Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-06T04:09:19.969Z Has data issue: false hasContentIssue false

Chapter 9 - Initiation of Breathing at Birth

Published online by Cambridge University Press:  05 April 2016

Alan H. Jobe
Affiliation:
University of Cincinnati
Jeffrey A. Whitsett
Affiliation:
Cincinnati Children’s Hospital
Steven H. Abman
Affiliation:
University of Colorado School of Medicine
Get access

Summary

Abstract

Recent animal and human studies have challenged some of the prevailing concepts regarding the major physiological changes that characterize the transition to life after birth. In this chapter we will explain in detail how the breathing effort initiates a pulmonary and hemodynamic cascade of events that is of vital importance for survival after birth. The role of cord clamping and its effects on the hemodynamic transition will be discussed. This chapter also covers the pathophysiology of preterm infants failing transition and the current strategies caregivers can use to support them. Finally, we describe how positive pressure ventilation (PPV) can cause not only lung injury, but can also adversely affect cardiovascular function and initiate a systemic inflammatory cascade that can injure the immature brain.

Type
Chapter
Information
Fetal and Neonatal Lung Development
Clinical Correlates and Technologies for the Future
, pp. 164 - 186
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reference List

Harding, R. Fetal breathing movements. In: Crystal, R, West, J, Weibel, E, Barnes, P, eds. The Lung: Scientific Foundations. New York: Lippincott-Raven; 1997:2093.Google Scholar
Hooper, SB, Harding, R. Fetal lung liquid: a major determinant of the growth and functional development of the fetal lung. Clin Exp Pharmacol Physiol. 1995 Apr;22(4):235247.CrossRefGoogle Scholar
Dawes, GS, Fox, HE, Leduc, BM, Liggins, GC, Richards, RT. Respiratory movements and rapid eye movement sleep in the foetal lamb. J Physiol. 1972 Jan;220(1):119143.CrossRefGoogle ScholarPubMed
Harding, R, Liggins, GC. Changes in thoracic dimensions induced by breathing movements in fetal sheep. Reprod Fertil Dev. 1996;8(1):117124.CrossRefGoogle ScholarPubMed
Davey, MG, Moss, TJ, McCrabb, GJ, Harding, R. Prematurity alters hypoxic and hypercapnic ventilatory responses in developing lambs. Respir Physiol. 1996 Aug;105(1–2):5767.CrossRefGoogle ScholarPubMed
Vyas, H, Field, D, Milner, AD, Hopkin, IE. Determinants of the first inspiratory volume and functional residual capacity at birth. Pediatr Pulmonol. 1986 Jul;2(4):189193.CrossRefGoogle ScholarPubMed
Koos, BJ, Maeda, T, Jan, C. Adenosine A(1) and A(2A) receptors modulate sleep state and breathing in fetal sheep. J Appl Physiol (1985). 2001 Jul;91(1):343350.CrossRefGoogle Scholar
Jansen, AH, Chernick, V. Fetal breathing and development of control of breathing. J Appl Physiol (1985). 1991 Apr;70(4):14311446.CrossRefGoogle ScholarPubMed
Thorburn, GD. The placenta and the control of fetal breathing movements. Reprod Fertil Dev. 1995;7(3):577594.CrossRefGoogle ScholarPubMed
Crossley, KJ, Nicol, MB, Hirst, JJ, Walker, DW, Thorburn, GD. Suppression of arousal by progesterone in fetal sheep. Reprod Fertil Dev. 1997;9(8):767773.CrossRefGoogle ScholarPubMed
Tai, TC, MacLusky, NJ, Adamson, SL. Ontogenesis of prostaglandin E2 binding sites in the brainstem of the sheep. Brain Res. 1994 Jul 25;652(1):2839.CrossRefGoogle ScholarPubMed
Adamson, SL. Regulation of breathing at birth. J Dev Physiol. 1991 Jan;15(1):4552.Google ScholarPubMed
Dawes, GS. Oxygen supply and consumption on late fetal life and the onset of breathing at birth. In: Fenn, WO, Rahn, H, eds. Handbook of Physiology: Sec 2. Respiration. Washington DC: American Physiological Society; 1965:13131328.Google Scholar
Harned, HS Jr, Wolkoff, AS, Pickrell, J, MacKinney, LG. Hemodynamic observations during birth of the lamb. Studies of the unanesthetized full-term animal. Am J Dis Child. 1961 Aug;102:180189.CrossRefGoogle ScholarPubMed
Rigatto, H, Brady, JP, de la Torre Verduzco, R. Chemoreceptor reflexes in preterm infants: I. The effect of gestational and postnatal age on the ventilatory response to inhalation of 100% and 15% oxygen. Pediatrics. 1975 May;55(5):604613.CrossRefGoogle ScholarPubMed
Gluckman, PD, Johnston, BM. Lesions in the upper lateral pons abolish the hypoxic depression of breathing in unanaesthetized fetal lambs in utero. J Physiol. 1987 Jan;382:373383.CrossRefGoogle ScholarPubMed
Bookatz, GB, Mayer, CA, Wilson, CG, et al. Effect of supplemental oxygen on reinitiation of breathing after neonatal resuscitation in rat pups. Pediatr Res. 2007 Jun;61(6):698702.CrossRefGoogle ScholarPubMed
Wong, KA, Bano, A, Rigaux, A, et al. Pulmonary vagal innervation is required to establish adequate alveolar ventilation in the newborn lamb. J Appl Physiol (1985). 1998 Sep;85(3):849859.CrossRefGoogle ScholarPubMed
Harding, R. State-related and developmental changes in laryngeal function. Sleep. 1980;3(3–4):307322.CrossRefGoogle ScholarPubMed
Lines, A, Hooper, SB, Harding, R. Lung liquid production rates and volumes do not decrease before labor in healthy fetal sheep. J Appl Physiol (1985). 1997 Mar;82(3):927932.CrossRefGoogle Scholar
Dickson, KA, Harding, R. Restoration of lung liquid volume following its acute alteration in fetal sheep. J Physiol. 1987 Apr;385:531543.CrossRefGoogle ScholarPubMed
Hooper, SB, Dickson, KA, Harding, R. Lung liquid secretion, flow and volume in response to moderate asphyxia in fetal sheep. J Dev Physiol. 1988 Oct;10(5):473485.Google ScholarPubMed
Harding, R, Hooper, SB, Dickson, KA. A mechanism leading to reduced lung expansion and lung hypoplasia in fetal sheep during oligohydramnios. Am J Obstet Gynecol. 1990 Dec;163(6 Pt 1):19041913.CrossRefGoogle ScholarPubMed
Kitterman, JA, Ballard, PL, Clements, JA, Mescher, EJ, Tooley, WH. Tracheal fluid in fetal lambs: spontaneous decrease prior to birth. J Appl Physiol Respir Environ Exerc Physiol. 1979 Nov;47(5):985989.Google ScholarPubMed
Riley, CA, Boozer, K, King, TL. Antenatal corticosteroids at the beginning of the 21st century. J Midwifery Women’s Health. 2011 Nov;56(6):591597.CrossRefGoogle Scholar
Bland, RD. Loss of liquid from the lung lumen in labor: more than a simple “squeeze.” Am J Physiol Lung Cell Mol Physiol. 2001 Apr;280(4):L602L605.CrossRefGoogle ScholarPubMed
Albuquerque, CA, Smith, KR, Saywers, TE, Johnson, C, Cock, ML, Harding, R. Relation between oligohydramnios and spinal flexion in the human fetus. Early Hum Dev. 2002 Jul;68(2):119126.CrossRefGoogle ScholarPubMed
Olver, RE, Ramsden, CA, Strang, LB, Walters, DV. The role of amiloride-blockable sodium transport in adrenaline-induced lung liquid reabsorption in the fetal lamb. J Physiol. 1986 Jul;376:321340.CrossRefGoogle ScholarPubMed
Barker, PM, Brown, MJ, Ramsden, CA, Strang, LB, Walters, DV. The effect of thyroidectomy in the fetal sheep on lung liquid reabsorption induced by adrenaline or cyclic AMP. J Physiol. 1988 Dec;407:373383.CrossRefGoogle ScholarPubMed
Wallace, MJ, Hooper, SB, Harding, R. Effects of elevated fetal cortisol concentrations on the volume, secretion, and reabsorption of lung liquid. Am J Physiol. 1995 Oct;269(4 Pt 2):R881R887.Google ScholarPubMed
Wallace, MJ, Hooper, SB, Harding, R. Role of the adrenal glands in the maturation of lung liquid secretory mechanisms in fetal sheep. Am J Physiol. 1996 Jan;270(1 Pt 2):R33R40.Google ScholarPubMed
Barker, PM, Markiewicz, M, Parker, KA, Walters, DV, Strang, LB. Synergistic action of triiodothyronine and hydrocortisone on epinephrine-induced reabsorption of fetal lung liquid. Pediatr Res. 1990 Jun;27(6):588591.CrossRefGoogle ScholarPubMed
Hummler, E, Planes, C. Importance of ENaC-mediated sodium transport in alveolar fluid clearance using genetically-engineered mice. Cell Physiol Biochem. 2010;25(1):6370.CrossRefGoogle ScholarPubMed
Schilleman, K, van der Pot, CJ, Hooper, SB, Lopriore, E, Walther, FJ, te Pas, AB. Evaluating manual inflations and breathing during mask ventilation in preterm infants at birth. J Pediatr. 2013 Mar;162(3):457463.CrossRefGoogle ScholarPubMed
Hooper, SB, Kitchen, MJ, Siew, ML, et al. Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging. Clin Exp Pharmacol Physiol. 2009 Jan;36(1):117125.CrossRefGoogle ScholarPubMed
Siew, ML, Wallace, MJ, Kitchen, MJ, et al. Inspiration regulates the rate and temporal pattern of lung liquid clearance and lung aeration at birth. J Appl Physiol. 2009 Jun;106(6):18881895.CrossRefGoogle ScholarPubMed
te Pas, AB, Davis, PG, Kamlin, CO, Dawson, J, O’Donnell, CP, Morley, CJ. Spontaneous breathing patterns of very preterm infants treated with continuous positive airway pressure at birth. Pediatr Res. 2008 Apr;64(3):281285.CrossRefGoogle ScholarPubMed
te Pas, AB, Davis, PG, Hooper, SB, Morley, CJ. From liquid to air: breathing after birth. J Pediatr. 2008 May;152(5):607611.CrossRefGoogle ScholarPubMed
Hooper, SB, Kitchen, MJ, Wallace, MJ, Yagi, N, Uesugi, K, Morgan, MJ, et al. Imaging lung aeration and lung liquid clearance at birth. FASEB J. 2007 Oct;21(12):33293337.CrossRefGoogle ScholarPubMed
Hooper, SB, Harding, R. Effect of beta-adrenergic blockade on lung liquid secretion during fetal asphyxia. Am J Physiol. 1989 Oct;257(4 Pt 2):R705R710.Google ScholarPubMed
Walters, DV, Olver, RE. The role of catecholamines in lung liquid absorption at birth. Pediatr Res. 1978 Mar;12(3):239242.CrossRefGoogle ScholarPubMed
Dawson, JA, Kamlin, CO, Wong, C, et al. Changes in heart rate in the first minutes after birth. Arch Dis Child Fetal Neonatal Ed. 2010 May;95(3):F177F181.CrossRefGoogle ScholarPubMed
Hummler, E, Barker, P, Gatzy, J, et al. Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet. 1996 Mar;12(3):325328.CrossRefGoogle ScholarPubMed
Jain, L, Eaton, DC. Physiology of fetal lung fluid clearance and the effect of labor. Semin Perinatol. 2006 Feb;30(1):3443.CrossRefGoogle ScholarPubMed
Bonny, O, Rossier, BC. Disturbances of Na/K balance: pseudohypoaldosteronism revisited. J Am Soc Nephrol. 2002 Sep;13(9):23992414.CrossRefGoogle ScholarPubMed
Olver, RE, Robinson, EJ. Sodium and chloride transport by the tracheal epithelium of fetal, new-born and adult sheep. J Physiol. 1986 Jun;375:377390.CrossRefGoogle ScholarPubMed
Wallace, MJ, Hooper, SB, Harding, R. Regulation of lung liquid secretion by arginine vasopressin in fetal sheep. Am J Physiol. 1990 Jan;258(1 Pt 2):R104R111.Google ScholarPubMed
O’Brodovich, H, Hannam, V, Seear, M, Mullen, JB. Amiloride impairs lung water clearance in newborn guinea pigs. J Appl Physiol (1985). 1990 Apr;68(4):17581762.CrossRefGoogle ScholarPubMed
Kitchen, MJ, Lewis, RA, Morgan, MJ, et al. Dynamic measures of regional lung air volume using phase contrast x-ray imaging. Phys Med Biol. 2008 Nov 7;53(21):60656077.CrossRefGoogle ScholarPubMed
Siew, ML, Wallace, MJ, Allison, BJ, et al. The role of lung inflation and sodium transport in airway liquid clearance during lung aeration in newborn rabbits. Pediatr Res. 2013 Apr;73(4 Pt 1):443449.CrossRefGoogle ScholarPubMed
Kitchen, MJ, Lewis, RA, Yagi, N, et al. Phase contrast X-ray imaging of mice and rabbit lungs: a comparative study. Br J Radiol. 2005 Nov;78(935):10181027.CrossRefGoogle ScholarPubMed
Mortola, JP, Fisher, JT, Smith, B, Fox, G, Weeks, S. Dynamics of breathing in infants. J Appl Physiol Respir Environ Exerc Physiol. 1982 May;52(5):12091215.Google ScholarPubMed
Bland, RD, McMillan, DD, Bressack, MA, Dong, L. Clearance of liquid from lungs of newborn rabbits. J Appl Physiol Respir Environ Exerc Physiol. 1980 Aug;49(2):171177.Google ScholarPubMed
Miserocchi, G, Poskurica, BH, Del, FM. Pulmonary interstitial pressure in anesthetized paralyzed newborn rabbits. J Appl Physiol (1985). 1994 Nov;77(5):22602268.CrossRefGoogle ScholarPubMed
Avery, ME, Cook, CD. Volume-pressure relationships of lungs and thorax in fetal, newborn, and adult goats. J Appl Physiol. 1961 Nov;16:10341038.CrossRefGoogle ScholarPubMed
Davey, MG, Johns, DP, Harding, R. Postnatal development of respiratory function in lambs studied serially between birth and 8 weeks. Respir Physiol. 1998 Jul;113(1):8393.CrossRefGoogle ScholarPubMed
Flecknoe, SJ, Crossley, KJ, Zuccala, GM, et al. Increased lung expansion alters lung growth but not alveolar epithelial cell differentiation in newborn lambs. Am J Physiol Lung Cell Mol Physiol. 2007 Feb;292(2):L454L461.CrossRefGoogle Scholar
Flecknoe, SJ, Wallace, MJ, Harding, R, Hooper, SB. Determination of alveolar epithelial cell phenotypes in fetal sheep: evidence for the involvement of basal lung expansion. J Physiol. 2002 Jul 1;542(Pt 1):245253.CrossRefGoogle ScholarPubMed
Flecknoe, SJ, Wallace, MJ, Cock, ML, Harding, R, Hooper, SB. Changes in alveolar epithelial cell proportions during fetal and postnatal development in sheep. Am J Physiol Lung Cell Mol Physiol. 2003 Sep;285(3):L664L670.CrossRefGoogle ScholarPubMed
Rudolph, AM. Fetal and neonatal pulmonary circulation. Annu Rev Physiol. 1979;41:383395.CrossRefGoogle ScholarPubMed
Hooper, SB. Role of luminal volume changes in the increase in pulmonary blood flow at birth in sheep. Exp Physiol. 1998 Nov;83(6):833842.CrossRefGoogle ScholarPubMed
Polglase, GR, Wallace, MJ, Grant, DA, Hooper, SB. Influence of fetal breathing movements on pulmonary hemodynamics in fetal sheep. Pediatr Res. 2004 Dec;56(6):932938.CrossRefGoogle ScholarPubMed
Bhatt, S, Alison, BJ, Wallace, EM, et al. Delaying cord clamping until ventilation onset improves cardiovascular function at birth in preterm lambs. J Physiol. 2013 Apr 15;591(Pt 8):21132126.CrossRefGoogle ScholarPubMed
Crossley, KJ, Allison, BJ, Polglase, GR, Morley, CJ, Davis, PG, Hooper, SB. Dynamic changes in the direction of blood flow through the ductus arteriosus at birth. J Physiol. 2009 Oct 1;587(Pt 19):46954704.CrossRefGoogle ScholarPubMed
van Vonderen, JJ, Roest, AA, Siew, ML, et al. Noninvasive measurements of hemodynamic transition directly after birth. Pediatr Res. 2014 Mar;75(3):448452.CrossRefGoogle ScholarPubMed
Vento, M, Saugstad, OD. Resuscitation of the term and preterm infant. Semin Fetal Neonatal Med. 2010 Aug;15(4):216222.CrossRefGoogle ScholarPubMed
Perlman, JM, Risser, R. Cardiopulmonary resuscitation in the delivery room. Associated clinical events. Arch Pediatr Adolesc Med. 1995 Jan;149(1):2025.CrossRefGoogle ScholarPubMed
te Pas, AB, Walther, FJ. Ventilation of very preterm infants in the delivery room. Current Pediatric Reviews. 2006;2(3):187197.CrossRefGoogle Scholar
Gerhardt, T, Bancalari, E. Chestwall compliance in full-term and premature infants. Acta Paediatr Scand. 1980 May;69(3):359364.CrossRefGoogle ScholarPubMed
Heldt, GP, McIlroy, MB. Dynamics of chest wall in preterm infants. J Appl Physiol. 1987 Jan;62(1):170174.CrossRefGoogle ScholarPubMed
Barker, PM, Olver, RE. Invited review: Clearance of lung liquid during the perinatal period. J Appl Physiol (1985). 2002 Oct;93(4):15421548.CrossRefGoogle ScholarPubMed
Barker, PM, Gowen, CW, Lawson, EE, Knowles, MR. Decreased sodium ion absorption across nasal epithelium of very premature infants with respiratory distress syndrome. J Pediatr. 1997 Mar;130(3):373377.CrossRefGoogle ScholarPubMed
Hooper, SB, Siew, ML, Kitchen, MJ, te Pas, AB. Establishing functional residual capacity in the non-breathing infant. Semin Fetal Neonatal Med. 2013 Dec;18(6):336343.CrossRefGoogle ScholarPubMed
te Pas, AB, Siew, M, Wallace, MJ, et al. Effect of sustained inflation length on establishing functional residual capacity at birth in ventilated premature rabbits. Pediatr Res. 2009 Sep;66(3):295300.CrossRefGoogle ScholarPubMed
te Pas, AB, Siew, M, Wallace, MJ, et al. Establishing functional residual capacity at birth: the effect of sustained inflation and positive end-expiratory pressure in a preterm rabbit model. Pediatr Res. 2009 May;65(5):537541.CrossRefGoogle Scholar
Sobotka, KS, Hooper, SB, Allison, BJ, et al. An initial sustained inflation improves the respiratory and cardiovascular transition at birth in preterm lambs. Pediatr Res. 2011Jul;70(1):5660.CrossRefGoogle ScholarPubMed
Vyas, H, Milner, AD, Hopkin, IE, Boon, AW. Physiologic responses to prolonged and slow-rise inflation in the resuscitation of the asphyxiated newborn infant. J Pediatr. 1981 Oct;99(4):635639.CrossRefGoogle ScholarPubMed
Lindner, W, Vossbeck, S, Hummler, H, Pohlandt, F. Delivery room management of extremely low birth weight infants: spontaneous breathing or intubation? Pediatrics. 1999 May;103(5 Pt 1):961967.CrossRefGoogle ScholarPubMed
Lindner, W, Hogel, J, Pohlandt, F. Sustained pressure-controlled inflation or intermittent mandatory ventilation in preterm infants in the delivery room? A randomized, controlled trial on initial respiratory support via nasopharyngeal tube. Acta Paediatr. 2005 Mar;94(3):303309.Google ScholarPubMed
Harling, AE, Beresford, MW, Vince, GS, Bates, M, Yoxall, CW. Does sustained lung inflation at resuscitation reduce lung injury in the preterm infant? Arch Dis Child Fetal Neonatal Ed. 2005 Sep;90(5):F406F410.CrossRefGoogle ScholarPubMed
te Pas, AB, Walther, FJ. A randomized, controlled trial of delivery-room respiratory management in very preterm infants. Pediatrics. 2007 Aug;120(2):322329.CrossRefGoogle ScholarPubMed
Lista, G, Fontana, P, Castoldi, F, Cavigioli, F, Dani, C. Does sustained lung inflation at birth improve outcome of preterm infants at risk for respiratory distress syndrome? Neonatology. 2010 Jul 9;99(1):4550.CrossRefGoogle ScholarPubMed
Bjorklund, LJ, Ingimarsson, J, Curstedt, T, John, J, Robertson, B, Werner, O, et al. Manual ventilation with a few large breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lambs. Pediatr Res. 1997 Sep;42(3):348355.CrossRefGoogle ScholarPubMed
Ingimarsson, J, Bjorklund, LJ, Curstedt, T, Larsson, A, Robertson, B, Werner, O. A lung recruitment maneuver immediately before rescue surfactant therapy does not affect the lung mechanical response in immature lambs with respiratory distress syndrome. Acta Anaesthesiol Scand. 2003 Sep;47(8):968972.CrossRefGoogle Scholar
Fuchs, H, Lindner, W, Buschko, A, Trischberger, T, Schmid, M, Hummler, HD. Cerebral oxygenation in very low birth weight infants supported with sustained lung inflations after birth. Pediatr Res. 2011 Aug; 70(2):176180.CrossRefGoogle ScholarPubMed
Hillman, NH, Kemp, MW, Noble, PB, Kallapur, SG, Jobe, AH. Sustained inflation at birth did not protect preterm fetal sheep from lung injury. Am J Physiol Lung Cell Mol Physiol. 2013 Sep 15;305(6):L446L453.CrossRefGoogle Scholar
Tingay, DG, Bhatia, R, Schmolzer, GM, Wallace, MJ, Zahra, VA, Davis, PG. Effect of sustained inflation vs. stepwise PEEP strategy at birth on gas exchange and lung mechanics in preterm lambs. Pediatr Res. 2014 Feb;75(2):288294.CrossRefGoogle ScholarPubMed
Polglase, GR, Morley, CJ, Crossley, KJ, et al. Positive end-expiratory pressure differentially alters pulmonary hemodynamics and oxygenation in ventilated, very premature lambs. J Appl Physiol. 2005 Oct;99(4):14531461.CrossRefGoogle ScholarPubMed
Kitchen, MJ, Siew, ML, Wallace, MJ, et al. Changes in positive end-expiratory pressure alter the distribution of ventilation within the lung immediately after birth in newborn rabbits. PLoS One. 2014;9(4):e93391.CrossRefGoogle ScholarPubMed
Schmolzer, GM, Kumar, M, Pichler, G, Aziz, K, O’Reilly, M, Cheung, PY. Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis. BMJ. 2013;347:f5980.CrossRefGoogle ScholarPubMed
Higgins, RD, Bancalari, E, Willinger, M, Raju, TN. Executive summary of the workshop on oxygen in neonatal therapies: controversies and opportunities for research. Pediatrics. 2007 Apr;119(4):790–6.CrossRefGoogle ScholarPubMed
Vento, M, Saugstad, OD. Oxygen supplementation in the delivery room: updated information. J Pediatr. 2011 Feb;158(2 suppl):e5e7.CrossRefGoogle ScholarPubMed
Hellstrom-Westas, L, Forsblad, K, Sjors, G, et al. Earlier Apgar score increase in severely depressed term infants cared for in Swedish level III units with 40% oxygen versus 100% oxygen resuscitation strategies: a population-based register study. Pediatrics. 2006 Dec;118(6):e1798e1804.CrossRefGoogle ScholarPubMed
Rabi, Y, Rabi, D, Yee, W. Room air resuscitation of the depressed newborn: a systematic review and meta-analysis. Resuscitation. 2007 Mar;72(3):353–63.CrossRefGoogle Scholar
Saugstad, OD, Ramji, S, Soll, RF, Vento, M. Resuscitation of newborn infants with 21% or 100% oxygen: an updated systematic review and meta-analysis. Neonatology. 2008;94(3):176–82.CrossRefGoogle ScholarPubMed
Tan, A, Schulze, A, O’Donnell, CP, Davis, PG. Air versus oxygen for resuscitation of infants at birth. Cochrane Database Syst Rev. 2005;(2):CD002273.Google Scholar
Perlman, JM, Wyllie, J, Kattwinkel, J, et al. Part 11: neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2010 Oct 19;122(16 suppl 2):S516S538.CrossRefGoogle ScholarPubMed
Wyllie, J, Perlman, JM, Kattwinkel, J, et al. Part 11: Neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation. 2010 Oct;81 (suppl 1):e260e287.CrossRefGoogle ScholarPubMed
Vento, M, Moro, M, Escrig, R, et al. Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics. 2009 Sep;124(3):e439e449.CrossRefGoogle ScholarPubMed
O’Donnell, CP, Kamlin, CO, Davis, PG, Morley, CJ. Crying and breathing by extremely preterm infants immediately after birth. J Pediatr. 2010 May;156(5):846847.CrossRefGoogle ScholarPubMed
Escrig, R, Arruza, L, Izquierdo, I, et al. Achievement of targeted saturation values in extremely low gestational age neonates resuscitated with low or high oxygen concentrations: a prospective, randomized trial. Pediatrics. 2008 May;121(5):875881.CrossRefGoogle ScholarPubMed
Rabi, Y, Singhal, N, Nettel-Aguirre, A. Room-air versus oxygen administration for resuscitation of preterm infants: the ROAR study. Pediatrics. 2011 Aug;128(2):e374e381.CrossRefGoogle ScholarPubMed
Wang, CL, Anderson, C, Leone, TA, Rich, W, Govindaswami, B, Finer, NN. Resuscitation of preterm neonates by using room air or 100% oxygen. Pediatrics. 2008 Jun;121(6):10831089.CrossRefGoogle ScholarPubMed
Dawson, JA, Kamlin, CO, Vento, M, et al. Defining the reference range for oxygen saturation for infants after birth. Pediatrics. 2010 Jun;125(6):e1340e1347.CrossRefGoogle ScholarPubMed
Lakshminrusimha, S, Steinhorn, RH, Wedgwood, S, et al. Pulmonary hemodynamics and vascular reactivity in asphyxiated term lambs resuscitated with 21 and 100% oxygen. J Appl Physiol. 2011 Nov;111(5):14411447.CrossRefGoogle ScholarPubMed
Teitel, DF, Iwamoto, HS, Rudolph, AM. Changes in the pulmonary circulation during birth-related events. Pediatr Res. 1990 Apr;27(4 Pt 1):372378.CrossRefGoogle ScholarPubMed
Schmolzer, GM, Dawson, JA, Kamlin, CO, O’Donnell, CP, Morley, CJ, Davis, PG. Airway obstruction and gas leak during mask ventilation of preterm infants in the delivery room. Arch Dis Child Fetal Neonatal Ed. 2011 Jul;96(4):F254F257.CrossRefGoogle ScholarPubMed
van Vonderen, JJ, Hooper, SB, Hummler, HD, Lopriore, E, te Pas, AB. Effects of a sustained inflation in preterm infants at birth. J Pediatr. 2014 Nov;165(5):903908.CrossRefGoogle ScholarPubMed
Tomori, Z, Benacka, R, Donic, V. Mechanisms and clinicophysiological implications of the sniff- and gasp-like aspiration reflex. Respir Physiol. 1998 Oct;114(1):8398.CrossRefGoogle ScholarPubMed
Tomori, Z, Donic, V, Benacka, R, Jakus, J, Gresova, S. Resuscitation and auto resuscitation by airway reflexes in animals. Cough. 2013;9(1):21.CrossRefGoogle ScholarPubMed
Capasso, L, Capasso, A, Raimondi, F, Vendemmia, M, Araimo, G, Paludetto, R. A randomized trial comparing oxygen delivery on intermittent positive pressure with nasal cannulae versus facial mask in neonatal primary resuscitation. Acta Paediatr. 2005 Feb;94(2):197200.CrossRefGoogle ScholarPubMed
Segedin, E, Torrie, J, Anderson, B. Nasal airway versus oral route for infant resuscitation. Lancet. 1995 Aug 5;346(8971):382.CrossRefGoogle ScholarPubMed
Kamlin, CO, Schilleman, K, Dawson, JA, et al. Mask versus nasal tube for stabilization of preterm infants at birth: a randomized controlled trial. Pediatrics. 2013 Aug;132(2):e381e388.CrossRefGoogle ScholarPubMed
Schilleman, K, Siew, ML, Lopriore, E, Morley, CJ, Walther, FJ, te Pas, AB. Auditing resuscitation of preterm infants at birth by recording video and physiological parameters. Resuscitation. 2012 Feb 6.CrossRefGoogle Scholar
van Vonderen, JJ, Roest, AA, Siew, ML, Walther, FJ, Hooper, SB, te Pas, AB. Measuring physiological changes during the transition to life after birth. Neonatology. 2014 Feb 6;105(3):230242.CrossRefGoogle ScholarPubMed
Greenough, A, Dimitriou, G, Prendergast, M, Milner, AD. Synchronized mechanical ventilation for respiratory support in newborn infants. Cochrane Database Syst Rev. 2008;(1):CD000456.CrossRefGoogle Scholar
Schmolzer, GM, te Pas, AB, Davis, PG, Morley, CJ. Reducing lung injury during neonatal resuscitation of preterm infants. J Pediatr. 2008 Dec;153(6):741745.CrossRefGoogle ScholarPubMed
Finer, NN, Horbar, JD, Carpenter, JH. Cardiopulmonary resuscitation in the very low birth weight infant: the Vermont Oxford Network experience. Pediatrics. 1999 Sep;104(3 Pt 1):428434.CrossRefGoogle ScholarPubMed
Shah, PS. Extensive cardiopulmonary resuscitation for VLBW and ELBW infants: a systematic review and meta-analyses. J Perinatol. 2009 Oct;29(10):655661.CrossRefGoogle ScholarPubMed
DeMauro, SB, Roberts, RS, Davis, P, Alvaro, R, Bairam, A, Schmidt, B. Impact of delivery room resuscitation on outcomes up to 18 months in very low birth weight infants. J Pediatr. 2011 Oct;159(4):546550.CrossRefGoogle ScholarPubMed
Vyas, H, Milner, AD, Hopkins, IE. Intrathoracic pressure and volume changes during the spontaneous onset of respiration in babies born by cesarean section and by vaginal delivery. J Pediatr. 1981 Nov;99(5):787791.CrossRefGoogle ScholarPubMed
Polglase, GR, Miller, SL, Barton, SK, et al. Initiation of resuscitation with high tidal volumes causes cerebral hemodynamic disturbance, brain inflammation and injury in preterm lambs. PLoS One. 2012;7(6):e39535.CrossRefGoogle ScholarPubMed
Hillman, NH, Moss, TJ, Kallapur, SG, et al. Brief, large tidal volume ventilation initiates lung injury and a systemic response in fetal sheep. Am J Respir Crit Care Med. 2007 Sep 15;176(6):575581.CrossRefGoogle Scholar
Hillman, NH, Polglase, GR, Pillow, JJ, Saito, M, Kallapur, SG, Jobe, AH. Inflammation and lung maturation from stretch injury in preterm fetal sheep. Am J Physiol Lung Cell Mol Physiol. 2011 Feb;300(2):L232L241.CrossRefGoogle ScholarPubMed
Ingimarsson, J, Bjorklund, LJ, Curstedt, T, et al. Incomplete protection by prophylactic surfactant against the adverse effects of large lung inflations at birth in immature lambs. Intensive Care Med. 2004 Jul;30(7):14461453.CrossRefGoogle ScholarPubMed
Bjorklund, LJ, Vilstrup, CT, Larsson, A, Svenningsen, NW, Werner, O. Changes in lung volume and static expiratory pressure-volume diagram after surfactant rescue treatment of neonates with established respiratory distress syndrome. Am J Respir Crit Care Med. 1996 Oct;154(4 Pt 1):918923.CrossRefGoogle ScholarPubMed
Vilstrup, CT, Bjorklund, LJ, Werner, O, Larsson, A. Lung volumes and pressure-volume relations of the respiratory system in small ventilated neonates with severe respiratory distress syndrome. Pediatr Res. 1996 Jan;39(1):127133.CrossRefGoogle ScholarPubMed
Stenson, BJ, Boyle, DW, Szyld, EG. Initial ventilation strategies during newborn resuscitation. Clin Perinatol. 2006 Mar;33(1):6582.CrossRefGoogle ScholarPubMed
Wallace, MJ, Probyn, ME, Zahra, VA, et al. Early biomarkers and potential mediators of ventilation-induced lung injury in very preterm lambs. Respir Res. 2009;10:19.CrossRefGoogle ScholarPubMed
Bach, KP, Kuschel, CA, Hooper, SB, et al. High bias gas flows increase lung injury in the ventilated preterm lamb. PLoS One. 2012;7(10):e47044.CrossRefGoogle ScholarPubMed
Dawson, JA, Schmolzer, GM, Kamlin, CO, et al. Oxygenation with T-piece versus self-inflating bag for ventilation of extremely preterm infants at birth: a randomized controlled trial. J Pediatr. 2011 Jun;158(6):912918.CrossRefGoogle ScholarPubMed
van Vonderen, JJ, Hooper, SB, Krabbe, VB, Siew, ML, te Pas, AB. Monitoring tidal volumes in preterm infants at birth: mask versus endotracheal ventilation. Arch Dis Child Fetal Neonatal Ed. 2015 Jan;100(1):F43F46.CrossRefGoogle ScholarPubMed
Jobe, AH, Ikegami, M. Mechanisms initiating lung injury in the preterm. Early Hum Dev. 1998 Nov;53(1):8194.CrossRefGoogle ScholarPubMed
Clark, RH, Gerstmann, DR, Jobe, AH, Moffitt, ST, Slutsky, AS, Yoder, BA. Lung injury in neonates: causes, strategies for prevention, and long-term consequences. J Pediatr. 2001 Oct;139(4):478486.CrossRefGoogle ScholarPubMed
Michna, J, Jobe, AH, Ikegami, M. Positive end-expiratory pressure preserves surfactant function in preterm lambs. Am J Respir Crit Care Med. 1999 Aug;160(2):634639.CrossRefGoogle ScholarPubMed
Probyn, ME, Hooper, SB, Dargaville, PA, et al. Positive end expiratory pressure during resuscitation of premature lambs rapidly improves blood gases without adversely affecting arterial pressure. Pediatr Res. 2004 Aug;56(2):198204.CrossRefGoogle ScholarPubMed
Crossley, KJ, Morley, CJ, Allison, BJ, et al. Blood gases and pulmonary blood flow during resuscitation of very preterm lambs treated with antenatal betamethasone and/or Curosurf: effect of positive end-expiratory pressure. Pediatr Res. 2007 Jul;62(1):3742.CrossRefGoogle ScholarPubMed
Polglase, GR, Hooper, SB, Gill, AW, et al. Cardiovascular and pulmonary consequences of airway recruitment in preterm lambs. J Appl Physiol (1985). 2009 Apr;106(4):13471355.CrossRefGoogle ScholarPubMed
Kluckow, M, Evans, N. Relationship between blood pressure and cardiac output in preterm infants requiring mechanical ventilation. J Pediatr. 1996 Oct;129(4):506512.CrossRefGoogle ScholarPubMed
Polglase, GR, Moss, TJ, Nitsos, I, Allison, BJ, Pillow, JJ, Hooper, SB. Differential effect of recruitment maneuvres on pulmonary blood flow and oxygenation during HFOV in preterm lambs. J Appl Physiol (1985). 2008 Aug;105(2):603610.CrossRefGoogle ScholarPubMed
Mirro, R, Busija, D, Green, R, Leffler, C. Relationship between mean airway pressure, cardiac output, and organ blood flow with normal and decreased respiratory compliance. J Pediatr. 1987 Jul;111(1):101106.CrossRefGoogle ScholarPubMed
Biondi, JW, Schulman, DS, Soufer, R, et al. The effect of incremental positive end-expiratory pressure on right ventricular hemodynamics and ejection fraction. Anesth Analg. 1988 Feb;67(2):144151.CrossRefGoogle ScholarPubMed
de Waal, KA, Evans, N, Osborn, DA, Kluckow, M. Cardiorespiratory effects of changes in end expiratory pressure in ventilated newborns. Arch Dis Child Fetal Neonatal Ed. 2007 Nov;92(6):F444F448.CrossRefGoogle ScholarPubMed
Kluckow, M, Evans, N. Low superior vena cava flow and intraventricular haemorrhage in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2000 May;82(3):F188F194.CrossRefGoogle ScholarPubMed
Miletin, J, Dempsey, EM. Low superior vena cava flow on day 1 and adverse outcome in the very low birthweight infant. Arch Dis Child Fetal Neonatal Ed. 2008 Sep;93(5):F368F371.CrossRefGoogle ScholarPubMed
Polglase, GR, Hillman, NH, Pillow, JJ, et al. Positive end-expiratory pressure and tidal volume during initial ventilation of preterm lambs. Pediatr Res. 2008 Nov;64(5):517522.CrossRefGoogle ScholarPubMed
Chiumello, D, Pristine, G, Slutsky, AS. Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999 Jul;160(1):109116.CrossRefGoogle Scholar
Quilez, ME, Fuster, G, Villar, J, et al. Injurious mechanical ventilation affects neuronal activation in ventilated rats. Crit Care. 2011;15(3):R124.CrossRefGoogle ScholarPubMed
Bohrer, B, Silveira, RC, Neto, EC, Procianoy, RS. Mechanical ventilation of newborns infant changes in plasma pro- and anti-inflammatory cytokines. J Pediatr. 2010 Jan;156(1):1619.CrossRefGoogle ScholarPubMed
Noori, S, McCoy, M, Anderson, MP, Ramji, F, Seri, I. Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants. J Pediatr. 2014 Feb;164(2):264270.CrossRefGoogle ScholarPubMed
Threlkeld, SW, Lynch, JL, Lynch, KM, Sadowska, GB, Banks, WA, Stonestreet, BS. Ovine proinflammatory cytokines cross the murine blood-brain barrier by a common saturable transport mechanism. Neuroimmunomodulation. 2010;17(6):405410.CrossRefGoogle ScholarPubMed
Polglase, GR, Nitsos, I, Baburamani, AA, et al. Inflammation in utero exacerbates ventilation-induced brain injury in preterm lambs. J Appl Physiol (1985). 2012 Feb;112(3):481489.CrossRefGoogle ScholarPubMed
Viscardi, RM, Muhumuza, CK, Rodriguez, A, et al. Inflammatory markers in intrauterine and fetal blood and cerebrospinal fluid compartments are associated with adverse pulmonary and neurologic outcomes in preterm infants. Pediatr Res. 2004 Jun;55(6):10091017.CrossRefGoogle ScholarPubMed
Volpe, JJ. Postnatal sepsis, necrotizing entercolitis, and the critical role of systemic inflammation in white matter injury in premature infants. J Pediatr. 2008 Aug;153(2):160163.CrossRefGoogle ScholarPubMed
Yanowitz, TD, Jordan, JA, Gilmour, CH, et al. Hemodynamic disturbances in premature infants born after chorioamnionitis: association with cord blood cytokine concentrations. Pediatr Res. 2002 Mar;51(3):310316.CrossRefGoogle ScholarPubMed
Loeliger, M, Inder, T, Cain, S, et al. Cerebral outcomes in a preterm baboon model of early versus delayed nasal continuous positive airway pressure. Pediatrics. 2006 Oct;118(4):16401653.CrossRefGoogle Scholar
Albertine, KH. Brain injury in chronically ventilated preterm neonates: collateral damage related to ventilation strategy. Clin Perinatol. 2012 Sep;39(3):727740.CrossRefGoogle ScholarPubMed
Saugstad, OD, Aune, D, Aguar, M, Kapadia, V, Finer, N, Vento, M. Systematic review and meta-analysis of optimal initial fraction of oxygen levels in the delivery room at </=32 weeks. Acta Paediatr. 2014 Jul;103(7):744751.CrossRefGoogle ScholarPubMed
Frank, L, Sosenko, IR. Development of lung antioxidant enzyme system in late gestation: possible implications for the prematurely born infant. J Pediatr. 1987 Jan;110(1):914.CrossRefGoogle ScholarPubMed
Torbati, D, Tan, GH, Smith, S, et al. Multiple-organ effect of normobaric hyperoxia in neonatal rats. J Crit Care. 2006 Mar;21(1):8593.CrossRefGoogle ScholarPubMed
Siew, ML, te Pas, AB, Wallace, MJ, et al. Positive end-expiratory pressure enhances development of a functional residual capacity in preterm rabbits ventilated from birth. J Appl Physiol. 2009 May;106(5):14871493.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×