Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-10T08:25:31.917Z Has data issue: false hasContentIssue false

14 - White matter neurobiology and cognitive dysfunction in major depressive disorder

from Part II - Underlying biological substrates associated with cognitive dysfunction in major depressive disorder

Published online by Cambridge University Press:  05 March 2016

Roger S. McIntyre
Affiliation:
University of Toronto
Danielle S. Cha
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Cognitive Impairment in Major Depressive Disorder
Clinical Relevance, Biological Substrates, and Treatment Opportunities
, pp. 194 - 208
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, O., Yamasue, H., Kasai, K., Yamada, H., Aoki, S., Inoue, H., … Ohtomo, K. (2010). Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Research: Neuroimaging, 181(1): 6470.Google Scholar
Aizenstein, H. J., Butters, M. A., Figurski, J. L., Stenger, V. A., Reynolds, C. F. III, & Carter, C. S. (2005). Prefrontal and striatal activation during sequence learning in geriatric depression. Biological Psychiatry, 58(4): 290296.CrossRefGoogle ScholarPubMed
Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9(1): 357381.Google Scholar
Alexopoulos, G. S. (2003). Role of executive function in late-life depression. Journal of Clinical Psychiatry, 64(Suppl. 14): 1823.Google Scholar
Alexopoulos, G. S., Meyers, B. S., Young, R. C., Campbell, S., Silbersweig, D., & Charlson, M. (1997). “Vascular depression” hypothesis. Archives of General Psychiatry, 54(10): 915922.CrossRefGoogle ScholarPubMed
Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. A. (2007). Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. Journal of Neuroscience, 27(14): 37433752.CrossRefGoogle ScholarPubMed
Aston, C., Jiang, L., & Sokolov, B. P. (2004). Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Molecular Psychiatry, 10(3): 309322.Google Scholar
Baird, B., Smallwood, J., Gorgolewski, K. J., & Margulies, D. S. (2013). Medial and lateral networks in anterior prefrontal cortex support metacognitive ability for memory and perception. Journal of Neuroscience, 33(42): 1665716665.Google Scholar
Beasley, C. L., Honavar, M., Everall, I. P., & Cotter, D. (2009). Two-dimensional assessment of cytoarchitecture in the superior temporal white matter in schizophrenia, major depressive disorder and bipolar disorder. Schizophrenia Research, 115(2): 156162.CrossRefGoogle ScholarPubMed
Bora, E., Fornito, A., Pantelis, C., & Yücel, M. (2012a). Gray matter abnormalities in major depressive disorder: A meta-analysis of voxel based morphometry studies. Journal of Affective Disorders, 138(1): 918.CrossRefGoogle ScholarPubMed
Bora, E., Harrison, B. J., Davey, C. G., Yücel, M., & Pantelis, C. (2012b). Meta-analysis of volumetric abnormalities in cortico-striatal-pallidal-thalamic circuits in major depressive disorder. Psychological Medicine, 42(4): 671681.CrossRefGoogle ScholarPubMed
Bracht, T., Federspiel, A., Schnell, S., Horn, H., Höfle, O., Wiest, R., … Walther, S. (2012). Cortico-cortical white matter motor pathway microstructure is related to psychomotor retardation in major depressive disorder. PLoS One, 7(12): e52238.Google Scholar
Buyukdura, J. S., McClintock, S. M., & Croarkin, P. E. (2011). Psychomotor retardation in depression: Biological underpinnings, measurement, and treatment. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(2): 395409.CrossRefGoogle ScholarPubMed
Caligiuri, M. P. & Ellwanger, J. (2000). Motor and cognitive aspects of motor retardation in depression. Journal of Affective Disorders, 57(1–3): 8393.CrossRefGoogle ScholarPubMed
Chantiluke, K., Halari, R., Simic, M., Pariante, C. M., Papadopoulos, A., Giampietro, V., & Rubia, K. (2012). Fronto-striato-cerebellar dysregulation in adolescents with depression during motivated attention. Biological Psychiatry, 71(1): 5967.CrossRefGoogle ScholarPubMed
Chen, C.-S., Chiang, I., Li, C.-W., Lin, W.-C., Lu, C.-Y., Hsieh, T.-J., … Kuo, Y.-T. (2009). Proton magnetic resonance spectroscopy of late-life major depressive disorder. Psychiatry Research: Neuroimaging, 172(3): 210214.Google Scholar
Cooney, R. E., Joormann, J., Eugène, F., Dennis, E. L., & Gotlib, I. H. (2010). Neural correlates of rumination in depression. Cognitive, Affective, & Behavioral Neuroscience, 10(4): 470478.CrossRefGoogle ScholarPubMed
Cotter, D., Mackay, D., Chana, G., Beasley, C., Landau, S., & Everall, I. P. (2002). Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cerebral Cortex, 12(4): 386394.CrossRefGoogle ScholarPubMed
Crowell, A. L., Riva-Posse, P., Garlow, S. J., & Mayberg, H. S. (2014). Toward an understanding of the neural circuitry of major depressive disorder through the clinical response to deep brain stimulation of different anatomical targets. Current Behavioral Neuroscience Reports, 1(2): 5563.CrossRefGoogle Scholar
Dannlowski, U., Ohrmann, P., Konrad, C., Domschke, K., Bauer, J., Kugel, H., … Baune, B. T. (2009). Reduced amygdala–prefrontal coupling in major depression: Association with MAOA genotype and illness severity. International Journal of Neuropsychopharmacology, 12(1): 1122.CrossRefGoogle ScholarPubMed
DeRubeis, R. J., Siegle, G. J., & Hollon, S. D. (2008). Cognitive therapy versus medication for depression: Treatment outcomes and neural mechanisms. Nature Reviews Neuroscience, 9(10): 788796.CrossRefGoogle ScholarPubMed
Disner, S. G., Beevers, C. G., Haigh, E. A. P., & Beck, A. T. (2011). Neural mechanisms of the cognitive model of depression. Nature Reviews Neuroscience, 12(8): 467477.CrossRefGoogle ScholarPubMed
Draganski, B., Kherif, F., Klöppel, S., Cook, P. A., Alexander, D. C., Parker, G. J. M., … Frackowiak, R. S. J. (2008). Evidence for segregated and integrative connectivity patterns in the human basal ganglia. Journal of Neuroscience, 28(28): 71437152.Google Scholar
Drevets, W. C., Savitz, J., & Trimble, M. (2008). The subgenual anterior cingulate cortex in mood disorders. CNS Spectrums, 13(8): 663681.CrossRefGoogle ScholarPubMed
Elliott, R., Rubinsztein, J. S., Sahakian, B. J., & Dolan, R. J. (2002). The neural basis of mood-congruent processing biases in depression. Archives of General Psychiatry, 59(7): 597604.CrossRefGoogle ScholarPubMed
Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R., & Hirsch, J. (2006). Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51(6): 871882.Google Scholar
Eugène, F., Joormann, J., Cooney, R. E., Atlas, L. Y., & Gotlib, I. H. (2010). Neural correlates of inhibitory deficits in depression. Psychiatry Research: Neuroimaging, 181(1): 3035.Google Scholar
Fales, C. L., Barch, D. M., Rundle, M. M., Mintun, M. A., Snyder, A. Z., Cohen, J. D., … Sheline, Y. I. (2008). Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biological Psychiatry,63(4): 377384.Google Scholar
Fornage, M., Debette, S., Bis, J. C., Schmidt, H., Ikram, M. A., Dufouil, C., … Launer, L. J. (2011). Genome-wide association studies of cerebral white matter lesion burden. Annals of Neurology, 69(6): 928939.Google Scholar
Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21(4): 424430.Google Scholar
Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna, H., … Schatzberg, A. F. (2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5): 429437.CrossRefGoogle ScholarPubMed
Halari, R., Simic, M., Pariante, C. M., Papadopoulos, A., Cleare, A., Brammer, M., … Rubia, K. (2009). Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-naïve adolescents with depression compared to controls. Journal of Child Psychology and Psychiatry, 50(3): 307316.Google Scholar
Hamilton, J. P. & Gotlib, I. H. (2008). Neural substrates of increased memory sensitivity for negative stimuli in major depression. Biological Psychiatry, 63(12): 11551162.Google Scholar
Heller, A. S., Johnstone, T., Shackman, A. J., Light, S. N., Peterson, M. J., Kolden, G. G., … Davidson, R. J. (2009). Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proceedings of the National Academy of Sciences of the United States of America, 106(52): 2244522450.Google Scholar
Johansen-Berg, H., Gutman, D. A., Behrens, T. E. J., Matthews, P. M., Rushworth, M. F. S., Katz, E., … Mayberg, H. S. (2008). Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cerebral Cortex, 18(6): 13741383.CrossRefGoogle ScholarPubMed
Johnston-Wilson, N. L., Sims, C. D., Hofmann, J. P., Anderson, L., Shore, A. D., Torrey, E. F., & Yolken, R. H. (2000). Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. Molecular Psychiatry, 5(2): 142149.Google Scholar
Johnstone, T., Van Reekum, C. M., Urry, H. L., Kalin, N. H., & Davidson, R. J. (2007). Failure to regulate: Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. Journal of Neuroscience, 27(33): 88778884.CrossRefGoogle ScholarPubMed
Krishnan, K., Taylor, W. D., McQuoid, D. R., MacFall, J. R., Payne, M. E., Provenzale, J. M., & Steffens, D. C.(2004). Clinical characteristics of magnetic resonance imaging-defined subcortical ischemic depression. Biological Psychiatry, 55(4): 390397.Google Scholar
Kumar, A., Gupta, R. C., Albert, T. M., Alger, J., Wyckoff, N., & Hwang, S. (2004). Biophysical changes in normal-appearing white matter and subcortical nuclei in late-life major depression detected using magnetization transfer. Psychiatry Research: Neuroimaging, 130(2): 131140.CrossRefGoogle ScholarPubMed
Lee, R. S. C., Hermens, D. F., Porter, M. A., & Redoblado-Hodge, M. A. (2012). A meta-analysis of cognitive deficits in first-episode major depressive disorder. Journal of Affective Disorders, 140(2): 113124.CrossRefGoogle ScholarPubMed
Lui, S., Wu, Q., Qiu, L., Yang, X., Kuang, W., Chan, R. C. K., … Gong, Q. (2011). Resting-state functional connectivity in treatment-resistant depression. American Journal of Psychiatry, 168(6): 642648.Google Scholar
Ma, N., Li, L., Shu, N., Liu, J., Gong, G., He, Z., … Zhang, Z. (2007). White matter abnormalities in first-episode, treatment-naive young adults with major depressive disorder. American Journal of Psychiatry, 164(5): 823826.Google Scholar
MacLeod, C., Mathews, A., & Tata, P. (1986). Attentional bias in emotional disorders. Journal of Abnormal Psychology, 95(1): 1520.Google Scholar
Mayberg, H. S. (2009). Targeted electrode-based modulation of neural circuits for depression. Journal of Clinical Investigation, 119(4): 717725.Google Scholar
Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., … Lancaster, J. L. (1999). Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. American Journal of Psychiatry, 156(5): 675682.Google Scholar
Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani, C., … Kennedy, S. H. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45(5): 651660.Google Scholar
McCormick, L. M., Ponto, L. L. B., Pierson, R. K., Johnson, H. J., Magnotta, V., & Brumm, M. C. (2007). Metabolic correlates of antidepressant and antipsychotic response in patients with psychotic depression undergoing electroconvulsive therapy. Journal of ECT, 23(4): 265273.Google Scholar
Millan, M. J., Agid, Y., Brüne, M., Bullmore, E. T., Carter, C. S., Clayton, N. S., … DeRubeis, R. J. (2012). Cognitive dysfunction in psychiatric disorders: Characteristics, causes and the quest for improved therapy. Nature Reviews Drug Discovery, 11(2): 141168.Google Scholar
Minett, T. S. C., Dean, J. L., Firbank, M., English, P., & O’Brien, J. T. (2005). Subjective memory complaints, white-matter lesions, depressive symptoms, and cognition in elderly patients. American Journal of Geriatric Psychiatry, 13(8): 665671.CrossRefGoogle ScholarPubMed
Modirrousta, M. & Fellows, L. K. (2008). Medial prefrontal cortex plays a critical and selective role in “feeling of knowing” meta-memory judgments. Neuropsychologia, 46(12): 29582965.Google Scholar
Murata, T., Kimura, H., Omori, M., Kado, H., Kosaka, H., Iidaka, T., … Wada, Y. (2001). MRI white matter hyperintensities, 1H-MR spectroscopy and cognitive function in geriatric depression: A comparison of early-and late-onset cases. International Journal of Geriatric Psychiatry, 16(12): 11291135.Google Scholar
Niogi, S., Mukherjee, P., Ghajar, J., & McCandliss, B. D. (2010). Individual differences in distinct components of attention are linked to anatomical variations in distinct white matter tracts. Frontiers in Neuroanatomy, 4: 2.Google Scholar
O’Driscoll, K. & Leach, J. P. (1998). “No longer Gage”: an iron bar through the head – early observations of personality change after injury to the prefrontal cortex. British Medical Journal, 317(7174): 16731674.Google Scholar
O’Sullivan, M., Barrick, T. R., Morris, R. G., Clark, C. A., & Markus, H. S. (2005). Damage within a network of white matter regions underlies executive dysfunction in CADASIL. Neurology, 65(10): 15841590.Google Scholar
Papakostas, G. I., Iosifescu, D. V., Renshaw, P. F., Lyoo, I. K., Lee, H. K., Alpert, J. E., … Fava, M. (2005). Brain MRI white matter hyperintensities and one-carbon cycle metabolism in non-geriatric outpatients with major depressive disorder (Part II). Psychiatry Research: Neuroimaging, 140(3): 301307.Google Scholar
Ponds, R. W. H. M. & Jolles, J. (1996). Memory complaints in elderly people: The role of memory abilities, metamemory, depression, and personality. Educational Gerontology: An International Quarterly, 22(4): 341357.CrossRefGoogle Scholar
Posner, M. I. & Petersen, S. E. (1989). The attention system of the human brain: DTIC document. St. Louis, MO: Washington University.Google Scholar
Posner, M. I. & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58: 123.Google Scholar
Prins, N. D., Van Dijk, E. J., den Heijer, T., Vermeer, S. E., Jolles, J., Koudstaal, P. J., … Breteler, M. M. B. (2005). Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain, 128(9): 20342041.Google Scholar
Qin, J., Wei, M., Liu, H., Yan, R., Luo, G., Yao, Z., & Lu, Q. (2014). Abnormal brain anatomical topological organization of the cognitive-emotional and the frontoparietal circuitry in major depressive disorder. Magnetic Resonance in Medicine, 72(5): 13971407.Google Scholar
Rajkowska, G. & Miguel-Hidalgo, J. J. (2007). Gliogenesis and glial pathology in depression. CNS & Neurological Disorders: Drug Targets, 6(3): 219233.Google Scholar
Ratiu, P., Talos, I.-F., Haker, S., Lieberman, D., & Everett, P. (2004). The tale of Phineas Gage, digitally remastered. Journal of Neurotrauma, 21(5): 637643.Google Scholar
Rigucci, S., Serafini, G., Pompili, M., Kotzalidis, G. D., & Tatarelli, R. (2010). Anatomical and functional correlates in major depressive disorder: The contribution of neuroimaging studies. World Journal of Biological Psychiatry, 11(2): 165180.Google Scholar
Russo, S. J. & Nestler, E. J. (2013). The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14(9): 609625.Google Scholar
Sacher, J., Neumann, J., Fünfstück, T., Soliman, A., Villringer, A., & Schroeter, M. L. (2012). Mapping the depressed brain: A meta-analysis of structural and functional alterations in major depressive disorder. Journal of Affective Disorders, 140(2): 142148.Google Scholar
Sepulcre, J., Masdeu, J. C., Sastre-Garriga, J., Goñi, J., Vélez-de-Mendizábal, N., Duque, B., … Villoslada, P. (2008). Mapping the brain pathways of declarative verbal memory: Evidence from white matter lesions in the living human brain. Neuroimage, 42(3): 12371243.Google Scholar
Sheline, Y. I., Price, J. L., Yan, Z., & Mintun, M. A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences of the United States of America, 107(24): 1102011025.Google Scholar
Shizukuishi, T., Abe, O., & Aoki, S. (2013). Diffusion tensor imaging analysis for psychiatric disorders. Magnetic Resonance in Medical Sciences, 12(3): 153159.Google Scholar
Siegle, G. J., Thompson, W., Carter, C. S., Steinhauer, S. R., & Thase, M. E. (2007). Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: Related and independent features. Biological Psychiatry, 61(2): 198209.Google Scholar
Simpson, J. E., Hosney, O., Wharton, S. B., Heath, P., Holden, H., Fernando, M. S., … Ince, P. G. (2009). Microarray RNA expression analysis of cerebral white matter lesions reveals changes in multiple functional pathways. Stroke, 40(2): 369375.Google Scholar
Surguladze, S., Brammer, M. J., Keedwell, P., Giampietro, V., Young, A. W., Travis, M. J., … Phillips, M. L. (2005). A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder. Biological Psychiatry, 57(3): 201209.Google Scholar
Tao, H., Guo, S., Ge, T., Kendrick, K. M., Xue, Z., Liu, Z., & Feng, J. (2011). Depression uncouples brain hate circuit. Molecular Psychiatry, 18(1): 101111.Google Scholar
Taylor, W. D., Aizenstein, H. J., & Alexopoulos, G. S. (2013). The vascular depression hypothesis: Mechanisms linking vascular disease with depression. Molecular Psychiatry, 18(9): 963974.CrossRefGoogle ScholarPubMed
Tham, M. W., Woon, P. S., Sum, M. Y., Lee, T.-S., & Sim, K. (2011). White matter abnormalities in major depression: Evidence from post-mortem, neuroimaging and genetic studies. Journal of Affective Disorders, 132(1): 2636.Google Scholar
Thomas, A. J., O’Brien, J. T., Davis, S., Ballard, C., Barber, R., Kalaria, R. N., & Perry, R. H. (2002). Ischemic basis for deep white matter hyperintensities in major depression: A neuropathological study. Archives of General Psychiatry, 59(9): 785792.Google Scholar
Tullberg, M., Fletcher, E., DeCarli, C., Mungas, D., Reed, B. R., Harvey, D. J., … Jagust, W. J. (2004). White matter lesions impair frontal lobe function regardless of their location. Neurology, 63(2): 246253.Google Scholar
Turken, A. U., Whitfield-Gabrieli, S., Bammer, R., Baldo, J., Dronkers, N. F., & Gabrieli, J. D. E. (2008). Cognitive processing speed and the structure of white matter pathways: Convergent evidence from normal variation and lesion studies. NeuroImage, 42(2): 10321044.Google Scholar
Van den Heuvel, D. M. J., Ten Dam, V. H., de Craen, A. J. M., Admiraal-Behloul, F., Olofsen, H., Bollen, E. L. E. M., … Westendorp, R. G. J. (2006). Increase in periventricular white matter hyperintensities parallels decline in mental processing speed in a non-demented elderly population. Journal of Neurology, Neurosurgery, and Psychiatry, 77(2): 149153.Google Scholar
Van Horn, J. D., Irimia, A., Torgerson, C. M., Chambers, M. C., Kikinis, R., & Toga, A. W. (2012). Mapping connectivity damage in the case of Phineas Gage. PloS One, 7(5): e37454.Google Scholar
Van Petten, C., Plante, E., Davidson, P. S. R., Kuo, T. Y., Bajuscak, L., & Glisky, E. L. (2004). Memory and executive function in older adults: Relationships with temporal and prefrontal gray matter volumes and white matter hyperintensities. Neuropsychologia, 42(10): 13131335.Google Scholar
Veer, I. M., Beckmann, C. F., Van Tol, M.-J., Ferrarini, L., Milles, J., Veltman, D. J., … Rombouts, S. A. R. B. (2010). Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Frontiers in Systems Neuroscience, 4: 41.Google Scholar
Walther, S., Hügli, S., Höfle, O., Federspiel, A., Horn, H., Bracht, T., … Müller, T. J. (2012). Frontal white matter integrity is related to psychomotor retardation in major depression. Neurobiology of Disease,47(1): 1319.Google Scholar
Watkins, E. & Brown, R. G. (2002). Rumination and executive function in depression: An experimental study. Journal of Neurology, Neurosurgery, and Psychiatry, 72(3): 400402.Google Scholar
World Health Organization (2001). Mental Health: A Call for Action by World Health Ministers. Geneva: WHO.Google Scholar
Zou, K., Huang, X., Li, T., Gong, Q., Li, Z., Ou-yang, L., … Sun, X. (2008). Alterations of white matter integrity in adults with major depressive disorder: A magnetic resonance imaging study. Journal of Psychiatry & Neuroscience, 33(6): 525530.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×