarPubMed
Grotewiel, M. S., Martin, I., Bhandari, P. & Cook-Wiens, E. (2005). Functional senescence in Drosophila melanogaster. Ageing Research Reviews, 4(3), 372–97.CrossRefGoogle ScholarPubMed
Grozinger, C. M., Fan, Y., Hoover, S. E. R. & Winston, M. L. (2007). Genome-wide analysis reveals differences in brain gene expression patterns associated with caste and reproductive status in honey bees (Apis mellifera). Molecular Ecology, 16(22), 4837–48.CrossRefGoogle ScholarPubMed
Guidugli, K. R., Nascimento, A. M., Amdam, G. V., et al. (2005). Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect. FEBS Letters, 579(22), 4961–5.CrossRefGoogle ScholarPubMed
Haddad, L. S., Kelbert, L. & Hulbert, A. J. (2007). Extended longevity of queen honey bees compared to workers is associated with peroxidation-resistant membranes. Experimental Gerontology, 42(7), 601–9.CrossRefGoogle ScholarPubMed
Hall, D. W. & Goodisman, M. A. D. (2012). The effects of kin selection on rates of molecular evolution in social insects. Evolution, 66(7), 2080–93.CrossRefGoogle ScholarPubMed
Hall, D. W., Soojin, V. Y. & Goodisman, M. A. D. (2013). Kin selection, genomics and caste-antagonistic pleiotropy. Biology Letters, 9(6), 20130309.CrossRefGoogle ScholarPubMed
Hamanaka, R. B. & Chandel, N. S. (2010). Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends in Biochemical Sciences, 35(9), 505–13.CrossRefGoogle ScholarPubMed
Hamilton, B., Dong, Y., Shindo, M., et al. (2005). A systematic RNAi screen for longevity genes in C. elegans. Genes & Development, 19(13), 1544–55.CrossRefGoogle ScholarPubMed
Harman, D. (1992). Free-radical theory of aging. Mutation Research/DNAging, 275(3–6), 257–66.CrossRefGoogle ScholarPubMed
Hartmann, A. & Heinze, J. (2003). Lay eggs, live longer: division of labor and life span in a clonal ant species. Evolution, 57(10), 2424–9.Google Scholar
Heinze, J. & Schrempf, A. (2012). Terminal investment: individual reproduction of ant queens increases with age. PloS One, 7(4), e35201.CrossRefGoogle ScholarPubMed
Hölldobler, B. & Wilson, E. O. (1990). The Ants (Berlin: Springer-Verlag).CrossRefGoogle Scholar
Hsieh, Y. & Hsu, C. (2013). Oxidative stress and anti-oxidant enzyme activities in the trophocytes and fat cells of queen honeybees (Apis mellifera). Rejuvenation Research, 16(4), 295303.CrossRefGoogle ScholarPubMed
Hsu, C. & Hsieh, Y. (2014). Oxidative stress decreases in the trophocytes and fat cells of worker honeybees during aging. Biogerontology, 15, 129–37.CrossRefGoogle ScholarPubMed
Hystad, E. M., Amdam, G. V. & Eide, L. (2014). Mitochondrial DNA integrity changes with age but does not correlate with learning performance in honey bees. Experimental Gerontology, 49, 1218.CrossRefGoogle Scholar
Ihle, K. E., Fondrk, M. K., Page, R. E. & Amdam, G. V. (2015). Genotype effect on lifespan following vitellogenin knockdown. Experimental Gerontology, 61, 113–22.CrossRefGoogle ScholarPubMed
Ingram, K. K., Pilko, A., Heer, J. & Gordon, D. M. (2013). Colony life history and lifetime reproductive success of red harvester ant colonies. Journal of Animal Ecology, 82(3), 540–50.CrossRefGoogle ScholarPubMed
Jemielity, S., Chapuisat, M., Parker, J. D. & Keller, L. (2005). Long live the queen: studying aging in social insects. Age, 27(3), 241–8.CrossRefGoogle ScholarPubMed
Jemielity, S., Kimura, M., Parker, K. M., et al. (2007). Short telomeres in short-lived males: what are the molecular and evolutionary causes? Aging Cell, 6(2), 225–33.CrossRefGoogle ScholarPubMed
Jin, W., Riley, R. M., Wolfinger, R. D., et al. (2001). The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genetics, 29(4), 389–95.CrossRefGoogle ScholarPubMed
Judice, C. C., Carazzole, M. F., Festa, F., et al. (2006). Gene expression profiles underlying alternative caste phenotypes in a highly eusocial bee, Melipona quadrifasciata. Insect Molecular Biology, 15(1), 3344.CrossRefGoogle Scholar
Kamakura, M. (2011). Royalactin induces queen differentiation in honeybees. Nature, 473(7348), 478–83.CrossRefGoogle ScholarPubMed
Keller, L. & Genoud, M. (1997). Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature, 389(6654), 958–60.CrossRefGoogle Scholar
Kenyon, C. (2001). A conserved regulatory system for aging. Cell, 105(2), 165–8.CrossRefGoogle ScholarPubMed
Kim, S. N., Rhee, J., Song, Y., et al. (2005). Age-dependent changes of gene expression in the Drosophila head. Neurobiology of Aging, 26(7), 1083–91.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (1977). Evolution of aging. Nature, 270(5635), 301–4.CrossRefGoogle Scholar
Kirkwood, T. B. L. & Holliday, R. (1979). Evolution of ageing and longevity. Proceedings of the Royal Society of London Series B: Biological Sciences, 205(1161), 531–46.Google ScholarPubMed
Kramer, B. H. & Schaible, R. (2013). Colony size explains the lifespan differences between queens and workers in eusocial Hymenoptera. Biological Journal of the Linnean Society, 109(3), 710–24.CrossRefGoogle Scholar
Kuszewska, K. & Woyciechowski, M. (2013). Reversion in honeybee, Apis mellifera, workers with different life expectancies. Animal Behaviour, 85(1), 247–53.CrossRefGoogle Scholar
Lee, C. K., Klopp, R. G., Weindruch, R. & Prolla, T. A. (1999). Gene expression profile of aging and its retardation by caloric restriction. Science, 285(5432), 1390–3.CrossRefGoogle ScholarPubMed
Lee, R. (2003). Rethinking the evolutionary theory of aging: transfers, not births, shape social species. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9637–42.Google Scholar
Li-Byarlay, H., Li, Y., Stroud, H., et al. (2013). RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12750–5.Google ScholarPubMed
Libbrecht, R., Corona, M., Wende, F., et al. (2013). Interplay between insulin signaling, juvenile hormone, and vitellogenin regulates maternal effects on polyphenism in ants. Proceedings of the National Academy of Sciences of the United States of America, 110(27), 11050–5.Google ScholarPubMed
Mair, W. & Dillin, A. (2008). Aging and survival: the genetics of life span extension by dietary restriction. Annual Review of Biochemistry, 77, 727–54.CrossRefGoogle ScholarPubMed
Mali, P., Esvelt, K. M. & Church, G. M. (2013). Cas9 as a versatile tool for engineering biology. Nature Methods, 10(10), 957–63.CrossRefGoogle ScholarPubMed
Medawar, P. B. (1952). An Unsolved Problem of Biology: An Inaugural Lecture Delivered at University College, London, 6 December, 1951 (London: Lewis).Google Scholar
Mersch, D. P., Crespi, A. & Keller, L. (2013). Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science, 340(6136), 1090–3.CrossRefGoogle ScholarPubMed
Miyazaki, S., Okada, Y., Miyakawa, H., et al. (2014). Sexually dimorphic body color is regulated by sex-specific expression of yellow gene in ponerine ant, Diacamma sp. PLoS ONE, 9(3), e92875.CrossRefGoogle ScholarPubMed
Moret, Y. & Schmid-Hempel, P. (2009). Immune responses of bumblebee workers as a function of individual and colony age: senescence versus plastic adjustment of the immune function. Oikos, 118(3), 371–8.CrossRefGoogle Scholar
Münch, D. (2013). Brain aging and performance plasticity in honeybees. In Invertebrate Learning and Memory, ed. Menzel, R. & Benjamin, P. (pp. 487500). (New York: Academic Press).CrossRefGoogle Scholar
Münch, D. & Amdam, G. V. (2010). The curious case of aging plasticity in honey bees. FEBS Letters, 584(12), 24962503.CrossRefGoogle ScholarPubMed
Münch, D., Amdam, G. V. & Wolschin, F. (2008). Ageing in a eusocial insect: molecular and physiological characteristics of life span plasticity in the honey bee. Functional Ecology, 22(3), 407–21.CrossRefGoogle Scholar
Münch, D., Baker, N., Kreibich, C. D., et al. (2010). In the laboratory and during free-flight: old honey bees reveal learning and extinction deficits that mirror mammalian functional decline. PloS ONE, 5(10), e13504.CrossRefGoogle ScholarPubMed
Münch, D., Kreibich, C. D. & Amdam, G. V. (2013). Aging and its modulation in a long-lived worker caste of the honey bee. Journal of Experimental Biology, 216(9), 1638–49.CrossRefGoogle Scholar
Murphy, C. T., McCarroll, S. A., Bargmann, C. I., et al. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature, 424(6946), 277–83.CrossRefGoogle ScholarPubMed
Nakamura, A., Yasuda, K., Adachi, H., et al. (1999). Vitellogenin-6 is a major carbonylated protein in aged nematode, Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 264(2), 580–3.CrossRefGoogle Scholar
Nelson, C. M., Ihle, K. E., Fondrk, M. K., et al. (2007). The gene vitellogenin has multiple coordinating effects on social organization. PLoS BIOLOGY, 5(3), 673–7.CrossRefGoogle ScholarPubMed
Ometto, L., Shoemaker, D., Ross, K. G. & Keller, L. (2011). Evolution of gene expression in fire ants: the effects of developmental stage, caste, and species. Molecular Biology and Evolution, 28(4), 1381–92.CrossRefGoogle ScholarPubMed
Page, R. E. & Peng, C. Y. S. (2001). Aging and development in social insects with emphasis on the honey bee, Apis mellifera l. Experimental Gerontology, 36, 695711.CrossRefGoogle ScholarPubMed
Parker, J. D. (2010). What are social insects telling us about aging? Myrmecological News, 13, 103–10.Google Scholar
Parker, J. D., Parker, K. M., Sohal, B. H., et al. (2004). Decreased expression of Cu-Zn superoxide dismutase 1 in ants with extreme lifespan. Proceedings of the National Academy of Sciences of the United States of America, 101(10), 3486–9.Google ScholarPubMed
Partridge, L. & Barton, N. (1993). Optimality, mutation and the evolution of aging. Nature, 362(6418), 305–11.CrossRefGoogle Scholar
Partridge, L. & Gems, D. (2002). Mechanisms of aging: public or private? Nature Reviews Genetics, 3(3), 165–75.CrossRefGoogle ScholarPubMed
Partridge, L., Gems, D. & Withers, D. J. (2005). Sex and death: what is the connection? Cell, 120(4), 461–72.CrossRefGoogle ScholarPubMed
Pérez, V. I., Bokov, A., Van Remmen, H., et al. (2009). Is the oxidative stress theory of aging dead? Biochimica et Biophysica Acta (BBA): General Subjects, 1790(10), 1005–14.Google ScholarPubMed
Pinto, L. Z., Bitondi, M. M. G. & Simoes, Z. L. P. (2000). Inhibition of vitellogenin synthesis in Apis mellifera workers by a juvenile hormone analogue, pyriproxyfen. Journal of Insect Physiology, 46(2), 153–60.CrossRefGoogle ScholarPubMed
Postlethwait, J. H. & Shirk, P. D. (1981). Genetic and endocrine regulation of vitellogenesis in Drosophila. American Zoologist, 21(3), 687700.CrossRefGoogle Scholar
Postlethwait, J. H. & Weiser, K. (1973). Vitellogenesis induced by juvenile hormone in the female sterile mutant apterous-four in Drosophila melanogaster. Nature, 244(139), 284–5.Google ScholarPubMed
Remolina, S. C., Hafez, D. M., Robinson, G. E. & Hughes, K. A. (2007). Senescence in the worker honey bee Apis mellifera. Journal of Insect Physiology, 53(10), 1027–33.CrossRefGoogle ScholarPubMed
Remolina, S. C. & Hughes, K. A. (2008). Evolution and mechanisms of long life and high fertility in queen honey bees. Age, 30(2–3), 177–85.CrossRefGoogle ScholarPubMed
Robinson, G. E. (1992). Regulation of division of labor in insect societies. Annual Review of Entomology, 37(1), 637–65.CrossRefGoogle ScholarPubMed
Röseler, P. (1977). Juvenile hormone control of oögenesis in bumblebee workers, Bombus terrestris. Journal of Insect Physiology, 23(8), 985–92.CrossRefGoogle Scholar
Rueppell, O. (2009). Aging of social insects. In Organization of Insect Societies: From Genome to Sociocomplexity, ed. Gadau, J. & Fewell, J. (pp. 5173) (Cambridge, MA: Harvard University Press).Google Scholar
Rueppell, O., Bachelier, C., Fondrk, M. K. & Jr Page, R. E. (2007a). Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.). Experimental Gerontology, 42(10), 1020–32.CrossRefGoogle ScholarPubMed
Rueppell, O., Christine, S., Mulcrone, C. & Groves, L. (2007b). Aging without functional senescence in honey bee workers. Current Biology, 17(8), R274–5.CrossRefGoogle ScholarPubMed
Rueppell, O., Königseder, F., Heinze, J. & Schrempf, A. (2015). Intrinsic survival advantage of social insect queens depends on reproductive activation. Journal of Evolutionary Biology, 28(12), 2349–54.CrossRefGoogle ScholarPubMed
Rueppell, O., Linford, R., Gardner, P., et al. (2008). Aging and demographic plasticity in response to experimental age structures in honeybees (Apis mellifera l). Behavioral Ecology and Sociobiology, 62(10), 1621–31.CrossRefGoogle ScholarPubMed
Scheiner, R. & Amdam, G. V. (2009). Impaired tactile learning is related to social role in honeybees. Journal of Experimental Biology, 212(7), 9941002.CrossRefGoogle ScholarPubMed
Schmid, M. R., Brockmann, A., Pirk, C. W. W., et al. (2008). Adult honeybees (Apis mellifera l.) abandon hemocytic, but not phenoloxidase-based immunity. Journal of Insect Physiology, 54(2), 439–44.CrossRefGoogle Scholar
Schneider, S. A., Schrader, C., Wagner, A. E., et al. (2011). Stress resistance and longevity are not directly linked to levels of enzymatic antioxidants in the ponerine ant Harpegnathos saltator. PLoS ONE, 6(1), e14601.CrossRefGoogle Scholar
Schrempf, A., Cremer, S. & Heinze, J. (2011). Social influence on age and reproduction: reduced lifespan and fecundity in multi-queen ant colonies. Journal of Evolutionary Biology, 24, 1455–61.CrossRefGoogle ScholarPubMed
Schwander, T., Lo, N., Beekman, M., et al. (2010). Nature versus nurture in social insect caste differentiation. Trends in Ecology and Evolution, 25(5), 275–82.CrossRefGoogle ScholarPubMed
Seehuus, S., Krekling, T. & Amdam, G. V. (2006a). Cellular senescence in honey bee brain is largely independent of chronological age. Experimental Gerontology, 41(11), 1117–25.CrossRefGoogle ScholarPubMed
Seehuus, S., Norberg, K., Gimsa, U., et al. (2006b). Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 103(4), 962–7.Google ScholarPubMed
Seehuus, S., Taylor, S., Petersen, K. & Aamodt, R. M. (2013). Somatic maintenance resources in the honeybee worker fat body are distributed to withstand the most life-threatening challenges at each life stage. PLoS ONE, 8(8), e69870.CrossRefGoogle ScholarPubMed
Seeley, T. D. (1982). Adaptive significance of the age polyethism schedule in honeybee colonies. Behavioral Ecology and Sociobiology, 11(4), 287–93.CrossRefGoogle Scholar
Shanley, D. P. & Kirkwood, T. B. L. (2000). Calorie restriction and aging: a life-history analysis. Evolution, 54(3), 740–50.Google ScholarPubMed
Sheng, Z., Xu, J., Bai, H., et al. (2011). Juvenile hormone regulates vitellogenin gene expression through insulin-like peptide signaling pathway in the red flour beetle, Tribolium castaneum. Journal of Biological Chemistry, 286(49), 41924–36.CrossRefGoogle ScholarPubMed
Shringarpure, R. & Davies, K. J. A. (2009). Free radicals and oxidative stress in aging. In Handbook of Theories of Aging, ed. Bengston, V. L., Gans, D., Putney, N. M. & Silverstein, M. (chap. 13, pp. 229–43) (New York: Springer).Google Scholar
Smedal, B., Brynem, M., Kreibich, C. D. & Amdam, G. V. (2009). Brood pheromone suppresses physiology of extreme longevity in honeybees (Apis mellifera). Journal of Experimental Biology, 212(23), 3795–801.CrossRefGoogle ScholarPubMed
Tanaka, E. D. & Hartfelder, K. (2004). The initial stages of oogenesis and their relation to differential fertility in the honey bee (Apis mellifera) castes. Arthropod Structure and Development, 33(4), 431–42.CrossRefGoogle ScholarPubMed
Tolfsen, C. C., Baker, N., Kreibich, C. & Amdam, G. V. (2011). Flight restriction prevents associative learning deficits but not changes in brain protein-adduct formation during honeybee ageing. Journal of Experimental Biology, 214(8), 1322–32.CrossRefGoogle Scholar
Tsuji, K., Kikuta, N. & Kikuchi, T. (2012). Determination of the cost of worker reproduction via diminished life span in the ant Diacamma sp. Evolution, 66(5), 1322–31.CrossRefGoogle ScholarPubMed
Tsuji, K., Nakata, K. & Heinze, J. (1996). Lifespan and reproduction in a queenless ant. Naturwissenschaften, 83(12), 577–8.CrossRefGoogle Scholar
Wagner, D. & Gordon, D. M. (1999). Colony age, neighborhood density and reproductive potential in harvester ants. Oecologia, 119(2), 175–82.CrossRefGoogle ScholarPubMed
Wang, Y., Brent, C. S., Fennern, E., & Amdam, G. V. (2012). Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees. PLoS GENETICS, 8(6), e1002779.CrossRefGoogle ScholarPubMed
Wang, Y., Mutti, N. S., Ihle, K. E., et al. (2010). Down-regulation of honey bee IRS gene biases behavior toward food rich in protein. PLoS GENETICS, 6(4), e1000896.CrossRefGoogle ScholarPubMed
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11(4), 398411.CrossRefGoogle Scholar
Wilson, E. O. (1971). The Insect Societies (Cambridge, MA: Bellknap Press/Harvard University Press).Google Scholar
Wolschin, F., Mutti, N. S. & Amdam, G. V. (2011). Insulin receptor substrate influences female caste development in honeybees. Biology Letters, 7(1), 112–15.CrossRefGoogle ScholarPubMed
Woyciechowski, M. & Moroń, D. (2009). Life expectancy and onset of foraging in the honeybee (Apis mellifera). Insectes Sociaux, 56(2), 193201.CrossRefGoogle Scholar
Zheng, H., Zhang, Q., Liu, H., et al. (2012). Cloning and expression of vitellogenin (Vg) gene and its correlations with total carotenoids content and total antioxidant capacity in noble scallop Chlamys nobilis (Bivalve: Pectinidae). Aquaculture, 366, 4653.CrossRefGoogle Scholar
Zhou, X., Oi, F. M. & Scharf, M. E. (2006). Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proceedings of the National Academy of Sciences of the United States of America, 103(12), 4499–504.Google Scholar
Zhou, X., Wheeler, M. M., Oi, F. M. & Scharf, M. E. (2008). RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochemistry and Molecular Biology, 38(8), 805–15.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×