Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T01:13:06.179Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 June 2016

John L. Smellie
Affiliation:
University of Leicester
Benjamin R. Edwards
Affiliation:
Dickinson College, Pennsylvania
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Glaciovolcanism on Earth and Mars
Products, Processes and Palaeoenvironmental Significance
, pp. 410 - 460
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albino, F., Pinel, V. and Sigmundsson, F. 2010. Influence of surface load variations on eruption likelihood: application to two Icelandic subglacial volcanoes, Grímsvötn and Katla. Geophysical Journal International, 181, 15101524.Google Scholar
Alho, P., Russell, A.J., Carrivick, J.L. and Käyhkö, J. 2005. Reconstruction of the largest Holocene jökulhlaup within Jökulsa á Fjöllum, NE Iceland. Quaternary Science Reviews, 24, 23192334.CrossRefGoogle Scholar
Allen, C.A. 1979. Volcano–ice interactions on Mars. Journal of Geophysical Research, 84, 80488059.CrossRefGoogle Scholar
Allen, C.C. 1980. Icelandic subglacial volcanism: thermal and physical studies. Journal of Geology, 88, 108117.CrossRefGoogle Scholar
Alt, J.C. and Mata, P. 2000. On the role of microbes in the alteration of submarine basaltic glass: a TEM study. Earth and Planetary Science Letters, 181, 301313.CrossRefGoogle Scholar
Ambach, W., Blumthaler, M. and Kirchlechner, P. 1981. Application of the gravity flow theory to the percolation of melt water through firn. Journal of Glaciology, 27, 6775.CrossRefGoogle Scholar
Amigo, A. 2013. Estimation of tephra-fall and lahar hazards at Hudson volcano, southern Chile: insights from numerical models. In: Rose, W.I. et al. (eds) Understanding open-vent volcanism and related hazards. Geological Society of America Special Paper, 498, pp. 177199.Google Scholar
Anderson, S.W., Stofan, E.R., Plaut, J.J. and Crown, D.A. 1998. Block size distributions on silicic lava flow surfaces: implications for emplacement conditions. Geological Society of America Bulletin, 110, 12581267.Google Scholar
Antibus, J.V., Panter, K.S., Wilch, T.I., Dunbar, N., McIntosh, W., Tripati, A., Bindemann, I. and Blusztajn, J. 2014. Alteration of volcaniclastic deposits at Minna Bluff: geochemical insights on mineralizing environment and climate during the Late Miocene in Antarctica. Geochemistry, Geophysics, Geosystems, 15, 15252027.CrossRefGoogle Scholar
Atkins, C.B., Barrett, P.J. and Hicock, S.R. 2002. Cold glaciers erode and deposit: evidence from Allan Hills, Antarctica. Geology, 30, 659662.2.0.CO;2>CrossRefGoogle Scholar
Aydin, A. and DeGraff, J.M. 1988. Evolution of polygonal fracture patterns in lava flows, Science, 239, 471476.CrossRefGoogle ScholarPubMed
Bacon, C.R. 2008. Geologic map of Mount Mazama and Crater Lake caldera, Oregon. United States Geological Survey, Scientific Investigations Map 2832, 45 pp. and 4 map plates.Google Scholar
Bacon, C. and Lanphere, M. 2006. Eruptive history and geochronology of Mount Mazama and the Crater Lake region. Geological Society of America Bulletin, 118, 13311359.Google Scholar
Baker, D.M.H., Head, J.W. and Marchant, D.R. 2010. Flow patterns of lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars: evidence for extensive mid-latitude glaciations in the Late Amazonian. Icarus, 207, 186209.CrossRefGoogle Scholar
Baker, P.E. 1990a. South Sandwich Islands. In: LeMasurier, W.E. and Thomson, J.W. (eds) Volcanoes of the Antarctic Plate and southern oceans. American Geophysical Union, Antarctic Research Series, 48, pp. 361395.CrossRefGoogle Scholar
Baker, P.E. 1990b. Montagu Island. In: LeMasurier, W.E. and Thomson, J.W. (eds) Volcanoes of the Antarctic Plate and southern oceans. American Geophysical Union, Antarctic Research Series, 48, pp. 382383.CrossRefGoogle Scholar
Baker, P.E., McReith, I., Harvey, M.R., Roobol, M.J. and Davies, T.G. 1975. The geology of the South Shetland Islands: V. Volcanic evolution of Deception Island. British Antarctic Survey Scientific Reports, 78, 81 pp.Google Scholar
Baker, V.R. 1982. The channels of Mars. University of Texas Press, Austin, 198 pp.Google Scholar
Baker, V., Strom, R., Gulick, V., Kargel, J., Komatsu, G. and Kale, V. 1991. Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature, 352, 589594.Google Scholar
Baker, V.R., Carr, M.H., Gulick, V.C., Williams, C.R. and Marley, M.S. 1992. Channels and valley networks. In: Kieffer, H.H., Jakosky, B.M., Snyder, C.W. and Matthews, M.S. (eds) Mars. University of Arizona Press, Tucson, pp. 493522.Google Scholar
Ball, M. and Pinkerton, H. 2006. Factors affecting the accuracy of thermal imaging cameras in volcanology. Journal of Geophysical Research, 111, B11203, doi:10.1029/2005JB003829.CrossRefGoogle Scholar
Balme, M.R., Gallagher, C.J. and Hauber, E. 2013. Morphological evidence for geologically young thaw of ice on Mars: a review of recent studies using high-resolution imaging data. Progress in Physical Geography, 37, 289324.CrossRefGoogle Scholar
Banik, T.J., Wallace, P.J., Höskuldsson, Á., Miller, C.F., Bacon, C.R. and Furbish, D.J. 2014. Magma–ice–sediment interactions and the origin of lava/hyaloclastite sequences in the Sída Formation, South Iceland. Bulletin of Volcanology, 76, 785803.CrossRefGoogle Scholar
Barr, I.D. and Solomina, O. 2013. Pleistocene and Holocene glacier fluctuations upon the Kamchatka Peninsula. Global and Planetary Change, 113, 110120.Google Scholar
Barrows, T.T., Hope, G.S., Prentice, M.L., Fifield, L.K. and Tims, S.G. 2011. Late Pleistocene glaciation of the Mt Giluwe volcano, Papua New Guinea. Quaternary Science Reviews, 30, 26762689.CrossRefGoogle Scholar
Basile, I., Petit, J.R., Touron, S., Grousset, F.E. and Barkov, N. 2001. Volcanic layers in Antarctic (Vostok) ice cores: source identification and atmospheric implications. Journal of Geophysical Research, 106, 3191531932.CrossRefGoogle Scholar
Batiza, R. and White, J.D.L. 2000. Submarine lavas and hyaloclastite. In: Sigurdsson, H., Houghton, B., Rymer, H., Stix, J. and McNutt, S. (eds) Encyclopedia of volcanoes, 1st Edition. Academic Press, San Diego, pp. 361381.Google Scholar
Beget, J, Hopkins, D.M. and Charron, S. 1996. The largest known maars on Earth, Seward Peninsula, Northwest Alaska. Arctic, 49, 6269.CrossRefGoogle Scholar
Behncke, B. 2004. Late Pliocene volcanic island growth and flood basalt-like lava emplacement in the Hyblean Mountains (SE Sicily). Journal of Geophysical Research, 109, B09201, doi:10.1029/2003JB002937.CrossRefGoogle Scholar
Behrendt, J.C. 2013. The aeromagnetic method as a tool to identify Cenozoic magmatism in the West Antarctic Rift System beneath the West Antarctic Ice Sheet – A review: Thiel subglacial volcano as possible source of the ash layer in the WAISCORE. Tectonophysics, 585, 124136.CrossRefGoogle Scholar
Behrendt, J.C., LeMasurier, W. and Cooper, A.K. 1992. The West Antarctic rift system: a propagating rift ‘captured’ by a mantle plume? In: Yoshida, Y., Kaminuma, K. and Shiraishi, K. (eds) Recent progress in Antarctic earth science. Terra Scientific Publishing Company (TERAPUB), Tokyo, pp. 315322.Google Scholar
Behrendt, J.C., Blankenship, D.D., Finn, C.A., Bell, R.E., Sweeney, R.E., Hodge, S.R. and Brozena, J.M. 1994. Evidence for late Cenozoic flood basalts(?) in the West Antarctic rift system revealed by the CASERTZ aeromagnetic survey. Geology, 22, 527530.2.3.CO;2>CrossRefGoogle Scholar
Behrendt, J.C., Finn, C.A., Blankenship, D.D. and Bell, R.E. 1998. Aeromagnetic evidence for a volcanic caldera(?) complex beneath the divide of the West Antarctic Ice Sheet. Geophysical Research Letters, 25, 43854388.CrossRefGoogle Scholar
Behrendt, J.C., Blankenship, D.D., Morse, D.L. and Bell, R.E. 2004. Shallow-source aeromagnetic anomalies observed over the West Antarctic IceSheet compared with coincident bed topography from radar ice sounding: new evidence for glacial ‘removal’ of subglacially erupted late Cenozoic rift-related volcanic edifices. Global and Planetary Change, 42, 177193.CrossRefGoogle Scholar
Bell, C.M. 1973. The geology of Beethoven Peninsula, south-western Alexander Island. British Antarctic Survey Bulletin, 32, 7583.Google Scholar
Belousov, A., Behncke, B. and Belousova, M. 2011. Generation of pyroclastic flows by explosive interaction of lava flows with ice/water-saturated substrate. Journal of Volcanology and Geothermal Research, 202, 6072.Google Scholar
Belousov, A., Belousova, M., Edwards, B.R., Volynets, A. and Melnikov, D. 2015. Overview of the precusors and dynamics of the 2012–13 basaltic fissure eruption of Tolbachik volcano, Kamchatka, Russia. Journal of Volcanology and Geothermal Research [in press].CrossRefGoogle Scholar
Benn, D.I. and Evans, D.J.A. 1998. Glaciers and glaciation. Arnold, London, 734 pp.Google Scholar
Bennett, M.R., Huddart, D. and Waller, R.I. 2006. Diamict fans in subglacial water-filled cavities: a new glacial environment. Quaternary Science Reviews, 25, 30503069.CrossRefGoogle Scholar
Bennett, M.R., Huddart, D. and Gonzalez, S. 2009. Glaciovolcanic landsystem and large-scale glaciotectonic deformation along the Brekknafjöll–Jarlhettur, Iceland. Quaternary Science Reviews, 28, 647676.CrossRefGoogle Scholar
Bergh, S. 1985. Structure, depositional environment and mode of emplacement of basaltic hyaloclastites and related lavas and sedimentary rocks: Plio-Pleistocene of the eastern volcanic rift zone, southern Iceland. Nordic Volcanological Institute Report, 8502, 91 pp.Google Scholar
Bergh, S. and Sigvaldason, G.E. 1991. Pleistocene mass-flow deposits of basaltic hyaloclastite on a shallow submarine shelf, South Iceland. Bulletin of Volcanology, 53, 597611.CrossRefGoogle Scholar
Berman, R.G. 1988. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29, 445522.CrossRefGoogle Scholar
Berman, R.G. and Brown, T.H. 1985. Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: representation, estimation, and high temperature extrapolation. Contributions to Mineralogy and Petrology, 89, 168183.CrossRefGoogle Scholar
Best, J. 1992. Sedimentology and event timing of a catastrophic volcaniclastic mass-flow, Volcan Hudson, southern Chile. Bulletin of Volcanology, 54, 299318.CrossRefGoogle Scholar
Bevier, M.L., Armstrong, R.L. and Souther, J.G. 1979. Miocene peralkaline volcanism in west-central British Columbia: its temporal and plate tectonic setting. Geology, 7, 389392.2.0.CO;2>CrossRefGoogle Scholar
Bindeman, I.N. and Serebrykov, N.S. 2011. Geology, petrology and O and H isotope geochemistry of remarkably δ18O depleted Paleoproterozoic rocks of the Belomorian Belt, Karelia, Russia, attributed to global glaciation 2.4 Ga. Earth and Planetary Science Letters, 306, 163174.CrossRefGoogle Scholar
Bindeman, I.N., Fournelle, J.H. and Valley, J.W. 2001. Low-δ18O tephra from a compositionally zoned magma body: Fisher Caldera, Unimak Island, Aleutians. Journal of Volcanology and Geothermal Research, 111, 3553.CrossRefGoogle Scholar
Bindeman, I.N., Ponomareva, V.V., Bailey, J.C. and Valley, J.W. 2004. Volcanic arc of Kamchatka: a province with high-δ18O magma sources and large-scale 18O/16O depletion of the upper crust. Geochimica et Cosmochimica Acta, 68, 841865.CrossRefGoogle Scholar
Bindeman, I.N., Gurenko, A.A., Sigmarsson, O. and Chaussidon, M. 2008. Oxygen isotope heterogeneity and disequilibria of olivine phenocrysts in large volume Holocene basalts from Iceland: evidence for magmatic digestion and erosion of Pleistocene hyaloclastites. Geochimica et Cosmochimica Acta, 72, 43974420.CrossRefGoogle Scholar
Bindeman, I.N., Leonov, V.L., Izbekov, P.E., Ponomareva, V.V., Watts, K.E., Shipley, N.K., Perpelov, A.B., Bazanova, L.I., Jicha, B.R., Singer, B.S., Schmitt, A.K., Portnyagin, M.V. and Chen, C.H. 2010. Large-volume silicic volcanism in Kamchatka: Ar-Ar and U-Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions. Journal of Volcanology and Geothermal Research, 189, 5780.CrossRefGoogle Scholar
Bishop, J.L., Schiffman, P. and Southard, R. 2002. Geochemical and mineralogical analyses of tuffs and altered rinds of pillow basalts in Iceland and applications to Mars. In: Smellie, J.L. and Chapman, M.G. (eds) Volcano–ice interaction on Earth and Mars, Geological Society, London, Special Publications, 202, pp. 371392.Google Scholar
Björnsson, H. 1975. Subglacial water reservoirs, jökulhlaups and volcanic eruptions. Jökull, 25, 114.CrossRefGoogle Scholar
Björnsson, H. 1988. Hydrology of icecaps in volcanic regions. Vísindafélag Íslendinga, Societas Scientarium Islandica, 45, 1139.Google Scholar
Björnsson, H. 1992. Jökulhlaups in Iceland: prediction, characteristics and simulation. Annals of Glaciology, 16, 95106.CrossRefGoogle Scholar
Björnsson, H. 2002. Subglacial lakes and jökulhlaups in Iceland. Global and Planetary Change, 35, 255271.CrossRefGoogle Scholar
Björnsson, H. 2009. Jökulhlaups in Iceland: sources, release and drainage. In: Burr, D.M., Carling, P.A. and Baker, V.R. (eds) Megaflooding on Earth and Mars. Cambridge University Press, Cambridge, pp. 5062.CrossRefGoogle Scholar
Björnsson, H., Pálsson, F. and Gudmundson, M.T. 2000. Surface and bedrock topography of the Mýrdalsjökull ice cap, Iceland: the Katla caldera, eruption sites, and routes of jökulhlaups. Jökull, 49, 2946.CrossRefGoogle Scholar
Blake, D.H. and Löffler, E. 1971. Volcanic and glacial landforms on Mount Giluwe, Territory of Papua and New Guinea. Geological Society of America Bulletin, 82, 16051614.CrossRefGoogle Scholar
Blankenship, D.D., Bell, R.E., Hodge, S.M., Brozena, J.M., Behrendt, J.C. and Finn, C.A. 1993. Active volcanism beneath the West Antarctic ice sheet and implications for icesheet stability. Nature, 361, 526529.CrossRefGoogle Scholar
Bleick, H.A., Coombs, M.L., Cervelli, P.F., Bull, K.F. and Wessels, R.L. 2013. Volcano–ice interactions precursory to the 2009 eruption of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, 259, 373388.CrossRefGoogle Scholar
Blondes, M., Reiners, P.R., Edwards, B.R. and Biscontini, A. 2007. Dating young basalt eruptions using U/Th-He on xenolithic zircons. Geology, 35, 1720.CrossRefGoogle Scholar
Bonatti, E. and Harrison, C.G.A. 1988. Eruption styles of basalt in oceanic spreading ridges and seamounts: effect of magma temperature and viscosity. Journal of Geophysical Research, 93, B4, 29672980.CrossRefGoogle Scholar
Bonnichsen, B. and Kauffman, D.F. 1987. Physical features of rhyolitic lava flows in the Snake River Plain volcanic province, southwestern Idaho. In: Fink, J.H. (ed.) The emplacement of silicic domes and lava flows. Geological Society of America Special Paper, 212, pp. 119145.CrossRefGoogle Scholar
Bosman, A., Casalbore, D., Romagnoli, C. and Chiocci, F.L. 2014. Formation of an ‘a‘ā lava delta: insights from time-lapse multibeam bathymetry and direct observations during the Stromboli 2007 eruption. Bulletin of Volcanology, 76, 112.CrossRefGoogle Scholar
Bourgeois, O., Dauteuil, O. and Van Vliet-Lanoë, B. 1998. Pleistocene subglacial volcanism in Iceland: tectonic implications. Earth and Planetary Science Letters, 164, 165178.CrossRefGoogle Scholar
Brady, J. B. 1995. Diffusion data for silicate minerals, glasses, and liquids. In: Ahrens, T.H. (ed.) Mineral physics and crystallography: a handbook of physical constants. AGU Reference Shelf 2, American Geophysical Union, Washington, D.C., pp. 269290.Google Scholar
Branney, M.J. and Gilbert, J.S. 1995. Ice-melt collapse pits and associated features in the 1991 lahar deposits of Volcán Hudson, Chile: criteria to distinguish eruption-induced glacier melt. Bulletin of Volcanology, 57, 293302.CrossRefGoogle Scholar
Branney, M.J. and Kokelaar, P. 2002. Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society, London, Memoir, 27, 143 pp.Google Scholar
Brantley, S.R. 1990. The eruption of Redoubt volcano, Alaska, December 14, 1989 – August 31, 1990. United States Geological Survey Circular 1061, 33 pp.CrossRefGoogle Scholar
Brantley, S.R. 1999. Volcanoes of the United States. United States Geological Survey General Publication 99_03, 40 pp.CrossRefGoogle Scholar
Brantley, S.R. and Waitt, R.B. 1988. Interrelations among pyroclastic surge, pyroclastic flow, and lahars in Smith Creek valley during first minutes of 18 May 1980 eruption of Mount St. Helens, USA. Bulletin of Volcanology, 50, 304326.CrossRefGoogle Scholar
Brown, G.C., Everett, S.P., Rymer, H., McGarvie, D.W. and Foster, I. 1991. New light on caldera evolution: Askja, Iceland. Geology, 19, 352355.2.3.CO;2>CrossRefGoogle Scholar
Brugman, M.M. and Meier, M.F. 1981. Response of glaciers to the eruptions of Mount St. Helens. United States Geological Survey Professional Paper, 1250, pp. 743756.Google Scholar
Bull, K.F. and Buurman, H. 2013. An overview of the 2009 eruption of the Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, 259, 215.CrossRefGoogle Scholar
Busby-Spera, C.J. and White, J.D.L. 1987. Variation in peperite textures associated with differing host-sediment properties. Bulletin of Volcanology, 49, 765775.CrossRefGoogle Scholar
Bye, A., Edwards, B.R., Hickson, C.J. 2000. Preliminary field, petrographic and geochemical analysis of volcanism at the Watts Point volcanic centre, southwestern British Columbia: a subglacial, dacite lava dome? Geological Survey of Canada Current Research, Part A, Paper 2000-A20, 9 pp.CrossRefGoogle Scholar
Byers, F.M. 1959. Geology of Unmak and Bogoslof Islands, Aleutian Islands, Alaska. United States Geological Survey Bulletin, 1028-L, 267369.Google Scholar
Calavache, M.L.V. 1990. Pyroclastic deposits of the November 13, 1985 eruption of Nevado del Ruiz volcano, Colombia. Journal of Volcanology and Geothermal Research, 41, 6778.CrossRefGoogle Scholar
Campbell, R.J. 2000. The discovery of the South Shetland Islands 1819–1820. The journal of Midshipman C.W. Poynter. The Hakluyt Society, London, 232 pp.Google Scholar
Capra, L. 2005. Abrupt climate changes as triggering mechanisms of massive volcanic collapses. Journal of Volcanology and Geothermal Research, 155, 329333.CrossRefGoogle Scholar
Capra, L. and Macias, J.L. 2002. The cohesive Naranjo debris flow deposit (10 km3): a dam breakout flow derived from the Pleistocene debris-avalanche deposit of Nevado de Colima volcano (México). Journal of Volcanology and Geothermal Research, 117, 213235.CrossRefGoogle Scholar
Capra, L., Poblete, M.A. and Alvarado, R. 2004. The 1997 and 2001 lahars of Popocatépetl volcano (Central Mexico): textural and sedimentological constraints on their origin and hazards. Journal of Volcanology and Geothermal Research, 131, 351369.CrossRefGoogle Scholar
Capra, L., Roverato, M., Groppelli, G., Caballero, I., Sulpizio, R. and Norini, G. 2015. Glacier melting during lava dome growth at Nevado de Toluca volcano (Mexico): evidence of a major threat before main eruptive phases at ice-capped volcanoes. Journal of Volcanology and Geothermal Research, 294, 110.CrossRefGoogle Scholar
Carr, M.H. 1996. Water on Mars. Oxford University Press, Oxford, 229 pp.CrossRefGoogle Scholar
Carr, M.H. 2006. The surface of Mars. Cambridge University Press, Cambridge, 307 pp.Google Scholar
Carr, M.H. and Head, J.W. 2003. Oceans on Mars: an assessment of the observational evidence and possible fate. Journal of Geophysical Research, 108, E5, 542.CrossRefGoogle Scholar
Carr, M.H. and Head, J.W. 2010. Geologic history of Mars. Earth and Planetary Science Letters, 294, 185203.CrossRefGoogle Scholar
Carrasco-Núñez, G., Vallance, J.W. and Rose, W.I. 1993. A voluminous avalanche-induced lahar from Citaltépetl volcano, Mexico: implications for hazard assessment. Journal of Volcanology and Geothermal Research, 59, 3546.CrossRefGoogle Scholar
Carrivick, J.L., Russell, A.J., Tweed, F.S. and Twigg, D. 2004. Palaeohydrology and sedimentary impacts of jökulhlaups from Kverkfjöll, Iceland. Sedimentary Geology, 172, 1940.CrossRefGoogle Scholar
Carrivick, J.L., Russell, A.J., Rushmer, E.L., Tweed, F.S., Marren, P.M., Deeming, H. and Lowe, O.J. 2009. Geomorphological evidence towards a de-glacial control on volcanism. Earth Surface Processes and Landforms, 34, 11641178.CrossRefGoogle Scholar
Carrivick, J.L., Tweed, F.S., Carling, P., Alho, P., Marren, P.M., Staines, K., Russell, A.J., Rushmer, E.L. and Duller, R. 2013. Discussion of ‘Field evidence and hydraulic modelling of a large Holocene jökulhlaup at Jökulsá á Fjöllum channel, Iceland’ by Douglas Howard, Sheryl Lzzadder-Beach and Timothy Beach, 2012. Geomorphology, 201, 512519.CrossRefGoogle Scholar
Carsewell, D.A., 1983. The volcanic rocks of the Solheimajökull area, southern Iceland. Jökull, 33, 6171.CrossRefGoogle Scholar
Carslaw, H.S. and Jaeger, J.C. 1959. Conduction of heat in solids. 2nd Edition. Oxford University Press, New York, 510 pp.Google Scholar
Cas, R.A.F. and Wright, J.V. 1987. Volcanic successions: modern and ancient. Allen and Unwin, London, 528 pp.CrossRefGoogle Scholar
Cas, R.A.F., Landis, C.A. and Fordyce, R.E. 1989. A monogenetic, Surtla-type, Surtseyan volcano from the Eocene–Oligicene Waiareka–Deborah volcanics, Otago, New Zealand: a model. Bulletin of Volcanology, 51, 281298.CrossRefGoogle Scholar
Cashman, K.V. and Mangan, M.T. 2014. A century of studying effusive eruptions in Hawai’i. In: Poland, M.P., Takahashi, T.J. and Landowski, C.M. (eds) Characteristics of Hawaiian volcanoes. United States Geological Survey Professional Paper, 1801, pp. 357394.Google Scholar
Castruccio, A., Clavero, J. and Rivera, A. 2010. Comparative study of lahars generated by the 1961 and 1971 eruptions of Calbuco and Villarrica volcanoes, Southern Andes of Chile. Journal of Volcanology and Geothermal Research, 190, 297311.CrossRefGoogle Scholar
Chapman, M.G. 1994. Evidence, age, and thickness of a frozen paleolake in Utopia Planitia, Mars. Icarus, 109, 393406.CrossRefGoogle Scholar
Chapman, M.G. 2002. Layered, massive and thin sediments on Mars: possible Late Noachian to Late Amazonian tephra? In: Smellie, J.L. and Chapman, M.G. (eds) Volcano–ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202, pp. 273293.Google Scholar
Chapman, M.G. 2003. Sub-ice volcanoes and ancient oceans/lakes: a Martian challenge. Global and Planetary Change, 35, 185198.CrossRefGoogle Scholar
Chapman, M.G. and Tanaka, K.L. 2001. Interior layered deposits on Mars: subice volcanoes? Journal of Geophysical Research, 106, 1008710100.CrossRefGoogle Scholar
Chapman, M.G. and Smellie, J.L. 2007. Mars interior layered deposits and terrestrial sub-ice volcanoes compared: observations and interpretations of similar geomorphic characteristics. In: Chapman, M.G. (ed.) The geology of Mars: evidence from Earth-based analogs. Cambridge University Press, Cambridge, pp. 178210.CrossRefGoogle Scholar
Chapman, M.G., Allen, C.C., Gudmundsson, M.T., Gulick, V.C., Jakobsson, S.P., Lucchitta, B.K., Skilling, I.P. and Waitt, R.B. 2000. Volcanism and ice interactions on Earth and Mars. In: Zimbelman, J.R. and Gregg, T.K.P. (eds) Environmental effects on volcanic eruptions. Kluwer Academic/Plenum Publishers, New York, pp. 3974.CrossRefGoogle Scholar
Chapman, M.G., Smellie, J.L., Gudmundsson, M.T., Gulick, V.C., Jakobsson, S.P. and Skilling, I.P. 2001. Study of volcano/ice interactions gains momentum. Eos, Transactions, American Geophysical Union, 82, 234235.CrossRefGoogle Scholar
Chapman, M.G., Gudmundsson, M.T., Russell, A.J. and Hare, T.M. 2003. Possible Juventae Chasma sub-ice volcanic eruptions and Maja Valles ice outburst floods, Mars: implications of MGS crater densities, geomorphology, and topography. Journal of Geophysical Research, 108, E10, doi:10.1029/2002JE002009.CrossRefGoogle Scholar
Chappel, J. 1975. On possible relationships between upper Quaternary glaciations, geomagnetism, and vulcanism. Earth and Planetary Science Letters, 26, 370376.CrossRefGoogle Scholar
Charland, A., Francis, D. and Ludden, J. 1993. The relationship between the hawaiites and basalts of the Itcha Volcanic Complex, central British Columbia. Contributions to Mineralogy and Petrology, 121, 289302.CrossRefGoogle Scholar
Chinn, T.J., Kargel, J.S., Leonard, G.J., Haritashya, U.K. and Pleasants, M. 2014. New Zealand’s glaciers. In: Kargel, J.S., Leonard, G.J., Bishop, M.P., Kääb, A. and Raup, B.H. (eds) Global land ice measurements from space. Springer-Verlag, Berlin, pp. 675715.CrossRefGoogle Scholar
Chirico, G.D., Favalli, M., Papale, P., Boschi, E., Pareschi, M.T. and Mamou-Mani, A. 2009. Lava flow hazard at Nyiragongo Volcano, DRC. Bulletin of Volcanology, 71, 375387.CrossRefGoogle Scholar
Christiansen, E.H. 1989. Lahars in the Elysium region of Mars. Geology, 17, 203206.2.3.CO;2>CrossRefGoogle Scholar
Christensen, P.R. 2003. Formation of recent martian gullies through melting of extensive water-rich snow deposits. Nature, 422, 4548.CrossRefGoogle ScholarPubMed
Christiansen, R.L. and Peterson, , 1981. Chronology of the 1980 eruptive activity. In: Lipman, P.W. and Mullineaux, D.R. (eds) The 1980 eruptions of Mount St. Helens, Washington. United States Geological Survey Professional Paper, 1250, pp. 1730.Google Scholar
Churikova, T.G., Gordeychik, B.N., Edwards, B., Ponomareva, V.V. and Zelenin, E. 2015. The Tolbachik volcanic massif: a review of the petrology, volcanology and eruption history prior to the 2012–2013 eruption. Journal of Volcanology and Geothermal Research [in press].CrossRefGoogle Scholar
Cimarelli, C., Alatorre-Ibarguengoitia, M.A., Kueppers, U., Scheu, B. and Dingwell, D. 2013. Experimental generation of volcanic lightning. Geology, 38, 439442.CrossRefGoogle Scholar
Clague, J.J. and Ward, B. 2011. Pleistocene glaciation of British Columbia. In: Ehlers, J. and Gibbard, P.L. (eds) Quaternary glaciations: extent and chronology. Part II, North America. Developments in Quaternary Science, 2b, Elsevier, Amsterdam, pp. 563573.CrossRefGoogle Scholar
Clarke, G. and Smellie, J. (eds) 2007. Papers from the International Symposium on Earth and Planetary Ice–Volcano Interactions. Annals of Glaciology, 45, 199 pp.Google Scholar
Clark, N., Williams, M., Okamura, B., Smellie, J., Nelson, A., Knowles, T., Taylor, P., Leng, M., Zalasiewicz, J. and Haywood, M. 2010. Early Pliocene Weddell Sea seasonality determined from bryozoans. Stratigraphy, 7, 196206.Google Scholar
Clavero, J.E., Sparks, S.J., Polanco, E. and Pringle, M.S. 2004. Evolution of Parinacoata volcano, Central Andes, Northern Chile. Revista Geologica de Chile, 31, 317347.Google Scholar
Clifford, S.M. 1993. A model for the hydrologic and climatic behaviour of water on Mars. Journal of Geophysical Research, 98, 1097311016.CrossRefGoogle Scholar
Clifford, S.M. and Parker, T.J. 2001. The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus, 154, 4079.CrossRefGoogle Scholar
Clifford, S.M., Lasue, J., Heggy, E., Boisson, J., McGovern, P. and Max, M.D. 2010. Depth of the Martian cryosphere: revised estimates and implications for the existence and detection of subpermafrost groundwater. Journal of Geophysical Research, 115, E07001, doi:10.1029/2009JE003462.CrossRefGoogle Scholar
Cockell, C.S. 2004. The uses of Martian ice. Interdisciplinary Science Reviews, 29, 395407.CrossRefGoogle Scholar
Colbeck, S.C. and Anderson, A.A. 1982. The permeability of a melting snow cover. Water Resources Research, 18, 904908.CrossRefGoogle Scholar
Cole, P.D. 1991. Migration direction of sand-wave structures in pyroclastic surge deposits: implications for depositional processes. Geology, 19, 11081111.2.3.CO;2>CrossRefGoogle Scholar
Comer, R.P., Solomon, S.C. and Head, J.W. 1985. Mars: thickness of the lithosphere from the tectonic response to volcanic loads. Reviews of Geophysics, 23, 6192.CrossRefGoogle Scholar
Conway, C.E., Townsend, D.B., Leonard, G.S., Calvert, A.T., Wilson, C.J.N. and Gamble, J.A. 2015. Lava–ice interaction on a large composite volcano: a case study from Ruapehu, New Zealand. Bulletin of Volcanology, 77, 21, doi:10.1007/s00445-015-0906-2.CrossRefGoogle Scholar
Corr, H.F.J. and Vaughan, D.G. 2008. A recent volcanic eruption beneath the West Antarctic ice sheet. Nature Geoscience, 1, 122125.CrossRefGoogle Scholar
Cousins, C.R., Smellie, J.L., Jones, A.P. and Crawford, I.A. 2009. A comparative study of endolithic microborings in basaltic lavas from a transitional subglacial–marine environment. International Journal of Astrobiology, 8, 3749.CrossRefGoogle Scholar
Cowen, R. 2005. History of life. Blackwell Publishing, Oxford, 324 pp.Google Scholar
Craddock, C., Bastien, T.W. and Rutford, R.H. 1964. Geology of the Jones Mountains. In: Adie, R.J. (ed.) Antarctic geology. North-Holland Publishing Company, Amsterdam, pp. 171187.Google Scholar
Craddock, R.A. and Howard, A.D. 2002. The case for rainfall on a warm, wet early Mars. Journal of Geophysical Research, 107, E11, 5111, doi:10.1029/2001JE001505.CrossRefGoogle Scholar
Cronin, S.J., Neall, V.E., Lecointre, J.A. and Palmer, A.S. 1996. Unusual ‘snow slurry’ lahars from Ruapehu volcano, New Zealand, September 1995. Geology, 24, 11071110.2.3.CO;2>CrossRefGoogle Scholar
Crown, D.A. and Greeley, R. 1993. Volcanic geology of Hadrica Patera and the eastern Hellas region of Mars. Journal of Geophysical Research, 98, 34313451.CrossRefGoogle Scholar
Cuffey, K. and Paterson, W.S.B. 2010. The physics of glaciers. 4th Edition. Elsevier, New York, 693 pp.Google Scholar
Davies, B.J., Glasser, N.F., Carrivick, J.L., Hambrey, M.J., Smellie, J.L. and Nývlt, D. 2013. Landscape evolution and ice-sheet behaviour in a semi-arid polar environment: James Ross Island, NE Antarctic Peninsula. In: Hambrey, M.J., Barker, P.F., Barrett, P.J., Bowman, V., Davies, B., Smellie, J.L. And Tranter, M. (eds) Antarctic palaeoenvironents and Earth-surface processes. Geological Society, London, Special Publications, 381, pp. 353395.Google Scholar
DeGraff, J.M. and Aydin, A. 1987. Surface morphology of columnar joints and its significance to mechanics and direction of joint growth. Geological Society of America Bulletin, 99, 605617.2.0.CO;2>CrossRefGoogle Scholar
DeGraff, J.M. and Aydin, A. 1993. Effect of cooling rate on growth increments and spacing of thermal contraction cracks. Journal of Geophysical Research, 98, 64116430.CrossRefGoogle Scholar
DeGraff, J.M., Long, P.E. and Aydin, A. 1989. Use of joint-growth directions and rock textures to infer thermal regimes during solidification of basaltic lava flows. Journal of Volcanology and Geothermal Research, 38, 309324.CrossRefGoogle Scholar
Delgado Granados, H., Julio Miranda, P., lvarez, R., Cabral-Cano, E., Cárdenas Gonzalez, L., Correa Mora, F., Luna Alonso, M. and Huggel, C. 2005. Study of Ayoloco Glacier at Iztaccíhuatl volcano (Mexico): hazards related to volcanic activity–ice cover interactions. Annals of Geomorphology, 140, 181193.Google Scholar
Delgado-Granados, H., Miranda, P.J., Núñez, G.C., Alzate, B.P., Mothes, P., Roa, H.M., Cáceres-Correa, B.E. and Ramos, J.C. 2015. Hazards at ice-clad volcanoes: phenomena, processes, and examples from Mexico, Colombia, Ecuador, and Chile. In: Haeberli, W. and Whiteman, C. (eds) Snow and ice-related hazards, risks and disasters. Elsevier, Amsterdam, pp. 607646.CrossRefGoogle Scholar
Dingwell, D.B. and Webb, S.L. 1990. Relaxations in silicate melts. European Journal of Mineralogy, 2, 427449.CrossRefGoogle Scholar
Dixon, J.E., Stolper, E.M. and Holloway, J.R. 1995. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubilities models. Journal of Petrology, 36, 16071631.Google Scholar
Dixon, J.E., Filiberto, J.R., Moore, J.G. and Hickson, C.J. 2002. Volatiles in basaltic glasses from a subglacial volcano in northern British Columbia (Canada): implications for ice sheet thickness and mantle volatiles. In: Smellie, J.L. and Chapman, M.G. (eds) Volcano–ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202, pp. 255271.Google Scholar
Dorava, J.M. and Meyer, D.F. 1994. Hydrologic hazards in the lower Drift River basin associated with the 1989–90 eruptions of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, 62, 387407.CrossRefGoogle Scholar
Dorendorf, F., Wiechert, U. and Wörner, G. 2000. Hydrated sub-arc mantle: a source for the Kluchevskoy volcano, Kamchatka/Russia. Earth and Planetary Science Letters, 175, 6986.CrossRefGoogle Scholar
Downie, C. 1964. Glaciations of Kilimanjaro, northeast Tanganyika. Geological Society of America Bulletin, 75, 116.CrossRefGoogle Scholar
Duffey, T.S. 2008. Some recent advances in understanding the mineralogy of Earth’s deep mantle. Philosophical Transactions of the Royal Society of London, 366, 42734293.Google Scholar
Duk-Rodkin, A., Barendregt, R.W., Froese, D.G., Weber, F., Enkin, R.J., Smith, I.R., Zazula, Grant D., Waters, P. and Klassen, R. 2004. Timing and extent of Plio-Pleistocene glaciations in North-Western Canada and East-Central Alaska. In: Ehlers, J. and Gibbard, P.L. (eds) Quaternary glaciations: extent and chronology, Part II, North America. Developments in Quaternary Science, 2b, Elsevier, Amsterdam, pp. 313345.CrossRefGoogle Scholar
Duk-Rodkin, A., Barendregt, R.W. and White, J. 2010. An extensive late Cenozoic terrestrial record of multiple glaciations preserved in the Tintina Trench of west-central Yukon: stratigraphy, paleomagnetism, paleosols, and pollen. Canadian Journal of Earth Sciences, 47, 10031028.CrossRefGoogle Scholar
Duk-Rodkin, A. and Barendregt, R.W. 2011. Stratigraphical record of glacials/interglacials northwest Canada. In: Ehlers, J. and Gibbard, P.L. (eds) Quaternary glaciations – extent and chronology, Part II, North America. Developments in Quaternary Science, 2b, Elsevier, Amsterdam, pp. 661698.CrossRefGoogle Scholar
Duncan, R.A. and Helgason, J. 1998. Precise dating of the Holmatindur cooling event in eastern Iceland: evidence for mid-Miocene bipolar glaciation. Journal of Geophysical Research, 103, 1239712404.CrossRefGoogle Scholar
Dvigalo, V.N., Svirid, I.Yu. and Shevchenko, A.V. 2014. The first quantitative estimates of parameters for the Tolbachik fissure eruption of 2012–2013 from aerophoto-grammetric observations. Journal of Volcanology and Seismology, 8, 261268.CrossRefGoogle Scholar
Edwards, B.R. and Bye, A. 2003. Preliminary results of field mapping, GIS spatial analysis and major element geochemistry, Ruby Mountain volcano, Atlin volcanic district, northwestern British Columbia. Geological Survey of Canada Current Research, 2003-A10, 9 pp.Google Scholar
Edwards, B.R. and Russell, J.K. 1994. Preliminary stratigraphy for the Hoodoo Mountain volcanic center, northwestern British Columbia. Geological Survey of Canada Current Research, 94–1A, 6976.Google Scholar
Edwards, B.R. and Russell, J.K. 1999. Northern Cordilleran volcanic province: a northern Basin and Range? Geology, 27, 243246.2.3.CO;2>CrossRefGoogle Scholar
Edwards, B.R. and Russell, J.K. 2000. The distribution, nature and origin of Neogene-Quaternary magmatism in the Northern Cordilleran Volcanic Province, northern Canadian Cordillera. Geological Society of America Bulletin, 112, 12801295.2.0.CO;2>CrossRefGoogle Scholar
Edwards, B.R., Anderson, R.G., Russell, J.K., Hastings, N.L. and Guo, Y.T. 2000. Geology of the Quaternary Hoodoo Mountain Volcanic Complex and adjacent Paleozoic and Mesozoic basement rocks; parts of Hoodoo Mountain (NTS 104B/14) and Craig River (NTS 104B/11) map areas, northwestern British Columbia. Geological Survey of Canada, Open File Report 3721, scale 1:20 000.Google Scholar
Edwards, B.R. and Russell, J.K. 2002. Glacial influences on morphology and eruptive products of Hoodoo Mountain volcano, Canada. In: Smellie, J.L. and Chapman, M.G. (eds) Volcano–ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202, pp. 179194.Google Scholar
Edwards, B.R., Edwards, G. and Russell, J.K. 1995. Revised stratigraphy for the Hoodoo Mountain volcanic center, northwestern British Columbia. Geological Survey of Canada Current Research, 95–1A, 105115.Google Scholar
Edwards, B.R., Anderson, R.G., Russell, J.K., Hastings, N.L. and Guo, Y.T. 2000. Geology of the Quaternary Hoodoo Mountain Volcanic Complex and adjacent Paleozoic and Mesozoic basement rocks; parts of Hoodoo Mountain (NTS 104B/14) and Craig River (NTS 104B/11) map areas, northwestern British Columbia. Geological Survey of Canada, Open File Report 3721, scale 1:20 000, doi:10.4095/211646.Google Scholar
Edwards, B.R., Russell, J.K. and Anderson, R.G. 2002. Subglacial, phonolitic volcanism at Hoodoo Mountain volcano, northwestern Canadian Cordillera. Bulletin of Volcanology, 64, 254272.Google Scholar
Edwards, B.R., Russell, J.K., Anderson, R.A. and Harder, M. 2003. Overview of Neogene to Recent volcanism in the Atlin volcanic district, northern Cordilleran volcanic province, northwestern British Columbia. Geological Survey of Canada Current Research, 2003-A8, 6 pp.Google Scholar
Edwards, B.R., Evenchick, C.A., McNicoll, V., Nogier, M. and Wetherell, K. 2006. Overview of the volcanology of the Bell-Irving volcanic district, northwestern Bowser Basin, British Columbia: new examples of alpine glaciovolcanism from the northern Cordilleran volcanic province. Geological Survey of Canada Current Research, 2006-A3, 12 pp.Google Scholar
Edwards, B.R., Tuffen, H., Skilling, I.P. and Wilson, L. (eds) 2009a. Introduction to special issue on volcano–ice interactions on Earth and Mars: the state of the science. Journal of Volcanology and Geothermal Research, 185, 247250.CrossRefGoogle Scholar
Edwards, B.R., Skilling, I.P., Cameron, B., Haynes, C., Lloyd, A. and Hungerford, H.D. 2009b. Evolution of an englacial volcanic ridge: Pillow Ridge tindar, Mount Edziza volcanic complex, NCVP, British Columbia, Canada. Journal of Volcanology and Geothermal Research, 185, 251275.CrossRefGoogle Scholar
Edwards, B.R. Russell, J.K. and Simpson, K. 2011. Volcanology and petrology of Mathews Tuya, northern British Columbia, Canada: glaciovolcanic constraints on interpretations of the 0.730 Cordilleran paleoclimate. Bulletin of Volcanology, 73, 479496.CrossRefGoogle Scholar
Edwards, B.R., Magnússon, E., Thordarson, T., Gudmundsson, M.T., Höskuldsson, A., Oddsson, B. and Haklar, J. 2012. Interactions between lava and snow/ice during the 2010 Fimmvörðuhals eruption, south-central Iceland. Journal of Geophysical Research, 117, B04302, doi:10.1029/2011JB008985.CrossRefGoogle Scholar
Edwards, B.R., Karson, J., Wysocki, B., Lev, E., Bindeman, I. and Kueppers, U. 2013. Insights on lava-ice/snow interactions from large-scale basaltic melt experiments. Geology, 41, 851854.CrossRefGoogle Scholar
Edwards, B.R., Belousov, A. and Belousova, M. 2014a. Propagation style controls lava–snow interactions, Nature Communications, 5, 5666. doi:10.1038/ncomms6666.CrossRefGoogle ScholarPubMed
Edwards, B.R., Jicha, B., Russell, J.K. and Singer, B. 2014b. New constraints on the timing, thickness and distribution of past incarnations of the Cordilleran ice sheet from northwestern British Columbia, Canada. GSA Abstracts with Programs, Paper No. 138–6.Google Scholar
Edwards, B.R., Russell, J.K., Gudmundsson, M.T. 2015a. Glaciovolcanism. In: Sigurdsson, H., Houghton, B., Rymer, H., Stix, J. and McNutt, S. (eds) The Encyclopedia of Volcanoes, 2nd Edition. Academic Press, San Diego, pp. 377393.CrossRefGoogle Scholar
Edwards, B.R., Belousov, A., Belousova, M. and Melnikov, D. 2015b. Observations on lava, snowpack and lava–snowpack interactions during the 2012–13 Tolbachik eruption, Klyuchevskoy group of volcanoes, Kamchatka, Russia. Journal of Volcanology and Geothermal Research [in press].CrossRefGoogle Scholar
Einarsson, T. 1949. The flowing lava: studies of its main physical and chemical characteristics. In: Einarsson, T., Kjartansson, G. and Thorarinsson, S. (eds) The eruption of Hekla 1947–1948. Visindafélag Islendinga, Societas Scientarium Islandica, IV, 3, 70 pp.Google Scholar
Einarsson, P. 1994. Geology of Iceland: rocks and landscape. Mál og Menning, Reykjavik, 309 pp.Google Scholar
Ellerman, P.J. 1992. Depositional environments and post-depositional alteration of Cenozoic hyaloclastites in Antarctica. PhD thesis, University of Colorado at Boulder (USA), 242 pp. [unpublished].Google Scholar
Endress, C. 2007. Interpretation of glacial and glaciofluvial deposits associated with 1 Ma glaciovolcanism of the Ice Peak Formation, Mount Edziza Volcanic Complex, British Columbia, Canada. BSc thesis, Dickinson College, Pennsylvania (USA), 165 pp. [unpublished].Google Scholar
Evans, D.J.A. and Benn, D.I. 2004. A practical guide to the study of glacial sediments. Arnold, Oxford University Press, London, 266 pp.Google Scholar
Evenchick, C.A., Mustard, P.S., Greig, C.J., McMechan, M.E., Ritcey, D.H., Smith, G.T. and Ferri, F. 2008. Geology, Nass River, British Columbia; Geological Survey of Canada Open File 5705, and British Columbia Ministry of Energy, Mines and Petroleum Resources, Petroleum Geology Open File 2008–7, 1:250 000 scale.CrossRefGoogle Scholar
Ewert, J.W. 2005. System for ranking relative threats of U.S. volcanoes. Natural Hazard Reviews, 8, 112124.CrossRefGoogle Scholar
Eyles, N., Eyles, C.H. and Miall, A.D. 1983. Lithofacies types and vertical profile models, an alternative approach to the description and environmental interpretation of glacial diamict and diamictite sequences. Sedimentology, 30, 393410.CrossRefGoogle Scholar
Eyles, C.H., Eyles, N. and Miall, A.D. 1985. Models of glaciomarine sedimentation and their application to the interpretation of ancient glacial sequences. Palaeogeography, Palaeoclimatology, Palaeoecology, 51, 1584.CrossRefGoogle Scholar
Fabel, D., Stroeven, A.P., Harbor, J., Kleman, J., Elmore, D. and Fink, D. 2002. Landscape preservation under Fennoscandian ice sheets determined from in situ produced 10Be and 26Al. Earth and Planetary Science Letters, 201, 397406.CrossRefGoogle Scholar
Fagents, S.A., Lanagan, P. and Greeley, R. 2002. Rootless cones on Mars: a consequence of lava–ground ice interaction. In: Smellie, J.L. and Chapman, M.G. (eds) Volcano–ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202, pp. 295318.Google Scholar
Fagents, S.A., Gregg, T.K.P. and Lopes, R.M.C. (eds) 2013. Modeling volcanic processes: the physics and mathematics of volcanism. Cambridge University Press, New York, 421 pp.CrossRefGoogle Scholar
Fairchild, L.H. 1986. Quantitative analysis of lahar hazard. In: Keller, S.A.C. (ed.) Mount St. Helens: five years later. Eastern Washington University Press, Spokane, pp. 6167.Google Scholar
Fairen, A.G. 2010. A cold and wet Mars. Icarus, 208, 165175.CrossRefGoogle Scholar
Fairen, A.G., Dohm, J.M., Baker, V.R., de Pablo, M.A., Ruiz, J., Ferris, J.C. and Anderson, R.C. 2003. Episodic flood inundations of the northern plains of Mars. Icarus, 165, 5367.CrossRefGoogle Scholar
Farrand, W.H., Lane, M.D., Edwards, B.R. and Yingst, R.A. 2010. Spectral evidence of volcanic cryptodomes on the northern plains of Mars. Icarus, 211, 139156.CrossRefGoogle Scholar
Fassett, C.I. and Head, J.W. 2006. Valleys on Hecates Tholus, Mars: origin by basal melting of summit snowpack. Planetary and Space Science, 54, 370378.CrossRefGoogle Scholar
Fassett, C.I. and Head, J.W. 2007. Valley formation on martian volcanoes in the Hesperian: evidence for melting of summit snowpack, caldera lake formation, drainage and erosion of Ceraunius Tholus. Icarus, 189, 118135.CrossRefGoogle Scholar
Fassett, C.I. and Head, J.W. 2008. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus, 198, 3756.CrossRefGoogle Scholar
Fastook, J.L., Head, J.W., Marchant, D.R. and Forget, F. 2008. Tropical mountain glaciers on Mars: altitude-dependence of ice accumulation conditions, formation times, glacier dynamics, and implications for planetary spin-axis/orbital history. Icarus, 198, 305317.CrossRefGoogle Scholar
Fedotov, S.A. and Masurenkov, Yu.P. 1991. Active volcanoes of Kamchatka, Volume 1. Nauka, Moscow, 302 pp.Google Scholar
Fink, J.H. and Manley, C.R. 1987. Origin of pumiceous and glassy textures in rhyolite flows and domes. In: Fink, J.H. (ed.) The emplacement of silicic domes and lava flows. Geological Society of America Special Paper, 212, pp. 119145.CrossRefGoogle Scholar
Fisher, R.V. 1961. Proposed classification of volcaniclastic sediments and rocks. Geological Society of America Bulletin, 72, 14091414.CrossRefGoogle Scholar
Fisher, R.V. and Schmincke, H.-U. 1984. Pyroclastic rocks. Springer-Verlag, Berlin, 472 pp.CrossRefGoogle Scholar
Fiske, R.S., Hopson, C.A. and Waters, A.C. 1963. Geology of Mount Rainier National Park, Washington. United States Geological Survey Professional Paper, 444, 93 pp.Google Scholar
Flovenz, Ó.G. and Saemundsson, K. 1993. Heat flow and geothermal processes in Iceland. Tectonophysics, 225, 123138.CrossRefGoogle Scholar
Flude, S., Burgess, R. and McGarvie, D.W. 2008. Silicic volcanism at Ljósufjöll, Iceland: insights into evolution and eruptive history from Ar–Ar dating. Journal of Volcanology and Geothermal Research, 169, 154175.CrossRefGoogle Scholar
Flude, S., McGarvie, D.W., Burgess, R. and Tindle, A.G. 2010. Rhyolites at Kerlingarfjöll, Iceland: the evolution and lifespan of silicic central volcanoes. Bulletin of Volcanology, 72, 523538.CrossRefGoogle Scholar
Forbes, A.E.S., Blake, S., McGarvie, D.W. and Tuffen, H. 2012. Pseudopillow fracture systems in lavas: insights into cooling mechanisms and environments from lava flow fractures. Journal of Volcanology and Geothermal Research, 245246, 6880.Google Scholar
Forbes, A.E.S., Blake, S. and Tuffen, H. 2014a. Entablature: fracture types and mechanisms. Bulletin of Volcanology, 76, 113.CrossRefGoogle Scholar
Forbes, A.E.S., Blake, S., Tuffen, H. and Wilson, A. 2014b. Fractures in a trachyandesitic lava at Öræfajökull, Iceland, used to infer subglacial emplacement in 1727–8 eruption. Journal of Volcanology and Geothermal Research, 288, 818.CrossRefGoogle Scholar
Fountain, A.G. 1989. The storage of water in, and hydraulic characteristics of, the firn of South Cascade Glacier, Washington State, U.S.A. Annals of Glaciology, 36, 6975.CrossRefGoogle Scholar
Fountain, A.G. and Walder, J.S. 1998. Water flow through temperate glaciers. Reviews of Geophysics, 36, 299328.CrossRefGoogle Scholar
Fountain, A.G., Jacobel, R.W., Schlichting, R. and Jansson, P. 2005. Fractures as the main pathways of water flow in temperate glaciers. Nature, 433, 618621.CrossRefGoogle ScholarPubMed
Fournelle, J.H., Marsh, B.D. and Myers, J.D. 1994. Age, character, and significance of Aleutian arc volcanism. In: Plafker, G. and Berg, H.C. (eds) The geology of Alaska. Geological Society of America, Boulder, Colorado, pp. 723757.Google Scholar
Francis, D. and Ludden, J. 1990. The mantle source for olivine nephelinite, basanite and alkali olivine basalt at Fort Selkirk, Yukon. Journal of Petrology, 31, 371400.CrossRefGoogle Scholar
Fraser, C.I., Terauds, A., Smellie, J., Convey, P. and Chown, S.L. 2014. Geothermal activity helps life survive glacial cycles. Proceedings of the National Aademy of Sciences, doi/10.1073/pas.1321437111.Google Scholar
Fretzdorff, S., Worthington, T.J., Haase, K.M. and Hékinian, R. 2004. Magmatism in the Bransfield Basin: rifting of the South Shetland arc? Journal of Geophysical Research, 109, B12208, doi:10.1029/2004JB003046.CrossRefGoogle Scholar
Fridleifsson, I.B., Furnes, H. and Atkins, F.B. 1982. Subglacial volcanics: on the control of magma chemistry on pillow dimensions. Journal of Volcanology and Geothermal Research, 13, 103117.CrossRefGoogle Scholar
Froese, D.G., Barendregt, R.W., Enkins, R.J. and Baker, J. 2000. Paleomagnetic evidence for multiple Late Pliocene–Early Pleistocene glaciations in the Klondike area, Yukon Territory. Canadian Journal of Earth Sciences, 37, 863877.CrossRefGoogle Scholar
Fuller, E.R. and Head, J.W. 2002. Amazonis Planitia: the role of geologically recent volcanism and sedimentation in the formation of the smoothest plains on Mars. Journal of Geophysical Research, 107, E10, 5081, doi:10.1029/2002JE001842.CrossRefGoogle Scholar
Fuller, R.E. 1931. Aqueous chilling of basaltic lava on the Columbia River Plateau. American Journal of Science, 21, 281300.CrossRefGoogle Scholar
Fuller, R.E. 1934. Structural features in the Columbia River lavas of Central Washington. Journal of Geology, 42, 311328.CrossRefGoogle Scholar
Furman, T., Meyer, P.S. and Frey, F. 1992. Evolution of Icelandic central volcanoes: evidence from the Austurhorn intrusion, southeastern Iceland. Bulletin of Volcanology, 55, 4562.CrossRefGoogle Scholar
Furman, T., Bryce, J.G., Karson, J. and Iotti, A. 2004. East African Rift System (EARS) plume structure: insights from Quaternary mafic lavas of Turkana, Kenya. Journal of Petrology, 45, 10691088.CrossRefGoogle Scholar
Furnes, H. 1978. Element mobility during palagonitization of a subglacial hyaloclastite in Iceland. Chemical Geology, 22, 249264.CrossRefGoogle Scholar
Furnes, H. 1984. Chemical changes during progressive subaerial palagonitization of a subglacial olivine tholeiite hyaloclastite: a microprobe study. Chemical Geology, 43, 271264.CrossRefGoogle Scholar
Furnes, H. and Fridleifsson, I.B. 1974. Tidal effects on the formation of pillow lava/hyaloclastite deltas. Geology, 2, 381384.2.0.CO;2>CrossRefGoogle Scholar
Furnes, H., Fridliefsson, I.B. and Atkins, F.B. 1980. Subglacial volcanics: on the formation of acid hyaloclastites. Journal of Volcanology and Geothermal Research, 8, 95110.CrossRefGoogle Scholar
Furnes, H., Thorseth, I.H., Torsvik, T., Muehlenbachs, K., Staudigel, H. and Tumyr, P. 2002. Identifying bio-interaction with basaltic glass in oceanic crust and implications for estimating the depth of the oceanic biosphere: a review. In: Smellie, J.L. and Chapman, M.G. (eds) Volcano–ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202, pp. 407421.Google Scholar
Gabrielse, H. 1969. Geology of the Jennings River map area, British Columbia (104-0). Geological Survey of Canada Paper 68–55, 37 pp.Google Scholar
Gabrielse, H. 1998. Geology of the Cry Lake and Dease Lake map areas, northern British Columbia (104-J). Geological Survey of Canada Bulletin, 504, 144 pp.Google Scholar
Ganci, G., Vicari, A., Cappello, A. and del Negro, C. 2012. An emergent strategy for volcanic hazard assessment: from thermal satellite monitoring to lava flow modeling. Remote Sensing of the Environment, 119, 197207.CrossRefGoogle Scholar
Gardeweg, M., Sparks, R. and Mathews, S. 1998. Evolution of Lascar volcano, northern Chile. Journal of the Geological Society, London, 155, 89104.CrossRefGoogle Scholar
Gardner, C.A., Neal, C.A., Waitt, R.B. and Janda, R.J. 1994. Proximal pyroclastic deposits from the 1989–90 eruption of Redoubt volcano, Alaska: stratigraphy, distribution, and physical characteristics. In: Miller, T.P. and Chouet, B.A. (eds) The 1989–1990 eruption of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, 62, 213250.Google Scholar
Gaździcki, A., Tatur, A., Hara, U. and del Valle, R.A. 2004. The Weddell Sea Formation: post-late Pliocene terrestrial glacial deposits on Seymour Island, Antarctic peninsula. Polish Polar Research, 25, 189204.Google Scholar
Gee, M.A.M., Taylor, R.N., Thirwall, M.F. and Murton, B.J. 1998. Glacioisostacy controls on chemical and isotopic characteristics of tholeiites from the Reykjanes Peninsula, SW Iceland. Earth and Planetary Science Letters, 164, 15.CrossRefGoogle Scholar
Geirsdóttir, Á. 1991. Diamictites of late Pliocene age in western Iceland. Jökull, 40, 325.CrossRefGoogle Scholar
Geirsdóttir, Á. and Eiríksson, J. 1994. Growth of an intermittent ice sheet in Iceland during the late Pliocene and early Pleistocene. Quaternary Research, 42, 115130.CrossRefGoogle Scholar
Geirsdóttir, Á., Miller, G.H. and Andrews, J.T. 2007. Glaciation, erosion, and landscape evolution of Iceland. Journal of Geodynamics, 43, 170186.CrossRefGoogle Scholar
Gellatly, A.F., Gordon, J.E., Whalley, W.B. and Hansom, J.G. 1988. Thermal regime and geomorphology of plateau ice caps in northern Norway: observations and implications. Geology, 16, 983986.2.3.CO;2>CrossRefGoogle Scholar
Ghatan, G.J. and Head, J.W. 2002. Candidate subglacial volcanoes in the south polar region of Mars: morphology, morphometry, and eruption conditions. Journal of Geophysical Research, 107, E7, 10.1029/2001JE001519.CrossRefGoogle Scholar
Ghatan, G.J., Head, J.W. and Pratt, S. 2003. Cavi Angusti, Mars: characterization and assessment of possible formation mechanisms. Journal of Geophysical Research, 108, E5, doi:10.1029/2002JE001972.CrossRefGoogle Scholar
Ghiorso, M.S. and Sack, R.O. 1995. Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology, 119, 197212CrossRefGoogle Scholar
Ghiorso, M.S., Hirschmann, M.M., Reiners, P.W. and Kress, V.C. 2002. The pMELTS: a revision of MELTS aimed at improving calculation of phase relations and major element partitioning involved in partial melting of the mantle at pressures up to 3 GPa. Geochemistry, Geophysics, Geosystems 3, 5, doi:10.1029/2001GC000217.CrossRefGoogle Scholar
Gifkins, C., McPhie, J. and Allen, R. 2002. Pumiceous rhyolitic peperite in ancient submarine volcanic successions. Journal of Volcanology and Geothermal Research, 114, 181203.CrossRefGoogle Scholar
Gilbert, J.S., Stasiuk, M.V., Lane, S., Adam, C.R., Murphy, M.D., Sparks, R.S.J. and Naranjo, J.A. 1996. Non-explosive, constructional evolution of the ice-filled caldera at Volcán Sollipulli, Chile. Bulletin of Volcanology, 58, 6783.CrossRefGoogle Scholar
Giordano, D., Romano, C., Papale, P. and Dingwell, D.B. 2004. The viscosity of trachytes, and comparison with basalts, phonolites, and rhyolites. Chemical Geology, 213, 4961.CrossRefGoogle Scholar
Giordano, D., Nichols, A.R.L. and Dingwell, D.B. 2005. Glass transition temperatures of natural hydrous melts: a relationship with shear viscosity and implications for the welding process. Journal of Volcanology and Geothermal Research, 142, 105188.CrossRefGoogle Scholar
Giordano, D., Mangicapra, A., Potuzak, M., Russell, J.K., Romano, C., Dingwell, D.B. and Di Muro, A. 2006. An expanded nonArrhenian model for silicate melt viscosity: a treatment for metaluminous, peraluminous and peralkaline melts. Chemical Geology, 229, 4256.CrossRefGoogle Scholar
Giordano, D., Russell, J.K. and Dingwell, D. 2008. Viscosity of magmatic liquids: a model. Earth and Planetary Science Letters, 271, 123134.CrossRefGoogle Scholar
Giordano, D., Ardia, P., Romano, C., Dingwell, D.B., Di Muro, A., Schmidt, M.W., Mangiacapra, A. and Hess, H.-U. 2009. The rheological evolution of alkaline Vesuvius magmas and comparison with alkaline series from the Phlegrean Fields, Etna, Stromboli and Teide. Geochimica et Cosmochimica Acta, 73, 66136630.CrossRefGoogle Scholar
Girina, O. 2013. Chronology of Bezymianny Volcano activity, 1956–2010. Journal of Volcanology and Geothermal Research, 263, 2241.CrossRefGoogle Scholar
Glazner, A.F., Manley, C.R., Marron, J.S. and Rojstaczer, S. 1999. Fire or ice: anticorrelation of volcanism and glaciation in California over the past 800,000 years. Geophysical Research Letters, 26, 17591762.CrossRefGoogle Scholar
Glen, J.W. 1952. Experiments on the deformation of ice. Journal of Glaciology, 2, 111114.CrossRefGoogle Scholar
Glen, J.W. 1954. The stability of ice-dammed lakes and other water-filled holes in glaciers. Journal of Glaciology, 2, 316318.CrossRefGoogle Scholar
Goehring, L. and Morris, S.W. 2008. Scaling of columnar joints in basalt. Journal of Geophysical Research, 113, B10203, doi:10.1029/2007JB005018.CrossRefGoogle Scholar
Golledge, N.R., Levy, R.H., McKay, R.M., Fogwill, C.J., White, D.A., Graham, A.G.C., Smith, J.A., Hillenbrand, C.-D., Licht, K.J., Denton, G.H., Ackert, R.P., Maas, S.M. and Hall., B.L. 2013. Glaciology and geological signature of the Last Glacial Maximum Antarctic ice sheet. Quaternary Science Reviews, 78, 225247.CrossRefGoogle Scholar
Gonnermann, H.M. and Manga, M. 2013. Dynamics of magma ascent in the volcanic conduit. In: Fagents, S.A., Gregg, T.K.P. and Lopes, R.M.C. (eds) Modeling volcanic processes: the physics and mathematics of volcanism. Cambridge University Press, Cambridge, pp. 5584.CrossRefGoogle Scholar
González-Ferrán, O. 1995. Volcanes de Chile. Instituto Geográfico Militar, Santiago, 640 pp.Google Scholar
Goodfellow, B.W. 2007. Relict non-glacial surfaces in formerly glaciated landscapes. Earth-Science Reviews, 80, 4773.CrossRefGoogle Scholar
Gorbach, N., Portnyagin, M. and Tembrel, I. 2013. Volcanic structure and composition of Old Shiveluch volcano, Kamchatka. Journal of Volcanology and Geothermal Research, 263, 193208.CrossRefGoogle Scholar
Gordeev, E.I., Murav’ev Ya, D., Samoilenko, S.B., Volynets, A.O., Melnikov, D.V. and Dvigalo, V.N. 2013. The Tolbachik fissure eruption of 2012–2013: preliminary results. Doklady Earth Sciences, 452, 10461050.CrossRefGoogle Scholar
Gore, D. 1992. Ice-damming and fluvial erosion in the Vestfold Hills, East Antarctica. Antarctic Science, 4, 227234.CrossRefGoogle Scholar
Gore, D.B. and Pickard, J. 1998. Proglacial hydrology and drainage, southeastern Vestfold Hills, East Antarctica. Proceedings of the Linnean Society of New South Wales, 119, 181196.Google Scholar
Gottsmann, J. and Dingwell, D.B. 2001. Cooling dynamics of spatter-fed phonolite obsidian flows on Tenerife, Canary Islands. Journal of Volcanology and Geothermal Research, 105, 323342.CrossRefGoogle Scholar
Gourgard, A. and Thouret, J.-C. 1990. Magma mixing and petrogenesis of the 13 November 1985 eruptive products at Nevado del Ruiz (Colombia). Journal of Volcanology and Geothermal Research, 41, 7996.CrossRefGoogle Scholar
Graettinger, A.H., Ellis, M.K., Skilling, I.P., Reath, K., Ramsey, M.S., Lee, R.J., Hughes, C.G. and McGarvie, D.W. 2013a. Remote sensing and geologic mapping of glaciovolcanic deposits in the region surrounding Askja (Dyngjufjöll) volcano, Iceland. International Journal of Remote Sensing, 34, 71787198.CrossRefGoogle Scholar
Graettinger, A.H., Skilling, I.P., McGarvie, D.W. and Cameron, B. 2013b. Environmental reconstruction of basaltic glaciovolcanic deposits at Askja Volcano, Iceland, using lithofacies and geomorphology. IAVCEI 2013 General Assembly, Kagoshima, Japan (Abstract 4W_3K-P5, p. 1077).Google Scholar
Graettinger, A.H., Skilling, I., McGarvie, D. and Höskuldsson, A. 2013c. Subaqueous basaltic magmatic explosions trigger phreatomagmatism: a case study from Askja, Iceland. Journal of Volcanology and Geothermal Research, 264, 1735.CrossRefGoogle Scholar
Green, N. 1990. Late Cenozoic Volcanism in the Mount Garibaldi and Garibaldi Lake volcanic fields, Garibaldi volcanic belt, southwestern British Columbia. Geoscience Canada, 17, 171175.Google Scholar
Gregg, T.K.P. and Fink, J.H. 1995. Quantification of submarine lava-flow morphology through analog experiments. Geology, 23, 7376.2.3.CO;2>CrossRefGoogle Scholar
Gregg, T.K.P. and Fink, J.H. 2000. A laboratory investigation into the effects of slope on lava flow morphology. Journal of Volcanology and Geothermal Research, 96, 145159.CrossRefGoogle Scholar
Griffiths, R.W. and Fink, J.H. 1992. Solidification and morphology of submarine lavas: a dependence on extrusion rate. Journal of Geophysical Research, 97, 1972919737.CrossRefGoogle Scholar
Grönvold, K. 1972. Structural and petrological studies in the Kerlingarfjöll region, central Iceland. DPhil thesis, Oxford University (UK), 237 pp. [unpublished].Google Scholar
Grönvold, K., Larsen, G., Einarsson, P., Thorarinsson, S. and Saemundsson, K., 1983. The 1980–81 Hekla eruption. Bulletin of Volcanology, 46, 349363.Google Scholar
Grosse, P., van Wyk de Vries, B., Petrinovic, I.A., Euillades, P.A. and Alvarado, G.E. 2009. Morphometry and evolution of arc volcanoes. Geology. 37, 651654.CrossRefGoogle Scholar
Grosse, P., van Wyk de Vries, B., Euillades, P.A., Kervyn, M. and Petrinovic, I.A. 2012. Systematic morphometric characterization of volcanic edifices using digital elevation models. Geomorphology, 136, 114131.CrossRefGoogle Scholar
Grosse, P., van Wyk de Vries, B., Euillades, P.A. and Euillades, L.D. 2014. A global database of composite volcano morphometry. Bulletin of Volcanology, 76, 784.CrossRefGoogle Scholar
Grossenbacher, K.A. and McDuffie, S.M. 1995. Conductive cooling of lava: columnar joint diameter and stria width as functions of cooling rate and thermal gradient. Journal of Volcanology and Geothermal Research, 69, 95103.CrossRefGoogle Scholar
Grove, E.W. 1974. Deglaciation: a possible triggering mechanism for recent volcanism. In: González-Ferrán, O. (ed.) Proceedings of the Symposium on Andean and Antarctic Volcanology Problems, Santiago, Chile, IAVCEI, Rome, pp. 8897.Google Scholar
Gualda, G.A.R., Ghiorso, M.S., Lemons, R.V. and Carley, T.L. 2012. Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. Journal of Petrology, 53, 875890.CrossRefGoogle Scholar
Gudmundsson, A. 1986. Mechanical aspects of post-glacial volcanism and tectonics of the Reykjanes Peninsula, Southwest Iceland. Journal of Geophysical Research, 91, 12 711–12 721.CrossRefGoogle Scholar
Gudmundsson, M.T. 2003. Melting of ice by magma-ice-water interactions during subglacial eruptions as an indicator of heat transfer in subaqueous eruptions. In: White, J.D.L., Smellie, J.L. and Clague, D.A. (eds) Subaqueous explosive volcanism. American Geophysical Union, Geophysical Monograph Series, 140, pp. 6172.CrossRefGoogle Scholar
Gudmundsson, M.T. 2005. Subglacial volcanic activity in Iceland. In: Caseldine, C.J., Russell, A., Hardardóttir, J. and Knudsen, Ó. (eds) Iceland: modern processes, past environments. Elsevier, Amsterdam, pp. 127151.CrossRefGoogle Scholar
Gudmundsson, M.T. and Bjornsson, H. 1991. Eruptions in Grímsvötn, Vatnajökull, Iceland, 1934–1991. Jökull, 41, 2145.CrossRefGoogle Scholar
Gudmundsson, A., Oskarsson, N., Gronvold, K., Saemundsson, K., Sigurdsson, O., Stefansson, R., Gislason, S.R., Einarsson, P., Brandsdóttir, B., Larsen, G., Johannesson, H. and Thordarson, T. 1992. The 1991 eruption of Hekla. Bulletin of Volcanology, 54, 238246.CrossRefGoogle Scholar
Gudmundsson, M.T., Sigmundsson, F. and Björnsson, H. 1997. Ice–volcano interaction in the 1996 Gjálp eruption, Vatnajökull, Iceland. Nature, 389, 954957.CrossRefGoogle Scholar
Gudmundsson, M.T., Pálsson, F., Björnsson, H. and Högnadóttir, Th. 2002. The hyaloclastite ridge formed in the subglacial 1996 eruption in Gjálp, Vatnajökull, Iceland: present day shape and future preservation. In: Smellie, J.L. and Chapman, M.G. (eds) Volcano–ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202, pp. 319335.Google Scholar
Gudmundsson, M.T., Sigmundsson, F., Björnson, H. and Högnadóttir, Th. 2004. The 1996 eruption at Gjálp, Vatnajökull icecap, Iceland: efficiency of heat transfer, ice deformation and subglacial water pressure. Bulletin of Volcanology, 66, 4665.CrossRefGoogle Scholar
Gudmundsson, M.T., Högndóttir, Th., Kristinsson, A.B. and Gudbjörnsson, S. 2007. Geothermal activity in the subglacial Katla caldera, Iceland, 1999–2005, studied with radar altimetry. In: Clarke, G. and Smellie, J. (eds) Papers from the International Symposium on Earth and Planetary Ice–Volcano Interactions held in Reykjavik, Iceland, on 19–23 June, 2006. Annals of Glaciology, 45, 6672.Google Scholar
Gudmundsson, M.T., Larsen, G., Höskuldsson, Á. and Gylfason, Á.G. 2008. Volcanic hazards in Iceland. Jökull, 58, 251268.CrossRefGoogle Scholar
Gudmundsson, M.T., Pedersen, R., Vogfjörd, K., Thorbjarnardóttir, B., Jakobsdóttir, S. and Roberts, M.J. 2010. Eruptions of Eyjafjallajökull Volcano, Iceland. Eos, Transactions, American Geophysical Union, 91, 190191.CrossRefGoogle Scholar
Gudmundsson, M.T., Thordarson, T., Höskuldsson, Á., Larsen, G., Björnsson, H., Prata, A.J., Oddsson, B., Magnússon, E., Högnadóttir, T., Pedersen, G.N., Hayward, C.L., Stevenson, J.A. and Jónsdóttir, I. 2012a. Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland. Nature Scientific Reports, 2, 572; doi:10.1038/srep00572.CrossRefGoogle ScholarPubMed
Gudmundsson, M.T., Palsson, F, Thordarsson, T., Hoskuldsson, A., Larsen, G., Hognadottir, T., Oddson, B., Oladottir, B.A., Godnason, J. 2012b. Water/mass fractions in phreatomagmatic eruption plumes: constraints from the Grimsvotn 2011 eruption. Abstract V11B-4718 presented at the 2012 Fall Meeting, American Geophysical Union, San Francisco, CA, 15–19 December.Google Scholar
Guillou, H., Vliet-Lanoë, B.V., Gudmundsson, A. and Nomade, S. 2010. New unspiked K-Ar ages of Quaternary sub-glacial and sub-aerial volcanic activity in Iceland. Quaternary Geochronology, 5, 1019.CrossRefGoogle Scholar
Gulick, V.C. 1993. Magmatic intrusions and hydrothermal systems: Implications for the formation of Martian fluvial valleys. PhD thesis, University of Arizona (USA), 146 pp. [unpublished].Google Scholar
Gulick, V.C. 1998. Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars. Journal of Geophysical Research, 103, 1936519387.CrossRefGoogle Scholar
Hall, K.J. 1982. Rapid deglaciation as an initiator of volcanic activity: an hypothesis. Earth Surface Processes and Landforms, 7, 4551.CrossRefGoogle Scholar
Hall, K., Meiklejohn, I. and Bumby, A. 2011. Marion Island volcanism and glaciation. Antarctic Science, 23, 155163.CrossRefGoogle Scholar
Hall, M. and Mothes, P. 2008. The rhyolitic–andesitic eruptive history of Cotopaxi volcano, Ecuador. Bulletin of Volcanology, 70, 675702.CrossRefGoogle Scholar
Hambrey, M.J. 1994. Glacial environments. UBC Press, London, 299 pp.Google Scholar
Hambrey, M.J. and Glasser, N.F. 2003. Glacial sediments: processes, environments and facies. In: Middleton, G.V. (ed.) Encyclopedia of sediments and sedimentary rocks. Kluwer, Dordrecht, pp. 316331.Google Scholar
Hambrey, M.J. and Glasser, N.F. 2012. Discriminating glacier thermal and dynamic regimes in the sedimentary record. Sedimentary Geology, 251, 133.CrossRefGoogle Scholar
Hambrey, M.J. and Smellie, J.L. 2006. Distribution, lithofacies and environmental context of Neogene glacial sequences on James Ross and Vega islands, Antarctic Peninsula. In: Francis, J.E., Pirrie, D. and Crame, J.SA. (eds) Cretaceous–Tertiary high-latitude palaeoenvironments, James Ross Basin, Antarctica. Geological Society, London, Special Publications, 258, 187200.Google Scholar
Hambrey, M.J., Smellie, J.L., Nelson, A.E. and Johnson, J.S. 2008. Late Cenozoic glacier–volcano interaction on James Ross Island and adjacent areas, Antarctic Peninsula region. Bulletin of the American Geological Society, 120, 709731.CrossRefGoogle Scholar
Hamilton, C.W., Fagents, S.A. and Wilson, L. 2010. Explosive lava–water interactions in Elysium Planitia, Mars: geologic and thermodynamic constraints on the formation of the Tartarus Colles cone groups. Journal of Geophysical Research, 115, doi:10.1029/2009JE003546.CrossRefGoogle Scholar
Hamilton, C.W., Fagents, S.A. and Thordarson, T. 2011. Lava–ground ice interactions in Elysium Planitia, Mars: geomorphological and geospatial analysis of the Tartarus Colles cone groups. Journal of Geophysical Research, 116, doi:10.1029/2010JE003657.CrossRefGoogle Scholar
Hamilton, T.D. 1994. Late Cenozoic glaciation of Alaska. In: Plafker, G. and Berg, H.C. (eds) The Geology of Alaska. Geological Society of America, Boulder, Colorado, pp. 813844.Google Scholar
Hamilton, T.S. 1981. Late Cenozoic alkaline volcanics of the Level Mountain Range, northwestern British Columbia. PhD thesis, University of Alberta, Edmonton (Canada), 490 pp. [unpublished].Google Scholar
Hamilton, W. 1972. The Hallett Volcanic Province, Antarctica. United States Geological Survey Professional Paper, 456-C, 62 pp.Google Scholar
Hammond, P.E. 1987. Lone Butte and Crazy Hills: subglacial volcanic complexes, Cascade Range, Washington. In: Hill, M.L. (ed.) Geological Society of America Centennial Field Guide: Volume 1, Cordilleran Section, pp. 339344.Google Scholar
Hardarson, B.S. and Fitton, J.G. 1991. Increased mantle melting beneath Snaefellsjokull Volcano during late Pleistocene deglaciation. Nature, 353, 6264.CrossRefGoogle Scholar
Hardarson, B.S., Fitton, J.G. and Hjartarson, Á. 2008. Tertiary volcanism in Iceland. Jökull, 58, 161178.CrossRefGoogle Scholar
Harder, M. and Russell, J.K. 2007. Basanite glaciovolcanism at Llangorse Mountain, northern British Columbia, Canada. Bulletin of Volcanology, 69, 329340.CrossRefGoogle Scholar
Harris, A. 2013a. Thermal remote sensing of active volcanoes: a user’s manual. Cambridge University Press, Cambridge, 736 pp.CrossRefGoogle Scholar
Harris, A.J.L. 2013b. Lava flows. In Fagents, S.A., Gregg, T.K.P., Lopes, R.M.C. (eds) Modeling volcanic processes: the physics and mathematics of volcanism, Cambridge University Press, Cambridge, pp. 85106.CrossRefGoogle Scholar
Hauksdóttir, S., Enegren, E.G. and Russell, J.K. 1994. Recent basaltic volcanism in the Iskut-Unuk rivers area, northwestern British Columbia. Geological Survey of Canada Current Research, 1994-A, 5768.Google Scholar
Haywood, A.M., Smellie, J.L., Ashworth, A.C., Cantrill, D.J., Florindo, F., Hambrey, M.J., Hill, D., Hillenbrand, C.-D., Hunter, S.J., Larter, R.D., Lear, C.H., Passchier, S. and van de Wal, R. 2009. Middle Miocene to Pliocene history of Antarctica and the Southern Ocean. In: Siegert, M.J. and Florindo, F. (eds) Developments in Earth & Environmental Sciences, 8, Antarctic Climate Evolution. Elsevier, Oxford, pp. 401463.Google Scholar
Head, J.W. and Marchant, D.R. 2003. Cold-based mountain glaciers on Mars: Western Arsia Mons. Geology, 31, 641644.2.0.CO;2>CrossRefGoogle Scholar
Head, J.W. and Pratt, S. 2001. Extensive Hesperian-aged south polar ice sheet on Mars: evidence for massive melting and retreat, and lateral flow and ponding of meltwater. Journal of Geophysical Research, 106, 1227512299.CrossRefGoogle Scholar
Head, J.W. and Wilson, L. 2002. Mars: a review and synthesis of general environments and geological settings of magma–H2O interactions. In: Smellie, J.L. and Chapman, M.G. (eds) Volcano–ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202, pp. 2757.Google Scholar
Head, J.W. and Wilson, L. 2003. Deep submarine pyroclastic eruptions: theory and predicted landform and deposits. Journal of Volcanology and Geothermal Research, 121, 155193.CrossRefGoogle Scholar
Head, J.W. and Wilson, L. 2007. Heat transfer in volcano–ice interactions on Mars: synthesis of environments and implications for processes and landforms. In: Clarke, G. and Smellie, J. (eds) Papers from the International Symposium on Earth and Planetary Ice–Volcano Interactions held in Reykjavik, Iceland, on 19–23 June, 2006. Annals of Glaciology, 45, 113.Google Scholar
Head, J.W., Hiesinger, H., Ivanov, M.A., Kreslavsky, M.A., Pratt, S. and Thomson, B.J. 1999. Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science, 286, 21342137.CrossRefGoogle ScholarPubMed
Head, J.W., Mustard, J.F., Kreslavsky, M.A., Milliken, R.E. and Marchant, D.R. 2003. Recent ice ages on Mars. Nature, 426, doi:10.1038/nature02114.CrossRefGoogle ScholarPubMed
Head, J.W., Neukum, J.F., Jaumann, R., Hiesinger, H., Hauber, E., Carr, M. et al. 2005. Tropical to mid-latitude snow and ice accumulation, flow and glaciations of Mars. Nature, 434, 346351.CrossRefGoogle ScholarPubMed
Heiken, G. and Wohletz, K. 1985. Volcanic ash. University of California Press, Berkeley, 246 pp.Google Scholar
Heiken, G. and Wohletz, K. 1987. Tephra deposits associated with silicic domes and lava flows. In: Fink, J. (ed.) The emplacement of silicic domes and lava flows. Geological Society of America Special Paper, 212, pp. 5576.CrossRefGoogle Scholar
Helgason, J. 1999. Formation of Olympus Mons and the aureole-escarpment problem on Mars. Geology, 27, 231234.2.3.CO;2>CrossRefGoogle Scholar
Helgason, J. 2007. Skaftafell. Bedrock geology. 1:25 000-scale geological map. Ekra Geological Consulting.Google Scholar
Helgason, J. and Duncan, R.A. 2001. Glacial-interglacial history of the Skaftafell region, southeast Iceland, 0–5 Ma. Geology, 29, 179182.2.0.CO;2>CrossRefGoogle Scholar
Herron, M.H. and Langway, C.C. 1980. Firn densification: an empirical model. Journal of Glaciology, 25, 373385.CrossRefGoogle Scholar
Hetenyi, G., Taisne, B., Garel, F., Médard, E., Bosshard, S. and Mattsson, H.B. 2012. Scales of columnar jointing in igneous rocks: field measurements and controlling factors. Bulletin of Volcanology, 74, 457482.CrossRefGoogle Scholar
Hickson, C.J. 1987. Quaternary volcanism in the Wells Gray–Clearwater area, east central British Columbia. PhD thesis, University of British Columbia (Canada), 357 pp. [unpublished]Google Scholar
Hickson, C.J. 2000. Physical controls and resulting morphological forms of Quaternary ice-contact volcanoes in western Canada. Geomorphology, 32, 239261.CrossRefGoogle Scholar
Hickson, C.J. and Vigouroux, N. 2014. Volcanism and glacial interaction in the Wells Gray-Clearwater volcanic field, east-central British Columbia, Geological Society of America Field Guides, 38, 169191.Google Scholar
Hickson, C.J., Moore, J.G., Calk, L. and Metcalfe, P. 1995. Intraglacial volcanism in the Wells Gray–Clearwater volcanic field, east-central British Columbia, Canada. Canadian Journal of Earth Science, 32, 838851.CrossRefGoogle Scholar
Hildreth, W. 2007. Quaternary magmatism in the Cascades: geologic perspectives. United States Geological Survey Professional Paper, 1744, 125 pp.Google Scholar
Hindmarsh, R.C.A., van der Wateren, F.M. and Verbers, A.L.L.M. 1998. Sublimation of ice through sediment in Beacon Valley, Antarctica. Geografiska Annaler, 80A, 209219.CrossRefGoogle Scholar
Hoare, J.M. and Coonrad, W.L. 1978. A tuya in Togiak Valley, southwest Alaska. United States Geological Survey Journal of Research, 6, 193201.Google Scholar
Hodges, C.A. and Moore, H.J. 1979. The subglacial birth of Olympus Mons and its aureoles. Journal of Geophysical Research, 84, 80618074.CrossRefGoogle Scholar
Hoffman, P.F., Kaufman, A.J., Halverson, G.P. and Schrag, D.P. 1998. A Neoproterozoic snowball Earth. Science, 281, 13421346.CrossRefGoogle ScholarPubMed
Hofmeister, A.M., Whittington, A.G., Goldsand, J. and Criss, R.G. 2014. Effects of chemical composition and temperature on transport properties of silica-rich glasses and melts. American Mineralogist, 99, 564577.CrossRefGoogle Scholar
Hole, M.J. 1988. Post-subduction alkaline volcanism along the Antarctic Peninsula. Journal of the Geological Society, London, 145, 985988.CrossRefGoogle Scholar
Hole, M.J. 1990. Geochemical evolution of Pliocene-Recent post-subduction alkali basalts from Seal Nunataks, Antarctic Peninsula. Journal of Volcanology and Geothermal Research, 40, 149167.CrossRefGoogle Scholar
Hole, M.J., Storey, B.C. and LeMasurier, W.E. 1994. Tectonic setting and geochemistry of Miocene alkalic basalts from the Jones Mountains, West Antarctica. Antarctic Science, 6, 8592.CrossRefGoogle Scholar
Hole, M.J., Saunders, A.D., Rogers, G. and Sykes, M.A. 1995. The relationship between alkaline magmatism, lithospheric extension and slab window formation along continental destructive plate margins. In: Smellie, J.L. (ed.) Volcanism associated with extension at consuming plate margins. Geological Society, London, Special Publications, 81, pp. 265285.Google Scholar
de Hon, R.A. and Pani, E.A. 1993. Duration and rates of discharge: Maja Valles, Mars. Journal of Geophysical Research, 98, 91299138.CrossRefGoogle Scholar
Honnorez, J. and Kirst, P. 1975. Submarine basaltic volcanism: morphometric parameters for discriminating hyaloclastites from hyalotuffs. Bulletin of Volcanology, 39, 125.Google Scholar
Hooke, R.LeB. 1989. Englacial and subglacial hydrology: a qualitative review. Arctic and Alpine Research, 21, 221233.CrossRefGoogle Scholar
Hooten, J.A. and Ort, M.H. 2002. Peperite as a record of early-stage phreatomagmatic fragmentation processes: an example from the Hopi Buttes volcanic field, Navajo Nation, Arizona, USA. Journal of Volcanology and Geothermal Research, 114, 95106.CrossRefGoogle Scholar
Höskuldsson, Á. 1992. A Late Pleistocene subglacial caldera formation at Cerro Las Cumbres, eastern Mexico, PhD thesis, Université Blaise Pascal, Clermont-Ferrand (France), 178196 pp. [unpublished].Google Scholar
Höskuldsson, A. and Sparks, R.S.J. 1997. Thermodynamics and fluid dynamics of effusive subglacial eruptions. Bulletin of Volcanology, 59, 219230.CrossRefGoogle Scholar
Höskuldsson, A., Sparks, R.S.J and Carroll, M.R. 2006. Constraints on the dynamics of subglacial basalt eruptions from geological and geochemical observations at Kverkfjöll, NE Iceland. Bulletin of Volcanology, 68, 689701.CrossRefGoogle Scholar
Höskuldsson, Á., Óskarsson, N., Pedersen, R., Gronvold, K., Vogfjord, K. and Olafsdóttir, R. 2007. The millennium eruption of Hekla in February 2000. Bulletin of Volcanology, 70, 169182.CrossRefGoogle Scholar
Houghton, F. and Wilson, C.J.N. 1989. A vesicularity index for pyroclastic deposits. Bulletin of Volcanology, 51, 451462.CrossRefGoogle Scholar
Howard, D., Luzzadder-Beach, S. and Beach, T. 2012. Field evidence and hydraulic modeling of a large Holocene jökulhlaup at Jökulsá á Fjöllum channel, Iceland. Geomorphology, 147148, 7385.Google Scholar
Hubberten, H.-W., Morche, W., Westall, F., Fütterer, D.K. and Keller, J. 1991. Geochemical investigations of volcanic ash layers from southern Atlantic Legs 113 and 114. Proceedings of the Ocean Drilling Project, Scientific Results, 114, 733749.Google Scholar
Hughes, T., Parkinson, C., and Brecher, H. (1974). Ice dynamics study of a glacial surge induced by the August 1970 eruption on Deception Island, Antarctica. In: González-Ferrán, O. (ed.) Proceedings of the Symposium on Andean and Antarctic Volcanology Problems, Santiago, Chile, IAVCEI, Rome, pp. 112133.Google Scholar
Hungerford, J.D.G., Edwards, B.R., Skilling, I.P. and Cameron, B. 2014. Evolution of a subglacial basaltic lava flow field: Tennena Cone volcanic center, Mount Edziza Volcanic Complex, British Columbia, Canada. Journal of Volcanology and Geothermal Research, 272, 3958.CrossRefGoogle Scholar
Hull, D. 1999. Fractography: observing, measuring and interpreting fracture surface topography. Cambridge University Press, New York, 366 pp.Google Scholar
Hunns, S.R. and McPhie, J. 1999. Pumiceous peperite in a submarine volcanic succession at Mount Chalmers, Queensland, Australia. Journal of Volcanology and Geothermal Research, 88, 239254.CrossRefGoogle Scholar
Huppert, H.E. and Sparks, R.S.J. 1988. Melting the roof of a chamber containing a hot, turbulently convecting fluid. Journal of Fluid Mechanics, 188, 107131.CrossRefGoogle Scholar
Huybers, P. and Langmuir, C. 2009. Feedback between deglaciation, volcanism and atmospheric CO2. Earth and Planetary Science Letters, 286, 479491.CrossRefGoogle Scholar
Hynek, B.M. and Phillips, R.J. 2003. New data reveal mature, integrated drainage systems on Mars indicative of past precipitation. Geology, 31, 575760.CrossRefGoogle Scholar
Illangasekare, T.H., Walter, R.J., Meier, M.F. and Pfeffer, W.T. 1990. Modeling of meltwater infiltration in subfreezing snow. Water Resources Research, 26, 10011012.CrossRefGoogle Scholar
Incorpera, F.P., DeWitt, D.P., Bergman, T.L. and Lavine, A.S. 2010. Fundamentals of heat and mass transfer, 9th Edition, John Wiley and Sons, New York, 729 pp.Google Scholar
Isherwood, R.J., Jozwiak, L.M., Jansen, J.C. and Andrews-Hanna, J.C. 2013. The volcanic history of Olympus Mons from paleo-topography and flexural modelling. Earth and Planetary Science Letters, 363, 8896.CrossRefGoogle Scholar
Ito, E., White, W.M. and Göpel, C. 1987. The O, Sr, Nd and Pb isotope geochemistry of MORB. Chemical Geology, 62, 157176.CrossRefGoogle Scholar
Ivanov, M.A. and Head, J.W. 2003. Syrtis Major and Isidis Basin contact: Morphological and topographic characteristics of Syrtis Major lava flows and materials of the Vastitas Borealis Formation. Journal of Geophysical Research, 108, E6, 5063, doi:10.1029/2002JE001994.CrossRefGoogle Scholar
Jaeger, J.C. 1968. Cooling and solidification of igneous rocks. In: Hess, H.H. and Poldervaart, A. (eds) Basalts: the Poldervaart treatise on rocks of basaltic composition. Interscience Publishers Inc., New York, pp. 503536.Google Scholar
Jackson, L.E. 1989. Pleistocene subglacial volcanism near Fort Selkirk, Yukon Territory. In: Geological Survey of Canada Paper 89–1E, pp. 251256.Google Scholar
Jackson, L.E. Jr., Barendregt, R.W., Baker, J. and Irving, E. 1996. Early Pleistocene volcanism and glaciation in central Yukon: a new chronology from field studies and paleomagnetism. Canadian Journal of Earth Science, 33, 904916.CrossRefGoogle Scholar
Jackson, L.E. Jr., Nelson, F.E., Huscroft, C.A., Villeneuve, M., Barendregt, R.W., Storer, J.E. and Ward, B.C. 2012. Pliocene and Pleistocene volcanic interaction with Cordilleran ice sheets, damming of the Yukon River and vertebrate paleontology, Fort Selkirk volcanic group, west-central Yukon, Canada. Quaternary International, 260, 320.CrossRefGoogle Scholar
Jakobsson, S.P. 1978. Environmental factors controlling the palagonitization of the Surtsey tephra, Iceland. Bulletin of the Geological Society of Denmark, Special Issue 27, 91105.CrossRefGoogle Scholar
Jakobsson, S.P. and Gudmundsson, M.T. 2008. Subglacial and intraglacial volcanic formations in Iceland. Jökull, 58, 179196.CrossRefGoogle Scholar
Jakobsson, S.P. and Moore, J.G. 1986. Hydrothermal minerals and alteration rates at Surtsey volcano, Iceland. Geological Society of America Bulletin, 97, 648659.2.0.CO;2>CrossRefGoogle Scholar
Jakobsson, S.P., Jonsson, J. and Shido, F. 1978. Petrology of the western Reykjanes Peninsula, Iceland. Bulletin of Volcanology, 56, 516528.Google Scholar
Jakobsson, S.P., Jonasson, K. and Sigurdsson, I.A. 2008. The three igneous rock series of Iceland. Jökull, 58, 117138.CrossRefGoogle Scholar
Jakobsson, S.P. and Johnson, G.L. 2012. Intraglacial volcanism in the Western Volcanic Zone, Iceland. Bulletin of Volcanology, 74, 11411160.CrossRefGoogle Scholar
Jakosky, B.M. and Carr, M.H. 1985. Possible precipitation of ice at low latitudes of Mars during periods of high obliquity. Nature, 315, 559561.CrossRefGoogle Scholar
Janda, R.J., Scott, KM., Nolan, K.M. and Martinson, H.A. 1981. Lahar movement, effects, and deposits. In: Lipman, P.W. and Mullineaux, D.R. (eds) The 1980 eruptions of Mount St. Helens, Washington. United States Geological Survey Professional Paper, 1250, pp.461478.Google Scholar
Jansen, E. and Skoholm, J. 1991. Reconstruction of glaciation over the past 6 Myr from iceborne deposits in the Norwegian Sea. Nature, 349, 600603.CrossRefGoogle Scholar
Jarosch, A., Gudmundsson, M.T., Högnadóttir, T. and Axelsson, G. 2008. Progressive cooling of the hyaloclastite ridge at Gjálp, Iceland, 1996–2005. Journal of Volcanology and Geothermal Research, 170, 218229.CrossRefGoogle Scholar
Jaupart, C. 2000. Magma ascent at shallow levels. In: Sigurdsson, H., Houghton, B., Rymer, H., Stix, J. and McNutt, S. (eds) Encyclopedia of volcanoes, 1st Edition. Academic Press, San Diego, pp. 237248.Google Scholar
Jaupart, C. and Mareschal, J.-C. 2010. Heat generation and transport in the Earth. Cambridge University Press, Cambridge, 477 pp.CrossRefGoogle Scholar
Jellinek, A.M., Manga, M. and Saar, M.O. 2004. Did melting of glaciers cause volcanic eruptions in eastern California? Probing the mechanics of dike formation. Journal of Geophysical Research, 109, doi:10.1029/2004JB002978.CrossRefGoogle Scholar
Jercinovic, M.J. 1988. Alteration of basaltic glasses from British Columbia, Iceland, and the deep sea. PhD thesis, University of Albuquerque, New Mexico (USA), 475 pp. [unpublished].Google Scholar
Jercinovic, M.J., Keil, K., Smith, M.R. and Schmitt, R.A. 1990. Alteration of basaltic glasses from north-central British Columbia, Canada. Geochimica et Cosmochimica Acta, 54, 26792696.CrossRefGoogle Scholar
Johnson, J.S. and Smellie, J.L. 2007. Zeolite compositions as proxies for eruptive paleoenvironment. Geochemistry, Geophysics, Geosystems, 8, Q03009, doi:10.1029/2006GC001450.CrossRefGoogle Scholar
Johnson, J.S., Smellie, J.L., Nelson, A.E. and Stuart, F.M. 2009. History of the Antarctic Peninsula Ice Sheet since the early Pliocene: evidence from cosmogenic dating of Pliocene lavas on James Ross Island, Antarctica. Global and Planetary Change, 69, 205213.CrossRefGoogle Scholar
Jones, J.G. 1966. Intraglacial volcanoes of south-west Iceland and their significance in the interpretation of the form of marine basaltic volcanoes. Nature, 212, 586588.CrossRefGoogle Scholar
Jones, J.G. 1969a. Pillow lavas as depth indicators. American Journal of Science, 267, 181195.CrossRefGoogle Scholar
Jones, J.G. 1969b. Intraglacial volcanoes of the Laugarvatn region, south-west Iceland, I. Quarterly Journal of the Geological Society, London, 124, 197211.CrossRefGoogle Scholar
Jones, J.G. 1970. Intraglacial volcanoes of the Laugarvatn region, southwest Iceland, II. Journal of Geology, 78, 127140.CrossRefGoogle Scholar
Jones, J.G. and Nelson, P.H.H. 1970. The flow of basalt lava from air into water: its structural expression and stratigraphic significance. Geological Magazine, 107, 1319.CrossRefGoogle Scholar
Jonkers, H.A. 1998. The Cockburn Island Formation; Late Pliocene interglacial sedimentation in the James Ross Island Basin, northern Antarctic Peninsula. Newsletters on Stratigraphy, 36, 6376.CrossRefGoogle Scholar
Jonkers, H.A., Lirio, J.M., del Valle, R.A. and Kelley, S.P. 2002. Age and environment of Miocene–Pliocene glaciomaine deposits, James Ross Island, Antarctica. Geological Magazine, 139, 577594.CrossRefGoogle Scholar
Jónsson, J., 1982. Notes on the Katla volcanological debris flows. Jökull, 32, 6168.CrossRefGoogle Scholar
Jordan, T.A., Ferraccioli, F., Jones, P.C., Smellie, J.L., Ghidella, M. and Corr, H. 2009. Airborne gravity reveals interior of Antarctic volcano. Physics of the Earth and Planetary Interiors, 175, 127136.CrossRefGoogle Scholar
Jørgensen, K.A. 1980. The Thorsmörk ignimbrite: an unusual comenditic pyroclastic flow in southern Iceland. Journal of Volcanology and Geothermal Research, 8, 722.CrossRefGoogle Scholar
Jude-Eton, T.C., Thordarson, Th., Gudmundsson, M.T. and Oddsson, B. 2012. Dynamics, stratigraphy and proximal dispersal of supraglacial tephra during the ice-confined 2004 eruption at Grímsvötn volcano, Iceland. Bulletin of Volcanology, 74, 10571082.CrossRefGoogle Scholar
Julio Miranda, P., Gonzalez-Huesca, A.E., Delgado Granados, H. and Kääb, A. 2005. Glacier melting and lahar formation during January 22, 2001 eruption, Popocatépetl volcano (Mexico). Annals of Geomorphology, 140, 93102.Google Scholar
Jull, M. and McKenzie, D. 1996. The effect of deglaciation on mantle melting beneath Iceland. Journal of Geophysical Research, 101, 2181521828.CrossRefGoogle Scholar
Kadish, S.J. and Head, J.W. 2011. Impacts into non-polar ice-rich paleodeposits on Mars: excess ejecta craters, perched craters and pedestal craters as clues to Amazonian climate history. Icarus, 215, 3446.CrossRefGoogle Scholar
Kadish, S.J., Head, J.W., Parsons, R.L. and Marchant, D.R. 2008. The Ascraeus Mons fan-shaped deposit: volcano–ice interactions and the climatic implications of cold-based tropical mountain glaciations. Icarus, 197, 84109.CrossRefGoogle Scholar
Kargel, J.S., Baker, V.R., Beget, J.E., Lockwood, J.F., Pewe, T.L., Shaw, J.S. and Strom, R.G. 1995. Evidence for ancient continental glaciations in the Martian northern plains. Journal of Geophysical Research, 100, 53515368.CrossRefGoogle Scholar
Kargel, J., Leonard, G., Wheate, R. and Edwards, B. 2014. ASTER and SEM change assessment of changing glaciers near Hoodoo Mountain, British Columbia, Canada. In: Kargel, J.S., Leonard, G.J, Bishop, M.P., Kääb, A. and Raup, B.H. (eds) Global land ice measurements from space. Springer-Verlag, Berlin, pp. 353373.CrossRefGoogle Scholar
Katsui, Y., Kawachi, S., Kondo, Y., Ikeda, Y., Nakagawa, M., Gotoh, Y., Yamigishi, H., Yamazaki, T. and Sumita, M. 1990. The 1988–89 explosive eruption of Tokachi-dake, Central Hokkaido, its sequence and mode. Bulletin of the Volcanological Society of Japan, 35, 111129.Google Scholar
Kaufman, D.S. and Manley, W.F. 2004. Pleistocene maximum and Late Wisconsinan glacier extents across Alaska, U.S.A. In: Ehlers, J. and Gibbard, P.L. (eds) Quaternary glaciations: extent and chronology. Part II, North America. Developments in Quaternary Science, 2b, Elsevier, Amsterdam, pp. 927.CrossRefGoogle Scholar
Kelemen, P.B., Hirth, G., Shimizu, N., Spiegelman, M. and Dick, H.J.B. 1997. A review of melt migration processes in the asthenospheric mantle beneath oceanic spreading centers. Philosophical Transactions of the Royal Society of London, A355, 283318.CrossRefGoogle Scholar
Keller, R.A., Fisk, M.R., Smellie, J.L., Strelin, J.A. and Lawver, L.A. 2002. Geochemistry of back-arc basin volcanism in Bransfield Strait, Antarctica: subducted contributions and along-axis variations. Journal of Geophysical Research, 107, B8, doi:10.1029/2001JB000444.Google Scholar
Kelman, M.C. 2005. Glaciovolcanism at the Mount Cayley volcanic field, Garibaldi volcanic belt, southwestern British Columbia. PhD thesis, The University of British Columbia (Canada), 258 pp. [unpublished].Google Scholar
Kelman, M.C., Russell, J.K. and Hickson, C.J. 2002. Effusive intermediate glaciovolcanism in the Garibaldi Volcanic Belt, southwestern British Columbia, Canada. In: Smellie, J.L. and Chapman, M.G. (eds) Volcano–ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202, pp. 195211.Google Scholar
Kerr, F.A. 1948. Lower Stikine and Western Iskut River Areas, British Columbia. Canada Department of Mines and Resources Geological Survey Memoir, 246, 94 pp.CrossRefGoogle Scholar
Kilgour, G., Manville, V., Della Pasqua, F., Graettinger, A., Hodgson, K.A. and Jolly, G.E. 2010. The 25 September eruption of Mount Ruapehu, New Zealand: directed ballistics, surtseyan jets, and ice-slurry lahars. Journal of Volcanology and Geothermal Research, 191, 114.CrossRefGoogle Scholar
Kjartansson, G. 1943. Geology of Árnessýsla. (In Icelandic). In: Árnesingasaga I, Árnesingafélagið, Reykjavík, pp. 1250.Google Scholar
Kjartansson, G. 1951. Water flood and mudflows. In: Einarsson, T., Kjartansson, G. and Thorarinsson, S. (eds) The eruption of Hekla 1947–1948. Visindafélag Islendinga, Societas Scientarium Islandica, II, 4, 51 pp.Google Scholar
Kjartansson, G. 1955. Bölstraberg pillow lava in Iceland. Natturfræðingurinn, 25, 227240.Google Scholar
Kjartansson, G. 1959. The Moberg Formation; II. In: Thorarinsson, S. (ed.) On the geology and geomorphology of Iceland. Geografiska Annaler, 41, 139143.Google Scholar
Klemen, J. and Glasser, N.F. 2007. The subglacial thermal organisation (STO) of ice sheets. Quaternary Science Reviews, 26, 585597.CrossRefGoogle Scholar
Klingelhöfer, F., Hort, M., Kümpel, H.-J. and Schminke, H.-U. 1999. Constraints on the formation of submarine lava flows from numerical model calculations. Journal of Volcanology and Geothermal Research, 92, 215229.CrossRefGoogle Scholar
Knauth, L.P. and Burt, D.M. 2002. Eutectic brines on Mars: origin and possible relation to young seepage features. Icarus, 158, 267271.CrossRefGoogle Scholar
Kokelaar, B.P. 1983. The mechanism of Surtseyan volcanism. Journal of the Geological Society, London, 140, 939944.CrossRefGoogle Scholar
Kokelaar, P. 1986. Magma–water interactions in subaqueous and emergent basaltic volcanism. Bulletin of Volcanology, 48, 275289.CrossRefGoogle Scholar
Kokelaar, B.P. and Busby, C. 1992. Subaqueous explosive eruption and welding of pyroclastic deposits. Science, 257, 196200.CrossRefGoogle ScholarPubMed
Komatsu, G., Geissler, P.E., Strom, R.G. and Singer, R.B. 1993. Stratigraphy and erosional landforms of layered deposits in Valles Marineris, Mars. Journal of Geophysical Research, 98, 1110511121.CrossRefGoogle Scholar
Komatsu, G., Ori, G.G., Ciarcelluti, P. and Litasov, Y.D. 2004. Interior layered deposits of Valles Marineris, Mars: analogous subice volcanism related to Baikal rifting, southern Siberia. Planetary and Space Science, 52, 167187.CrossRefGoogle Scholar
Komatsu, G., Arzhannikov, S.G., Arzhannikova, A.V. and Ershov, K. 2007a. Geomorphology of subglacial volcanoes in the Azas Plateau, the Tuva Republic, Russia. Geomorphology, 88, 312328.CrossRefGoogle Scholar
Komatsu, G., Arzhannikov, S.G., Arzhannikova, A.V. and Ori, G.G 2007b. Origin of glacial–fluvial landforms in the Azas Plateau volcanic field, the Tuva Republic, Russia: role of ice–magma interaction. Geomorphology, 88, 352366.CrossRefGoogle Scholar
Kratzmann, D.J., Carey, S., Scasso, R. and Naranjo, J-A. 2009. Compositional variations and magma mixing in the 1991 eruptions of Hudson volcano, Chile. Bulletin of Volcanology, 71, 419439.CrossRefGoogle Scholar
Kratzmann, D.J., Carey, S.N., Fero, J., Scasso, R.A. and Naranjo, J-A. 2010. Simulations of tephra dispersal from the 1991 explosive eruptions of Hudson volcano, Chile. Journal of Volcanology and Geothermal Research, 190, 337352.CrossRefGoogle Scholar
Kreslavsky, M.A. and Head, J.W. 2002. Fate of outflow channel effluents in the northern lowlands of Mars: the Vastitas Borealis Formation as a sublimation residue from frozen ponded bodies of water. Journal of Geophysical Research, 107, E12, 5121, doi:10.1029/2001JE001831.CrossRefGoogle Scholar
Kuehn, C., Guest, B., Russell, J.K. and Benowitz, J.A. 2015. The Satah Mountain and Baldface Mountain volcanic fields: Pleistocene hotspot volcanism in the Anahim volcanic belt, west-central British Columbia. Bulletin of Volcanology, 77:19, doi:10.1007/s00445-015-0907-1.CrossRefGoogle Scholar
Kueppers, U. Cimarelli, C., Hess, K.-W., Tadduecci, J., Wadsworth, F.B. and Dingwell, D. 2014. The thermal stability of Eyjafjallajokull ash versus turbine ingestion test sands. Journal of Applied Volcanology, doi:10.1186/2191-5040-3-4.CrossRefGoogle Scholar
Lachlan-Cope, T., Smellie, J.L. and Ladkin, R. 2001. Discovery of a recurrent lava lake on Saunders Island (South Sandwich Islands) using AVHRR imagery. Journal of Volcanology and Geothermal Research, 112, 105116.CrossRefGoogle Scholar
LaMoreaux, K.A. 2008. Recognizing ice contact trachyte-phonolite lavas at Mount Edziza volcanic complex, British Columbia, Canada. MSc thesis, University of Pittsburgh, Pennsylvania (USA), 162 pp. [unpublished].Google Scholar
Lanagan, P.D., McEwen, A.S., Keszthelyi, L.P. and Thordarson, T. 2001. Rootless cones on Mars indicating the presence of shallow equatorial ground ice in recent times. Geophysical Research Letters, 28, 23652367.CrossRefGoogle Scholar
Lange, R.L. and Carmichael, I.S.E. 1990. Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion, and compressibility. In: Nicholls, J. and Russell, J.K. (eds) Modern Methods of Igneous Petrology. Mineralogical Society of America Reviews in Mineralogy, 24, pp. 2564.CrossRefGoogle Scholar
Lara, L. 2004. Geología del Volcán Lanín, Región de la Araucanía. Servicio Nacional de Geología y Minería, Santiago. Carta Geológica de Chile, Serie Geología Básica, No. 88, 14 pp., 1 map, scale 1:50.000.Google Scholar
Lara, L.E., Naranjo, J.A. and Moreno, H. 2004. Lanín volcano (39.5°S), Southern Andes: geology and morphostructural evolution. Revista Geológica de Chile, 31, 2, 241257.CrossRefGoogle Scholar
Larsen, W. 1940. Petrology of interglacial volcanics from the Andes of northern Patagonia. Bulletin of the Geological Institute of Upsala, 28, 405 pp.Google Scholar
Larsen, G. 2000. Holocene eruptions within the Katla volcanic system, south Iceland: characteristics and environmental impact. Jökull, 49, 128.CrossRefGoogle Scholar
Larsen, G. 2002. A brief overview of eruptions from ice-covered and ice-capped volcanic systems in Iceland during the past 11 centuries: frequency, periodicity and implications. In: Smellie, J.L. and Chapman, M.G. (eds) Volcano–ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202, pp. 8190.Google Scholar
Larsen, J.F., Neal, C., Schaefer, J., Beget, J. and Nye, C. 2007. Late Pleistocene Holocene caldera-forming eruptions of Okmok caldera, Aleutian Islands, Alaska. In: Eichelberger, J., Gordeev, E., Izbekov, P., Kasahara, M. and Lees, J. (eds) Volcanism and subduction: the Kamchatka region, American Geophysical Union Monograph, 172, pp. 343364.CrossRefGoogle Scholar
Laskar, J., Correia, A.C.M., Gastineau, M., Joutel, F., Levrard, B. and Robutel, P. 2004. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus, 170, 343364.CrossRefGoogle Scholar
Leat, P.T., Smellie, J.L., Millar, I.L. and Larter, R.D. 2003. Magmatism in the South Sandwich arc. In: Larter, R.D. and Leat, P.T. (eds) Intra-oceanic subduction systems: tectonic and agamic processes. Geological Society, London, Special Publications, 219, pp. 285313.Google Scholar
Leat, P.T., Fretwell, P.T., Tate, A.J., Larter, R.D., Martin, T.J., Smellie, J.L., Jokat, W. and Bohrmann, G. 2014. Bathymetry and geological setting of the South Sandwich Islands volcanic arc (various scales). BAS GEOMAP 2 series, Sheet 6, British Antarctic Survey, Cambridge, UK.Google Scholar
LeMaitre, R.W., Streckeisen, A., Zanettin, B., LeBas, M.J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P.A., Schmid, R., Sørensen, H. and Wooley, A.R. 2002. Igeous rocks: a classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge, 236 pp.CrossRefGoogle Scholar
LeMasurier, W.E. 1972a. Volcanic record of Cenozoic glacial history of Marie Byrd Land. In: Adie, R.J. (ed.) Antarctic geology and geophysics. Universitetsforlaget, Oslo, 251260.Google Scholar
LeMasurier, W.E. 1972b. Volcanic record of Antarctic glacial history: implications with regard to Cenozoic sea levels. In: Price, R.J. and Sugden, D.E. (eds) Polar geomorphology. Institute of British Geographers, Special Publications, 4, 5974.Google Scholar
LeMasurier, W.E. 1990. Marie Byrd Land: summary. In: LeMasurier, W.E. and Thomson, J.W. (eds) Volcanoes of the Antarctic Plate and southern oceans. American Geophysical Union, Antarctic Research Series, 48, pp. 147163.CrossRefGoogle Scholar
LeMasurier, W.E. 2002. Architecture and evolution of hydrovolcanic deltas in Marie Byrd Land, Antarctica. In: Smellie, J.L. and Chapman, M.G. (eds) Volcano–ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202, pp. 115148.Google Scholar
LeMasurier, W.E. and Rex, D.C. 1982. Volcanic record of Cenozoic glacial history in Marie Byrd Land and western Ellsworth Land: revised chronology and evaluation of tectonic factors. In: Craddock, C. (ed.) Antarctic geoscience. University of Wisconsin Press, Madison, Wisconsin, pp. 725734.Google Scholar
LeMasurier, W.E. and Thomson, J.W. (eds) 1990. Volcanoes of the Antarctic Plate and southern oceans. American Geophysical Union, Antarctic Research Series, 48, 487 pp.CrossRefGoogle Scholar
LeMasurier, W.E., Harwood, D.M. and Rex, D.C. 1994. Geology of Mount Murphy Volcano: an 8-m.y. history of interaction between a rift volcano and the west Antarctic ice sheet. Geological Society of America Bulletin, 106, 265280.2.3.CO;2>CrossRefGoogle Scholar
LeMasurier, W.E., Futa, K., Hole, M.J. and Kawachi, Y. 2003. Polybaric evolution of phonolite, trachyte, and rhyolite volcanoes in eastern Marie Byrd Land, Antarctica: controls on peralkalinity and silica saturation. International Geological Review, 45, 10551099.CrossRefGoogle Scholar
Lescinsky, D.T. 1999. Interactions between glacial ice and lava flows. PhD thesis, Arizona State University (USA), 209 pp. [unpublished].Google Scholar
Lescinsky, D.T. and Sisson, T.W. 1998. Ridge-forming ice-bounded lava flows at Mount Rainier, Washington. Geology, 26, 351354.2.3.CO;2>CrossRefGoogle Scholar
Lescinsky, D.T. and Fink, J.H. 2000. Lava and ice interaction at stratovolcanoes: use of characteristic features to determine past glacial extents and future volcanic hazards. Journal of Geophysical Research, 105, 2371123726.CrossRefGoogle Scholar
Lewis, A.R., Marchant, D.R., Ashworth, A.C., Hemming, S.R. and Machlus, M.L. 2007. Major middle Miocene global climate change: evidence from East Antarctica and the Transantarctic Mountains. Geological Society of America Bulletin, 119, 14491461.CrossRefGoogle Scholar
Licciardi, J.M., Kurz, M.D. and Curtice, J.M. 2007. Glacial and volcanic history of Icelandic table mountains from cosmogenic 3He exposure ages. Quaternary Science Reviews, 26, 15291546.CrossRefGoogle Scholar
Lipman, P.W. and Banks, N.B. 1987. Aa flow dynamics. Mauna Loa 1984. In: Decker, R.W., Wright, T.L. and Stauffer, P.H. (eds) Volcanism in Hawaii. United States Geological Survey Professional Paper, 1350, pp. 15271567.Google Scholar
Lisiecki, L.E. and Raymo, M.E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, doi:10.1029/2004PA001071.Google Scholar
Liu, E.J., Cashman, K.V., Rust, A.C. and Gislason, S.R. 2015. The role of bubbles in generating fine ash during hydromagmatic eruptions. Geology, 43, 239242.CrossRefGoogle Scholar
Llewellin, E.W. and Manga, M. 2005. Bubble suspension rheology and implications for conduit flow. In: Sahagian, D. (ed.) Volcanic eruption mechanisms; insights from intercomparison of models of conduit processes. Journal of Volcanology and Geothermal Research, 143, 205217.Google Scholar
Lloyd, A. 2007. Plagioclase growth rates in pillow basalts: a study in thermal modelling and crystal size distribution. BSc thesis, Dickinson College, Pennsylvania (USA), 54 pp. [unpublished].Google Scholar
Lloyd, A.S., Plank, T., Ruprecht, P., Hauri, E.H. and Rose, W. 2013. Volatile loss from melt inclusions in pyroclasts of differing sizes. Contributions to Mineralogy and Petrology, 165, 129153.CrossRefGoogle Scholar
Lloyd-Davies, M.T., Atkins, C.B., van der Meer, J.J.M., Barrett, P.J. and Hicock, S.R. 2009. Evidence for cold-based glacial activity in the Allan Hills, Antarctica. Quaternary Science Reviews, 28, 31243137.CrossRefGoogle Scholar
Lodge, R.W.D and Lescinsky, D.T. 2009a. Fracture patterns at lava–ice contacts on Kokostick Butte, OR, and Mazama Ridge, Mount Rainier, WA: implications for flow emplacement and cooling histories. Journal of Volcanology and Geothermal Research, 185, 298310.CrossRefGoogle Scholar
Lodge, R.W.D. and Lescinsky, D.T. 2009b. Anisotropic stress accumulation in cooling lava flows and resulting fracture patterns: insights from starch–water desiccation experiment. Journal of Volcanology and Geothermal Research, 185, 323336.CrossRefGoogle Scholar
Long, P.E. and Wood, B.J. 1986. Structures, textures and cooling histories of Columbia River basalt flows. Geological Society of America Bulletin, 97, 11441155.2.0.CO;2>CrossRefGoogle Scholar
Loock, S., van Wyk de Vries, B. and Hénot, J.-M. 2010. Clinker formation in basaltic and trachybasaltic lava flows. Bulletin of Volcanology, 72, 859870.CrossRefGoogle Scholar
López-Martínez, J. and Serrano, E. 2002. Geomorphology. In: Smellie, J.L., López-Martínez, J., et al. 2002. Geology and geomorphology of Deception Island. BAS GEOMAP Series, Sheets 6-A and 6-B, 1:25 000, supplementary text. British Antarctic Survey, Cambridge, UK, pp. 3139.Google Scholar
Lore, J., Gao, H. and Aydin, A. 2000. Viscoelastic thermal stress in cooling basalt flows. Journal of Geophysical Research, 105, 2369523709.CrossRefGoogle Scholar
Lough, A.C., Wiens, D.A., Barcheck, C.G., Anandakrishnan, S., Aster, R.C., Blankenship, D.D., Huerta, A.D., Nyblade, A., Young, D.A. and Wilson, T.J. 2013. Seismic detection of an active subglacial magmatic complex in Marie Byrd Land, Antarctica. Nature Geoscience, doi:10.1038/NGO1992.CrossRefGoogle Scholar
Loughlin, S.C., 2002. Facies analysis of proximal subglacial and proglacial volcaniclastic successions at the Eyjafjallajökull central volcano, southern Iceland. In: Smellie, J.L., Chapman, M.G. (eds) Volcano–ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202, pp. 149178.Google Scholar
Lowe, D.R. 1982. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology, 52, 279297.Google Scholar
Lowell, P. 1906. Mars and its canals. The Macmillan Company, New York, 385 pp.Google Scholar
Lube, G., Cronin, S. and Procter, J.N. 2009. Explaining the extreme mobility of volcano ice-slurry flows, Ruapehu volcano, New Zealand. Geology, 37, 1518.CrossRefGoogle Scholar
Lucchitta, B.K. 1982. Ice sculpture in the Martian outflow channels. Journal of Geophysical Research, 87, 99519973.CrossRefGoogle Scholar
Lucchitta, B.K. 2001. Antarctic ice streams and outflow channels on Mars. Geophysical Research Letters, 28, 403406.CrossRefGoogle Scholar
Lucchitta, B.K., McEwen, A.S., Clow, G.D., Geissler, P.E., Singer, R.B., Schulz, R.A. and Squyres, S.W. 1992. Valles Marineris. In: Keifer, H.H., Jakosky, B.M., Snyder, C.W. and Matthews, M.S. (eds) Mars. University of Arizona Press, Tucson, pp. 453492.Google Scholar
Lucchitta, B.K., Isbell, N.K. and Howington-Kraus, A. 1994. Topography of Valles Marineris: implications for erosional and structural history. Journal of Geophysical Research, 99, 37833798.CrossRefGoogle Scholar
MacDonald, G.A. 1963. Physical properties of erupting Hawaiian magmas. Geological Society of America Bulletin, 74, 10711078.CrossRefGoogle Scholar
Mackenzie, D.E. and Johnson, R.W. 1984. Pleistocene volcanoes of the western Papua New Guinea highlands: morphology, geology, petrography and modal chemical analyses. Australian Bureau of Mineral Resources, Geology and Geophysics Report, 246, 271 pp.Google Scholar
Maclennan, J., Jull, M., McKenzie, D., Slater, L. and Gronvold, K. 2002. The link between volcanism and deglaciation in Iceland. Geochemistry, Geophysics, Geosystems, 3, 1062, doi:10.1029/2001GC000282.CrossRefGoogle Scholar
Magnússon, E., Gudmundsson, M.T., Roberts, M.J., Sigurdsson, G., Höskuldsson, F. and Oddsson, B. 2012. Ice–volcano interactions during the 2010 Eyjafjallajökull eruption, as revealed by airborne imaging radar. Journal of Geophysical Research, 117, B07405, doi:10.1029/2012JB009250.CrossRefGoogle Scholar
Mahood, G.A., Ring, J.H., Manganelli, S. and McWilliams, M.O. 2010. New 40Ar/39 Ar ages reveal contemporaneous mafic and silicic eruptions during the past 160,000 years at Mammoth Mountain and Long Valley Caldera, California. Geological Society of America Bulletin, 122, 396407.CrossRefGoogle Scholar
Maizels, J.K. 1993. Lithofacies variations within sandur deposits: the role of runoff regime, flow dynamics and sediment supply charateristics. Sedimentary Geology, 85, 299325.CrossRefGoogle Scholar
Major, J.J. and Newhall, C.G. 1989. Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods: a global review. Bulletin of Volcanology, 52, 127.CrossRefGoogle Scholar
Major, J.J., Pierson, T.C. and Scott, K.M. 2005. Debris flows at Mount St. Helens, Washington, USA. In: Jakob, M. and Hungr, O. (eds) Debris-flow Hazards and Related Phenomena. Springer, Berlin, pp. 685731.CrossRefGoogle Scholar
Manglik, A. and Singh, R.N. 1995. Postintrusive thermal evolution of continental crust: a moving boundary approach. Journal of Geophysical Research, 100, 1803118043.CrossRefGoogle Scholar
Manville, V. and Cronin, S. 2007. Breakout lahar from New Zealand’s Crater Lake. Eos, Transactions, American Geophysical Union, 88, 441–2.CrossRefGoogle Scholar
Manville, V. and Wilson, C.J.N. 2004. Vertical density currents: a review of their potential role in deposition of deep-sea ash layers. Journal of the Geological Society, London, 161, 947958.CrossRefGoogle Scholar
Marchant, D.R., Lewis, A., Phillips, W.M., Souchez, R., Denton, G.H., Sugden, D.E. and Landis, G.P. 2002. Formation of patterned ground and sublimation till over Miocene glacier ice in Beacon Valley, southern Victoria Land, Antarctica. Geological Society of America Bulletin, 114, 718730.2.0.CO;2>CrossRefGoogle Scholar
Marenssi, S.A., Casadio, S. and Santillana, S.N. 2010. Record of Late Miocene glacial deposits on Isla Marambio (Seymour Island), Antarctic Peninsula. Antarctic Science, 22, 193198.CrossRefGoogle Scholar
Mark, B.G. and Osmaston, H.A. 2008. Quaternary glaciation in Africa: key chronologies and climatic implications. Journal of Quaternary Science, 23, 589608.CrossRefGoogle Scholar
Marsh, B.D. 1981. On the crystallinity, probability of occurrence, and rheology of lava and magma. Contributions to Mineralogy and Petrology, 78, 8598.CrossRefGoogle Scholar
Martin, A., Paquette, J.L., Bosse, V., Ruffet, G., Tiepolo, M. and Sigmarsson, O. 2011. Geodynamics of rift–plume interaction in Iceland as constrained by new 40Ar/39Ar and in situ U-Pb zircon ages. Earth and Planetary Science Letters, 311, 2838.CrossRefGoogle Scholar
Martínez-Alonso, A., Mellon, M.T., Banks, M.E., Keszthelyi, L.P., McEwen, A.S. and the HiRISE Team. 2011. Evidence of volcanic and glacial activity in Chryse and Acidalia Planitiae, Mars. Icarus, 212, 597621.CrossRefGoogle Scholar
Mastin, L.G., Christiansen, R.L., Thornber, C., Lowenstern, J. and Beeson, M. 2004. What makes hydromagmatic eruptions violent? Some insights from the Keanakāko’I Ash, Kīlauea Volcano, Hawai’i. Journal of Volcanology and Geothermal Research, 137, 1531.CrossRefGoogle Scholar
Mastin, L.G., Spieler, O. and Downey, W.S. 2009. An experimental study of hydromagmatic fragmentation through energetic, non-explosive magma–water mixing. Journal of Volcanology and Geothermal Research, 180, 161170.CrossRefGoogle Scholar
Matchan, E.L. and Phillips, D. 2014. High precision multi-collector 40Ar/39Ar dating of young basalts: Mount Rouse volcano (SE Australia) revisited. Quaternary Geochronology, 22, 5764.CrossRefGoogle Scholar
Mathews, W.H. 1947. ‘Tuyas’: flat-topped volcanoes in northern British Columbia. American Journal of Science, 245, 560570.CrossRefGoogle Scholar
Mathews, W.H., 1951. The Table, a flat-topped volcano in southern BC. American Journal of Science, 249, 830841.CrossRefGoogle Scholar
Mathews, W.H. 1952a. Ice-dammed lavas from Clinker Mountain, southwestern British Columbia. American Journal of Science, 250, 553565.CrossRefGoogle Scholar
Mathews, W. H. 1952b. Mount Garibaldi, a supraglacial Pleistocene volcano in southwestern British Columbia. American Journal of Science, 250, 81103.CrossRefGoogle Scholar
Mathews, W.H. 1958. Geology of the Mount Garibaldi map-area, southwestern British Columbia, Canada: Part II. Geomorphology and Quaternary volcanic rocks. Geological Society of America Bulletin, 69, 179198.CrossRefGoogle Scholar
Mathews, W.H. 1987. Garibaldi area, southwestern British Columbia; volcanoes versus glacier ice. In: Hill, M.L. (ed.) Geological Society of America Centennial Field Guide: Volume 1, Cordilleran Section, pp. 403406.Google Scholar
Matthews, R.K. 1969. Tectonic implications of glacio-eustatic sea level fluctuations. Earth and Planetary Science Letters, 5, 459462.CrossRefGoogle Scholar
Mattox, T.N. and Mangan, M.T. 1997. Littoral hydrovolcanic explosions: a case study of lava–seawater interaction at Kilauea Volcano. Journal of Volcanology and Geothermal Research, 75, 117.CrossRefGoogle Scholar
Mattsson, H.B., Caricchi, L., Almqvist, B.S.G., Caddick, M.J., Bosshard, S.A., Hetényi, G. and Hirt, A.M. 2011. Melt migration in basalt columns driven by crystallization-induced pressure gradients. Nature Communications, 2, 299, doi:10.1038/ncomms1298.CrossRefGoogle ScholarPubMed
McGarvie, D.W. 1984. Torfajökull: a volcano dominated by magma mixing. Geology, 12, 685688.2.0.CO;2>CrossRefGoogle Scholar
McGarvie, D. 2009. Rhyolitic volcano–ice interactions in Iceland. Journal of Volcanology and Geothermal Research, 185, 367389.CrossRefGoogle Scholar
McGarvie, D.W., Macdonald, R., Pinkerton, H. and Smith, R.L. 1990. Petrogenetic evolution in the Torfajökull volcanic complex, Iceland. 2. The role of magma mixing. Journal of Petrology, 31, 461481.CrossRefGoogle Scholar
McGarvie, D.W., Burgess, R., Tindle, A.G., Tuffen, H. and Stevenson, J.A. 2006. Pleistocene rhyolitic volcanism at Torfajökull, Iceland: eruption ages, glaciovolcanism, and geochemical evolution. Jökull, 56, 5775.CrossRefGoogle Scholar
McGarvie, D.W., Stevenson, J.A., Burgess, T., Tuffen, H. and Tindle, A.G. 2007. Volcano–ice interactions at Prestahnúkur, Iceland: rhyolite eruption during the last interglacial–glacial transition. In: Clarke, G and Smellie, J. (eds) Papers from the International Symposium on Earth and Planetary Ice–Volcano Interactions held in Reykjavik, Iceland, on 19–23 June, 2006. Annals of Glaciology, 45, 3847.Google Scholar
McGarvie, D.W., Skilling, I.P., Graettinger, A.H., Guillou, H. and Höskuldsson, A. 2013. Rapid growth of a basaltic volcano beneath an ice sheet: Askja, Iceland. IAVCEI 2013 General Assembly, Kagoshima, Japan (Abstract 3A2_3K-O12, p. 1070).Google Scholar
McGovern, P.J. and Solomon, S.C. 1993. State of stress, faulting and eruption characteristics of large volcanoes on Mars. Journal of Geophysical Research, 98, 2353323579.CrossRefGoogle Scholar
McGuire, W. J., Howarth, R.J., Firth, C.R., Solow, A.R., Pullen, A.D., Saunders, S.J., Stewart, I.S. and Vita-Finzi, C. 1997. Correlation between rate of sea-level change and frequency of explosive volcanism in the Mediterranean. Nature, 389, 473476.CrossRefGoogle Scholar
McIntosh, W.C., Dunbar, N., Iverson, N. and Heizler, M. 2014. New generation mass-spectrometers offer improved 40Ar/39Ar dating of tephra. Tephra 2014 conference, Portland, Oregon, USA, 4–7 August 2014 [abstract].Google Scholar
McKenzie, D. and Bickle, M.J. 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29, 625679.CrossRefGoogle Scholar
McKenzie, D. and Nimmo, F. 1999. The generation of martian floods by the melting of ground ice above dykes. Nature, 397, 231233.CrossRefGoogle ScholarPubMed
McLoughlin, N., Furnes, H., Banerjee, N.R., Muehlenbachs, K. and Staudigel, H. 2009. Ichnotaxonomy of microbial trace fossils in volcanic glass. Journal of the Geological Society, London, 166, 159169.CrossRefGoogle Scholar
McPhie, J., Doyle, M. and Allen, R. 1993. Volcanic textures: a guide to the interpretation of textures in volcanic rocks. CODES Key Centre, University of Tasmania, Hobart, 196 pp.Google Scholar
Mee, K., Tuffen, H. and Gilbert, J.S. 2006. Snow-contact volcanic facies and their use in determining past eruptive environments at Nevados de Chillán volcano, Chile. Bulletin of Volcanology, 68, 363376.CrossRefGoogle Scholar
Mee, K., Gilbert, J.S., McGarvie, D.W., Naranjo, J.A. and Pringle, M.S. 2009. Palaeoenvironment reconstruction, volcanic evolution and geochronology of the Cerro Blanco subcomplex, Nevados de Chillán volcanic complex, central Chile. Bulletin of Volcanology, 71, 933952.CrossRefGoogle Scholar
Mège, D. and Masson, P. 1996. A plume tectonics model for the Tharsis province, Mars. Planetary and Space Science, 44, 14991546.CrossRefGoogle Scholar
Mège, D. and Bourgeois, O. 2011. Equatorial glaciations on Mars revealed by gravitational collapse of Valles Marineris wallslopes. Earth and Planetary Science Letters, 310, 182191.CrossRefGoogle Scholar
Melson, W.G., Allan, J.F., Jerez, D.R., Nelen, J., Calvache, M.L., Williams, S.N., Fournelle, J. and Perfit, M. 1990. Water contents, temperatures and diversity of the magmas of the catastrophic eruption of Nevado del Ruiz, Colombia, November 13, 1985. Journal of Volcanology and Geothermal Research, 41, 97126.CrossRefGoogle Scholar
Menzies, J. (ed.) 1995. Modern glacial environments: processes, dynamics and sediments. Butterworth Heinemann, Oxford, 621 pp.Google Scholar
Menzies, J. (ed.) 1996. Past glacial environments: sediments, forms and techniques. Butterworth Heinemann, Oxford, 598 pp.Google Scholar
Metcalfe, P. 1987. Petrogenesis of Quaternary alkaline lavas in Wells Gray Provincial Park, B.C., and constraints on the petrology of the Subcordilleran mantle. PhD thesis, University of Alberta, Edmonton (Canada), 790 pp. [unpublished].Google Scholar
Miller, C.D. 1980. Potential hazards from future eruptions of Mount Shasta volcano, northern California. United States Geological Survey Bulletin, 1503, 43 pp. and map.Google Scholar
Miller, T.P. and Richter, D.H. 1994. Quaternary volcanism in the Alaska Peninsula and Wrangell Mountains, Alaska. In: Plafker, G. and Berg, H.C. (eds) The geology of Alaska. Geological Society of America, Boulder, Colorado, pp. 759779.Google Scholar
Miller, K.G., Sugarman, P.J., Browning, J.V., Kominz, M.A., Olsson, R.K., Feigenson, M.D. and Hernandez, J.C. 2004. Upper Cretaceous sequences and sea-level history, New Jersey Coastal Plain. Geological Society of America Bulletin, 116, 368393.CrossRefGoogle Scholar
Mitchell, N.C., Beier, C., Rosin, P.L., Quartau, R. and Tempera, F. 2008. Lava penetrating water: submarine lava flows around the coasts of Pico Island, Azores. Geochemistry, Geophysics, Geosystems, doi:10.1029/2007/GC001725.CrossRefGoogle Scholar
Mojica, J. Columenares, F., Villarroel, C., Macia, C. and Moreno, M. 1986. Characteristicas del flujo de lodo ocurrido el 12 de Noviembre de 1985 en el valle de Armero (Tolima, Columbia): historia y comentarios de los flujos de 1595 y 1845. Geología Columbia, 14, 107140.Google Scholar
Moore, D.P. 1976. The Rubble Creek landslide, Garibaldi, British Columbia. MSc thesis, University of British Columbia (Canada), 97 pp. [unpublished].Google Scholar
Moore, J.G. 1985. Structure and eruptive mechanisms at Surtsey Volcano, Iceland. Geological Magazine, 122, 649661.CrossRefGoogle Scholar
Moore, H.J. 1987. Preliminary estimates of the rheological properties of 1984 Mauna Loa lava. In: Decker, R.W., Wright, T.L. and Stauffer, P.H. (eds) Volcanism in Hawaii. United States Geological Survey Professional Paper, 1350, pp. 15691588.Google Scholar
Moore, J.G. and Calk, L. 1991. Degassing and differentiation in subglacial volcanoes, Iceland. Journal of Volcanology and Geothermal Research, 46, 157180.CrossRefGoogle Scholar
Moore, J.G., Phillips, R.L., Grigg, R.W., Peterson, D.W. and Swanson, D.A. 1973. Flow of lava into the sea, 1969–1971, Kilauea volcano, Hawaii. Geological Society of America Bulletin, 84, 537546.2.0.CO;2>CrossRefGoogle Scholar
Moore, J.G., Hickson, C.J. and Calk, L. 1995. Tholeiitic-alkalic transition at subglacial volcanoes, Tuya region, British Columbia. Journal of Geophysical Research, 100, 2457724592.CrossRefGoogle Scholar
Moreno, H. 1994. The May 17–19 Llaima volcano eruption, Southern Andes (38°42′71″S 71°41′W). Revista Geologica de Chile, 21, 167171.Google Scholar
Moreno, H. and Fuentealba, G. 1994. The May 17–19 1994 Llaima volcano eruption, southern Andes (38°42′S-71°44′W). Revista Geologica de Chile, 21, 167171.Google Scholar
Mortimer, N., Dunlap, W.J., Isaac, M.J., Sutherland, R.P. and Faure, K. 2008. Basal Adare volcanics, Robertson Bay, North Victoria Land, Antarctica: Late Miocene intraplate basalts of subaqueous origin. In: Cooper, A.K. and Raymond, C.R. (eds) Antarctica: A Keystone in a Changing World. Online Proceedings of the 10th ISAES, United States Geological Survey Open-File Report 2007–1047, Short Research Paper 045, 7 pp.CrossRefGoogle Scholar
Mothes, P.A., Hall, M.L., Andrade, D., Sameniego, P., Pierson, T.C., Ruiz, A.G. and Yepes, H. 2004. Character, stratigraphy and magnitude of historical lahars of Cotopaxi volcano (Ecuador). Acta Volcanologica, 16, 85108.Google Scholar
Motoki, A., Orihashi, Y., Naranjo, J.A., Hirata, D., Skvarca, P. and Anma, R. 2006. Geologic reconnaissance at Lautaro volcano, Chilean Patagonia. Revista Geologica de Chile, 33, 177187.Google Scholar
Mulder, T. and Alexander, J. 2001. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48, 269299.CrossRefGoogle Scholar
Mullineaux, D.R. and Crandall, D.R. 1981. The eruption history of Mt. St. Helens. In: Lipman, P.W. and Mullineaux, D.R. (eds) The 1980 eruptions of Mount St. Helens, Washington. United States Geological Survey Professional Paper, 1250, 315.Google Scholar
Murchie, S., Kirkland, L., Erad, S., Mustard, J. and Robinson, M. 2000. Near-infrared spectral variations of Martian surface materials from ISM imaging spectrometer data. Icarus, 147, 444471.CrossRefGoogle Scholar
Murray, J.B., Muller, J.-P., Neukum, G. and nine authors plus the HRSC Co-Investigator Team. 2005. Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars’ equator. Nature, 434, 352355.CrossRefGoogle ScholarPubMed
Murray, J.B., van Wyk de Vries, B., Marquez, A., Williams, D.A., Byrne, P., Muller, J.-P. and Kim, J.-R. 2010. Late-stage water eruptions from Ascraeus Mons volcano, Mars: implications for its structure and history. Earth and Planetary Science Letters, 294, 479491.CrossRefGoogle Scholar
Murtagh, R.M. and White, J.D.L. 2013. Pyroclast characteristics of a subaqueous to emergent Surtseyan eruption, Black Point volcano, California. Journal of Volcanology and Geothermal Research, 267, 7591.CrossRefGoogle Scholar
Naish, T., Powell, R., Levy, R. and 53 authors. 2009. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature, 458, doi:10.1038/nature07867.CrossRefGoogle ScholarPubMed
Nakada, M. and Yokose, H. 1992. Ice age as a trigger of active Quaternary volcanism and tectonism. Tectonophysics, 212, 321329.CrossRefGoogle Scholar
Naranjo, J.A. and Moreno, H. 1991. Actividad explosive postglacial en el volcan Llaima Andes del Sur (38°45′S). Revista Geologica de Chile, 18, 6980.Google Scholar
Naranjo, J.A., Sigurdsson, H., Carey, S.N. and Fritz, W. 1986. Eruption of the Nevado del Ruiz volcano, Colombia, on 13 November 1985: tephra fall and lahars. Science, 233, 961963.CrossRefGoogle ScholarPubMed
Naranjo, J.A., Moreno, H. and Banks, N.G. 1993. La erupción del volcán Hudson en l991 (467S), Región XI, Aisén, Chile. Servicio Nacional Geologica y Minería Boletin, 44, 150.Google Scholar
Naranjo, J.A. and Stern, C.R. 1998. Holocene explosive activity at Hudson volcano, southern Andes. Bulletin of Volcanology, 59, 291306.CrossRefGoogle Scholar
Naranjo, J.A. and Moreno, H. 2004. Laharic debris-flows from Villarrica Volcano. Boletín Servicio Nacional de Geología y Minería, 61, 2838.Google Scholar
Nardini, I., Armienti, P., Rocchi, S. and Burgess, R. 2003. 40Ar-39Ar chronology and petrology of the Miocene rift-related volcanism of Daniell Peninsula (northern Victoria Land, Antarctica). Terra Antartica, 10, 3962.Google Scholar
NOAA (National Oceanic and Atmospheric Administration) 2010. Mount Redoubt volcanic eruptions March-April 2009. Service Review, United States Department of Commerce, 51 pp.Google Scholar
Nawrocki, J., Pańczyk, M. and Williams, I.S. 2011. Isotopic ages of selected magmatic rocks from King George Island (West Antarctica) controlled by magnetostratigraphy. Geological Quarterly, 55, 301322.Google Scholar
Nelson, A.E., Smellie, J.L., Hambrey, M.J., Williams, M., Vautravers, M., Salzmann, U., McArthur, J.M. and Regelous, M. 2009. Neogene glacigenic debris flows on James Ross Island, northern Antarctic Peninsula, and their implications for regional climate history. Quaternary Science Reviews, 28, 31383160.CrossRefGoogle Scholar
Nelson, P.H.H. 1975. The James Ross Island Volcanic Group of north-east Graham Land. British Antarctic Survey Scientific Reports, 54, 62 pp.Google Scholar
Neuendorf, K.E., Mehl, J.P. and Jackson, J.A. 2011. Glossary of geology. American Geosciences Institute, Alexandra, Virginia, 779 pp.Google Scholar
Neuffer, D.P., Schultz, R.A. and Watters, R.J. 2006. Mechanisms of slope failure on Pyramid Mountain, a subglacial volcano in Wells Gray Provincial Park, British Columbia. Canadian Journal of Earth Science, 43, 147155.CrossRefGoogle Scholar
Newman, S. and Lowenstern, J.B. 2002. VolatileCalc: a silicate melt-H2O-CO2 solution model written in Visual Basic for Excel. Computers and Geosciences, 597604.CrossRefGoogle Scholar
Nichols, A.R.L., Carroll, M.R. and Höskuldsson, A. 2002. Is the Iceland hot spot also wet? Evidence from the water contents of undegassed submarine and subglacial pillow basalts. Earth and Planetary Science Letters, 202, 7787.CrossRefGoogle Scholar
Nielsen, N. 1937. A volcano under an ice cap, Vatnajökull, Iceland, 1934–36. Geographical Journal, 90, 623.CrossRefGoogle Scholar
Ninkovich, D., Heezen, B.C., Conolly, J.R. and Burckle, L.H. 1964. South Sandwich tephra in deep-sea sediments. Deep Sea Research, 11, 605619.Google Scholar
Noe-Nygaard, A. 1940. Sub-glacial volcanic activity in ancient and recent times (Studies in the palagonite-system of Iceland no. 1). Folia Geographica Danica, 1, 67 pp.Google Scholar
Nowell, D., Jones, C. and Pyle, D. 2006. Episodic Quaternary volcanism in France and Germany. Journal of Quaternary Science, 21, 645675.CrossRefGoogle Scholar
Nye, J.F. 1951. The flow of glaciers and ice sheets as a problem in plasticity. Proceedings of the Royal Society, Series A, 207, 554572.Google Scholar
Nye, J.F. 1952a. The mechanics of glacier flow. Journal of Glaciology, 2, 8293.CrossRefGoogle Scholar
Nye, J.F. 1952b. A method of calculating the thickness of the ice-sheets. Nature, 169, 529.CrossRefGoogle Scholar
Nye, J.F. 1953. The flow law of ice from measurements in glacier tunnels, laboratory experiments, and the Jungfraufirn borehole experiment. Proceedings of the Royal Society, Series A, 219, 447489.Google Scholar
Nye, J.F. and Frank, F.C. 1973. Hydrology of the intergranular veins in a temperate glacier. In: Cambridge Symposium, 1969, Hydrology of Glaciers. International Association of Hydrological Sciences, Publication 95, 157161.Google Scholar
Nyland, R.E., Panter, K.S., Rocchi, S., Vincenzo, G., Di Del Carlo, P., Tiepolo, M., Field, B. and Gorsevski, P. 2013. Volcanic activity and its link to glaciation cycles: single-grain age and geochemistry of Early to Middle Miocene volcanic glass from ANDRILL AND-2A core, Antarctica. Journal of Volcanology and Geothermal Research, 250, 106128.CrossRefGoogle Scholar
Nývlt, D., Košler, J., Mlčoch, B., Mixa, P., Lisá, L., Bubík, M. and Hendriks, B.W.H. 2011. The Medel Formation: evidence for Late Miocene climatic cyclicity at the northern tip of the Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 363384.CrossRefGoogle Scholar
Oddsson, B., Gudmundsson, M.T., Hognadottir, T, Magnusson, E. and Hoskuldsson, A. 2012. Lava–ice interaction during the advance of a trachyandsitic lava flow down the Gígjökull outlet glacier in the April–May 2010 Eyjafjallajökull eruption, Iceland. Abstract NH11B-1131 presented at the 2010 Fall Meeting, American Geophysical Union, San Francisco, CA, 13–17 December.Google Scholar
Oehler, J.-F., van Wyk de Vries, B. and Labazuy, P. 2005. Landslides and spreading of oceanic hot-spot and arc shield volcanoes on Low Strength Layers (LSLs): an analogue modelling approach. Journal of Volcanology and Geothermal Research, 144, 169189.CrossRefGoogle Scholar
Ono, Y., Aoki, T., Hasegawa, H. and Dali, L. 2005. Mountain glaciation in Japan and Taiwan at the global Last Glacial Maximum. Quaternary International, 138–139, 7992.CrossRefGoogle Scholar
Orihashi, Y., Naranjo, J.A., Motoki, A., Sumino, H., Hirata, D., Anma, R. and Nagao, K. 2004. The Quaternary volcanic activities of Hudson and Lautaro volcanoes, Chilean Patagonia: new constraints from K-Ar ages. Revista Geológica de Chile, 31, 207224.CrossRefGoogle Scholar
Orth, K and McPhie, J. 2003. Textures formed during emplacement and cooling of a Palaeoproterozoic, small-volume rhyolitic sill. Journal of Volcanology and Geothermal Research, 128, 341362.CrossRefGoogle Scholar
Óskarsson, B.V. and Riishuus, M.S. 2013. The mode of emplacement of Neogene flood basalts in eastern Iceland: facies architecture and structure of the Hólmar and Grjótá olivine basalt groups. Journal of Volcanology and Geothermal Research, 267, 92118.CrossRefGoogle Scholar
Owen, J., Tuffen, H. and McGarvie, D.W. 2012. Using dissolved H2O in rhyolitic glasses to estimate palaeo-ice thickness during a subglacial eruption at Bláhnúkur (Torfajökull, Iceland). Bulletin of Volcanology, 74, 13551378.CrossRefGoogle Scholar
Ozerov, A.Y., Karpov, G.A., Droznin, V.A., Dvigalo, V.N., Demyanchuk, Yu.V., Ivanov, V.V., Belousov, A.B., Firstove, P.P., Gavrilov, V.A., Yashchuk, V.V. and Okrugina, A.M. 1997. The September 7 – October 2, 1994 eruption of Klyuchevskoi volcano, Kamchatka. Volcanology and Seismology, 18, 501516.Google Scholar
Pagli, C. and Sigmundsson, F. 2008. Will present day glacier retreat increase volcanic activity? Stress induced by recent glacier retreat and its effect on magmatism at the Vatnajokull ice cap, Iceland. Geophysical Research Letters, 35, 9, L09304, doi:10.1029/2008GL033510.CrossRefGoogle Scholar
Panter, K.S., McIntosh, W.C. and Smellie, J.L. 1994. Volcanic history of Mount Sidley, a major alkaline volcano in Marie Byrd Land, Antarctica. Bulletin of Volcanology, 56, 361376.CrossRefGoogle Scholar
Panter, K., Kyle, P. and Smellie, J. 1997. Petrogenesis of a phonolite-trachyte succession at Mount Sidley, Marie Byrd Land, Antarctica. Journal of Petrology, 38, 12251253.CrossRefGoogle Scholar
Papale, P., Moretti, R. and Barbato, D. 2006. The compositional dependence of the saturation surface of H2O+CO2 fluids in silicate melts. Chemical Geology, 229, 7895.CrossRefGoogle Scholar
Parfitt, L. and Wilson, L. 2011. Fundamentals of physical volcanology. Wiley-Blackwell, Oxford, 252 pp.Google Scholar
Parker, T.J., Gorsline, D.S., Saunders, R.S., Pieri, D. and Schneeberger, D.M. 1993. Coastal morphology of the Martian northern plains. Journal of Geophysical Research, 98, 1106111078.CrossRefGoogle Scholar
Paterson, W.S.B. 1994. The physics of glaciers. Pergamon, Oxford, 480 pp.Google Scholar
Patrick, M.R. and Smellie, J.L. 2013. A spaceborne inventory of volcanic activity in Antarctica and southern oceans, 2000–2010. Antarctic Science, 25, 475500.CrossRefGoogle Scholar
Patrick, M.R., Smellie, J.L., Harris, A.J.L., Wright, R., Dean, K., Garbal, I.L. and Pilger, E. 2005. First recorded eruption of Mount Belinda volcano (Montagu Island), South Sandwich Islands. Bulletin of Volcanology, 67, 415422.CrossRefGoogle Scholar
Patterne, M. and Guichard, F. 1993. Triggering of volcanic pulses in the Campanian area, south Italy, by periodic deep magma infux. Journal of Geophysical Research, 98, 18611873.CrossRefGoogle Scholar
Pattyn, F. 2010. Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. Earth and Planetary Science Letters, 295, 451461.CrossRefGoogle Scholar
Pauly, B.D., Schiffman, P., Zierenberg, R.A. and Clague, D.A. 2011. Environmental and chemical controls on palagonitization. Geochemistry, Geophysics, Geosystems, 12, Q12017, doi:10.1029/2011GC003639.CrossRefGoogle Scholar
Peacock, M.A. 1926. The volcano-glacial palagonite formation of Iceland. Geological Magazine, 63, 385399.CrossRefGoogle Scholar
Pearce, J.A., Baker, P.E., Harvey, P.K. and Luff, I.W. 1995. Geochemical evidence for subduction fluxes, mantle melting and fractional crystallization beneath the South Sandwich Island arc. Journal of Petrology, 36, 10731109.CrossRefGoogle Scholar
Pedersen, G.B.M. and Grosse, P. 2014. Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: effects of eruption environment. Journal of Volcanology and Geothermal Research, 282, 115133.CrossRefGoogle Scholar
Philpotts, A.R. and Ague, J.J. 2009. Principles of igneous and metamorphic petrology, 2nd Edition. Cambridge University Press, New York, 667 pp.CrossRefGoogle Scholar
Pierson, T.C. 1985. Initiation and flow behavior of the 1980 Pine Creek and Muddy River lahars, Mount St. Helens, Washington. Geological Society of America Bulletin, 96, 10561069.2.0.CO;2>CrossRefGoogle Scholar
Pierson, T.C. and Waitt, R.B. 1999. Dome-collapse rockslide and multiple sediment-water flows generated by a small explosive eruption on February 2–3, 1983. In: Pierson, T.C. (ed.) Hydrologic consequences of hot-rock/snowpack interactions at Mount St. Helens volcano, Washington, 1982–84. United States Geological Survey Professional Paper, 1586, 5368.Google Scholar
Pierson, T.C., Janda, R.J., Thouret, J.-C. and Borrero, C.A. 1990. Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. Journal of Volcanology and Geothermal Research, 41, 1766.CrossRefGoogle Scholar
Pinkerton, H. and Stevenson, R.J. 1992. Methods of determining the rheological properties of magmas at subliquidus temperatures. Journal of Volcanology and Geothermal Research, 53, 4766.CrossRefGoogle Scholar
Pirrie, D., Crame, J.A., Riding, J.B., Butcher, A.R. and Taylor, P.D. 1997. Miocene glaciomarine sedimentation in the northern Antarctic Peninsula region: the stratigraphy and sedimentology of the Hobbs Glacier Formation, James Ross Island. Geological Magazine, 136, 745762.CrossRefGoogle Scholar
Pistolesi, M., Cioni, R., Rosi, M., Cashman, K.V., Rossotti, A. and Aguilera, E. 2013. Evidence for lahar-triggering mechanisms in complex stratigraphic sequences: the post-twelfth century eruptive activity of Cotopaxi volcano, Ecuador. Bulletin of Volcanology, 75, 698716.CrossRefGoogle Scholar
Pjetursson, H. 1900. The glacial palagonite-formation of Iceland. Scottish Geographical Magazine, 16, 265293.CrossRefGoogle Scholar
Pollock, M., Edwards, B.R., Hauksdóttir, S., Alcorn, R. and Bowman, L. 2014. Geochemical and lithostratigraphic constraints on the formation of pillow-dominated tindars from Undirhlíðar quarry, Reykjanes Peninsula, southwest Iceland. Lithos, 200–201, 317333.CrossRefGoogle Scholar
Ponomoreva, V., Churikova, T., Melekestsev, I., Braitseva, O., Pevzner, M. and Sulerzhistsky, L. 2007. Late Pleistocene-Holocene volcanism of the Kamchatka Peninsula, northwest Pacific region. In: Eichelberger, J., Gordeev, E., Izbekov, P., Kasahara, M. and Lees, J. (eds) Volcanism and subduction: the Kamchatka region, American Geophysical Union Monograph, 172, pp. 165198.CrossRefGoogle Scholar
Porter, S.C. 1979a. Quaternary stratigraphy and chronology of Mauna Kea, Hawaii: a 380,000-yr record of mid-Pacific volcanism and ice-cap glaciation: summary. Geological Society of America Bulletin, Part I, 90, 609611.2.0.CO;2>CrossRefGoogle Scholar
Porter, S.C. 1979b. Quaternary stratigraphy and chronology of Mauna Kea, Hawaii: a 380,000-yr record of mid-Pacific volcanism and ice-cap glaciation. Geological Society of America Bulletin, Part II, 90, 9081093.Google Scholar
Porter, S.C. 1979c. Geologic map of Mauna Kea volcano, Hawaii. The Geological Society of America Map and Chart Series, MC-30.Google Scholar
Porter, S.C. 1987. Pleistocene subglacial eruptions on Mauna Kea. In: Decker, R.W., Wright, T.L. and Stauffer, P.H. (eds) Volcanism in Hawaii. United States Geological Survey Professional Paper, 1350, 587598.Google Scholar
Porter, S.C., Stuiver, M. and Yang, I.C. 1977. Chronology of Hawaiian glaciations. Science, 195, 6163.CrossRefGoogle ScholarPubMed
Postma, G. 1986. Classification of sediment gravity-flow deposits based on flow conditions during sedimentation. Geology, 14, 291294.2.0.CO;2>CrossRefGoogle Scholar
Prestvik, T. 1979. Geology of the Öraefi district, southeastern Iceland. Nordic Volcanological Institute Report, N. 79 01, 28 pp.Google Scholar
Prestvik, T. 1985. Petrology of Quaternary volcanic rocks from Öraefi, southeast Iceland. Rapporter fra Geologisk Instititt, Universitetet i Trondheim Norges Tekniske Høgskole (Reports of the Department of Geology, University of Trondheim (Norway)), 21, 81 pp.Google Scholar
Putirka, K. 2008. Thermometers and barometers for volcanic systems. In: Putirka, K. and Tepley, F. (eds) Minerals, inclusions and volcanic processes. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America/Geochemical Society, 69, pp. 61120.CrossRefGoogle Scholar
Ramalho, R.S., Quartau, R., Trenhaile, A.S., Mitchell, N.C., Woodroffe, C.D. and Ávila, S.P. 2013. Coastal erosion on volcanic oceanic islands: a complex interplay between volcanism, erosion, sedimentation, sea-level change and biogenic production. Earth-Science Reviews, 127, 140170.CrossRefGoogle Scholar
Rampino, M.R., Self, S. and Fairbridge, R.W. 1979. Can rapid climate change cause volcanic eruptions? Science, 206, 826829.CrossRefGoogle ScholarPubMed
Raymo, M.E., Ganley, K., Carter, S., Oppo, D.W. and McManus, J. 1998. Millennial-scale climate instability during the early Pleistocene epoch. Nature, 392, 699702.CrossRefGoogle Scholar
Raymond, C.F. and Nolan, M. 2002. Drainage of a glacial lake through an ice spillway. In: Nakawo, M., Raymond, C.F.and Fountain, A. (eds) Debris-covered glaciers, International Association of Hydrological Sciences, Publication 264, 199207.Google Scholar
Reinardy, B.T.I., Pudsey, C.J., Hillenbrand, C.-D., Murray, T. and Evans, J. 2009. Contrasting sources for glacial and interglacial shelf sediments used to interpret changing iceflow directions in the Larsen Basin, Northern Antarctic Peninsula. Marine Geology, 266, 156171.CrossRefGoogle Scholar
Rittman, A. 1952. Nomenclature of volcanic rocks. Bulletin of Volcanology, 12, 75102.CrossRefGoogle Scholar
Roberts, M.J. 2005. Jökulhlaups: a reassessment of floodwater flow through glaciers. Reviews of Geophysics, 43, RG1002, doi:10.1029/2003RG000147.CrossRefGoogle Scholar
Rocchi, S., LeMasurier, W.E. and Di Vincenzo, G. 2006. Oligocene to Holocene erosion and glacial history in Marie Byrd Land, west Antarctica, inferred from exhumation of the Dorrel Rock intrusive complex and volcano morphologies. Geological Society of America Bulletin, 118, 9911005.CrossRefGoogle Scholar
Romano, R. and Sturiale, C. 1982. The historical eruptions of Mt. Etna. Memorie della Societa Geologica Italiana, 23, 7597.Google Scholar
Romine, W.L., Whittington, A.G., Nabelek, P.I. and Hofmeister, A.M. 2012. Thermal diffusivity of rhyolitic glasses and melts: effects of temperature, crystals and dissolved water. Bulletin of Volcanology, 74, 22732287.CrossRefGoogle Scholar
Rossi, M.J. 1996. Morphology and mechanism of eruption of postglacial shields in Iceland. Bulletin of Volcanology, 57, 530540.CrossRefGoogle Scholar
Roth, R. and Joos, F. 2012. Model limits on the role of volcanic carbon emissions in regulating glacial-interglacial CO2 variations. Earth and Planetary Science Letters, 329–330, 141149.CrossRefGoogle Scholar
Rowland, S.K. and Walker, G.P.L. 1990. Pahoehoe and aa in Hawaii: volumetric flow rate controls the lava structure. Bulletin of Volcanology, 52, 615628.CrossRefGoogle Scholar
Rowley, P.D., Laudon, T.S., La Prade, K.E. and LeMasurier, W.E. 1990. Hudson Mountains. In: LeMasurier, W.E. and Thomson, J.W. (eds) Volcanoes of the Antarctic plate and southern oceans. American Geophysical Union, Antarctic Research Series, 48, pp. 289293.CrossRefGoogle Scholar
Ruddiman, W.F., and Wright, H.E. 1987. North America and adjacent oceans during the last deglaciation. Geological Society of America, Boulder, Colorado, The Geology of North America, v. K-3, pp. 112.Google Scholar
Russell, J.K. and Hauksdóttir, S. 2001. Estimates of crustal assimilation in Quaternary lavas from the northern Cordillera, British Columbia. Canadian Mineralogist, 39, 275297.CrossRefGoogle Scholar
Russell, J.K., Stasiuk, M.V., Page, T., Nicholls, J., Rust, A., Cross, G., Schmok, J., Edwards, B.R., Hickson, C.J. and Maxwell, M. 1998. Radar studies of the Hoodoo icecap, Iskut River region, British Columbia. Geological Survey of Canada Current Research, 98-1A, pp. 5563.Google Scholar
Russell, J.K., Edwards, B.R. and Porritt, L.A. 2013. Pyroclastic passage zones in glaciovolcanic sequences. Nature Communications, 4, doi:10.1038/ncomms2829.CrossRefGoogle ScholarPubMed
Russell, J.K., Edwards, B.R., Porritt, P. and Ryane, C. 2014. Tuyas: a descriptive genetic classification. Quaternary Science Reviews, 87, 7081.CrossRefGoogle Scholar
Russell, P.S. and Head, J.W. 2003. Elysium-Utopia flows as mega-lahars: a model of dike intrusion, cryosphere cracking, and water-sediment release. Journal of Geophysical Research, 108, E6 5064, doi:10.1029/2002JE001995.CrossRefGoogle Scholar
Rutford, R.H. and McIntosh, W.C. 2008. Jones Mountains, Antarctica: evidence for Tertiary glaciation revisited. In: Cooper, A.K. and Raymond, C.R. (eds) Antarctica: a keystone in a changing world. Online Proceedings of the 10th ISAES, United States Geological Survey Open-File Report 2007-1047, Extended abstract 203, 5 pp.Google Scholar
Ryane, C., Edwards, B.R. and Russell, J.K. 2011. The volcanic stratigraphy of Kima’Kho Mountain: a Pleistocene tuya, northwestern British Columbia, Geological Survey of Canada Current Research, 2011–104, 12 pp.Google Scholar
Ryane, C., Edwards, B.R. and Russell, J.K. 2013. The stratigraphy of Kima’Kho Mountain, Tuya-Kawdy volcanic field, northwestern British Columbia: a Pleistocene tuya. Geological Survey of Canada Current Research, 2011-A3, 12 pp.Google Scholar
Saemundsson, K. 1970. Interglacial lava flows in the lowlands of southern Iceland and the problem of two-tiered columnar jointing. Jökull, 20, 6277.CrossRefGoogle Scholar
Saemundsson, K. 1979. Outline geology of Iceland. Jökull, 29, 728.CrossRefGoogle Scholar
Saemundsson, K. and Noll, H. 1974. K/Ar ages of rocks from Húsafell, Western Iceland, and the development of the Húsafell central volcano. Jökull 24, 4059.CrossRefGoogle Scholar
Salzmann, U., Riding, J.B., Nelson, A.E. and Smellie, J.L. 2011. How likely was a green Antarctic Peninsula during warm Pliocene interglacials? A critical reassessment based on new playnofloras from James Ross Island. Palaeogeography, Palaeoclimatology, Palaeoecology, 309, 7382.CrossRefGoogle Scholar
Scanlon, K.E., Head, J.W., Wilson, L. and Marchant, D.R. 2014. Volcano-ice interactions in the Arsia Mons tropical mountain glacier deposits. Icarus, 237, 315339.CrossRefGoogle Scholar
Scarpa, R., and Tilling, R.I. (1996). Monitoring and mitigation of volcano hazards, Springer-Verlag, Berlin, 843 pp.CrossRefGoogle Scholar
Scasso, R.A. and Carey, S. 2005. Morphology and formation of glassy volcanic ash from the August 12–15, 1991 eruption of Hudson volcano, Chile. Latin American Journal of Sedimentology and Basin Analysis, 12, 321.Google Scholar
Schaefer, J.R., Scott, W.E., Evans, W.C., Jorgenson, J., McGimsey, R.G. and Wang, B. 2008. The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: field observations and preliminary water and vegetation chemistry results. Geochemistry, Geophysics, Geosystems, 9, 29 pp., Q07018, doi:10.1029/2007GC001900.CrossRefGoogle Scholar
Schäfer, J.M., Baur, H., Denton, G.H., Ivy-Ochs, S., Marchant, D.R., Schlüchter, C. and Wieler, R. 2000. The oldest ice on Earth in Beacon Valley, Antarctica: new evidence from surface exposure dating. Earth and Planetary Science Letters, 179, 9199.CrossRefGoogle Scholar
Shea, T., Houghton, B.F., Gurioli, L., Cashman, K.V., Hammer, J.E. and Hobden, B.J. 2009. Textural studies of vesicles in volcanic rocks: an integrated methodology. Journal of Volcanology and Geothermal Research, 190, 271289.CrossRefGoogle Scholar
Shean, D.E., Head, J.W. and Marchant, D.R. 2005. Origin and evolution of a cold-based tropical mountain glacier on Mars: the Pavonis Mons fan-shaped deposit. Journal of Geophysical Research, 110, E05001, doi:10.1029/2004JE002360.CrossRefGoogle Scholar
Shean, D.E., Head, J.W., Fastook, J.L. and Marchant, D.R. 2007. Recent glaciation at high elevations on Arsia Mons, Mars: implications for the formation and evolution of large tropical mountain glaciers. Journal of Geophysical Research, 112, E03004, doi:10.1029/2006JE002761.CrossRefGoogle Scholar
Scheinder, D., Delgado Granados, H., Huggel, C. and Kääb, A. 2008. Assessing lahars from ice-capped volcanoes using ASTER satellite data, the SRTM DTM and two different flow models: case study on Iztaccíhuatl (Central Mexico). Natural Hazards and Earth System Sciences, 8, 559571.CrossRefGoogle Scholar
Schiffman, P., Southard, R.J., Eberl, D.D. and Bishop, J.L. 2002. Distinguishing palagonitized from pedogenically-altered basaltic Hawaiian tephra: mineralogical and geochemical criteria. In: Smellie, J.L. and Chapman, M.G. (eds) Volcano–ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202, pp. 393406.Google Scholar
Schilling, S.P., Carrara, P.E., Thompson, R.A. and Iwatsubo, E.Y. 2004. Posteruption glacier development within the crater of Mount St. Helens, Washington, USA. Quaternary Research, 61, 325329.CrossRefGoogle Scholar
Schmidt, P., Lund, B., Hieronymus, C., Maclennan, J., Arnadóttir, T., and Pagli, C. 2013. Effects of present-day deglaciation in Iceland on mantle melt production rates. Journal of Geophysical Research, 118, 33663379.CrossRefGoogle Scholar
Schmincke, H.-U. and Bednarz, U. 1990. Pillow, sheet-flow and breccia volcanoes and volcano-tectonic cycles in the Extrusive Series of the northeastern Troodos ophiolite (Cyprus). In: Malpas, J., Moores, E.M., Panayiotou, A. and Xenophontos, C. (eds) Ophiolites: oceanic crustal analogues. Geological Survey Department, Nicosia, Cyprus, pp. 185206.Google Scholar
Schon, S.C. and Head, J.W. 2012. Decameter-scale pedestal craters in the tropics of Mars: evidence for the recent presence of very young regional ice deposits in Tharsis. Earth and Planetary Science Letters, 317–318, 6875.CrossRefGoogle Scholar
Schopka, H.H., Gudmundsson, M.T. and Tuffen, H 2006. The formation of Helgafell, southwest Iceland, a monogenetic subglacial hyaloclastite ridge: sedimentology, hydrology and volcano–ice interaction. Bulletin of Volcanology, 152, 359377.Google Scholar
Scott, K.M. 1988. Lahars and lahar-runout flows in the Toutle-Cowlitz River system, Mount St. Helens, Washington: origins, behavior, and sedimentology. United States Geological Survey Professional Paper, 1447-A, 76 pp.Google Scholar
Scott, K.M. 1989. Magnitude and frequency of lahars and lahar-runout flows in the Toutle- Cowlitz River system. United States Geological Survey Professional Paper, 1447-B, 33 pp.Google Scholar
Scott, K.M. and McGimsey, R.G. 1994. Character, mass distribution and origin of tephra-fall deposits of the 1989–1990 eruption of Redoubt Volcano, south-central Alaska. In: Miller, T.P. and Chouet, B.A. (eds) The 1989–1990 eruption of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, 62, 251272.Google Scholar
Self, S., Keszthelyi, L. and Thordarson, T. 1998. The importance of pahoehoe. Annual Reviews of the Earth and Planetary Sciences, 26, 81110.CrossRefGoogle Scholar
Shaw, H.R. 1972. Viscosities of magmatic silicate liquids: an empirical method of prediction. American Journal of Science, 272, 870893.CrossRefGoogle Scholar
Shreve, R.L. 1972. Movement of water in glaciers. Journal of Glaciology, 62, 205214.CrossRefGoogle Scholar
Siebert, L., Simkin, T. and Kimberly, P. 2010. Volcanoes of the world. University of California Press, Oakland, 568 pp.Google Scholar
Siegert, M.J. and Dowdeswell, J.A. 1996. Spatial variations in heat at the base of the Antarctic ice sheet from analysis of the thermal regime above sub-glacial lakes. Journal of Glaciology, 42, 501509.CrossRefGoogle Scholar
Sigmarsson, O., Vlastelic, I., Andreasen, R., Bindeman, I., Devidal, J-L., Moune, S., Keiding, J.K., Larsen, G., Höskuldsson, A. and Thordarson, T. 2011. Remobilization of silicic intrusion by mafic magmas during the 2010 Eyjafjallajökull eruption. Solid Earth, 2, 271281.CrossRefGoogle Scholar
Sigmundsson, F., Pinel, V., Lund, B., Albino, F., Pagli, C., Geirsson, H. and Sturkell, E. 2010a. Climate effects on volcanism: influence on magmatic systems of loading and unloading from ice mass variations, with examples from Iceland. Philosophical Transactions of the Royal Society, A368, 2519–34.Google Scholar
Sigmundsson, F., Hreinsdóttir, S., Hooper, A., Árnadóttir, T., Pedersen, R., Roberts, M.J., Óskarsson, N., Auriac, A., Decriem, J., Einarsson, P., Geirsson, H., Hensch, M., Ófeigsson, B.G., Sturkell, E., Sveinbjörnsson, H. and Feigl, K.L. 2010b. Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature, 468, 426430.CrossRefGoogle ScholarPubMed
Sigurdsson, H., Carey, S., Palais, J.M. and Devine, J. 1990. Pre-eruption compositional gradients and mixing of andesite and dacite magma erupted from Nevado del Ruiz Volcano, Colombia in 1985. Journal of Volcanology and Geothermal Research, 41, 127151.CrossRefGoogle Scholar
Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H. and Stix, J. 2000. Encyclopedia of Volcanoes, 1st Edition. Academic Press, San Diego, 1417 pp.Google Scholar
Sigvaldason, G.E., Annerta, K. and Nilsson, M. 1992. Effect of glacier loading/unloading on volcanism: postglacial volcanic production rate of the Dyngjufjoll area, central Iceland. Bulletin of Volcanology, 54, 385392.CrossRefGoogle Scholar
Simpson, K. 1996. The geology, geochemistry and geomorphology of Mathews tuya: a subglacial volcano in northwestern British Columbia. BSc thesis, University of British Columbia (Canada), 97 pp. [unpublished].Google Scholar
Simpson, K. and McPhie, J. 2001. Fluidal-clast breccia generated by submarine fire fountaining, Trooper Creek Formation, Queensland, Australia. Journal of Volcanology and Geothermal Research, 109, 339355.CrossRefGoogle Scholar
Sims, K.W.W., Maclennan, J., Blichart-Toft, J., Mervine, E.M., Blusztajn, J. and Gronvold, K. 2013. Short length scale mantle heterogeneity beneath Iceland probed by glacial modulation of melting. Earth and Planetary Science Letters, 379, 146157.CrossRefGoogle Scholar
Singer, B.S., Jicha, B.R., Harper, M.A., Naranjo, J.A., Lara, L.E. and Moreno-Roa, H. 2008. Eruptive history, geochronology, and magmatic evolution of the Puyehue-Cordón Calle volcanic complex, Chile. Geological Society of America Bulletin, 120, 599618.CrossRefGoogle Scholar
Sinton, J., Gronvold, K., and Saemundsson, K. 2005. Postglacial eruptive history of the Western Volcanic Zone, Iceland. Geochemistry, Geophysics, Geosystems, 6, Q12009, doi:10.1029/2005GC001021.CrossRefGoogle Scholar
Skilling, I.P. 1994. Evolution of an englacial volcano: Brown Bluff, Antarctica. Bulletin of Volcanology, 56, 573591.CrossRefGoogle Scholar
Skilling, I.P. 2002. Basaltic pahoehoe lava-fed deltas: large-scale characteristics, clast generation, emplacement processes and environmental discrimination. In: Smellie, J.L. and Chapman, M.G. (eds) Volcano–ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202, pp. 91113.Google Scholar
Skilling, I.P. 2009. Subglacial to emergent basaltic volcanism at Hlödufell, southwest Iceland: a history of ice-confinement. Journal of Volcanology and Geothermal Research, 186, 276289.CrossRefGoogle Scholar
Skilling, I.P., White, J.D.L. and McPhie, J. 2002. Peperite: a review of magma–sediment mingling. Journal of Volcanology and Geothermal Research, 114, 117.CrossRefGoogle Scholar
Skilling, I.P., McGarvie, D.W., Graettinger, A. and Höskuldsson, A. 2013. Multiple fissure-fed construction of a glaciovolcanic complex at the Askja volcano, Iceland. IAVCEI 2013 General Assembly, Kagoshima, Japan (Abstract 4W_3K-P4, p. 1076).Google Scholar
Slater, L., Jull, M., McKenzie, D. and Gronvold, K. 1998. Deglaciation effects on mantle melting under Iceland: results from the northern volcanic zone. Earth and Planetary Science Letters, 164, 151164.CrossRefGoogle Scholar
Smellie, J.L. 1984. Accretionary lapilli and highly vesiculated pumice in the Ballantrae ophiolite complex: ash-fall products of subaerial eruptions. British Geological Survey Reports, 16, 3640.Google Scholar
Smellie, J.L. 1999. Lithostratigraphy of Miocene–Recent, alkaline volcanic fields in the Antarctic Peninsula and eastern Ellsworth Land. Antarctic Science, 11, 362378.CrossRefGoogle Scholar
Smellie, J.L. 2000. Subglacial eruptions. In: Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H. and Stix, J. (eds) Encyclopedia of volcanoes, 1st Edition. Academic Press, San Diego, pp. 403418.Google Scholar
Smellie, J.L. 2001. Lithofacies architecture and construction of volcanoes erupted in englacial lakes: Icefall Nunatak, Mount Murphy, eastern Marie Byrd Land, Antarctica. In: White, J.D.L. and Riggs, N. (eds) Volcaniclastic sedimentation in lacustrine settings. International Association of Sedimentologists Special Publications, 30, pp. 934.Google Scholar
Smellie, J.L. 2002. The 1969 subglacial eruption on Deception Island (Antarctica): events and processes during an eruption beneath a thin glacier and implications for volcanic hazards. In: Smellie, J.L. and Chapman, M.G. (eds) Volcano–ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202, pp. 5979.Google Scholar
Smellie, J.L. 2006. The relative importance of supraglacial versus subglacial meltwater escape in basaltic subglacial tuya eruptions: an important unresolved conundrum. Earth-Science Reviews, 74, 241268.CrossRefGoogle Scholar
Smellie, J.L. 2007. Quaternary vulcanism: subglacial landforms. In: Elias, S.A. (ed.) Encyclopedia of Quaternary sciences. Elsevier, Amsterdam, pp. 784798.CrossRefGoogle Scholar
Smellie, J.L. 2008. Basaltic subglacial sheet-like sequences: evidence for two types with different implications for the inferred thickness of associated ice. Earth-Science Reviews, 88, 6088.CrossRefGoogle Scholar
Smellie, J.L. 2009. Terrestrial sub-ice volcanism: landform morphology, sequence characteristics and environmental influences, and implications for candidate Mars examples. In: Chapman, M.G. and Leszthely, L. (eds.) Preservation of random mega-scale events on Mars and Earth: influence on geologic history. Geological Society of America Special Papers, 453, pp. 5576.Google Scholar
Smellie, J.L. 2013. Quaternary vulcanism: subglacial landforms. In: Elias, S.A. (ed.) The encyclopedia of Quaternary science, 2nd edition, Vol. 1, Elsevier, Amsterdam, pp. 780802.CrossRefGoogle Scholar
Smellie, J.L. 2015. Lava-fed delta. In: Hargitai, H., Kereszturi, Á. et al. (eds) Encyclopedia of planetary landforms. Springer, New York.Google Scholar
Smellie, J.L. and Chapman, M.G. (eds) 2002. Volcano–ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202, 431 pp.Google Scholar
Smellie, J.L. and Hole, M.J. 1997. Products and processes in Pliocene – Recent, subaqueous to emergent volcanism in the Antarctic Peninsula: examples of englacial Surtseyan volcano reconstruction. Bulletin of Volcanology, 58, 628646.CrossRefGoogle Scholar
Smellie, J.L. and Korteniemi, J. 2015. Tindar. In: Hargitai, H., Kereszturi, A. et al. (eds) Encyclopedia of planetary landforms. Springer, New York.Google Scholar
Smellie, J.L. and Skilling, I.P. 1994. Products of subglacial eruptions under different ice thicknesses: two examples from Antarctica. Sedimentary Geology, 91, 115129.CrossRefGoogle Scholar
Smellie, J.L., Pankhurst, R.J., Hole, M.J. and Thomson, J.W. 1988. Age, distribution and eruptive conditions of late Cenozoic alkaline volcanism in the Antarctic Peninsula and eastern Ellsworth Land: review. British Antarctic Survey Bulletin, 80, 2149.Google Scholar
Smellie, J.L., Hole, M.J. and Nell, P.A.R. 1993. Late Miocene valley-confined subglacial volcanism in northern Alexander Island, Antarctic Peninsula. Bulletin of Volcanology, 55, 273288.CrossRefGoogle Scholar
Smellie, J.L., López-Martínez, J., et al. 2002. Geology and geomorphology of Deception Island. BAS GEOMAP Series, Sheets 6-A and 6-B, 1:25 000, supplementary text. British Antarctic Survey, Cambridge, UK, 77 pp.Google Scholar
Smellie, J.L., McArthur, J.M., McIntosh, W.C. and Esser, R. 2006a. Late Neogene interglacial events in the James Ross Island region, northern Antarctic Peninsula, dated by Ar/Ar and Sr-isotope stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 242, 169187.CrossRefGoogle Scholar
Smellie, J.L., McIntosh, W.C., Esser, R. and Fretwell, P. 2006b. The Cape Purvis volcano, Dundee Island (northern Antarctic Peninsula): late Pleistocene age, eruptive processes and implications for a glacial palaeoenvironment. Antarctic Science, 18, 399408.CrossRefGoogle Scholar
Smellie, J.L., McIntosh, W.C. and Esser, R. 2006c. Eruptive environment of volcanism on Brabant Island: evidence for thin wet-based ice in northern Antarctic Peninsula during the late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 233252.CrossRefGoogle Scholar
Smellie, J.L., Johnson, J.S., McIntosh, W.C., Esser, R., Gudmundsson, M.T., Hambrey, M.J. and van Wyk de Vries, B. 2008. Six million years of glacial history recorded in volcanic lithofacies of the James Ross Island Volcanic Group, Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology, 260, 122148.CrossRefGoogle Scholar
Smellie, J.L., Haywood, A.M., Hillenbrand, C.-D., Lunt, D.J. and Valdes, P.J. 2009. Nature of the Antarctic Peninsula Ice Sheet during the Pliocene: geological evidence and modelling results compared. Earth-Science Reviews, 94, 7994.CrossRefGoogle Scholar
Smellie, J.L., Rocchi, S. and Armienti, P. 2011a. Late Miocene volcanic sequences in northern Victoria Land, Antarctica: products of glaciovolcanic eruptions under different thermal regimes. Bulletin of Volcanology, 73, 125.CrossRefGoogle Scholar
Smellie, J.L., Rocchi, S., Gemelli, M., Di Vincenzo, G. and Armienti, P. 2011b. Late Miocene East Antarctic ice sheet characteristics deduced from terrestrial glaciovolcanic sequences in northern Victoria Land, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 307, 129149.CrossRefGoogle Scholar
Smellie, J.L., Wilch, T.I. and Rocchi, S. 2013a. ‘A‘ā lava-fed deltas: a new reference tool in paleoenvironmental studies. Geology, 41, 403406.CrossRefGoogle Scholar
Smellie, J.L., Johnson, J.S. and Nelson, A.E. 2013b. Geological map of James Ross Island. 1. James Ross Island Volcanic Group (1:125 000 scale). BAS GEOMAP 2 Series, Sheet 5, British Antarctic Survey, Cambridge, UK.Google Scholar
Smellie, J.L., Rocchi, S., Wilch, T.I., Gemelli, M., Di Vincenzo, G., McIntosh, W., Dunbar, N., Panter, K. and Fargo, A. 2014. Glaciovolcanic evidence for a polythermal Neogene East Antarctic Ice Sheet. Geology, 42, 3941.CrossRefGoogle Scholar
Snorrason, S.P. and Vilmundardóttir, E.G. 2000. Pillow lava sheets: origins and flow patterns. In: Gulick, V.C. and Gudmundsson, M.T. (eds) Volcano/ice interaction on Earth and Mars. Conference abstracts, Reykjavik, Iceland, August 13–18, p. 45.Google Scholar
Sohn, Y.K. 1996. Hydrovolcanic processes forming basaltic tuff rings and cones on Cheju Island, Korea. Bulletin of Volcanology, 108, 11991211.Google Scholar
Song, S.R., Jones, K.W., Lindquist, W.B., Dowd, B.A. and Sahagian, D.L. 2001. Synchrotron X-ray computed microtomography: studies on vesiculated basaltic rock. Bulletin of Volcanology, 63, 252263.CrossRefGoogle Scholar
Souness, C. and Hubbard, B. 2012. Mid-latitude glaciations on Mars. Progress in Physical Geography, 36, 238261.CrossRefGoogle Scholar
Souness, C., Hubbard, B., Milliken, R.E. and Quincey, D. 2012. An inventory and population-scale analysis of martian glacier-like forms. Icarus, 217, 243255.CrossRefGoogle Scholar
Souther, J.G. 1991. Hoodoo Mountan. In: Wood, C.A. and Kienle, J. (eds) Volcanoes of North America, United States and Canada. Cambridge University Press, Cambridge, pp. 127128.Google Scholar
Souther, J.G. 1992. The late Cenozoic Mount Edziza volcanic complex. Geological Survey of Canada Memoir, 420, 320 pp.CrossRefGoogle Scholar
Souther, J.G. and Hickson, C.J. 1984. Crystal fractionation of basalt comendite series of the Mount Edziza volcanic complex. Journal of Volcanology and Geothermal Research, 21, 79106.CrossRefGoogle Scholar
Souther, J.G. and Yorath, C.J. 1991. Neogene assemblages. In: Gabrielse, H. and Yorath, C.J. (eds) Geology of the Cordilleran Orogen in Canada. Geological Survey of Canada, 4, pp. 373401.Google Scholar
Souther, J.G., Armstrong, R.L. and Harakal, J. 1984. Chronology of the peralkaline, late Cenozoic Mount Edziza volcanic complex, northern British Columbia, Canada. Geological Society of America Bulletin, 95, 337349.2.0.CO;2>CrossRefGoogle Scholar
Sparks, R. 1978. The dynamics of bubble formation and growth in magmas: a review and analysis. Journal of Volcanology and Geothermal Research, 3, 137.CrossRefGoogle Scholar
Spera, F. 2000. Physical properties of magma. In: Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H. and Stix, J. (eds) Encyclopedia of volcanoes, 1st Edition. Academic Press, San Diego, pp. 171190.Google Scholar
Spooner, I.S., Osborn, G.D., Barendregt, R.W. and Irving, E. 1995. A record of an early Pleistocene glaciation on the Mount Edziza Plateau, northwest British Columbia. Canadian Journal of Earth Science, 32, 20462056.CrossRefGoogle Scholar
Spörli, K.B. and Rowland, J.V. 2006. ‘Column on column’ structures as indicators of lava/ice interaction, Ruapehu andesite volcano, New Zealand. Journal of Volcanology and Geothermal Research, 157, 294310.CrossRefGoogle Scholar
Squyres, S.W., Wilhelms, D.E. and Moosman, A.C. 1987. Large-scale volcano–ground ice interactions on Mars. Icarus, 385408.Google Scholar
Staudigel, H. and Hart, S.R. 1983. Alteration of basaltic glass: mechanisms and significance for the oceanic crust–seawater budget. Geochimica et Cosmochimica Acta, 47, 337350.CrossRefGoogle Scholar
Staudigel, H. and Schmincke, H.-U. 1984. The Pliocene seamount series of La Palma/Canary Islands. Journal of Geophysical Research, 89, 1119511215.CrossRefGoogle Scholar
Stearns, H.T. 1945. Glaciation of Mauna Kea, Hawaii. Geological Society of America Bulletin, 56, 267274.CrossRefGoogle Scholar
Stearns, H.T. 1966. Geology of the State of Hawaii. Pacific Books, Palo Alto, 266 pp.Google Scholar
Stefánsdóttir, M.B. and Gíslason, S.R. 2005. The erosion and suspended matter/seawater interaction during and after the 1996 outburst flood friom the Vatnajökull Glacier, Iceland. Earth and Planetary Science Letters, 237, 433452.CrossRefGoogle Scholar
Stern, C.R. 2004. Active Andean volcanism: its geologic and tectonic setting. Revista Geologíca de Chile, 31, 161206.Google Scholar
Stevenson, J.A., McGarvie, D.W., Smellie, J.L. and Gilbert, J.S. 2006. Subglacial and ice-contact volcanism at Vatnafjall, Öraefajökull, Iceland. Bulletin of Volcanology, 68, 737752.CrossRefGoogle Scholar
Stevenson, J.A., Smellie, J.L., McGarvie, D.W. and Gilbert, J.S. 2009. Subglacial intermediate volcanism at Kerlingarfjöll, Iceland: magma-water interactions beneath thick ice. Journal of Volcanology and Geothermal Research, 185, 337351.CrossRefGoogle Scholar
Stevenson, J.A., Gilbert, J.S., McGarvie, D.W. and Smellie, J.L. 2011. Explosive rhyolite tuya formation: classic examples from Kerlingarfjöll, Iceland. Quaternary Science Reviews, 30, 192209.CrossRefGoogle Scholar
Stevenson, J.A., Mitchell, N.C., Mochrie, F., Cassidy, M. and Pinkerton, H. 2012. Lava penetrating water: the different behaviours of pāhoehoe and ‘a‘ā at the Nesjahraun, Thingvellir, Iceland. Bulletin of Volcanology, 74, 3346.CrossRefGoogle Scholar
Stevenson, J.A. and Smellie, J.L. 2015. Tuya. In: Hargitai, H., Kereszturi, A. et al. (eds) Encyclopedia of Planetary Landforms, Springer, New York.Google Scholar
Stewart, M.L., Russell, J.K. and Hickson, C.J. 2003. Discrimination of hot versus cold avalanche deposits: implications for hazard assessment at Mount Meager, B.C. Natural Hazards and Earth System Science, 3, 713724.CrossRefGoogle Scholar
Stroncik, N.A. and Schmincke, H.-U. 2001. Evolution of palagonite: crystallization chemical changes, and element budget. Geochemistry, Geophysics, Geosystems. 2, 1017, doi:10.1029/2000GC000102.CrossRefGoogle Scholar
Stroncik, N.A. and Schmincke, H.-U. 2002. Palagonite: a review. International Journal of Earth Sciences, 91, 680697.CrossRefGoogle Scholar
Stump, E., Sheridan, M.F., Borg, S.G. and Sutter, J.F. 1980. Early Miocene subglacial basalts, the East Antarctic ice sheet and uplift of the Transantarctic Mountains. Science, 207, 757759.CrossRefGoogle ScholarPubMed
Sturkell, E., Einarsson, P., Sigmundsson, P., Hreinsdóttir, F. and Geirsson, S. 2003a. Deformation of Grı́msvötn volcano, Iceland: 1998 eruption and subsequent inflation. Geophysical Research Letters, 30, 1182, doi:10.129/2002GL016460.CrossRefGoogle Scholar
Sturkell, E., Sigmundsson, F. and Einarsson, P. 2003b. Recent unrest and magma movements at Eyjafjallajökull and Katla volcanoes, Iceland. Journal of Geophysical Research, 108, 2369, doi:10.1029/2001JB000917.CrossRefGoogle Scholar
Sturkell, E., Einarsson, P., Sigmundsson, F., Geirsson, H., Ólafsson, H., Pedersen, R., De Zeeuwan van Dalfsen, E., Linde, A.T., Sacks, I.S. and Stefánsson, R. 2006. Volcano geodesy and magma dynamics in Iceland. Journal of Volcanology and Geothermal Research, 150, 1434.CrossRefGoogle Scholar
Sturkell, E., Einarsson, O., Sigmundsson, F., Hooper, A., Ófeigsson, B.G., Geirsson, H. and Ólafsson, H. 2010. Katla and Eyjafjallajökull volcanoes. Developments in Quaternary Sciences, 13, 521.CrossRefGoogle Scholar
Sugden, D.E. 1996. The East Antarctic Ice Sheet: unstable ice or unstable ideas? Transactions of the Institute of British Geographers, 21, 443454.CrossRefGoogle Scholar
Sugden, D.E., Marchant, D.R. and Denton, G.H. 1993. The case for a stable East Antarctic Ice Sheet. Geografiska Annaler, 75A, 151351.CrossRefGoogle Scholar
Sugden, D.E., Marchant, D.R., Potter, N., Souchez, R.A., Denton, G.H., Swisher, C.C. and Tison, J.L. 1995. Preservation of Miocene glacier ice in East Antarctica. Nature, 376, 412414.CrossRefGoogle Scholar
Sykes, M.A. 1988. New K-Ar age determinations on the James Ross Island Volcanic Group, north-east Graham Land, Antarctica. British Antarctic Survey Bulletin, 80, 5156.Google Scholar
Taddeucci, J., Scarlato, P., Montanaro, C., Cimarelli, C., Del Bello, E., Freda, C., Andronico, D., Gudmundsson, M.T. and Dingwell, D.B. 2011. Aggregation-dominated ash settling from the Eyjafjallajökull volcanic cloud illuminated by field and laboratory high-speed imaging. Geology, 39, 891894.CrossRefGoogle Scholar
Tanaka, K.L. 1985. Ice-lubricated gravity spreading of the Olympus Mons aureole deposits. Icarus, 62, 191206.CrossRefGoogle Scholar
Thorarinsson, S. 1953. Some new aspects of the Grimsvötn problem. Journal of Glaciology, 2, 267274.CrossRefGoogle Scholar
Thorarinsson, S. 1958. The Öraefajökull eruption of 1362. Acta Naturalia Islandica, 2, 100 pp.Google Scholar
Thorarinsson, S. 1967. The eruptions of Hekla in historical times: a tephrochronological study. Societas Scientiarium Islandica, Reykjavik, 170 pp.Google Scholar
Thorarinsson, S., Einarsson, T., Sigvaldason, G. and Elisson, G. 1964. The submarine eruption off the Vestmann Islands 1963–1964. A preliminary report. Bulletin Volcanologique, 27, 435445.CrossRefGoogle Scholar
Thordarson, T. and Höskuldsson, A. 2002. Iceland. Terra Publishing, Liverpool/Dunedin Academic Press, Edinburgh, 200 pp.Google Scholar
Thordarson, Th. and Höskuldsson, Á. 2008. Postglacial volcanism in Iceland. Jökull, 58, 197228.CrossRefGoogle Scholar
Thordarson, T. and Larsen, G. 2007. Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history. Journal of Geodynamics, 43, 118152.CrossRefGoogle Scholar
Thordarson, T. and Self, S. 1998. The Roza Member, Columbia River Basalt Group: a gigantic pahoehoe lava flow field formed by endogenous processes? Journal of Geophysical Research, 103, B11, 2741127445.CrossRefGoogle Scholar
Thordarson, T. and Sigmarsson, O. 2009. Effusive activity in the 1963–1967 Surtsey eruption, Iceland: flow emplacement and growth of small lava shields. In: Thordarson, T., Self, S., Larsen, G., Rowland, S. and Hoskuldsson, A. (eds) Studies in volcanology: the legacy of George Walker. Special Publications of IAVCEI, 2, Geological Society, London, pp. 5384.CrossRefGoogle Scholar
Thorkelson, D.J., Madsen, J.K. and Sluggett, C.L. 2011. Mantle flow through Northern Cordilleran slab window revealed by volcanic geochemistry. Geology, 39, 267270.CrossRefGoogle Scholar
Thorseth, I.H., Furnes, H. and Tumyr, O. 1991. A textural and chemical study of Icelandic palagonite of varied composition and its bearing on the mechanism of the glass-palagonite transformation. Geochimica et Cosmochimica Acta, 55, 731749.CrossRefGoogle Scholar
Thorseth, I.H., Furnes, H. and Heidal, M. 1992. The importance of microbiological activity in the alteration of natural basaltic glass. Geochimica et Cosmochimica Acta, 56, 845850.CrossRefGoogle Scholar
Thouret, J.-C. 1990. Effects of the November 13, 1985 eruption on the snow pack and ice cap of Nevado del Ruiz volcano, Colombia. Journal of Volcanology and Geothermal Research, 41, 177201.CrossRefGoogle Scholar
Tómasson, H. 1996. The jökulhlaup from Katla in 1918. Annals of Glaciology, 22, 249254.CrossRefGoogle Scholar
Touma, J. and Wisdom, J. 1993. The chaotic obliquity of Mars. Science, 259, 12941297.CrossRefGoogle ScholarPubMed
Trabant, D.C., Waitt, R.B. and Major, J.J. 1994. Disruption of Drift glacier and origin of floods during the 1989–90 eruptions of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, 62, 369386.CrossRefGoogle Scholar
Tribble, G.W. 1991. Underwater observations of active lava flows from Kilauea volcano, Hawaii. Geology, 19, 633636.2.3.CO;2>CrossRefGoogle Scholar
Tripati, A.K., Backman, J., Elderfield, H. and Ferretti, P. 2005. Eocene bipolar glaciation associated with global carbon cycle changes. Nature, 436, 341346.CrossRefGoogle ScholarPubMed
Tucker, D.S. and Scott, K.M. 2009. Structures and facies associated with the flow of subaerial basaltic lava into a deep freshwater lake: the Sulphur Creek lava flow, North Cascades, Washington. Journal of Volcanology and Geothermal Research, 185, 311322.CrossRefGoogle Scholar
Tuffen, H. 2007. Models of ice melting and edifice growth at the onset of subglacial basaltic eruptions. Journal of Geophysical Research, 112, B03203, doi:10.1029/2006JB004523.CrossRefGoogle Scholar
Tuffen, H. and Castro, J.M. 2009. The emplacement of an obsidian dyke through thin ice: Hrafntinnuhryggur, Krafla Iceland. Journal of Volcanology and Geothermal Research, 185, 352366.CrossRefGoogle Scholar
Tuffen, H., Gilbert, J. and McGarvie, D. 2001. Products of an effusive subglacial rhyolite eruption: Bláhnúkur, Torfajökull, Iceland. Bulletin of Volcanology, 63, 179190.CrossRefGoogle Scholar
Tuffen, H., McGarvie, D.W., Gilbert, J.S. and Pinkerton, H. 2002a. Physical volcanology of a subglacial-to-emergent rhyolitic tuya at Raudufossafjöll, Torfajökull, Iceland. In: Smellie, J.L. and Chapman, M.G. (eds) Volcano–ice interactions on Earth and Mars. Geological Society, London, Special Publications, 202, pp. 213236.Google Scholar
Tuffen, H., Pinkerton, H., McGarvie, D.W. and Gilbert, J.S. 2002b. Melting at the glacier base during a small-volume subglacial rhyolite eruption: evidence from Bláhnúkur, Iceland. Sedimentary Geology, 149, 183198.CrossRefGoogle Scholar
Tuffen, H., McGarvie, D.W. and Gilbert, J.S. 2007. Will subglacial rhyolite eruptions be explosive or intrusive? Some insights from analytical models. In: Clarke, G. and Smellie, J. (eds) Papers from the International Symposium on Earth and Planetary Ice–Volcano Interactions held in Reykjavik, Iceland, on 19–23 June, 2006. Annals of Glaciology, 45, pp. 8794.Google Scholar
Tuffen, H., McGarvie, D.W., Pinkerton, H., Gilbert, J.S. and Brooker, R.A. 2008. An explosive–intrusive subglacial rhyolite eruption at Dalakvísl, Torfajökull, Iceland. Bulletin of Volcanology, 70, 841860.CrossRefGoogle Scholar
Tuffen, H., Owens, J. and Denton, J. 2010. Magma degassing during subglacial eruptions and its use to reconstruct palaeo-ice thickness. Earth Science Reviews, 99, 118.CrossRefGoogle Scholar
Tuffen, H., James, M.R., Castro, J.M. and Schipper, I. 2013. Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile. Nature Communications, 4, 2709, doi:10.1038/ncomms3709.CrossRefGoogle ScholarPubMed
Turnbull, M., Russell, J.K., Edwards, B.R. and Porritt, L. 2014. Diverse passage zones at Kima’Kho volcano: records of englacial lake dynamics during a prolonged subglacial volcanic eruption. GSA Abstracts with Programs, Paper No. 138–12.Google Scholar
Umeda, K. and Ban, M. 2012. Quaternary volcanism along the volcanic front in northeast Japan. In: Stoppa, F. (ed.) Updates in volcanology: a comprehensive approach to volcanological problems. InTech. Available from: http://www.intechopen.com/books/updates-involcanology-a-comprehensive-approach-to-volcanological-problems/quaternary-volcanism-along-the-volcanicfront-in-northeast-japan.Google Scholar
Umino, S., Nonaka, M. and Kauahikaua, J. 2006. Emplacement of subaerial pahoehoe lava sheet flows into water: 1990 Kūpaianaha flow of Kilauea volcano at Kaimū Bay, Hawai’i. Bulletin of Volcanology, 69, 125139.CrossRefGoogle Scholar
van Bemmelen, R.W. and Rutten, M.G. 1955. Tablemountains of Northern Iceland. E.J. Brill, Leiden, 217 pp.Google Scholar
Vázquez-Selem, L. and Klaus Heine, K. 2004, Late Quaternary glaciation of Mexico. In: Ehlers, J. and Gibbard, P.L. (eds) Quaternary glaciations: extent and chronology. Part III, North America. Developments in Quaternary Science, 2b, Elsevier, Amsterdam, pp. 233242.Google Scholar
Vilmundardóttir, E.G., Snorrason, S.P. and Larsen, G. 2000. Geological map of the subglacial volcanic area southwest of Vatnajökull icecap, Iceland, 1:50.000. Orkustofnun and Landsvirkjun, Reykjavik.Google Scholar
Vinogradov, V.N. and Muravyev, Ya.D. 1985. Lava–ice interaction during the 1983 eruption at Klyuchevskoy volcano. Volcanology and Seismology, 1, 2946.Google Scholar
Vogel, S.W. and Tulaczyk, S. 2006. Ice-dynamical constraints on the existence and impact of subglacial volcanism on West Antarctic ice sheet stability. Geophysical Research Letters, 33, L23502, doi:10.1029/2006GL027345.Google Scholar
Vogfjörd, K.S., Jakobsdóttir, S.S., Gudmundsson, G.B., Roberts, M.J., Agustsson, K., Arason, T., Geirsson, H., Karlsdóttir, S., Hjaltadóttir, S., Olafsdóttir, U., Thorbjarnardóttir, B., Skaftadóttir, T., Sturkell, E., Jonasdóttir, E. B., Hafsteinsson, G., Sveinbjornsson, H., Stefansson, R. and Jonsson, T.V. 2005. Forecasting and monitoring a subglacial eruption in Iceland. Eos, Transactions, American Geophysical Union, 86, 245252.CrossRefGoogle Scholar
Waitt, R.B. 1989. Swift snowmelt and floods (lahars) caused by great pyroclastic surge at Mount St. Helens, Washington, 18 May 1980. Bulletin of Volcanology, 52, 138157.CrossRefGoogle Scholar
Waitt, R.B., 1995, Hybrid wet flows formed by hot pyroclasts interacting with snow during Crater Peak (Mt. Spurr) eruptions, summer 1992. In Keith, T.E.C. (ed.) The 1992 eruptions of Crater Peak at Mount Spurr volcano, Alaska. United States Geological Survey Bulletin, 2139, pp. 107118.Google Scholar
Waitt, R.B., Pierson, T.C., MacLeod, N.S., Janda, R.J., Voight, B. and Holcomb, R.T. 1983. Eruption-triggered avalanche, flood, and lahar at Mount St. Helens: effects of winter snowpack. Science, 221, 13941397.CrossRefGoogle ScholarPubMed
Waitt, R.B., Gardner, C.A., Pierson, T.C., Major, J.J. and Neal, C.A. 1994. Unusual ice diamicts emplaced during 15 December 1989 eruption of Redoubt Volcano, Alaska. In: Miller, T.P. and Chouet, B.A. (eds) The 1989–1990 eruption of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, 62, 409428.Google Scholar
Walder, J.S. 1986. Hydraulics of subglacial cavities. Journal of Glaciology, 32, 439445.CrossRefGoogle Scholar
Walder, J.S., LaHusen, R.G., Vallance, J.W. and Schilling, S.P. 2007. Emplacement of a silicic lava dome through a crater glacier: Mount St. Helens, 2004–2006. In: Clarke, G. and Smellie, J. (eds) Papers from the International Symposium on Earth and Planetary Ice–Volcano Interactions. Annals of Glaciology, 45, pp. 1420.Google Scholar
Walder, J.S., Schilling, S.P., Vallance, J.W., LaHusen, R.G. 2008. Effects of lava-dome growth on the Crater Glacier of Mount St. Helens, Washington. In: Sherrod, D.R., Scott, W.E. and Stauffer, P.H. (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006. United States Geological Survey Professional Paper, 1750, pp. 257276.Google Scholar
Walker, A.J. 2011. Rhyolite volcanism at Öraefajökull volcano, S.E. Iceland: a window on Quaternary climate change. PhD thesis, University of Manchester (UK), 325 pp. [unpublished].Google Scholar
Walker, G.P.L. 1965. Some aspects of Quaternary volcanism in Iceland. Transactions of the Leicester Literary and Philosophical Society, 59, 2540.Google Scholar
Walker, G.P.L. 1970. Compound and simple lava flows and flood basalts. Bulletin of Volcanology, 35, 579590.CrossRefGoogle Scholar
Walker, G.P.L. 1973a. Lengths of lava flows. Philosophical Transactions of the Royal Society, London, A274, 107116.Google Scholar
Walker, G.P.L. 1973b. Explosive volcanic eruptions: a new classification scheme. Geologische Rundschau, 62, 431446.CrossRefGoogle Scholar
Walker, G.P.L. 1992. Morphometric study of pillow-size spectrum among pillow lavas. Bulletin of Volcanology, 54, 459474.CrossRefGoogle Scholar
Walker, G.P.L. and Blake, D.H. 1966. The formation of a palagonite breccia mass beneath a valley glacier in Iceland. Journal of the Geological Society, London, 122, 4561.CrossRefGoogle Scholar
Walker, R.G. 1975. Generalised facies models for resedimented conglomerates of turbidite association. Geological Society of America Bulletin, 86, 737748.2.0.CO;2>CrossRefGoogle Scholar
Walker, R.G. 1978. Deep-water sandstone facies and ancient submarine fans: models for exploration for stratigraphic traps. American Association of Petroleum Geologists, 62, 932966.Google Scholar
Wallmann, P.C., Mahood, G.A. and Pollard, D.D. 1988. Mechanical models for correlation of ring-fracture eruptions at Pantelleria, Strait of Sicily, with glacial sea level drawdown. Bulletin of Volcanology, 50, 327339.CrossRefGoogle Scholar
Waters, T.R., McGovern, P.J. and Rossman, P.I. 2007. Hemispheres apart: the crustal dichotomy of Mars. Annual Review of Earth and Planetary Sciences, 35, 621652.CrossRefGoogle Scholar
Watson, K.D. and Mathews, W.H. 1944. The Tuya-Teslin area, northern British Columbia. British Columbia Department of Mines Bulletin, 19, 52 pp.Google Scholar
Waythomas, C.F., Pierson, T.C., Major, J.J. and Scott, W.E. 2013. Voluminous ice-rich and water-rich lahars generated during the 2009 eruption of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, 239, 389413.CrossRefGoogle Scholar
Welch, B.C., Dwyer, K., Helgen, M., Waythomas, C.F. and Jacobel, R.W. 2007. Geophysical survey of the intra-caldera icefield of Mt. Veniaminof, Alaska. In: Clarke, G. and Smellie, J. (eds) Papers from the International Symposium on Earth and Planetary Ice–Volcano Interactions. Annals of Glaciology, 45, pp. 5865.Google Scholar
Weller, D., Miranda, C.G., Moreno, P.I., Villa-Martínez, R., Stern, C.R. 2014. The large late-glacial Ho eruption of the Hudson volcano, southern Chile. Bulletin of Volcanology, 76, 831.CrossRefGoogle Scholar
Werner, R., Schmincke, H.-U. and Sigvaldason, G. 1996. A new model for the evolution of table mountains: volcanological and petrological evidence from Herdubreid and Herdubreidartögl volcanoes (Iceland). Bulletin of Volcanology, 85, 390397.Google Scholar
Werner, R. and Schmincke, H.-U. 1999. Englacial versus lacustrine origin of volcanic table mountains: evidence from Iceland. Bulletin of Volcanology, 60, 335354.Google Scholar
White, J.D.L. 2000. Subaqueous eruption-fed density currents and their deposits. Precambrian Research, 101, 87109.CrossRefGoogle Scholar
White, J.D.L. and Houghton, B. 2000. Surtseyan and related phreatomagmatic eruptions. In: Sigurdsson, H., Houghton, B., Rymer, H., Stix, J. and McNutt, S. (eds) Encyclopedia of Volcanoes, 1st Edition. Academic Press, San Diego, pp. 495512.Google Scholar
White, J.D.L. and Houghton, B.F. 2006. Primary volcaniclastic rocks. Geology, 34, 677680.CrossRefGoogle Scholar
White, J.D.L., Smellie, J.L. and Clague, D.A. (eds) 2003. Explosive subaqueous volcanism. American Geophysical Union, Geophysical Monograph, 140, 379 pp.CrossRefGoogle Scholar
White, S.E. 2010. Glaciers of Mexico. In: Williams, R.S. and Ferrigno, J.G. (eds) Satellite image atlas of glaciers of the world. United States Geological Survey Professional Paper, 1386-J, pp. 383405.Google Scholar
White, W.M. 2013. Geochemistry. Wiley-Blackwell, Oxford, 672 pp.Google Scholar
Wilch, T.I. and McIntosh, W.C. 2000. Eocene and Oligocene volcanism at Mount Petras, Marie Byrd Land: implications for middle Cenozoic ice sheet reconstructions in West Antarctica. Antarctic Science, 12, 477491.CrossRefGoogle Scholar
Wilch, T.I. and McIntosh, W.C. 2002. Lithofacies analysis amd 40Ar/39Ar geochronology of ice–volcano interactions at Mt. Murphy and the Crary Mountains, Marie Byrd Land, Antarctica. In: Smellie, J.L. and Chapman, M.G. (eds) Volcano–ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202, pp. 237253.Google Scholar
Wilch, T.I. and McIntosh, W.C. 2008. Miocene–Pliocene ice–volcano interactions at monogenetic volcanoes near Hobbs Coast, Marie Byrd Land, Antarctica. In: Cooper, A.K. and Raymond, C.R. (eds) Antarctica: a keystone in a changing world. Online Proceedings of the 10th ISAES, United States Geological Survey Open-File Report 2007–1047, Short Research Paper 074, 7 pp.CrossRefGoogle Scholar
Wilding, M.C., Smellie, J.L., Morgan, S., Lesher, C.E. and Wilson, L. 2004. Cooling process recorded in subglacially erupted rhyolite glasses: rapid quenching, thermal buffering, and the formation of meltwater. Journal of Geophysical Research, 109, B08201, doi:10.1029/2003JB002721.CrossRefGoogle Scholar
Williams, M., Smellie, J.L., Johnson, J.S. and Blake, D.B. 2006. Late Miocene Asterozoans (Echinodermata) from the James Ross Island Volcanic Group. Antarctic Science, 18, 117122.Google Scholar
Williams, M., Nelson, A.E., Smellie, J.L., Leng, M.J., Johnson, A.L.A., Jarram, D.R., Haywood, A.M., Peck, V.L., Zalasiewicz, J., Bennett, C. and Schöne, B.R. 2010. Sea ice extent and seasonality for the Early Pliocene northern Weddell Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 292, 306318.CrossRefGoogle Scholar
Wilson, G.S., 1995, The Neogene East Antarctic Ice Sheet: a dynamic or stable feature? Quaternary Science Reviews, 14, 101123.CrossRefGoogle Scholar
Wilson, L. and Head, J.W. 1983. A comparison of volcanic eruption processes on Earth, Moon, Mars, Io and Venus. Nature, 302, 663669.Google Scholar
Wilson, L. and Head, J.W. 1994. Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Reviews of Geophysics, 32, 221263.CrossRefGoogle Scholar
Wilson, L. and Head, J.W. 2002. Heat transfer and melting in subglacial basaltic eruptions: implications for volcanic deposit morphology and meltwater volumes. In: Smellie, J.L. and Chapman, M.G. (eds) Volcano–ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202, pp. 526.Google Scholar
Wilson, L. and Head, J.W. 2007a. Explosive volcanic eruptions on Mars: tephra and accretionary lapilli formation, dispersal and recognition in the geologic record. Journal of Volcanology and Geothermal Research, 163, 8397.CrossRefGoogle Scholar
Wilson, L., Head, J.W. 2007b. Heat transfer in volcano-ice interactions: synthesis and applications to processes and landforms on Earth. Annals of Glaciology, 45, 8386.Google Scholar
Wilson, L. and Mouginis-Mark, P.J. 2003. Phreatomagmatic explosive origin of Hrad Vallis, Mars. Journal of Geophysical Research, 108, doi:10.1029/2002JE001927.CrossRefGoogle Scholar
Wilson, L., Smellie, J.L. and Head, J.W. 2013. Volcano–ice interactions. In: Fagents, S.A., Gregg, T.K.P. and Rosaly, M.C. (eds) Modeling volcanic processes: the physics and mathematics of volcanism. Cambridge University Press, Cambridge, pp. 275299.CrossRefGoogle Scholar
Winchester, S. 2003. Krakatoa: the day the world exploded. Harper-Collins, New York, 464 pp.Google Scholar
Wohletz, K.H. 2003. Water/magma interaction: physical considerations for the deep sea environment. In: White, J.D.L., Smellie, J.L. and Clague, D.A. (eds) Explosive subaqueous volcanism. American Geophysical Union, Geophysical Monograph, 140, pp. 2549.CrossRefGoogle Scholar
Wohletz, K.H. and Sheridan, M.F. 1983. Hydrovolcanic explosions II. Evolution of tuff rings and cones. American Journal of Science, 283, 385413.CrossRefGoogle Scholar
Wohletz, K., Zimanowski, B. and Büttner, R. 2013. Magma–water interactions. In: Fagents, S.A., Gregg, T.K.P. and Lopes, R.M.C. (eds) Modeling volcanic processes: the physics and mathematics of volcanism. Cambridge University Press, Cambridge, pp. 230257.CrossRefGoogle Scholar
Wolf, T. 1878. Memoria sobre el Cotopaxi y su ultima erupcion. Guayaquil, Ecuador, 48 pp.Google Scholar
Wolfe, E.W., Wise, W.S. and Dalrymple, G.B. 1997. The geology and petrology of Mauna Kea Volcano, Hawaii: a study of post-shield volcanism. United States Geological Survey Professional Paper, 1557, 129 pp.CrossRefGoogle Scholar
Wood, C.A. and Kienle, J. 1993. Volcanoes of North America: United States and Canada. Cambridge University Press, Cambridge, 364 pp.Google Scholar
Woodcock, D.C., Gilbert, J.S. and Lane, S.J. 2012. Particle–water heat transfer during explosive volcanic eruptions. Journal of Geophysical Research, 117, doi:10.1029/2012JB0009240.CrossRefGoogle Scholar
Wörner, G. and Viereck, L. 1987. Subglacial to emergent volcanism at Shield Nunatak, Mt. Melbourne Volcanic Field, Antarctica. Polarforschung, 57, 2741.Google Scholar
Wright-Grassham, A.C. 1987. Volcanic geology, mineralogy, and petrogenesis of the Discovery Volcanic Sub-Province, southern Victoria Land, Antarctica. PhD thesis, New Mexico Institute of Mining and Technology, Socorro (USA), 460 pp. [unpublished].Google Scholar
Wright, R., Flynn, L.P., Garbeil, H., Harris, A.J.L. and Pilger, E. 2002. Automated volcanic eruption detection using MODIS. Remote Sensing of Environment, 82, 135155.CrossRefGoogle Scholar
Wright, R., Flynn, L.P., Garbeil, H., Harris, A.J.L. and Pilger, E. 2004. MODVOLC: near-real-time thermal monitoring of global volcanism. Journal of Volcanology and Geothermal Research, 135, 2949.CrossRefGoogle Scholar
Wynn-Williams, D.D., Cabrol, N.A., Grin, E.A., Haberle, R.M. and Stoker, C.R. 2001. Brines in seepage channels as eluants for subsurface relict biomolecules on Mars? Astrobiology, 1, 165184.CrossRefGoogle ScholarPubMed
Xia, Z. and Woo, M.-K. 1992. Theoretical analysis of snow-dam decay. Journal of Glaciology, 38, 191199.Google Scholar
Yamagishi, H. and Dimroth, E. 1985. A comparison of Miocene and Archaean rhyolite hyaloclastites: evidence for a hot and fluid rhyolite lava. Journal of Volcanology and Geothermal Research, 23, 337355.CrossRefGoogle Scholar
Yarmolyuk, V.V., Lebedev, V.I., Arkelyants, M.M., Prudnikov, S.G., Sugorakova, A.M. and Kovalenko, V.I. 1999. Neovolcanism in Eastern Tuva: chronology of volcanic events based on K–Ar dating. Doklady Akademii Nauk, 368, 907911 (in Russian).Google Scholar
Yarmolyuk, V.V., Lebedev, V.I., Sugorakova, A.M., Bragin, V.Y., Litasov, Y.D., Prudnikov, S.T., Arakelyants, M.M., Lebedev, V.A., Ivanov, V.G. and Kozlovskii, A.M. 2001. The Eastern Tuva region of recent volcanism in Central Asia: periods, products and types of volcanic activity. Volcanology and Seismology, 3, 332 (in Russian).Google Scholar
Yount, M.E., Miller, T.P., Emanuel, R.P. and Wilson, F.H. 1985. Eruption in the ice-filled caldera of Mount Veniaminof. United States Geological Survey Circular, 945, 5860.Google Scholar
Zielinski, G.A., Mayewski, L.D., Meeker, L.D., Whitlow, M.S. and Twickler, A. 1996. A 110,000-year record of explosive volcanism from the GISP2 (Greenland) ice core. Quaternary Research, 45, 109188.CrossRefGoogle Scholar
Zimanowski, B. and Büttner, R. 2003. Phreatomagmatic explosions in subaqueous volcanism. In: White, J.D.L., Smellie, J.L. and Clague, D.A. (eds) Explosive subaqueous volcanism. American Geophysical Union, Geophysical Monograph, 140, pp. 5160.CrossRefGoogle Scholar
Zimanowski, B. and Wohletz, K. 2000. Physics of phreatomagmatism, I. Terra Nostra, 6, 515523.Google Scholar
Zimanowski, B., Büttner, R., Lorenz, V. and Häfele, H.-G. 1997. Fragmentation of basaltic melt in the course of explosive volcanism. Journal of Geophysical Research, 102, 803814.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • John L. Smellie, University of Leicester, Benjamin R. Edwards, Dickinson College, Pennsylvania
  • Book: Glaciovolcanism on Earth and Mars
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139764384.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • John L. Smellie, University of Leicester, Benjamin R. Edwards, Dickinson College, Pennsylvania
  • Book: Glaciovolcanism on Earth and Mars
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139764384.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • John L. Smellie, University of Leicester, Benjamin R. Edwards, Dickinson College, Pennsylvania
  • Book: Glaciovolcanism on Earth and Mars
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139764384.020
Available formats
×