Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T18:18:19.829Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 September 2015

Hsiao-Dong Chiang
Affiliation:
Cornell University, New York
Luís F. C. Alberto
Affiliation:
Universidade de São Paulo
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Stability Regions of Nonlinear Dynamical Systems
Theory, Estimation, and Applications
, pp. 452 - 466
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, R., Robbin, J., Transversal Mappings and Flows, Benjamin, New York, 1967Google Scholar
Ailon, A., Segev, R., Arogeti, S., “A simple velocity-free controller for attitude regulation of a spacecraft with delayed feedback”, IEEE Transactions on Automatic Control, v.49, n.1, pp.125130, Jan 2004CrossRefGoogle Scholar
Alberto, L. F. C., Transient Stability Analysis: Studies of the BCU method; Damping Estimation Approach for Absolute Stability in SMIB Systems (In Portuguese), Escola de Eng. de São Carlos – Universidade de São Paulo, 1997Google Scholar
Alberto, L. F. C., Calliero, T. R., Martins, A., Bretas, N. G., “An invariance principle for nonlinear discrete autonomous dynamical systems”, IEEE Transactions on Automatic Control, v.52, n.4, pp.692697, Apr 2007CrossRefGoogle Scholar
Alberto, L. F. C., Chiang, H. D., “Controlling unstable equilibrium point theory for stability assessment of two-time scale power system models”, IEEE Power and Energy Society General Meeting, Pittsburgh, PA, pp.19, 2008CrossRefGoogle Scholar
Alberto, L. F. C., Chiang, H. D., “Uniform approach for stability analysis of fast subsystem of two-time-scale nonlinear systems”, International Journal of Bifurcation and Chaos, v.17, n.11, pp.41954203, 2007CrossRefGoogle Scholar
Alberto, L. F. C., Chiang, H. D., “Characterization of stability region for general autonomous nonlinear dynamical systems”, IEEE Transactions on Automatic Control, v.57, pp.15641569, 2012CrossRefGoogle Scholar
Amaral, F. M., Alberto, L. F. C., “Stability region bifurcations of nonlinear autonomous dynamical systems: type-zero saddle-node bifurcations”, International Journal of Robust and Nonlinear Control, v.21, n.6, pp.591612, 2011CrossRefGoogle Scholar
Amaral, F. M., Alberto, L. F. C., “Type-zero saddle-node bifurcations and stability region estimation of nonlinear autonomous dynamical systems”, International Journal of Bifurcation and Chaos in Applied Science and Engineering, v.22, n.1, p.1250020 (16 pages), 2012Google Scholar
Amaral, F. M., Alberto, L. F. C., “Stability boundary characterization of nonlinear autonomous dynamical systems in the presence of saddle-node equilibrium points”, TEMA Tendências em Matemática Aplicada e Computacional, v.13, pp.143154, 2012Google Scholar
Amaral, F. M., Alberto, L. F. C., Bretas, N. G., “Stability boundary characterization of nonlinear autonomous dynamical systems in the presence of a type-zero saddle-node equilibrium point”, TEMA Tendências em Matemática Aplicada e Computacional, v.11, pp.111120, 2010CrossRefGoogle Scholar
Amato, F., Cosentino, C., Merola, A., “On the region of attraction of nonlinear quadratic systems”, Automatica, v.43, pp.21192123, 2007CrossRefGoogle Scholar
Anderson, B., Keller, J., “Discretization techniques in control systems”, Control and Dynamic Systems, v.66, pp.47112, 1994Google Scholar
Arnold, V., Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1977Google Scholar
Arrow, K. L., Hahn, F. H., General Competitive Analysis, Holden Day, San Francisco, CA, 1971Google Scholar
Artstein, Z., “Stability in the presence of singular perturbation”, Nonlinear Analysis, v.34, pp.817827, 1998CrossRefGoogle Scholar
Aylett, P. D., “The energy integral-criterion of transient stability limits of power systems”, Proceedings of the IEEE, v.105, n.8, pp.527536, Sept 1958Google Scholar
Baer, S. M., Li, B. T., Smith, H. L., “Multiple limit cycles in the standard model of three species competition for three essential resources”, Journal of Mathematical Biology, v.52, n.6, pp.745760, Jun 2006CrossRefGoogle ScholarPubMed
Baillieul, J., Byrnes, C. I., “Geometric critical point analysis of lossless power system models”, IEEE Transactions on Circuits and Systems, v.29, pp.724737, 1982CrossRefGoogle Scholar
Baker, J., “An algorithm for the location of transition states”, Journal of Computational Chemistry, v.7, n.4, pp.385395, 1986CrossRefGoogle Scholar
Balu, N., Bertram, T., Bose, A., Brandwajn, V., Cauley, G., Curtice, D., Fouad, A., Fink, L., Lauby, M. G., Wollenberg, B., Wrubel, J. N., “On-line power system security analysis” (Invited paper), Proceedings of the IEEE, v.80, n.2, pp.262280, Feb 1992CrossRefGoogle Scholar
Bergen, A. R., Hill, D. J., “A structure preserving model for power system stability analysis”, IEEE Transactions on Power Apparatus and Systems, v.100, pp.2535, 1981CrossRefGoogle Scholar
Bhatia, N. P., Szego, G. P., Stability Theory of Dynamical Systems, Springer-Verlag, 1970CrossRefGoogle Scholar
Blanchini, F., “Set invariance in control”, Automatica, v.35, pp.17471767, 1999CrossRefGoogle Scholar
Bondi, P., Casalino, G., Gambardella, L., “On the iterative learning control theory for robotic manipulators”, IEEE Journal of Robotics and Automation, v.4, n.1, pp.1422, Feb 1998CrossRefGoogle Scholar
Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, v.15, SIAM, Philadelphia, PA, 1994CrossRefGoogle Scholar
Brave, Y., Heymann, M., “On stabilization of discrete-event processes”, International Journal on Control, v.51, n.5, pp.11011117, 1990CrossRefGoogle Scholar
Bretas, N. G., Alberto, L. F. C., “Lyapunov function for power systems with transfer conductances: an extension of the invariance principle”, IEEE Transactions on Power Systems, v.18, n.2, pp.769777, May 2003CrossRefGoogle Scholar
Brockett, R. W., Asymptotic stability and feedback stabilization. In Differential Geometric Control Theory, Brockett, R. W., Millmann, R. S., and Sussmann, H. J., Eds., Progress in Mathematics, Birkhauser, Boston, MA, 1983Google Scholar
Bronstein, I. U., Ya, A. K., Smooth Invariant Manifolds and Normal Forms, World Scientific, Singapore, 1994CrossRefGoogle Scholar
Burridge, R. R., Rizzi, A. A., Koditschek, D. E., “Sequential composition of dynamically dexterous robot behaviors”, International Journal of Robotics Research, v.18, n.6, pp.534555, Jun 1999CrossRefGoogle Scholar
Cabré, X., Fontich, E., de la Llave, R., “The parametrization method for invariant manifolds III. Overview and applications”, Journal of Differential Equations, v.218, n.2, pp.444515, 2005CrossRefGoogle Scholar
Cai, D., “Multiple equilibria and bifurcations in an economic growth model with endogenous carrying capacity”, International Journal of Bifurcation and Chaos, v.20, n.11, pp.34613472, 2010CrossRefGoogle Scholar
Chadalavada, V., Vittal, V., Ejebe, G. C., et al., “An on-line contingency filtering scheme for dynamic security assessment”, IEEE Transactions on Power Systems, v.12, n.1, pp.153161, Feb 1997CrossRefGoogle Scholar
Chang, K. W., “Two problems in singular perturbations of differential equations”, Journal of the Australian Mathematical Society, pp.3350, 1969CrossRefGoogle Scholar
Chen, Y., Chen, J., “Robust composite control for singularly perturbed systems with time-varying uncertainties”, Journal of Dynamic Systems Measurement and Control – Transactions of the ASME, v.117, n.4, pp.445452, Dec 1995CrossRefGoogle Scholar
Chen, Y. K., Schinzinger, R., “Lyapunov stability of multimachine power systems using decomposition-aggregation method”, Proc. IEEE -PES Winter Meeting, paper A 80036–4, 1980Google Scholar
Chesi, G., “Estimating the domain of attraction for non-polynomial systems via lmi optimizations”, Automatica, v.45, n.6, pp.15361541, 2009CrossRefGoogle Scholar
Chesi, G., Domain of Attraction, Analysis and Control via SOS Programming, Lecture Notes in Control and Information Sciences, v.415, Springer-Verlag, London, 2011Google Scholar
Chesi, G., Garulli, A., Tesi, A., Vicino, A., “LMI-based computation of optimal quadratic Lyapunov functions for odd polynomial systems”, International Journal of Robust and Nonlinear Control, v.15, pp.3549, 2005CrossRefGoogle Scholar
Chesi, G., Tesi, A., Vicino, A., “Computing optimal quadratic Lyapunov functions for polynomial nonlinear systems via LMIs”, IFAC 15th Triennial World Congress, Barcelona, Spain, 2002Google Scholar
Chiang, C. J., Stefanopoulou, A. G., Jankoviv, M., “Nonlinear observer-based control of load transitions in homogeneous charge compression ignition engines”, IEEE Transactions on Control Systems Technology, v.15, n.3, pp.438448, May 2007CrossRefGoogle Scholar
Chiang, H. D., “Analytical results on the direct methods for power system transient stability analysis”, Control and Dynamic Systems: Advances in Theory and Application, v.43, pp.275334, Academic Press, New York, 1991Google Scholar
Chiang, H. D., Direct Methods for Stability Analysis of Electrical Power Systems: Theoretical Foundation, BCU Methodologies and Application, John Wiley & Sons, 2011Google Scholar
Chiang, H. D., The BCU method for direct stability analysis of electric power systems: pp. theory and applications, Systems Control Theory for Power Systems, IMA Volumes in Mathematics and Its Applications, v.64, pp.3994, Springer-Verlag, New York, 1995CrossRefGoogle Scholar
Chiang, H. D., “Study of the existence of energy functions for power-systems with losses”, IEEE Transactions on Circuits and Systems, v.36, n.11, pp.14231429, Nov 1989CrossRefGoogle Scholar
Chiang, H. D., Chen, J. H., Reddy, C. K., Trust-Tech-based global optimization methodology for nonlinear programming. In Lectures on Global Optimization, Pardalos, P. M. and Coleman, T. F., Eds., American Mathematical Society, 2009Google Scholar
Chiang, H. D., Chu, C.C., “A systematic search method for obtaining multiple local optimal solutions of nonlinear programming problems”, IEEE Transactions on Circuits and Systems: I, v.43, n.2, pp.99109, 1996CrossRefGoogle Scholar
Chiang, H. D., Chu, C. C.. “Theoretical foundation of the BCU method for direct stability analysis of network-reduction power system models with small transfer conductances”, IEEE Transactions on Circuits and Systems: I, v.42, n.5, pp.252265, May 1995CrossRefGoogle Scholar
Chiang, H. D., Chu, C. C., Cauley, G., “Direct stability analysis of electric power systems using energy functions: theory, applications and perspectives”, Proceedings of the IEEE, v.38, n.11, pp.14971529, Nov 1995CrossRefGoogle Scholar
Chiang, H. D., Conneen, T. P., Flueck, A.J., “Bifurcations and chaos in electric power systems: Numerical studies”, Journal of the Franklin Institute, v.331, n.6, pp.10011036, Nov1994CrossRefGoogle Scholar
Chiang, H. D., Fekih-Ahmed, L., “Quasi-stability regions of nonlinear dynamical systems: optimal estimation”, IEEE Transactions on Circuits and Systems: I, v.43, n.82, pp.636642, Aug 1996CrossRefGoogle Scholar
Chiang, H. D., Hirsch, M. W., Wu, F. F., “Stability region of nonlinear autonomous dynamical systems”, IEEE Transactions on Automatic Control, v.33, n.1, pp.1627, Jan 1988CrossRefGoogle Scholar
Chiang, H. D., Ku, B. Y., Thorp, J. S., “A constructive method for direct analysis of transient stability”, IEEE Proc. 27th Conf. on Decision Control, Austin, TX, pp.684689 Dec 1988Google Scholar
Chiang, H. D., Lee, J., Trust-Tech paradigm for computing high-quality optimal solutions: method and theory. In Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems, Lee, K. Y. and El-Sharkawi, M. A., Eds., pp.209234, Wiley-IEEE Press, 2008CrossRefGoogle Scholar
Chiang, H. D., Liu, C. W., Varaiya, P. P., “Chaos in a simple power system”, IEEE Transactions on Power Systems, v.8, n.4, pp.14071417, Nov 1993CrossRefGoogle Scholar
Chiang, H. D., Subramanian, A. K., “BCU dynamic security assessor for practical power system models”, IEEE PES Summer Meeting, Edmonton, Alberta, July 18–22, pp.287293, 1999Google Scholar
Chiang, H. D., Tada, Y., Li, H., Power system on-line transient stability assessment (invited chapter), Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, New York, 2007Google Scholar
Chiang, H. D., Thorp, J. S., “Stability regions of nonlinear systems: a constructive methodology”, IEEE Transactions on Automatic Control, v.34, n.12, pp.12291241, Dec 1989CrossRefGoogle Scholar
Chiang, H. D., Wang, T., Neighboring local-optimal solutions and its applications. In Optimization in Science and Engineering, Springer, pp.6788, 2014CrossRefGoogle Scholar
Chiang, H. D., Wang, B., Jiang, Q. Y., Applications of Trust-Tech methodology in optimal power flow of power systems. In Optimization in the Energy Industry, Springer, pp.297318, 2009CrossRefGoogle Scholar
Chiang, H. D., Wang, C. S., Li, H., “Development of BCU classifiers for on-line dynamic contingency screening of electric power systems”, IEEE Transactions on Power Systems, v.14, n.2, pp.660666, May 1999CrossRefGoogle Scholar
Chiang, H. D., Wu, F. F., Varaiya, P. P., “A BCU method for direct analysis of power system transient stability”, IEEE Transactions on Power Systems, v.8, n.3, pp.11941208, Aug 1994CrossRefGoogle Scholar
Chiang, H. D., Wu, F. F., Varaya, P. P., “Foundations of direct methods for power system transient stability analysis”, IEEE Transactions on Circuits and Systems, v.34, n.2, pp.160173, Feb 1987CrossRefGoogle Scholar
Chiang, H. D., Zheng, Y., Tada, Y., Okamoto, H., Koyanagi, K., Zhou, Y. C., “Development of on-line BCU dynamic contingency classifiers for practical power systems”, 14th Power System Computation Conference (PSCC), Spain, June 24–28, 2002Google Scholar
Chow, J. H., Time-Scale Modeling of Dynamic Networks with Applications to Power Systems, Springer-Verlag, Berlin, 1982CrossRefGoogle Scholar
Chu, C. C., Chiang, H. D., “Constructing analytical energy functions for network-preserving power system models”, Circuits Systems and Signal Processing, v.24, n.4, pp.363383, 2005CrossRefGoogle Scholar
Chua, L. O., Deng, A.-C., “Impasse points. Part I: numerical aspects”, International Journal of Circuit Theory and Applications, v.17, n.2, pp.213235, Apr 1989CrossRefGoogle Scholar
Chua, L. O., Wu, C. W., Huang, A., Zhong, G., “A universal circuit for studying and generating chaos – part I: route to chaos”, IEEE Transactions on Circuits and Systems, v.40, n.10, pp.732744, Oct 1993CrossRefGoogle Scholar
Ciliz, K., Harova, A., “Stability regions of recurrent type neural networks”, Electronic Letters, v.28, n.11, pp.10221024, May 1992CrossRefGoogle Scholar
Cloosterman, M., van de Wouw, N., Heemels, W., Nijmeijer, H., “Stability of networked control systems with uncertain time-varying delays”, IEEE Transactions on Automatic Control, v.54, n.7, pp.15751580, Jul 2009CrossRefGoogle Scholar
Conley, C. C., Isolated Invariant Sets and the Morse Index, American Mathematical Society, Providence, RI, 1978CrossRefGoogle Scholar
Corless, M., Garofalo, F., Glielmo, L., “New results on composite control of singularly perturbed uncertain linear systems”, Automatica, v.29, n.2, pp.387400, Mar 1993CrossRefGoogle Scholar
Corless, M., Glielmo, L., “On the exponential stability of singularly perturbed systems”, SIAM Journal on Control and Optimization, v.30, n.6, pp.13381360, Nov 1992CrossRefGoogle Scholar
Coutinho, D. F., Bazanella, A. S., Trofino, A., Silva, A. S., “Stability analysis and control of a class of differential algebraic nonlinear systems”, International Journal of Robust and Nonlinear Control, v.14, n.16, pp.13011326, 2004CrossRefGoogle Scholar
Coutinho, D. F., da Silva, J. M. Gomes Jr., “Computing estimates of the region of attraction for rational control systems with saturating actuators”, IET Control Theory and Applications, v.4, n.3, pp.315325, 2008CrossRefGoogle Scholar
Coutinho, D. F., Souza, C. E., “Robust domain of attraction estimates for a class of uncertain discrete-time nonlinear systems”, 8th IFAC Symposium on Nonlinear Control Systems, Bologna, Italy, pp.185190, 2010CrossRefGoogle Scholar
da Cruz, J. J., Geromel, J. G., “Decentralized control design for a class of nonlinear discrete time systems”, Proc. 25th Conf. on Decision and Control, Athens, Greece, pp.11821183, 1986CrossRefGoogle Scholar
Davison, E. J., Kurak, E. M., “A computational method for determining quadratic Lyapunov functions for nonlinear systems”, Automatica, v.7, pp.627, 1971CrossRefGoogle Scholar
Davy, R. J., Hiskens, I. A., “Lyapunov functions for multimachine power systems with dynamic loads”, IEEE Transactions on Circuits and Systems: I, v.44, n.9, pp.796812, Sept 1997CrossRefGoogle Scholar
Dieudonne, J., Foundation of Modern Analysis, 2nd edn, Academic Press,New York, 1969Google Scholar
Djukanovic, M., Sobajic, D., Pao, Y.-H., “Neural-net based tangent hypersurfaces for transient security assessment of electric power systems”, International Journal of Electrical Power and Energy Systems, v.16, n.6, pp.399408, 1994CrossRefGoogle Scholar
Dong, Y., Cheng, D., Oin, H., “Applications of a Lyapunov function with a homogeneous derivative”, IEE Proceedings Control Theory and Applications, v.150, n.3, pp.255260, May 2003CrossRefGoogle Scholar
Ejebe, G. C., Jing, C., Gao, B., Waight, J. G. Pieper, G., Jamshidian, F., Hirsch, P., “On-line implementation of dynamic security assessment at Northern States power company”, IEEE PES Summer Meeting, Edmonton, Alberta, July 18–22, pp.270272, 1999Google Scholar
Ejebe, G. C., Tong, J., “Discussion of clarifications on the BCU method for transient stability analysis”, IEEE Transactions on Power Systems, v.10, n.1, pp.218219, Feb 1995Google Scholar
Elaiw, A. M., Xia, X., “HIV dynamics: analysis and robust multirate MPC-based treatment schedules”, Journal of Mathematical Analysis and Applications, v.359, n.1, pp.285301, Nov 2009CrossRefGoogle Scholar
El-Kady, M. A., Tang, C. K., Carvalho, V. F., Fouad, A. A., Vittal, V., “Dynamic security assessment utilizing the transient energy function method”, IEEE Transactions on Power Systems, v.1, n.3, pp.284291, Aug 1986CrossRefGoogle Scholar
Electric Power Research Institute, User’s Manual for DIRECT 4.0, EPRI TR-105886s, Electric Power Research Institute, Palo Alto, CA, Dec 1995Google Scholar
Ernst, D., Ruiz-Vega, D., Pavella, M., Hirsch, P., Sobajic, D., “A unified approach to transient stability contingency filtering, ranking and assessment”, IEEE Transactions on Power Systems, v.16, n.3, pp.435443, Aug 2001CrossRefGoogle Scholar
Fairén, V., Velarde, M. G., “Dissipative structure in a nonlinear reaction–diffusion model with a forward inhibition; stability of secondary multiple steady states”, Reports on Mathematical Physics, v.16, n.3, pp.421432, 1979CrossRefGoogle Scholar
Fallside, F., Patel, M. R., “Step-response behaviour of a speed-control system with a back-e.m.f. nonlinearity”, Proceedings of the IEEE, v.112, n.10, pp.19791984, Oct 1965Google Scholar
Fenichel, N., “Geometric singular perturbation theory for ordinary differential equations”, Journal of Differential Equations, v.31, pp.5398, 1979CrossRefGoogle Scholar
Floudas, C. A., Pardalos, P. M., Recent Advances in Global Optimization, Princeton Series in Computer Science, Princeton, NJ, 1992Google Scholar
Fouad, A. A., Vittal, V., Power System Transient Stability Analysis: Using the Transient Energy Function Method, Prentice-Hall, Englewood Cliffs, NJ, 1991Google Scholar
Franks, J. H., Homology and Dynamical Systems, C.B.M.S. Regional Conf. Series in Mathematics, v.49, American Mathematical Society, Providence, RI, 1982CrossRefGoogle Scholar
Genesio, R., Tartaglia, M., Vicino, A., “On the estimation of asymptotic stability regions: state of the art and new proposals”, IEEE Transactions on Automatic Control, v.30, pp.747755, Aug 1985CrossRefGoogle Scholar
Genesio, R., Vicino, A., “Some results on the asymptotic stability of second-order nonlinear systems”, IEEE Transactions on Automatic Control, v.29, n.9, pp.857861, Sept 1984CrossRefGoogle Scholar
Genesio, R., Vicino, A., “New techniques for constructing asymptotic stability regions for nonlinear systems”, IEEE Transactions on Circuits and Systems, v.31, pp.574581, Jun 1984CrossRefGoogle Scholar
Glover, S. F., Modeling and Stability Analysis of Power Electronics Based Systems, PhD Thesis, Purdue University, 2003Google Scholar
da Silva, J. M. G., Tarbouriech, S., “Anti-windup design with guaranteed region of stability: an LMI-based approach”, IEEE Transactions on Automatic Control, v.50, n.1, pp.106111, Jan 2005Google Scholar
Gouveia, J. R. R. Jr., Amaral, F. M., Alberto, L. F. C., “Stability boundary characterization of nonlinear autonomous dynamical systems in the presence of a supercritical Hopf equilibrium point”, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, v.23, n.12, 1350196, 2013Google Scholar
Grammel, G., “Exponential stability of nonlinear singularly perturbed differential equations”, SIAM Journal on Control and Optimization, v.44, n.5, pp.17121724, 2005CrossRefGoogle Scholar
Grizzle, J. W., Kang, J. M., “Discrete-time control design with positive semi-definite Lyapunov functions”, System and Control Letters, v.43, pp.287292, 2001CrossRefGoogle Scholar
Grujic, L. T., “Uniform asymptotic stability of nonlinear singularly perturbed and large scale systems”, International Journal of Control, v.33, n.3, pp.481504, 1981CrossRefGoogle Scholar
Grune, L., Wirth, F., “Computing control Lyapunov functions via a Zubov type algorithm”, Proc. 39th Conf. on Decision and Control, Sydney, Australia, Dec 2000Google Scholar
Guckenheimer, J., Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1993Google Scholar
Guckeinheimer, J., Holmes, P., Nonlinear Oscillations, Dynamical System, and Bifurcations of Vector Fields, 1st edn., Springer-Verlag, New York, 1983CrossRefGoogle Scholar
Guillemin, V., Pollack, A., Differential Topology, Prentice-Hall, Englewood Cliffs, NJ, 1974Google Scholar
Gunther, N., Hoffman, G. W., “Qualitative dynamics of a network model of regulation of the immune system: a rationale for the IgM to IgG switch”, Journal of Theoretical Biology, v.94, pp.815855, 1982CrossRefGoogle ScholarPubMed
Hahn, W., Stability of Motion, Springer-Verlag, New York, 1967CrossRefGoogle Scholar
Hale, J. K., Ordinary Differential Equations, Krieger, Huntington, NY, 1980Google Scholar
Hale, J. K., Introduction to Functional Differential Equations, Applied Mathematical Sciences, v.99, Springer-Verlag, 1993CrossRefGoogle Scholar
Hale, J. K., Koçak, H., Dynamics and Bifurcations, Springer-Verlag, New York, 1991CrossRefGoogle Scholar
Halsey, K. M., Glover, K.. “Analysis and synthesis on a generalized stability region”, IEEE Transactions on Automatic Control, v.50, n.7, pp.9971009, Jul 2005CrossRefGoogle Scholar
Hartman, P., Ordinary Differential Equations, Wiley, New York, 1973Google Scholar
Hartman, P., Ordinary Differential Equations, 2nd edn., Classics in Applied Mathematics, SIAM, 1982Google Scholar
Hassan, M. A., Storey, C., “Numerical determination of domains of attraction for electrical power systems using the method of Zubov analysis”, International Journal of Control, v.34, pp.371381, 1981CrossRefGoogle Scholar
Henkelman, G., Johannesson, G., Jonsson, H., Methods for finding saddle points and minimum energy paths. In Progress on Theoretical Chemistry and Physics, Schwartz, S. D., Ed., Kluwer Academic, pp.269300, 2000Google Scholar
Henrion, D., Tarbouriech, S., Garcia, G., “Output feedback robust stabilization of uncertain linear systems with saturating controls: an LMI approach”, IEEE Transactions on Automatic Control, v.44, n.11, pp.22302237, Nov 1999CrossRefGoogle Scholar
Hill, D. J., Mareels, I. M. Y., “Stability theory for differential/algebraic systems with applications to power systems”, IEEE Transactions on Circuits and Systems, v.37, n.11, pp.14161423, Nov 1990CrossRefGoogle Scholar
Hirsch, M. W.. Differential Topology, Springer-Verlag, New York, 1976CrossRefGoogle Scholar
Hirsch, M. W., Pugh, C. C., Shub, M., “Invariant manifolds”, Bulletin of the American Mathematical Society, v.76, n.5, pp.10151019, 1970CrossRefGoogle Scholar
Hirsch, M. W., Smale, S., Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, New York, 1974Google Scholar
Hiskens, I., Davy, R., “Lyapunov function analysis of power systems with dynamic loads”, Proceedings of the 35th IEEE Conference on Decision and Control, v.4, pp.38703875, Dec 1996CrossRefGoogle Scholar
Hiskens, I., Hill, D., “Energy functions, transient stability and voltage behavior in power systems with nonlinear loads”, IEEE Transactions on Power Systems, v.4, n.4, pp.15251533, Oct 1989CrossRefGoogle Scholar
Hopfield, J. J., “Neurons, dynamics and computation”, Physics Today, v.47, pp.4046, Feb 1994CrossRefGoogle Scholar
Hsu, C. S., Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems, Applied Mathematical Sciences, v.64, Springer-Verlag, 1988Google Scholar
Hsu, P., Sastry, S., “The effect of discretized feedback in a closed loop system”, Proc. 26th Conf. on Decision Control, Los Angeles, CA, pp.15181523, 1987CrossRefGoogle Scholar
Hu, X., “Techniques in the stability of discrete systems”, Control and Dynamic Systems, v.66, pp.153216, 1994Google Scholar
Hurewicz, W., Hallman, H., Dimension Theory, Princeton University Press, Princeton, NJ, 1948Google Scholar
IEEE Committee Report, “Transient stability test systems for direct methods”, IEEE Transactions on Power Systems, v.7, pp.3743, Feb 1992.CrossRefGoogle Scholar
Jadbabaie, A., Hauser, J., “On the stability of recending horizon control with a general terminal cost”, IEEE Transactions on Automatic Control, v.50, n.5, pp.674678, May 2005CrossRefGoogle Scholar
Jardim, J. L., Neto, C. S., Kwasnicki, W. T., “Design features of a dynamic security assessment system”, IEEE Power System Conf. and Exhibition, New York, October 13–16, 2004Google Scholar
Jing, Z., Jia, Z., Gao, Y., “Research of the stability region in a power system”, IEEE Transactions on Circuits and Systems: I, v.50, n.2, pp.298304, Feb 2003CrossRefGoogle Scholar
Jocic, L. B., “On the attractivity of imbedded systems”, Automatica, v.17, pp.853860, 1980CrossRefGoogle Scholar
Johansen, T. A., “Computation of Lyapunov functions for smooth nonlinear systems using convex optimization”, Automatica, v.36, n.11, pp.16171626, Nov 2000CrossRefGoogle Scholar
Kato, T., Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966Google Scholar
Kaufman, M., Thomas, R., “Model analysis of the bases of multistationarity in the humoral immune response”, Journal of Theoretical Biology, v.129, pp.141162, 1987CrossRefGoogle ScholarPubMed
Kellet, C. M., Teel, A. R., “Smooth-Lyapunov functions and robustness of stability for difference inclusions”, System and Control Letters, v.52, pp.395405, 2004CrossRefGoogle Scholar
Khait, Y., Panin, A., Averyanov, A., “Search for stationary points of arbitrary index by augmented Hessian method”, International Journal of Quantum Chemistry, v.54, n.6, pp.329336, 1995CrossRefGoogle Scholar
Khalil, H. K., Nonlinear Systems, 3rd edn., Prentice Hall, 2002Google Scholar
Kim, J., “On-line transient stability calculator”, Final Report RP2206–1, EPRI, Palo Alto, CA, March 1994Google Scholar
Klimushchev, A. I., Krasovskii, N. N., “Uniform asymptotic stability of systems of differential equations with a small parameter in the derivative terms”, Journal of Applied Mathematics and Mechanics, v.25, n.4, pp.680690, 1961CrossRefGoogle Scholar
Koditschek, D. E., “Exact robot navigation by means of potential functions: some topological considerations”, Proceedings of the IEEE International Conference on Robotics and Automation, v.4, pp.16, 1987Google Scholar
Kokotovic, P., Singular Perturbation Techniques in Control Theory, Lecture Notes in Control and Information Sciences, v.90, pp.155, Springer, 1987Google Scholar
Kokotovic, P., Marino, R.On vanishing stability regions in nonlinear systems with high-gain feedback”, IEEE Transactions on Automatic Control, v.31, n.10, pp.967970, Oct 1986CrossRefGoogle Scholar
Korobeinikov, A., “Stability of ecosystems: global properties of a general predator–prey model”, Mathematical Medicine and Biology, v.26, n.4, pp.309321, 2009CrossRefGoogle ScholarPubMed
Krasovskii, N. N., Problems of the Theory of Stability of Motion (In Russian, 1959), English translation, Stanford University Press, Stanford, CA, 1963Google Scholar
Krauskopf, B., Osinga, H. M., Doedel, E. J., Henderson, M. E., Guckenheimer, J., Vladimirsky, A., Dellnitz, M., Junge, O., “A survey of methods for computing (un)stable manifolds of vector fields”, International Journal of Bifurcation and Chaos, v.15, n.3, pp.763791, 2005CrossRefGoogle Scholar
Kundur, P., Power System Stability and Control, McGraw Hill, New York, 1994Google Scholar
Kuo, D.H., Bose, A., “A generation rescheduling method to increase the dynamics security of power systems”, IEEE Transactions on Power Systems, v.10, n.1, pp.6876, 1995.Google Scholar
Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 1995CrossRefGoogle Scholar
Langson, W., Allevne, A., “A stability result with application to nonlinear regulation”, Journal of Dynamic Systems Measurement and Control – Transactions of the ASME, v.124, n.3, pp.452445, Sept 2002CrossRefGoogle Scholar
Laila, D. S., Lovera, M., Astolfi, A., “A discrete-time observer design for spacecraft attitude determination using an orthogonality-preserving algorithm”, Automatica, v.47, pp.975980, 2011CrossRefGoogle Scholar
LaSalle, J. P., Stability of Dynamical Systems, SIAM, Philadelphia, PA, 1976CrossRefGoogle Scholar
LaSalle, J. P., Stability Theory for Difference Equations, Studies in Ordinary Differential Equations, Studies in Mathematics, v.14, pp.131, Mathematical Association of America, Washington, DC, 1977Google Scholar
LaSalle, J. P., “Some extensions of Liapunov’s second method”, IRE Transactions on Circuit Theory, v.7, pp.520527, 1960CrossRefGoogle Scholar
LaSalle, J. P., The Stability and Control of Discrete Processes, Springer-Verlag, New York, 1986CrossRefGoogle Scholar
La Salle, J. P., Lefschetz, S., Stability by Lyapunov’s Direct Method, Academic Press, New York, 1961Google Scholar
Lee, J., Trajectory-based Methods for Global Optimization: Theory and Algorithms, PhD Dissertation, Department of Electrical Engineering, Cornell University, Ithaca, NY, 1999Google Scholar
Lee, J., Chiang, H. D., “A dynamical trajectory-based methodology for systematically computing multiple optimal solutions of general nonlinear programming problems”, IEEE Transactions on Automatic Control, v.49, n.6, pp.888899, 2004CrossRefGoogle Scholar
Lee, J., Chiang, H. D., “Theory of stability regions for a class of nonhyperbolic dynamical systems and its application to constraint satisfaction problems”, IEEE Transactions on Circuits and Systems: I, v.49, n.2, pp.196209, 2002Google Scholar
Levin, A., “An analytical method of estimating the domain of attraction for polynomial differential equations”, IEEE Transactions on Automatic Control, v.39, n.12, pp.24712475, Dec 1994CrossRefGoogle Scholar
Lewis, A., “An investigation of the stability in the large for an autonomous second-order two degree-of-freedom system”, International Journal of Non-Linear Mechanics, v.37, n.2, pp.153169, Mar 2002CrossRefGoogle Scholar
Liu, L., Tian, Y., Huang, X., A Method to Estimate the Basin of Attraction of the System with Impulse Effects: Application to Biped Robots, Intelligent Robotics and Applications, pp.953962, Springer, 2008Google Scholar
Llamas, A., De La, J. Lopez, R., Mili, L., Phadke, A. G., Thorp, J. S., “Clarifications on the BCU method for transient stability analysis”, IEEE Transactions Power Systems, v.10, n.1, pp.210219, Feb 1995CrossRefGoogle Scholar
Loccufier, M., Noldus, E., “A new trajectory reversing method for estimating stability regions of autonomous nonlinear systems”, Nonlinear Dynamics, v.21, pp.265288, 2000CrossRefGoogle Scholar
Luxemburg, L. A., Huang, G., “On the number of unstable equilibria of a class of nonlinear systems”, 26th IEEE Conf. on Decision Control, pp.889894, 1987.CrossRefGoogle Scholar
Luyckx, L., Loccufier, M., Noldus, E., “Computational methods in nonlinear stability analysis: stability boundary calculations”, Journal of Computational and Applied Mathematics, v.168, n.1–2, pp.289297, 2004CrossRefGoogle Scholar
Mansour, Y., Vaahedi, E., Chang, A. Y., Corns, B. R., Garrett, B. W., Demaree, K., Athay, T., Cheung, K., “B.C.Hydro’s on-line transient stability assessment (TSA) model development, analysis and post-processing”, IEEE Transactions on Power Systems, v.10, n.1, pp.241253, Feb 1995CrossRefGoogle Scholar
Magnusson, P. C., “Transient energy method of calculating stability”, AIEE Transactions, v.66, pp.747755, 1947Google Scholar
O’Malley, R. E. Jr. Singular Perturbation Methods for Ordinary Differential Equations, Applied Mathematical Series, v.89, Springer-Verlag, 1991CrossRefGoogle Scholar
Marcus, C. M., Westervelt, R. M., “Dynamics of iterated-map neural networks”, Physics Review A, v.40, n.1, pp.501504, 1989CrossRefGoogle ScholarPubMed
Margolis, S. G., Vogt, W. G., “Control engineering applications of V. I. Zubov’s construction procedure for Lyapunov functions”, IEEE Transactions on Automatic Control, v.8, pp.104113, Apr 1963CrossRefGoogle Scholar
May, R. M., Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, NJ, 1973Google ScholarPubMed
Mazumder, S. K., Nayfeh, A. H., Borojevic, D., “A nonlinear approach to the analysis of stability and dynamics of standalone and parallel dc-dc converters”, Proc. Applied Power Electronics Conference and Exposition, pp.784790, 2001Google Scholar
Mercede, F., Chow, J. C., Yan, H., Fishl, R., “A framework to predict voltage collapse in power systems”, IEEE Transactions on Power Systems, v.3, n.4, pp.18071813, Nov 1988CrossRefGoogle Scholar
Meza, J. L., Santibanez, V., Campa, R., “An estimate of the domain of attraction for the PID regulator of manipulators”, International Journal of Robotics and Automation, v.22, n.3, pp.187195, 2007CrossRefGoogle Scholar
Michel, A. N., Miller, R. K., Qualitative Analysis of Large Scale Dynamical Systems, Academic Press, New York, 1977Google Scholar
Michel, A. N., Miller, R. K., Nam, B. H., “Stability analysis of interconnected systems using computer generated Lyapunov functions”, IEEE Transactions on Circuits and Systems, v.29, pp.431440, Jul 1982CrossRefGoogle Scholar
Michel, A. N., Sarabudla, N. R., Miller, R. K., “Stability analysis of complex dynamical systems: some computational methods”, Circuits, Systems and Signal Processing, v.l, pp.171202, 1982CrossRefGoogle Scholar
Milani, B. E. A., “Contractive polyhedra for discrete time linear systems with saturating controls”, Proceedings of the 38th IEEE Conference on Decision and Control, pp.20392044, Dec 1999Google Scholar
Miller, R. K., Michel, A. N., Ordinary Differential Equations, Academic Press, New York, 1982Google Scholar
Milnor, J., “On the concept of attractor”, Communications in Mathematical Physics, v.99, pp.177195, 1985CrossRefGoogle Scholar
Milnor, J., Topology from the Differential Viewpoint, University of Virginia Press, 1965Google Scholar
Min, Y., Chen, L., Hou, K., Song, Y., “The credible regions on the approximate stability boundaries of nonlinear dynamic systems”, IEEE Transactions on Automatic Control, v.52, n.8, pp.14861491, 2007CrossRefGoogle Scholar
Mira, C., Fournier-Prunaret, D., Gardini, L., Kawakami, H., Cathala, J. C., “Basin bifurcations of two-dimensional noninvertible maps: fractalization of basins”, International Journal of Bifurcation and Chaos, v.4, n.2, pp.343381,1994CrossRefGoogle Scholar
Miron, R., Fichthorn, K., “The step and slide method for finding saddle points on multidimensional potential surfaces”, Journal of Chemical Physics, v.115, n.19, pp.87428747, 2001CrossRefGoogle Scholar
Mokhtari, S., et al., Analytical methods for contingency selection and ranking for dynamic security assessment, Final Report RP3103–3, EPRI, Palo Alto, CA, May 1994Google Scholar
Morse, M., The Calculus of Variations in the Large, American Mathematical Society, 1934CrossRefGoogle Scholar
Munkres, J. R.. Topology – A First Course, Prentice- Hall, Englewood Cliffs, NJ, 1975Google Scholar
Munkres, J. R., Topology, 2nd edn., Prentice-Hall, 2000Google Scholar
Nicolaescu, L. I., An Invitation to Morse Theory, Springer, 2007Google Scholar
Noldus, E., Spriet, J., Verriest, E., Van Cauwenberghe, A., “A new Lyapunov technique for stability analysis of chemical reactors”, Automatica, v.10, n.6, pp.675680, Dec 1974CrossRefGoogle Scholar
Ortega, R., Loria, A., Kelly, R., “A semiglobally stable output feedback PI2D regulator for robot manipulators”, IEEE Transactions on Automatic Control, v.40, n.8, pp.14321436, Aug 1995CrossRefGoogle Scholar
Paganini, F., Lesieutre, B.C., A critical review of the theoretical foundations of the BCU method, Technical Report TR97-005, MIT Lab., Electromagnetic and Electrical Systems, July 1997Google Scholar
Paganini, F., Lesieutre, B.C., “Generic properties, one-parameter deformations, and the BCU method”, IEEE Transactions on Circuits and Systems: I, v.46, n.6, pp.760763, Jun 1999CrossRefGoogle Scholar
Pai, M. A., Energy Function Analysis for Power System Stability, Kluwer Academic Publishers, Boston, MA, 1989CrossRefGoogle Scholar
Palis, J., “On Morse–Smale dynamical systems”, Topology, v.8, pp.385405, 1969.CrossRefGoogle Scholar
Palis, J., de Melo, J. W., Geometric Theory of Dynamical Systems: An Introduction, Springer-Verlag, New York, 1981Google Scholar
Palis, J., Melo, W., Introdução aos Sistemas Dinâmicos, Edgard Blucher, 1978Google Scholar
Peixoto, M. M., “On an approximation theorem of Kupka and Smale”, Journal of Differential Equations, v.3, n.2, pp.214227, Apr 1967CrossRefGoogle Scholar
Peponides, G., Kokotovic, P. V., Chow, J. H., “Singular perturbations and time scales in nonlinear models of power systems”, IEEE Transactions on Circuits and Systems, v.29, n.11, pp. 758767, Nov 1982CrossRefGoogle Scholar
Perko, L., Differential Equations and Dynamical Systems, Springer, New York, 1991CrossRefGoogle Scholar
Peterman, R. M., “A simple mechanism that causes collapsing stability regions in exploited salmonid populations”, Journal of the Fisheries Research Board of Canada, v.34, pp.11301142, 1977CrossRefGoogle Scholar
Praprost, K., Loparo, K. A., “A stability theory for constrained dynamic systems with applications to electric power systems”, IEEE Transactions on Automatic Control, v.41, n.11, pp.16051617, Nov 1996CrossRefGoogle Scholar
Psiaki, M. L., Luh, Y. P., “Nonlinear system stability boundary approximation by polytopes in state-space”, International Journal of Control, v.57, n.1, pp.197224, Jan 1993CrossRefGoogle Scholar
Pugh, C. C., “On a theorem of Hartman”, American Journal of Mathematics, v.91 n.2, pp.363367, 1969CrossRefGoogle Scholar
Quapp, W., Hirsch, M., Imig, O., Heidrich, D., “Searching for saddle points of potential energy surfaces by following a reduced gradient”, Journal of Computational Chemistry, v.19, pp.10871100, 19983.0.CO;2-M>CrossRefGoogle Scholar
Rabelo, M., Alberto, L. F. C., “An extension of the invariance principle for a class of differential equations with finite delay”, Advances in Difference Equations, article ID 496936, pp.14, 2010CrossRefGoogle Scholar
Rahimi, F. A., Lauby, M. G., Wrubel, J. N., Lee, K. L., “Evaluation of the transient energy function method for on-line dynamic security assessment”, IEEE Transactions on Power Systems, v.8, n.2, pp.497507, May 1993CrossRefGoogle Scholar
Reddy, C., Chiang, H. D., “Finding Saddle points using stability boundaries”, Proc. 2005 ACM Symp. on Applied Computing, pp.212213, 2005CrossRefGoogle Scholar
Reddy, C., Chiang, H. D., “A stability boundary based method for finding saddle points on potential energy surfaces”, Journal of Computational Biology, v.13, n.3, pp.745766, Apr 2006CrossRefGoogle ScholarPubMed
Riverin, L., Valette, A., “Automation of security assessment for Hydro-Quebec’s power system in short-term and real-time modes”, International Conference on Large High Voltage Electric Systems CIGRE, pp.39103, 1998Google Scholar
Robinson, C., Dynamic Systems. Stability, Symbolic Dynamics and Chaos, 2nd edn., CRC Press, 1998CrossRefGoogle Scholar
Rodriguez, H., Ortega, R., Escobar, G., Barabanov, N., “A robustly stable output feedback saturated controller for the boost DC-to-DC converter”, Systems and Control Letters, v.40, n.1, pp.18, 2000CrossRefGoogle Scholar
Rodrigues, H. M., Alberto, L. F. C., Bretas, N. G., “On the invariance principle: generalizations and applications to synchronization”, IEEE Transactions on Circuits and Systems: I, v.47, n.5, pp.730739, May 2000CrossRefGoogle Scholar
Rodrigues, H. M., Wu, J. H., Gabriel, L. R. A., “Uniform dissipativeness, robust synchronization and location of the attractor of parametrized nonautonomous discrete systems”, International Journal of Bifurcation and Chaos, v.21, n.2, pp.513526, 2011CrossRefGoogle Scholar
Rudin, W., Principles of Mathematical Analysis, International Series in Pure and Applied Mathematics, 3rd edn., McGraw-Hill, 1976Google Scholar
Saberi, A., Khalil, H., “Quadratic-type Lyapunov functions for singularly perturbed systems”, IEEE Transactions on Automatic Control, v.29, n.6, pp.542550, Jun 1984CrossRefGoogle Scholar
Saeki, M., Araki, M., “A new estimate of the stability regions of large-scale systems”, International Journal of Control, v.32, n.2, pp.257269, 1980CrossRefGoogle Scholar
Sasaki, H., “An approximate incorporation of field flux decay into transient stability analysis of multimachine power systems by the second method of lyapunov”, IEEE Transactions on Power Apparatus and Systems, v.98, n.2, pp.473483, Mar–Apr 1979CrossRefGoogle Scholar
Sauer, P. W., Pai, M. A., Power System Dynamics and Stability, Prentice-Hall, Englewood Cliffs, NJ 1998Google Scholar
Segel, L. A., “Multiple attractors in immunology: theory and experiment”, Biophysical Chemistry, v.72, pp.223230, 1998CrossRefGoogle ScholarPubMed
Shields, D. N., Storey, C., “The behavior of optimal Lyapunov functions”, International Journal of Control, v.21, n.4, pp.561573, 1975CrossRefGoogle Scholar
Shim, H., Seo, J. H., “Non-linear output feedback stabilization on a bounded region of attraction”, International Journal of Control, v.73, n.5, pp.416426, Mar 2000CrossRefGoogle Scholar
Shub, M., Global Stability of Dynamical Systems, Springer-Verlag, New York, 1987CrossRefGoogle Scholar
Siqueira, A. A. G., Terra, M. H., “Nonlinear H-infinity control applied to biped robots”, Proceedings of the 2006 IEEE International Conference on Control Applications, Munich, Germany, Oct 2006CrossRefGoogle Scholar
Shyu, K. K., Chen, S. R., “Estimation of asymptotic stability region and sliding domain of uncertain variable structure systems with bounded controllers”, Automatica, v.32, n.5, pp.797800, 1996CrossRefGoogle Scholar
Siddiqee, M. W., “Transient stability of an a.c. generator by Lyapunov’s direct method”, International Journal of Control, v.8, n.2, pp.131144, 1968CrossRefGoogle Scholar
Šiljak, D. D., Large-Scale Dynamic Systems: Stability and Structure, North-Holland, New York, 1978Google Scholar
Silva, F. H. J. R., Alberto, L. F. C., London, J. B. A. Jr., Bretas, N. G., “Smooth perturbation on a classical energy function for lossy power system stability analysis”, IEEE Transactions on Circuits and Systems: I, v.52, n.1, pp.222229, Jan 2005CrossRefGoogle Scholar
Smale, S., “Differential dynamical systems”, Bulletin of the American Mathematical Society, v.73, pp.747817, 1967CrossRefGoogle Scholar
Smith, K. T., Primer of Modern Analysis, Springer -Verlag, New York, 1983CrossRefGoogle Scholar
Sotomayor, J., Generic bifurcations of dynamical systems. In Dynamical Systems, Peixoto, M. M., Ed., pp.549560, Academic Press, New York, 1973CrossRefGoogle Scholar
Steward, G. W., Introduction to Matrix Computation, Academic Press, New York, 1973Google Scholar
Stott, B., “Power system dynamic response calculations”, Proceedings of the IEEE, v.67, pp.219241, 1979CrossRefGoogle Scholar
Strang, G., Introduction to Linear Algebra, Wellesley-Cambridge Press, 1994Google Scholar
Susuki, Y., Hikihara, T., Chiang, H. D., “Stability boundaries analysis of electric power system with dc transmission based on differential-algebraic equation system”, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, v.E87-A, n.9, pp.23392346, Sept 2004Google Scholar
Tada, Y., Chiang, H. D., “Design and implementation of on-line dynamic security assessment”, IEEJ Transactions on Electrical and Electronic Engineering, v.4, n.3, pp.313321, 2008CrossRefGoogle Scholar
Tada, Y., Kurita, A., Zhou, Y. C., Koyanagi, K., Chiang, H. D., Zheng, Y., “BCU-guided time-domain method for energy margin calculation to improve BCU-DSA system”, IEEE/PES Transmission and Distribution Conference and Exhibition, 2002Google Scholar
Tada, Y., Takazawa, T., Chiang, H. D., Li, H., Tong, J., “Transient stability evaluation of a 12,000-bus power system data using TEPCO-BCU”, 15th Power System Computation Conference (PSCC), Belgium, Aug 2005Google Scholar
Tada, Y., Ono, A., Kurita, A., Takahara, Y., Shishido, T., Koyanagi, K., “Development of analysis function for separated power system data based on linear reduction techniques on integrated power system analysis package”, 15th Conference of the Electric Power Supply, Shanghai, China, Oct 2004Google Scholar
Takegaki, M., Arimoto, S., “A new feedback method for dynamic control of manipulators”, Journal of of Dynamic Systems, Measurement, and Control, v.103, n.2, pp.119125, Jun 1981CrossRefGoogle Scholar
Takens, F., Constrained equations; a study of implicit differential equations and their discontinuous solutions. In Structural Stability, the Theory of Catastrophes, and Applications in the Sciences, Lecture Notes in Mathematics, v.525, pp.143234, Springer, Berlin, 1976CrossRefGoogle Scholar
Tan, W., Packard, A., “Stability region analysis using polynomial and composite polynomial Lyapunov function and sum-of-squares programming”, IEEE Transactions on Automatic Control, v.53, n.2, pp.565571, Mar 2008CrossRefGoogle Scholar
Thom, R., Structural Stability and Morphogenesis, Benjamin, Reading, MA, 1975Google Scholar
Thomas, R. J., Thorp, J. S., “Towards a direct test for large scale electric power system instabilities”, IEEE Proc. 24th Conf. on Decision and Control, Fort Lauderdale, FL, pp.6569, Dec 1985CrossRefGoogle Scholar
Tibken, B., “Estimation of the domain of attraction for polynomial systems via LMI’s”, Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, Dec 2000Google Scholar
Tong, J., Chiang, H. D., Conneen, T. P., “A sensitivity-based BCU method for fast derivation of stability limits in electric power systems”, IEEE Transactions on Power Systems, v.8, n.4, pp.14181437, 1993CrossRefGoogle Scholar
Topcu, U., Packard, A., Seiler, P., Wheeler, T., “Stability region analysis using simulations and sum-of-squares programming”, Proceedings of the 2007 American Control Conference, New York, Jul 2007CrossRefGoogle Scholar
Toussaint, G. J., Basar, T., “Achieving nonvanishing stability regions with high gain cheap control using H techniques: the second-order case”, Systems and Control Letters, v.44, n.2, pp.7989, Oct 2001CrossRefGoogle Scholar
Tsolas, N., Arapostathis, A., Varaiya, P., “A structure preserving energy function for power system transient stability analysis”, IEEE Transactions on Circuits and Systems, v.32, n.10, pp.10411050, Oct 1985CrossRefGoogle Scholar
Ushiki, S., “Analytic expressions of the unstable manifolds”, Proceedings of the Japan Academy, Series A, v.56, pp.239243, 1980Google Scholar
Vannelli, A., Vidyasagar, M., “Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems”, Automatica, v.21, n.1, pp.6980, 1985CrossRefGoogle Scholar
Varaiya, P. P., Wu, F. F., Chen, R. L., “Direct methods for transient stability analysis of power systems: recent results”, Proceedings of the IEEE, v.73, pp.17031715, Dec 1985CrossRefGoogle Scholar
Varghese, M., Thorp, J. S., “An analysis of truncated fractal growths in the stability boundaries of three-node swing equations”, IEEE Transactions on Circuits and Systems, v.35, pp.825834, 1988CrossRefGoogle Scholar
Vasil’eva, A. B., Butuzov, V. F., Asymptotical Expansions of the Solutions of Singularly Perturbed Systems, Nauka, Moscow, 1973Google Scholar
Vasil’eva, A. B., Butuzov, V. F., Kalachev, L. V., The Boundary Function Method for Singular Perturbation Problems, SIAM, Philadelphia, PA, 1995CrossRefGoogle Scholar
Veliov, V., “A generalization of the Tikhonov theorem for singularly perturbed differential inclusions”, Journal of Dynamical and Control Systems, v.3, n.3, pp.291319, 1997CrossRefGoogle Scholar
Venkatasubramanian, V., A Taxonomy of the Dynamics of Large Differential-Algebraic Systems such as the Power Systems, PhD Thesis, Washington University, Sever Institute of Technology, 1992Google Scholar
Venkatasubramanian, V., Ji, W., “Coexistence of four different attractors in a fundamental power system model”, IEEE Transactions on Circuits and Systems: I, v.46, n.3, pp.405409, Mar 1999CrossRefGoogle Scholar
Venkatasubramanian, V., Schattler, H., Zaborsky, J., “Dynamic of large constrained nonlinear systems – a taxonomy theory”, Proceedings of the IEEE, v.83, n.11, pp.15301560, Nov 1995CrossRefGoogle Scholar
Vidyasagar, M., Nonlinear Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1978Google Scholar
Vidyasagar, M., “New directions of research in nonlinear system theory”, Proceedings of the IEEE, v.74, pp.10601091, Aug 1986CrossRefGoogle Scholar
Villafuerte, R., Mondié, S., “Estimate of the region of attraction for a class of nonlinear time delay systems: a leukemia post-transplantation dynamics example”, Proc. 46th IEEE Conference on Decision and Control, New Orleans, LA, pp.633638, Dec 2007CrossRefGoogle Scholar
Villafuerte, R., Mondié, S., Niculescu, S. I., “Stability analysis and estimate of the region of attraction of a human respiratory model”, Proc. 47th IEEE Conference on Decison and Control, Mexico, pp.26442649, 2008CrossRefGoogle Scholar
Vournas, C. D., Sakelladaridis, N., “Region of attraction in a power system with discrete ltcs”, IEEE Transactions on Circuits and Systems: I, v.53, n.7, pp.16101618, Jul 2006CrossRefGoogle Scholar
Wada, N., et al., “Model predictive tracking control using a state-dependent gain-schedule feedback”, Proc. 2010 Int. Conf. on Modelling, Identification and Control, Japan, pp.418423, 2010Google Scholar
Wang, L., Morison, K., “Implementation of on-line security assessment”, IEEE Power and Energy Magazine, v.4, n.5, Sept/Oct 2006Google Scholar
Wang, W. X., Zhang, Y. B., Liu, C. Z., “Analysis of a discrete-time predator-prey system with allee effect”, Ecological Complexity, v.8, n.1, pp.8185, 2011CrossRefGoogle Scholar
Weissenberger, S., “Stability regions of large-scale systems”, Automatica, v.9, pp.653663, 1973CrossRefGoogle Scholar
Westervelt, E. R., Grizzle, J. W., de Wit, C. C., “Switching and PI control of walking motions of planar biped walkers”, IEEE Transactions on Automatic Control, v.48, n.2, pp.308312, Feb 2003CrossRefGoogle Scholar
Westervelt, E. R., Grizzle, J. W., Koditschek, D. E., “Hybrid zero dynamics of planar biped walkers”, IEEE Transactions on Automatic Control, v.48, n.1, pp.4256, Jan 2003CrossRefGoogle Scholar
Wiggins, S., Global Bifurcations and Chaos: Analytical Methods, Applied Mathematical Sciences, v.73, Springer-Verlag, New York, 1988CrossRefGoogle Scholar
Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, 1990CrossRefGoogle Scholar
Wimmer, H. K., “Inertia theorem for matrices, controllability, and linear vibration”, Linear Algebra and its Applications, v.8, pp.337343, 1974CrossRefGoogle Scholar
Xin, H., Gan, D., Huang, M., Wang, K., “Estimating the stability region of singular perturbation power systems with saturation nonlinearities: an LMI-based method”, IET Control Theory and Applications, v.4, n.3, pp.351361, 2010CrossRefGoogle Scholar
Xin, H., Gan, D., Qiu, J., Qu, Z., “Methods for estimating stability regions with application to power systems”, European Transactions on Electric Power, v.17, n.2, pp.113133, Mar/Apr 2007CrossRefGoogle Scholar
Xu, D., Li, S., Pu, Z., Guo, Q., “Domain of attraction of nonlinear discrete systems with delays”, Computers and Mathematics with Applications, v.38, pp.155162, 1999CrossRefGoogle Scholar
Yee, H., Spalding, B. D., “Transient stability analysis of multi-machine systems by the method of hyperplanes”, IEEE Transactions on Power Apparatus and Systems, v.96, n.1, pp.276284, Jan 1977CrossRefGoogle Scholar
Yu, T., Yu, J., Li, H., Lin, H., “Complex dynamics of industrial transferring in a credit-constrained economy”, Physics Procedia, v.3, n.5, pp.16771685, 2010CrossRefGoogle Scholar
Yu, Y., Vongsuriya, K., “Nonlinear power system stability study by Lyapunov function and Zubov’s methodIEEE Transactions on Power Apparatus and Systems, v.86, pp.14801485, 1967CrossRefGoogle Scholar
Zaborszky, J., Huang, G., Zheng, B., Leung, T. C., “On the phase portrait of a class of large nonlinear dynamic systems such as the power system”, IEEE Transactions on Automatic Control, v.33, n.1, pp.415, Jan 1988CrossRefGoogle Scholar
Zadeh, L. A., Desoer, C. A., Linear System Theory – The State Space Approach, McGraw-Hill, New York, 1963Google Scholar
Zhong, J., et al., “New results on non-regular linearization of non-linear systems”, International Journal of Control, v.80, n.10, pp.16511664, 2007CrossRefGoogle Scholar
Zou, Y., Yin, M. H., Chiang, H. D., “Theoretical foundation of the controlling UEP method for direct transient stability analysis of network-preserving power system models”, IEEE Transactions on Circuits and Systems, v.50, n.10, pp.13241336, Oct 2003Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Hsiao-Dong Chiang, Cornell University, New York, Luís F. C. Alberto, Universidade de São Paulo
  • Book: Stability Regions of Nonlinear Dynamical Systems
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139548861.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Hsiao-Dong Chiang, Cornell University, New York, Luís F. C. Alberto, Universidade de São Paulo
  • Book: Stability Regions of Nonlinear Dynamical Systems
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139548861.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Hsiao-Dong Chiang, Cornell University, New York, Luís F. C. Alberto, Universidade de São Paulo
  • Book: Stability Regions of Nonlinear Dynamical Systems
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139548861.024
Available formats
×