Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-07T06:23:42.507Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 October 2015

J. M. Carpenter
Affiliation:
Argonne National Laboratory, Illinois
C.-K. Loong
Affiliation:
Argonne National Laboratory, Illinois
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Elements of Slow-Neutron Scattering
Basics, Techniques, and Applications
, pp. 497 - 510
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and Stegun, I. A. (1967). Handbook of Mathematical Functions. National Bureau of Standards Applied Mathematics Series 55 (AMS-55), 6th printing with corrections. Washington, DC: US Government Printing Office. See Eq. 6.1.37 and Table 6.3 for G(n) and f1(n).Google Scholar
Agamalian, M. (2011). The Bonse-Hart USANS instrument. In Neutrons in Soft Matter, Chap. II.1.3.1. ed. Imae, T., Kanaya, T., Furusaka, M. and Toriaki, N.. Somerset, NJ: John Wiley & Sons, pp. 7394.CrossRefGoogle Scholar
Agamalian, M., Carpenter, J. M., and Treimer, W. (2010). Remarkable precision of the 90-year-old dynamic diffraction theories of Darwin and Ewald. J. Appl. Crystallogr. 43, 900–6.CrossRefGoogle Scholar
Alefeld, B., Kollmar, A., and Dasannacharya, B. A. (1975). The one-dimensional CH3-quantumrotator in solid 4-methyl-pyridine studied by inelastic neutron scattering. J. Chem. Phys. 63(10), 4415–7.CrossRefGoogle Scholar
Aleksandrov, Yu. A., Chalupa, B., Kulda, J., Machekhina, T. A., Michalec, R., Mikula, P., Seddlakova, L. N., J. Vavra, J., and Vrana, M. (1984). Backscattering diffraction of a pulsed neutron beam on an elastically bent single crystal. Phys. Status Solidi A 88, 455–60.Google Scholar
Alimov, S., Buzzetti, S., Gebauer, B., Petrillo, C., Sacchetti, F., Schulz, Ch., and Wilpert, T. (2005). Microstrip detectors with 157Gd converters. Neutron News 16(4), 22–4.CrossRefGoogle Scholar
Alvarez, L. W. and Bloch, F. (1940). A quantitative determination of the neutron moment in absolute nuclear magnetons. Phys. Rev. 57, 111–22.CrossRefGoogle Scholar
Anderson, I. S. (2003). Neutron Optics. In Neutron Data Booklet, 2nd edn, Chap. 3.2, ed. Dianoux, A.-J. and Lander, G. H.. Grenoble, France: Institut Laue-Langevin.Google Scholar
Ankner, J. F. and Majkrzak, C. F. (1992). Subsurface profile refinement for neutron specular reflectivity. Neutron Opt. Devices Appl. Proc. SPIE 1738, 259–69.CrossRefGoogle Scholar
Appleby, G. A. and Vontoble, P. (2008). Optimization of lithium borate-barium chloride glass-ceramic thermal-neutron imaging plates. Nucl. Instrum. Meth. A 594, 253–6.CrossRefGoogle Scholar
Arai, M., Inamura, Y., and Otomo, T. (1999). Novel dynamics of vitreous silica and metallic glass. Philos. Mag. B 79(11/12), 1733–9.CrossRefGoogle Scholar
Aynajian, P. (2010). Electron-phonon interaction in conventional and unconventional superconductors. Ph.D. thesis, Berlin: Springer-Verlag.Google Scholar
Bacon, G. E. (1975). Neutron Diffraction, 3rd edn. Oxford: Clarendon Press.Google Scholar
Balucani, U. and Zoppi, M. (1994). Dynamics of the Liquid State. Oxford: Clarendon Press.Google Scholar
Barrett, C. S., Mueller, M. H., and Heaton, L. (1963). Germanium as a neutron monochromator. Rev. Sci. Instrum. 34, 347.CrossRefGoogle Scholar
Basler, R., Boskovic, C., Chaboussant, G., Güdel, H. U., Murrie, M., Ochsenbein, S. T., and Sieber, A. (2003). Molecular spin clusters: New synthetic approaches and neutron scattering studies. CHEMPHYSCHEM 4, 910–26.Google ScholarPubMed
Baxter, D. V., Cameron, J. M., Derenchuk, V. P., Lavelle, C. M., Leuschner, M. B., Lone, M. A., Meyer, H. O., Rinckel, T., and Snow, W. M. (2005). Status of the low-energy neutron source at Indiana University. Nucl. Instr. Meth. 241, 209212.CrossRefGoogle Scholar
Beckurts, K. H. and Wirtz, K. (1964). Neutron Physics. New York: Springer-Verlag.CrossRefGoogle Scholar
Beno, M. L., Soderholm, L., Capone, D. W., Hinks, D. G., Jorgensen, J. D., Grace, J. D., Schuller, I. K., Segre, C. U., and Zhang, K. (1987). Structure of the single-phase high-temperature superconductor YBa2Cu3O7-δ. Appl. Phys. Lett. 51(1), 57–9.CrossRefGoogle Scholar
Berne, B., Boon, J. P., and Rice, S. A. (1966). On the calculation of autocorrelation functions of dynamical variables. J. Chem. Phys. 45(4), 1086–96.CrossRefGoogle Scholar
Bewly, R. I., Taylor, J. W., and Bennington, S. M. (2011). Nucl. Instrum. Meth. A 637, 128.CrossRefGoogle Scholar
Bloch, F. (1936). On the magnetic scattering of neutrons. Phys. Rev. 50(3), 259–60.CrossRefGoogle Scholar
Blume, M. (1963). Polarization effects in the magnetic elastic scattering of slow neutrons. Phys. Rev. 130(5), 1670–6.CrossRefGoogle Scholar
BNL (Web). Brookhaven National Laboratory Instrumentation Division Gaseous Detector Laboratory report. www.inst.bnl.gov/programs/gasnobledet/neutrons.Google Scholar
Bohn, H. G., Kollmar, A., and Zinn, W. (1984). Spin dynamics in the cubic Heisenberg ferromagnet EuS. Phys. Rev. B 30(11), 6504–13.CrossRefGoogle Scholar
Bohn, H. G., Zinn, W., Dorner, B., and Kollmar, A. (1980). Neutron scattering study of spin waves and exchange interactions in ferromagnetic EuS. Phys. Rev. B 22(11), 5447–52.CrossRefGoogle Scholar
Böni, P., Roessli, B., Görlitz, D., and Kötzler, J. (2002). Damping of spin waves and singularity of the longitudinal modes in the dipolar critical regime of the Heisenberg ferromagnet EuS. Phys. Rev. B 65, 144434–1–9.CrossRefGoogle Scholar
Born, M. and Oppenheimer, R. (1927). Zur quantentheorie der molekeln (On the quantum theory of molecules). Ann. Physik 389(20), 457–84.CrossRefGoogle Scholar
Breit, G. and Wigner, E. (1936). Capture of slow neutrons. Phys. Rev. 49, 519–31.CrossRefGoogle Scholar
Brill, T. and Lichtenberger, H. V. (1947). Neutron cross-section studies with the rotating shutter mechanism. Phys. Rev. 72(7), 585590.CrossRefGoogle Scholar
Brockhouse, B. N. (1957). Scattering of neutrons by spin waves in magnetite. Phys. Rev. 106, 859864.CrossRefGoogle Scholar
Brockhouse, B. N. (1997). Slow neutron spectroscopy and the grand atlas of the physical world. In Nobel Lectures in Physics 1991–1995, ed. Ekspong, G.. Stockholm: World Scientific, pp. 107138.Google Scholar
Brockhouse, B. N. and Stewart, A. T. (1958). Normal modes of aluminum by neutron spectometry. Rev. Mod. Phys. 30, 236–49.Google Scholar
Brown, K. L. (1979). The ion-optical program (TRANSPORT). SLAC Tech. Pub. 91.Google Scholar
Brown, K. L. and Servranckx, R. V. (1984). First- and second order charged particle optics. SLAC-PUB-3381.Google Scholar
Brown, P. J., Forsyth, J. B., and Tasset, F. (1993). Neutron polarimetry. P. Royal Soc. Lond. A 442, 147–60.Google Scholar
Brûlet, A., Thévenot, V., Lairez, D., Lecommandoux, S., Agut, W., Armes, S., and Désert, S. (2008). Toward a new lower limit for the minimum scattering vector on the very small angle neutron scattering spectrometer at Laboratoire Léon Brillouin. J. Appl. Crystallogr. 41, 161–6.CrossRefGoogle Scholar
Carlisle, P. (1998). Coded-aperture imaging. http://paulcarlisle.net/old/codedaperture.html.Google Scholar
Carpenter, J. M. (1973). High intensity, pulsed thermal neutron source. U. S. Patent No. 3778627, 1973.Google Scholar
Carpenter, J. M. (1977). Pulsed spallation neutron sources for slow neutron scattering. Nucl. Instrum. Meth. 145, 91113.CrossRefGoogle Scholar
Carpenter, J. M. (1981). Efficient code for calculating cylindrical gas proportional counter efficiency, EFFCYL. IPNS Note #17 (unpublished internal IPNS note).Google Scholar
Carpenter, J. M. (2002). Time focusing of the general pulsed-source crystal analyzer spectrometers, I. General analysis. Nucl. Instrum. Meth. A 483, 774–83.Google Scholar
Carpenter, J. M. (2012). ICANS to UCANS: Parallel Evolution. Physics Procedia 26, 17.CrossRefGoogle Scholar
Carpenter, J. M. and Loong, C.-K. (2015). www.slowneutronscattering.com.Google Scholar
Carpenter, J. M. and Micklich, B. (2002). Technical concepts for a long-wavelength target station for the Spallation Neutron Source. Argonne National Laboratory Report 02/16.CrossRefGoogle Scholar
Carpenter, J. M. and Micklich, B. J., eds. (2005). Proc. Workshop Applications of a Very Cold Neutron Source, Argonne National Laboratory report ANL-05/42, pp. 21–24.Google Scholar
Carpenter, J. M. and Mildner, D. F. R. (1982). Neutron guide tube gain for a remote finite source. Nucl. Instrum. Meth. 196, 341–8.CrossRefGoogle Scholar
Carpenter, J. M. and Pelizzari, C. A. (1975a). Inelastic neutron scattering from amorphous solids. I. Calculation of the scattering law for model structures. Phys. Rev. B 12(6), 2391–6.Google Scholar
Carpenter, J. M. and Pelizzari, C. A. (1975b). Inelastic neutron scattering from amorphous solids. II. Interpretation of measurements. Phys. Rev. B 12(6), 2397–401.Google Scholar
Carpenter, J. M. and Price, D. L. (1985). Correlated motions in glasses studied by coherent inelastic neutron scattering. Phys. Rev. Lett. 54(5), 441–3.CrossRefGoogle ScholarPubMed
Carpenter, J. M. and Watanabe, N. (1983). Time focusing and resolution in resonance detector spectrometers. Nucl. Instrum. Meth. 213, 311–6.CrossRefGoogle Scholar
Carpenter, J. M. and Yelon, W. B. (1986). Neutron sources. In Methods of Experimental Physics, Vol. 23, Part A, Chap. 2, Neutron Scattering, ed. Sköld, K. and Price, D. L.. New York: Academic Press, pp. 99196.Google Scholar
Carpenter, J. M., Gabriel, T. A., Iverson, E. B., and Jerng, D. W. (1999). The 10-GeV question: What is the best energy to drive a pulsed spallation neutron source? Physica B 270, 272–9. See also M. Arai, Y. Kiyanagi, N. Watanabe, R. Takagi, H. Shibazaki, M. Numajiri, S. Itoh, T. Otomo, M. Furusaka, Y. Inamura, Y. Ogawa, Y. Suda, and S. Satoh (1999). Neutron production from lead targets for 12 GeV protons. J. Neutron Research 8, 71–83.CrossRefGoogle Scholar
Carpenter, J. M., Iverson, E., and Mildner, D. F. R. (2002). Time focusing of the general pulsed- source crystal analyzer spectrometers, I. General analysis. Nucl. Instrum. Meth. A 483, 784806.CrossRefGoogle Scholar
Chaboussant, G., Sieber, A., Ochsenbein, S., Güdel, H.-U., and Murrie, M., Honecker, A., Fukushima, N., and Normand, B. (2004). Exchange interactions and high-energy spin states in Mn12-acetate. Phys. Rev. B 70, 104422–1–16.CrossRefGoogle Scholar
Chadwick, J. (1932). Possible existence of a neutron. Nature 129, 312.CrossRefGoogle Scholar
Chaplot, S. L., Choudhury, N., Ghose, S., Rao, M. N., Mittal, R., and Goel, P. (2002). Inelastic neutron scattering and lattice dynamics of minerals. Eur. J. Mineral. 14, 291329.CrossRefGoogle Scholar
Chen-Mayer, H. H., Mildner, D. F. R., Sharov, V. A., Xiao, Q. F., Cheng, Y. T., Lindstrom, R. M., and Paul, R. L. (1997). A polycapillary bending and focusing lens for neutrons. Rev. Sci. Instrum. 68, 3744–50.CrossRefGoogle Scholar
Chudley, C. T. and Elliott, R. J. (1961). Neutron scattering from a liquid on a jump diffusion model. Proc. Phys. Soc. 77, 353–61.CrossRefGoogle Scholar
Colmenero, J., Moreno, A. J., and Alegria, B. (2005). Neutron scattering investigations on methyl group dynamics in polymers. Prog. Polym. Sci. 30(12), 1147–84.CrossRefGoogle Scholar
Comes, R. (1994). Synchrotron and neutron beams. In Neutron Beams and Synchrotron Radiation Sources, OECD Megascience Forum brochure, p. 95.Google Scholar
Cooper, M. J. and Nathans, R. (1967). The resolution function in neutron diffractometery. I. The resolution function of a neutron diffractometer and its application to phonon measurements. Acta Crystallogr. 23, 357–67, app. 11.CrossRefGoogle Scholar
Copley, J. R. D. (1974). Monte Carlo calculation of multiple scattering effects in thermal neutron scattering experiments. Comput. Phys. Commun. 7, 289317.CrossRefGoogle Scholar
Copley, J. R. D. (1990). An analytical method to characterize the performance of multiple section straight-sided neutron guide systems, Nucl. Instrum. Meth. A 287, 363.CrossRefGoogle Scholar
Copley, J. R. D. (1993a). The joy of acceptance diagrams. J. Neutron Res. 1, 21.CrossRefGoogle Scholar
Copley, J. R. D. (1993b). Transmission properties of neutron optical devices. J. Neutron Res. 2, 95.CrossRefGoogle Scholar
Copley, J. R. D. (2007). Total neutron scattering cross sections. Neutron News 18, 30–1.CrossRefGoogle Scholar
Courtois, P., Hamelin, B., and Andersen, K. H. (2004). Production of copper and Heusler alloy Cu2MnAl mosaic crystals for neutron monochromators. Nucl. Instrum. Meth. A 529, 157–61.CrossRefGoogle Scholar
Currat, R. and Kulda, J. (2003). Three-axis spectroscopy. In Neutron Data Booklet, 2nd edn, Chap. 2.7, ed. Dianoux, A.-J. and Lander, G. H.. Grenoble, France: Institut Laue-Langevin.Google Scholar
Cussen, L. D. and Goossens, D. J. (2002). Optimising polarised neutron scattering measurements – XYZ and polarimetry analysis. Nucl. Instrum. Meth. A 491, 226–32.CrossRefGoogle Scholar
Czirr, J. B. (1998). Low-energy neutron detector based upon lithium lanthanide borate scintillators. U. S. Patent No. 5734166, March 31, 1998.Google Scholar
Czirr, J. B., MacGillivray, G. M.. MacGillivray, R. R., and Seddon, P. J. (1999). Performance and characteristics of a new scintillator. Nucl. Instrum. Meth. A 424, 15–9.CrossRefGoogle Scholar
Dasannacharya, B. A. and Rao, K. R. (1965). Neutron scattering from liquid argon. Phys. Rev. 137(2A), A417–27.CrossRefGoogle Scholar
Dawidowski, J., Bermejo, F. J., and Granada, J. R. (1998). Efficient procedure for the evaluation of multiple scattering and multiphonon corrections in inelastic neutron-scattering experiments. Phys. Rev. B 58(2), 706–15.CrossRefGoogle Scholar
Debye, P. and Burche, A. M. (1949). Scattering by an inhomogeneous solid. J. Appl. Phys. 20, 518–25.CrossRefGoogle Scholar
DeLurgio, P. M., Farrar, K. A., Kreps, A. S., Madden, T. J., Naday, I., Weizeorick, J. T., Hammonds, J. P., Miller, M. E., and Schultz, A. J. (2005). 2-D scintillation position-sensitive neutron detector. Nuclear Science Symposium Conference Record, IEEE.Google Scholar
Désert, S., Thévenot, V., and Brûlet, A.. (2011). TPA: a very small angle neutron scattering spectrometer at LLB. Neutron News 22(2), 29.Google Scholar
Donnelly, Russell (1995). The discovery of superfluidity. Physics Today, 48 (7), 3036.CrossRefGoogle Scholar
Duderstadt, J. J. and Hamilton, L. J. (1976). Nuclear Reactor Analysis. New York: John Wiley & Sons Inc.Google Scholar
Egami, T. and Billinge, S. J. L. (2003). Underneath the Bragg Peaks. Structural Analysis of Complex Materials. Oxford, Elsevier.Google Scholar
Feder, T. (2009). U.S. government agencies work to minimize damage due to helium-3 shortfall. Physics Today 62(10), 21–3.CrossRefGoogle Scholar
Feigin, L. A. and Svergun, D. I. (1987). Structure Analysis by Small-Angle X-ray and Neutron Scattering. New York: Plenum Press, Chap. 9, p. 277 ff.CrossRefGoogle Scholar
Felcher, G. P. (1981). Neutron reflection as a probe of surface magnetism. Phys. Rev. B 24, 1595–8.CrossRefGoogle Scholar
Felcher, G. P., Hillecke, R. O., Crawford, R. K., Haumann, J., Kleb, R., and Ostrowski, G. (1987). Polarized neutron reflectometer-a new instrument to measure magnetic depth profiles Rev. Sci. Instrum. 58, 609–19.CrossRefGoogle Scholar
Fennimore, E. E. (1978). Coded-aperture imaging: predicted performance of uniformly redundant arrays. Appl. Optics 17(22), 3562–70.Google Scholar
Fennimore, E. E. and Cannon, T. M. (1978). Coded-aperture imaging with uniformly redundant arrays. Appl. Optics 17(3), 337–47.Google Scholar
Fermi, E. (1936a). On the motion of neutrons in hydrogenous substances. Ric. Sci. 7(2), 13 (in Italian), see Eq. 58. See also University of Chicago (1962). Enrico Fermi Collected Papers, Vol. I, p. 960 (Italian), p. 997 (English). Chicago, IL: University of Chicago Press.Google Scholar
Fermi, E. (1936b). Ric. Sci. 1, 13.Google Scholar
Fermi, E. (1949). Nuclear Physics. Lecture notes from a course given at the University of Chicago. Notes compiled by Jay Orear, A. H. Rosenfeld, and Schluter, R. A., rev. edn. Chicago, IL: The University of Chicago Press.Google Scholar
Fermi, E. and Marshall, L. (1947). On the interaction between neutrons and electrons. Phys. Rev. 72(12), 1139–46.CrossRefGoogle Scholar
Fermi, E., Marshall, J., and Marshall, L. (1947). A thermal neutron velocity selector and its application to the measurement of the cross section of boron. Phys. Rev. 72(3), 193–6.CrossRefGoogle Scholar
Fielding, A. L. and Mayers, J. (2002). Calibration of the electron volt spectrometer, a deep inelastic scattering spectrometer at the ISIS pulsed neutron source. Nucl. Instrum. Meth. A 480, 680–9.CrossRefGoogle Scholar
Foldy, L. L. (1952). The electron-neutron interaction. Phys. Rev. 87(5), 693–6.Google Scholar
Foldy, L. L. (1958). Neutron-electron interaction. Rev. Mod. Phys. 30(2), 471–81.CrossRefGoogle Scholar
Fraser, J. S., Green, R. E., Hilborn, J. W., Milton, J. C. D., Gibson, W. A., Gross, E. E., and Zucker, A. (1965). Neutron production in thick targets bombarded by high energy protons. Abstract. Physics in Canada 21(2), 17.Google Scholar
Fröhlich-Schlapp, M., Ioffe, A., Conrad, H.. Brückel, T., Feuss, H., and von Seggern, H. (2005). Novel materials and concepts for neutron image plates. Nucl. Instrum. Meth. A 551, 4651.CrossRefGoogle Scholar
Fujiwara, T., Takahashi, H., Yanagita, T., Kamada, K. Fukuda, K., Kawaguchi, N., Yamada, N. L., Furusaka, M., Watanabe, K., Fujimoto, Y. and Uesaka, M. (2012). Study on Ce:LiCAF scintillator for 3He alternative detector. Neutron News 23(4), 31–4.CrossRefGoogle Scholar
Fultz, B. (1998). Vibrational entropy and local structures of solids. In Local Structure from Diffraction, ed. Billinge, S. J. L. and Thorpe, M. F.. New York: Plenum Press, pp. 273–94.Google Scholar
Furrer, A. and Güdel, H. U. (1977). Molecular electronic excitations in a Cr3+ dimer observed by neutron inelastic scattering. J. Phys. C: Solid State Phys. 10, L191L195.CrossRefGoogle Scholar
Furrer, A., Mesot, J., and Strässle, T. (2009). Neutron Scattering in Condensed Matter Physics. Singapore: World Scientific.CrossRefGoogle Scholar
Gersch, H. K., McGregor, D. S., and Simpson, P. A. (2002). The effect of incremental gamma-ray doses and incremental neutron fluences upon the performance of self-biased 10B-coated high-purity epitaxial GaAs thermal neutron detectors. Nucl. Instrum. Meth. A 489(1–3), 8598.CrossRefGoogle Scholar
Gersch, H. K., and McGregor, D. S. et al. (2002). Semiconducting gallium arsenide neutron imaging detectors. Final Report to DOE NEER. DE-FG07–9813633.Google Scholar
Ghose, S., Choudhury, N., Chaplot, S. L., and Rao, K. R. (1992). Phonon density of states and thermodynamic properties of minerals. In Thermodynamic Data, ed. Saxena, S. K.. New York: Springer-Verlag, pp. 283314.CrossRefGoogle Scholar
Glazer, A. M. (1972). The classification of tilted octahedra in perovskites. Acta Cryst. B 28, 3384–92.CrossRefGoogle Scholar
Glazer, A. M. (1975). Simple ways of determining perovskite structures. Acta Cryst. A 31, 756–62.CrossRefGoogle Scholar
Goertzel, G. and Greuling, E. (1960). An approximate method for treating neutron slowing down. Nucl. Sci. Eng. 7, 69.CrossRefGoogle Scholar
Graffstein, A. (1975). Optimality of binary sequences for correlation choppers. Nucl. Instrum. Meth. 131, 173–80.CrossRefGoogle Scholar
Granroth, G. E., Kolesnikov, A. I., Sherline, T. E., Clancy, J. P., Ross, K. A., Ruff, J. P. C., Gaulin, D. B., and Nagler, S. E. (2010). SEQUOIA: a newly operating chopper spectrometer at the SNS. Proc. Int. Conf. Neut. Scattering 2009. J. Physics: Conf. Ser. 251, 012058.Google Scholar
Granroth, G. E., Vandergriff, D. H., and Nagler, S. E. (2006). SEQUOIA: A fine resolution chopper spectrometer at the SNS. Physica B 385–86, 1104.CrossRefGoogle Scholar
Greuling, E. (1952). Modified Fermi theory of neutron moderation. Phys. Rev. 87, 177.Google Scholar
Guérard, B. (2005) Microstrip gas chambers (MSGC) for future neutron instrumentation. Neutron News 16(4), 1621.CrossRefGoogle Scholar
Habib, N. (2006). Polycrystalline beryllium and graphite as cold neutron filters. J. Nucl. Radiation Phys. 1(2), 137–45.Google Scholar
Habs, D., Gross, M., Thirolf, P. G., and Böni, P. (2011). Neutron halo isomers in stable nuclei and their possible application for the production of low energy, pulsed, polarized neutron beams of high intensity and brilliance. Appl. Phys. B, 103, 485–99.CrossRefGoogle Scholar
Hammouda, B., and Mildner, D. F. R. (2007). SANS resolution with refractive optics. J. Appl. Crystallogr. 40, 250–9.CrossRefGoogle Scholar
Hansen, J. P. and McDonald, I. R. (1986). Theory of Simple Liquids. 2nd edn. London: Academic Press.Google Scholar
Harvey, B. G. (1959). Spallation. In Progress in Nuclear Physics, Vol. 7, Chap. 3, ed. Frisch, O. R.. London: Pergamon Press, pp. 90120.Google Scholar
Hempelmann, R., Richter, D., and Price, D. L. (1987). High-energy-neutron vibrational spectroscopy on β-V2H. Phys. Rev. Lett. 58(10), 1016–9.CrossRefGoogle Scholar
Hohenberg, P. and Kohn, W. (1964). Inhomogeneous electron gas. Phys. Rev. 136(3B), B864–71.CrossRefGoogle Scholar
Hughes, D. J., Wallace, J. R., and Holzman, R. W. (1948). Neutron polarization. Phys. Rev. 73, 1277.CrossRefGoogle Scholar
Ice, G. E. (1997). Microbeam focusing methods for synchrotron radiation. X-Ray Spectrom. 26, 315–26.3.0.CO;2-N>CrossRefGoogle Scholar
Ikeda, S. and Carpenter, J. M. (1985). Wide energy-range, high-resolution measurements of neutron pulse shapes of polyethylene moderators. Nucl. Instrum. Meth. A 239, 536.CrossRefGoogle Scholar
Ishikawa, Y., Shirane, G., Tarvin, J. A., and Kohgi, M. (1977). Magnetic excitations in the weak itinerant ferromagnet MnSi. Phys. Rev. B 16(11), 4956–70.CrossRefGoogle Scholar
Ishikawa, Y., Noda, Y., Uemura, Y. J., Majkrzak, C. F., and Shirane, G. (1985). Paramagnetic spin fluctuations in the weak itinerant-electron ferromagnet MnSi. Phys. Rev. B 31(9), 5884–93.CrossRefGoogle ScholarPubMed
Iwashita, Y., Tajima, Y., Ichikawa, M., Nakamura, S., Ino, T., Muto, S., and Shimizu, H. M. (2014). Variable permanent magnet sextupole lens for focusing of pulsed cold neutrons. www.kur.web.psi.ch/nop07.Google Scholar
Jin, W., Degani, M. H., Kalia, R. K., and Vashishta, P. (1992). Superconductivity in Ba1-xKxBiO3. Phys. Rev. B 45(10), 5535–46.CrossRefGoogle ScholarPubMed
Kellogg, J. M. B., Rabi, I. I., and Zacharias, J. R. (1936). The gyromagnetic properties of the hydrogens. Phys. Rev. 50, 472–81.CrossRefGoogle Scholar
Khaykovich, B., Gubarov, M. V., Bagdasarova, Y., Ramsey, B. D., and Moncton, D. E. (2011). From x-ray telescopes to neutron scattering: using axisymmetric mirors to focus a neutron beam. Nucl. Instrum. Meth. A 631, 98104.CrossRefGoogle Scholar
Kisi, E. H. and Howard, C. O. (2008). Applications of Neutron Powder Diffraction. Oxford: Oxford University Press, pp. 155–82.CrossRefGoogle Scholar
Knitel, M. J., Hommels, B., Dorenbos, P., Eijk, C. W. E. van, Berezovskaya, I., and Dotsenko, V. (2000). The feasibility of boron containing phosphors in thermal neutron imaging plates, in particular in the systems M2B5O9X:Eu2+ (M = Ca, Sr, Ba; X = Cl, Br). Part I: simulation of the energy deposition process. Nucl. Instrum. Meth. A 449, 578–94; and Part II: experimental results. Nucl. Instrum. Meth. A 449, 595–601.Google Scholar
Knoll, G. F. (2000). Radiation Detection and Measurement, 3rd edn. Hoboken, NJ: John Wiley & Sons.Google Scholar
Knoll, G. F. (2010). Radiation Detection and Measurement, 4th edn. Hoboken, NJ: John Wiley & Sons.Google Scholar
Kobayashi, H. and Satoh, M. (1999). Basic performance of a neutron sensitive photostimulated luminescence device for neutron radiography. Nucl. Instrum. Meth. A 424, 18.CrossRefGoogle Scholar
Kohara, S., Suzuya, K., Takeuchi, K., Loong, C.-K., Grimsditch, M., Weber, J. K. R., Tangeman, J. A., and Key, T. S. (2004). Glass formation at the limit of insufficient network formers. Science 303, 1649–52.CrossRefGoogle ScholarPubMed
Koizumi, S. (2011). Focusing USANS. In Neutrons in Soft Matter, Chap II.1.3.2, ed. Imae, , Kanaya, , Furusaka, , and Toriaki, . Hoboken, NJ: John Wiley & Sons, pp. 94113.Google Scholar
Kouzes, R. T. and Ely, J. H. (2010). Status summary of 3He and neutron detection alternatives for homeland security. Pacific Northwest Laboratory report PNNL-19360.CrossRefGoogle Scholar
Kulda, J. and Saroun, J. (1996). Elastically bent silicon monochromator and analyzer on a TAS instrument. Nucl. Instrum. Meth. A 379, 155–66.CrossRefGoogle Scholar
Lacy, J. L., Athanasiades, A., Sun, L., Martin, C. S., and Vazquez-Flores, G. J. (2009). Boron coated straw detectors as a replacement for 3He. In Proc. 2009 IEEE Nucl. Sci. Symp. Conf. Rec. (NSS/MIC), pp. 119–25.Google Scholar
Lamarsh, J. R. (1966). Introduction to Nuclear Reactor Theory. Reading, MA: Addison Wesley, pp. 168, 186.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General structure analysis system. Los Alamos National Laboratory Report No. LAUR 86.748.Google Scholar
Lavelle, C. M., Baxter, D. V., Bogdanov, A., Derenchuk, V. P., Kaiser, H., Leuschner, M. B., Lone, M. A., Lozowski, W., Nann, H., Przowoski, B. V., Remmes, N., Rinkel, T., Shin, Y., Snow, W. M., and Sokol, P. E. (2008). Neutronic design and measured performance of the Low Energy Neutron Source (LENS) target moderator reflector assembly. Nucl. Instrum. Meth. A 587, 324–41.CrossRefGoogle Scholar
Littrell, K. C., te Velthuis, S. G. E., Felcher, G. P., Park, S., Kirby, B. J., and Fitzsimmons, M. R. (2007). Magnetic compound refractive lens for focusing and polarizing cold neutron beams. Rev. Sci. Instrum. 78(3), 035101.CrossRefGoogle ScholarPubMed
Loewenhaupt, M., Reif, Th., Svoboda, P., Wagner, S., Waffenschmidt, M., Löhneysen, H. v., Gratz, E., Rotter, M., Lebech, B. and Hauß, Th. (1996). The magnetic phases of NdCu2. Z. Phys. B 101(4), 499510.CrossRefGoogle Scholar
Lone, M. A. (1992). Neutron data needs for industrial neutron sources. In Proc. Int. Conf. Nuclear Data for Science and Technology, ed. Qaim, S. M.. Berlin: Springer Verlag, p. 678.CrossRefGoogle Scholar
Loong, C.-K., Carpenter, J. M., and Ikeda, S. (1987). Resolution function of a pulsed-source chopper spectrometer. Nucl. Instrum. Meth. A 260, 381. See also Loong, C.-K, Carpenter, J. M., and Ikeda, S. (1993). A parametric formulation of the resolution function of a pulsed-source chopper spectrometer. In Proc. XIIth Mtg. Int. Collaboration Advanced Neutron Sources, no. 94–025, vol. 1. Oxford: Rutherford-Appleton Laboratory, pp. I-320–5.CrossRefGoogle Scholar
Loong, C.-K., Vashishta, P., Kalia, R. K., Jin, W., Degani, M. H., Hinks, D. G., Price, D. L., Jorgensen, J. D., Dabrowski, B., Mitchell, A. W., Richards, D. R., and Zheng, Y. (1992). Phonon density of states and oxygen-isotope effect in Ba1-xKxBiO3. Phys. Rev. B 45(14), 8052–64.CrossRefGoogle ScholarPubMed
Loong, C.-K., Soderholm, L., Abraham, M. M., and Boatner, L. A. (1993). Crystal-field excitations and magnetic properties of TmPO4. J. Chem. Phys. 98(5), 4214–22.CrossRefGoogle Scholar
Loong, C.-K., Loewenhaupt, M., Nipko, J. C., Braden, M., and Boatner, L. A. (1999). Dynamic coupling of crystal-field and phonon states in YbPO4. Phys. Rev. B 60(18), R12549–52.CrossRefGoogle Scholar
Lucas, L. L. and Root, J. W. (1972). (d,n) thick-target yields and total cross sections between 1 and 40 MeV. J. Appl. Phys. 43, 3886.CrossRefGoogle Scholar
Majkrzak, C. F. (2006). Determining the structures of layered materials by neutron reflection. 2006 ACA Warren Award Lecture, ACA RefleXions, American Crystallographic Association.Google Scholar
Majkrzak, C. F. and Penfold, J. (2010). The origins of neutron reflectometry. Neutron News 21(1), 4650.CrossRefGoogle Scholar
Maleyev, S. V., Bar'yakhtar, V. G., and Suris, R. A. (1963). Sov. Phys.: Solid State 4(12), 2533.Google Scholar
May, R. P. (2003). Small-angle scattering. In Neutron Data Booklet, ed. Dianoux, A.-J. and Lander, G., OCP Science series. Grenoble, France: Institut Laue-Langevin, pp. 2.1.1–2.1.8.Google Scholar
Mayers, J. (1989). Contributions of inelastic scattering to the vanadium differential scattering cross section; implications for the calibration of neutron spectrometers. Nucl. Instrum. Meth. A 281, 654–6.CrossRefGoogle Scholar
Mayers, J. and Adams, M. A. (2011). Calibration of an electron volt neutron spectrometer. Nucl. Instrum. Meth. A 625, 4756.CrossRefGoogle Scholar
McCormick, D. J. and Lustig, J. M. (2012). High sensitivity B-10 neutron detectors using high surface area inserts. US Patent No. 8129690 B2, March 6, 2012.Google Scholar
Meier-Leibnitz, H. and Springer, T. (1963). The use of neutron optical devices on beamhole experiments, J. Nucl. Energy 17, 217.Google Scholar
Mezei, F. (1972). Neutron spin echo: a new concept in polarized thermal neutron techniques. Z. Physik 255, 146–60.CrossRefGoogle Scholar
Mezei, F. (1979). The application of neutron spin echo on pulsed neutron sources. Nucl. Instrum. Meth. 164, 153–6.CrossRefGoogle Scholar
Mezei, F. (1980). Neutron spin echo investigation of elementary excitations in superfluid 4He. In Neutron Spin Echo, ed. F. Mezei, Lect. Notes Phys. 128, 113–21.CrossRefGoogle Scholar
Mezei, F. (1997). The raison d’être of long pulse spallation sources. J. Neutron Res. 6(1–3), 3.CrossRefGoogle Scholar
Mezei, F. (2003). Fundamentals of NSE spectroscopy. In Neutron Spin Echo Spectroscopy, ed. Mezei, F., Pappas, C., and Gutbertlet, T.. Berlin: Springer, pp. 114.CrossRefGoogle Scholar
Mildner, D. F. R. (1990). Acceptance diagrams for curved neutron guides. Nucl. Instrum. Meth. A 290, 189.CrossRefGoogle Scholar
Mildner, D. F. R. and Carpenter, J. M. (2002). Time uncertainty for guided long-wavelength neutrons on a pulsed neutron source. Nucl. Instrum. Meth. A 484, 486–93.CrossRefGoogle Scholar
Mirebeau, I., Hennion, M., Casalta, H., Andres, H., Güdel, H. U., Irodova, A. V., and Caneschi, A. (1999). Low-energy magnetic excitations of the Mn12-acetate spin cluster observed by neutron scattering. Phys. Rev. Lett. 83(3), 628–31.CrossRefGoogle Scholar
Mitchell, D. P. and Powers, P. N. (1936). Bragg reflection of slow neutrons. Phys. Rev. 50, 486.CrossRefGoogle Scholar
Mittal, R., Chaplot, S. L., and Choudhury, N. (2006). Modeling of anomalous thermodynamic properties using lattice dynamics and inelastic neutron scattering. Prog. Mater. Sci. 51, 211–86.CrossRefGoogle Scholar
Montfrooj, W., Ganroth, G. E., Mandrus, D. G., and Nagler, S. E. (2001). Spin dynamics of the quasi-one-dimensional ferromagnet CoCl2•2D2O. Phys. Rev. B 24, 134426.CrossRefGoogle Scholar
Moon, R. M., Riste, T., and Koehler, W. C. (1969). Polarization analysis of thermal-neutron scattering. Phys. Rev. 181(2), 920–31.CrossRefGoogle Scholar
Moriya, T. (1985). Spin Fluctuations in Itinerant Electron Magnetism. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Nader, R. B., Proffen, T. (2008). Diffuse scattering and defect structure simulations: A cook book using the program DISCUS. Oxford University Press, Oxford.CrossRefGoogle Scholar
Nakamura, K. et al. (Particle Data Group) (2010). Review of particle physics. J. Phys. G: Nucl. Part. Phys. 37(7A), 075021.CrossRefGoogle Scholar
Nakamura, M., Kajimoto, R., Inamura, Y., Mizuno, F., Fujita, M., Yakoo, T., and Arai, M. (2009). First demonstration of novel method for inelastic neutron scattering measurement utilizing multiple incident energies. J. Phys. Soc. Jpn. 78(9), 093002.CrossRefGoogle Scholar
ND&M (Web). Neutron hand monitor, Neutron Detectors & More. http://ndandm.com.Google Scholar
NeutronOptics Grenoble (Web). Neutron optics alignment cameras. http://NeutronOptics.com.Google Scholar
Niimura, N. and Bau, R. (2008). Neutron protein crystallography: beyond the folding structure of biological macromolecules, Acta Cryst. A64, 12–22.Google Scholar
Niimura, N. and Podjarny, A. (2011). Neutron Protein Crystallography. International Union of Crystallography Monographs on Crystallography. Oxford: Oxford University Press, p. 25.CrossRefGoogle Scholar
Niimura, N., Karasawa, Y., Tanaka, I., Miyahara, J., Takahashi, K., Saito, H., Koizumi, S., Hidaka, M. (1994). An imaging plate neutron detector. Nucl. Instrum. Meth. A 349, 521.CrossRefGoogle Scholar
Niimura, N., Minezaki, Y., Nonaka, T., Castagna, J.-C., Cipriani, F., Høghøj, P., Lehmann, M. S., and Wilkinson, C. (1997). Neutron Laue diffractometry with an imaging plate provides an effective data collection regime for neutron protein crystallography. Nat. Struct. Biol. 4(11), 909–14.Google ScholarPubMed
Nipko, J. C., Loong, C.-K., Loewenhaupt, M., Braden, M., Reichardt, W., and Boatner, L. A. (1997). Lattice dynamics of xenotime: The phonon dispersion relations and density of states of LuPO4. Phys. Rev. B 56(18), 11584–92.CrossRefGoogle Scholar
Nunes, A. C. (1978). The converging-beam small-angle neutron diffractometer: calculated resolution. J. Appl. Cryst. 11, 460–4.CrossRefGoogle Scholar
Oed, A. (2003). Detector for thermal neutrons. In ILL Neutron Data Booklet, 2nd edn, ed. Dianoux, A.-J. and Lander, G.. Grenoble, France: Institut Laue-Langevin, Chap. 3.3.Google Scholar
Oed, A. (2004). Micro pattern structures for gas detectors. Nucl. Instrum. Meth. A 525, 62–8.Google Scholar
Okamoto, K. et al. (1990). Application of a CR-system to neutron radiography. In Neutron Radiography (3), Proc. Third World Conference, ed. Fujine, S. et al. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 461–8.Google Scholar
Osborn, R. K. (1988). Applied Quantum Mechanics. Singapore: World Scientific, pp. 51–3.CrossRefGoogle Scholar
Parks, D. E., Nelkin, M. S., Beyster, J. R., and Wikner, N. F. (1970). Slow Neutron Scattering and Thermalization. New York: W. A. Benjamin, Inc.Google Scholar
Passell, L., Dietrich, O. W., and Als-Nielsen, J. (1976). Neutron scattering from the Heisenberg ferromagnets EuO and EuS. I. The exchange interactions. Phys. Rev. B 14(11), 4897–907.CrossRefGoogle Scholar
Patterson, A. L. (1934). A Fourier series method for the determination of the components of interatomic distances in crystals. Phys. Rev. 46, 372–6.CrossRefGoogle Scholar
Patterson, A. L. (1935). A direct method for the determination of the components of interatomic distances in crystals. Z. Kristallogr. 90, 517–42.Google Scholar
Paul, D. M., Mitchell, P. W., Mook, H. A., Steigenberger, U. (1988). Observation of itinerant-electron effects on the magnetic excitations of iron. Phys. Rev. B 38(1), 580–2.CrossRefGoogle Scholar
Pederson, J. S. (1997). Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-square fitting. Adv. Colloid Interface Sci. 70, 171.CrossRefGoogle Scholar
Penfold, J. and Thomas, R. K. (1990). The application of specular reflection of neutrons to the study of surfaces and interfaces. J. Phys. Cond. Mat. 2(6), 1369.CrossRefGoogle Scholar
Perez-Mato, J. M., Aroyo, M., Hlinka, J., Quilichini, M., and Currat, R. (1998). Phonon symmetry selection rules for inelastic neutron scattering. Phys. Rev. Lett. 81(12), 2462–5.CrossRefGoogle Scholar
Petry, W. (2011). Advanced Neuton Instrumentation at FRM II. www.frm2.tum.de.Google Scholar
Placzek, G. (1947). The angular distribution of neutrons emerging from a plane surface. Phys. Rev. 72, 556. See also Mark, C. (1947). The neutron density near a plane surface. Phys. Rev. 72, 558.CrossRefGoogle Scholar
Popovici, M. (1975). On the resolution of slow-neutron spectrometers, IV: The triple-axis spectrometer resolution function, specal effects included. Acta Cryst. A 31, 507–13.CrossRefGoogle Scholar
Preiswerk, P. (1937). Ein neutronenbeugungsexperiment: A neutron diffraction experiment. Helv. Phys. Acta 10, 400.Google Scholar
Rahman, A. (1964). Correlations in the motion of atoms in liquid argon. Phys. Rev. 136(2A), A405–11.CrossRefGoogle Scholar
Rahman, A., Singwi, K. S., and Sjölander, A. (1962a). Theory of slow neutron scattering by liquids. I. Phys. Rev. 126(3), 986–96.CrossRefGoogle Scholar
Rahman, A., Singwi, K. S., and Sjölander, A. (1962b). Stochastic model of a liquid and cold neutron scattering. II. Phys. Rev. 126(3), 9971004.CrossRefGoogle Scholar
Rauch, H. and Waschkowski, W. (2003). Neutron scattering lengths. In ILL Neutron Data Booklet, 2nd edn, ed. Dianoux, A.-J. and Lander, G. H., Institute Laue-Langevin. Philadelphia, PA: Old City Publishing, pp. 1.1–1–1.1–16. See also www.ati.ac.at/~neutropt/scattering/table/.Google Scholar
Reactor Physics Constants (1963). Argonne National Laboratory Report ANL-5800, 2nd edn. Washington, DC: US Government Printing Office.Google Scholar
Rehm, Ch. and Agamalian, M. (2002). Flux gain for a next-generation neutron reflectometer resulting form improved supermirror performance. Appl. Phys. A 74, S1483–5.CrossRefGoogle Scholar
Rekveldt, M. T. W., Bouman, W. G., Kraan, W. H., Uca, O., Grigoriev, S. V., Krueger, R. (2003). Elastic neutron scattering measurements using Larmor precession of polarized neutrons. In Neutron Spin Echo Spectroscopy, ed. Mezei, F., Pappas, C., and Gutberlet, T.. Lecture Notes in Physics. Berlin: Springer Verlag, pp. 8799.Google Scholar
Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 6571.CrossRefGoogle Scholar
Riste, T. (1994). Analytical report. In Neutron Beams and Synchrotron Radiation Sources. OECD Megascience Forum brochure, p. 63.Google Scholar
Rodriguez-Carvajal, J. (2003). Using FullProf to analyse time-of-flight neutron powder diffraction data. Laboratory Leon Brillouin (CEA-CNRS) report.Google Scholar
Rosenkranz, S. and Osborn, R. (2004). Prospects and challenges in single crystal diffuse scattering. Neutron News 15(4), 21–4.CrossRefGoogle Scholar
Rosenkranz, S. and Osborn, R. (2008). Corelli: Efficient single crystal diffraction with elastic discrimination. PRAMANA 71(4), 705–11.CrossRefGoogle Scholar
Rossat-Mignod, J. (1987). Magnetic structures. In Neutron Scattering, part C, ed. Sköld, K. and Price, D. L.. New York: Academic Press, Part C, Chap. 19, pp. 69157.CrossRefGoogle Scholar
Rotter, M. (2007). Magnetic neutron scattering. From www.mcphase.deGoogle Scholar
Rotter, M., Lindbaum, A., Gratz, E., Hilscher, G., Sassik, H., Fischer, H. E., Fernandez-Diaz, M. T., Arons, R., and Seidl, E. (2000). The magnetic structure of GdCu2. J. Magn. Magn. Mater. 214, 281–90.CrossRefGoogle Scholar
Russina, M. and Mezei, F. (2009). First implementation of repetition rate multiplication in neutron spectroscopy. Nucl. Instrum. Meth. A 604(3), 625–31.CrossRefGoogle Scholar
Schärpf, O. (1996) The spin of the neutron as a measuring probe. In The 10th International Summer School of Condensed Matter Physics, Bialowieza, Poland, July 10–20, 1996, pp. 1207. Printed in the proceedings of the summer school. Ed. Perzynska, K. and Dobrzynski, L., Institut of Physics, Warsaw University Branch, Bialystok.Google Scholar
Schultz, A. J., Teller, R. G., Beno, M. A., Williams, J. M., Brookhart, M., Lamanna, W., Humphrey, M. B. (1983). Argonne Intense Pulsed Neutron source used to solve the molecular structure of a novel organometallic complex. Science 220(4593), 197–9.CrossRefGoogle ScholarPubMed
Schwinger, J. (1948). On the polarization of fast neutrons. Phys. Rev. 73(4), 407–9.CrossRefGoogle Scholar
Sears, V. F. (1975). Slow-neutron multiple scattering. Adv. Phys. 24( 1), 145.CrossRefGoogle Scholar
Sears, V. F. (1986). Neutron scattering lengths and cross sections. In Neutron Scattering, ed. Sköld, K. and Price, D. L.. New York: Academic Press, Part A, pp. 521–50.Google Scholar
Sears, V. F. (1989). Neutron Optics. New York: Oxford University Press.Google Scholar
Serber, R. (1947). Nuclear reactions at high energies. Phys. Rev.72(11), 1114–5.CrossRefGoogle Scholar
Shapiro, S. M., Axe, J. D., Shirane, G., and Riste, T. (1972). Critical neutron scattering in SrTiO3 and KMnF3. Phys. Rev. B 6(11), 4332–41.CrossRefGoogle Scholar
Shimizu, H. M., Oku, T., Suzuki, J.-I., Furusaka, M., and Kiyanagi, Y. (2005). Development of polarized neutron optics. Physica B 356, 121–5.CrossRefGoogle Scholar
Shirane, G. (1959). A note on the magnetic intensities of powder neutron diffraction. Acta Cryst. 12, 282–5.CrossRefGoogle Scholar
Shirane, G. (1974). Neutron scattering studies of structural phase transitions at Brookhaven. Rev. Mod. Phys. 46(3), 437–49.CrossRefGoogle Scholar
Shirane, G., Shapiro, S. M., and Tranquada, J. M. (2002). Neutron Scattering with a Triple-Axis Spectrometer. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
Shull, C. G. (1963). Neutron spin-neutron orbit interaction with slow neutrons. Phys. Rev. Lett. 10(7), 297–8.CrossRefGoogle Scholar
Silver, R. N. and Sokol, P. E. (1991). Momentum Distributions. New York and London: Plenum Press.Google Scholar
Sinha, S. K. (1987). Adsorbed monolayers and intercalated compounds. In Neutron Scattering, ed. Price, D. L. and Sköld, K.. New York: Academic Press, Part B, Chap. 8, pp. 184.Google Scholar
Sköld, K. (1968). A mechanical correlation chopper for thermal neutron spectroscopy. Nucl. Instrum. Meth. 68, 114–6.Google Scholar
Sköld, K. and Price, D. L. (1970). A detailed evaluation of the mechanical correlation chopper for neutron time-of-flight spectrometry. Nucl. Instrum. Meth. 82, 208–22.Google Scholar
Sköld, K., Rowe, J. M., Ostrowski, G., and Randolph, P. D. (1972). Coherent- and incoherent-scattering laws of liquid argon. Phys. Rev. A 6(3), 1107–31.CrossRefGoogle Scholar
Smirnov, A. N., Prokofiev, A. V., Rodionova, E. E., Frost, C. D., Ansell, S., Schooneveld, E., Giorini, G., Pietropaolo, A. (2010). Characterization of the high-energy neutron field at the ISIS-VESUVIO facility by means of thin-film breakdown detectors. Rutherford Appleton Laboratory report RAL-TR-2010–024.Google Scholar
Smith, G. C., Radeka, V., Schaknowski, N. A., and Yu, B. (2005). Classical 3He gas detectors. Neutron News 16(4), 13–5.CrossRefGoogle Scholar
Snow, M. (2013). Exotic physics with slow neutrons. Physics Today 66(3), 50–5.Google Scholar
Spowart, A. R. (1969a). Optimising neutron scintillators for neutron radiography. Brit. J Non-Destructive Testing 11(1), 211.Google Scholar
Spowart, A. R. (1969b). Measurement of the absolute scintillation efficiency of granular and glass neutron scintillators. Nucl. Instrum. Meth. 75, 3542.CrossRefGoogle Scholar
Stassis, C., Arch, D., and Harmon, B. N. (1979). Lattice dynamics of hcp Ti. Phys. Rev. B 19(1), 181–8.Google Scholar
Stassis, C., Arch, D., Zarestky, J., McMasters, O. D., and Harmon, B. N. (1980). On the lattice dynamics of hcp hafnium. Solid State Commun. 35, 259–61.CrossRefGoogle Scholar
Stassis, C., Zarestky, J., Arch, D., McMasters, O. D., and Harmon, B. N. (1978). Temperature dependence of the normal vibrational modes of hcp Zr. Phys. Rev. B 18(6), 2632–42.CrossRefGoogle Scholar
Stedman, R. (1960). Scintillator for thermal neutrons using Li6F and ZnS (Ag). Rev. Sci. Instrum. 31, 1156.CrossRefGoogle Scholar
Stevens, L. D. and Miller, A. J. (1969). Radiation studies at a medium energy accelerator. Lawrence Livermore Laboratory report UCRL-19386.Google Scholar
Stoica, A. D., Wang, X. L., Popovici, M., and Hubbard, C. (2001). Neutron imaging with Bragg mirrors. Proc. Symp. Neutron Optics, vol. 4509, San Diego, CA, pp. 112.CrossRefGoogle Scholar
Studer, A. J., Hagen, M. E., Noakes, T. J. (2006). WOMBAT: The high-intensity powder diffractometer at the OPAL reactor. In Proc. 8th Int. Conf. Neutron Scattering, Physica B: Condensed Matter 385–386(2), 1013–5.Google Scholar
Suzuya, K., Loong, C.-K., Price, D. L., Sales, B. C., and Boatner, L. A. (1999). The structure of lead-indium phosphate and lead-scandium phosphate glasses. J. Non-Cryst. Solids 258, 4856.CrossRefGoogle Scholar
Swanson, W. P. (1978). Calculation of neutron yields released by electrons incident on selected materials. Health Phys. 35(2), 353.CrossRefGoogle ScholarPubMed
Tajima, K., Böni, P., Shirane, G., Ishikawa, Y., and Kohgi, M. (1987). Paramagnetic spin fluctuations in an Fe65Ni35 Invar alloy. Phys. Rev. B 35(1), 274–8.CrossRefGoogle Scholar
Tajima, K., Endoh, Y., Fischer, J. E., and Shirane, G. (1988). Spin fluctuations in the temperature-induced paramagnet FeSi. Phys. Rev. B 38(10), 6954–60.CrossRefGoogle ScholarPubMed
Takeuchi, K., Loong, C.-K., Richardson, J. W. J. Jr., Guan, J., Dorris, S. E., and Balachandran, U. (2000). The crystal structures and phase transitions in Y-doped BaCeO3: their dependence on Y concentration and hydrogen doping. Solid State Ionics 138, 6377.CrossRefGoogle Scholar
Tardocchi, M., Gorini, G., Pietropaolo, A., Andreani, C., D'Angelo, A., Senesi, R., Rhodes, N. J., and Schooneveld, E. M. (2004). YAP scintillators for resonant detection of epithermal neutrons at pulsed neutron sources. Rev. Sci. Instrum. 75(11), 4880–90.CrossRefGoogle Scholar
Taylor, A., Dunne, M., Bennington, S., Ansell, S., Gardner, I., Norreys, P., Broome, T., Findlay, D., and Nelmes, R. (2007). A route to the brightest possible neutron source? Science 315, 5815, 1092–5.CrossRefGoogle Scholar
Tennant, D. A., Perring, T. G., Cowley, R. A., and Nagler, S. E. (1993). Unbound spinons in the S = 1/2 antiferromagnetic chain KCuF3. Phys. Rev. Lett. 70(25), 4003–6.CrossRefGoogle Scholar
Thiyagarajan, P., Epperson, E., Crawford, R. K., Carpenter, J. M., and Hjelm, R. Jr., (1992). Comparison of SANS instruments at reactors and pulsed sources. In Proc. ISSI (International Seminar on Structural Investigations at Pulsed Neutron Sources), Russia, ED3–93–65, pp. 194211.Google Scholar
Thiyagarajan, P., Epperson, J. E., Crawford, R. K., Carpenter, J. M., Klippert, T. E., and Wozniak, D. G. (1997). The time-of-flight small-angle diffractometer (SAD) at IPNS, Argonne National Laboratory. J. Appl. Crystallogr. 30, 280–93.CrossRefGoogle Scholar
Tremsin, A. S., Feller, W. B., and Downing, R. G. (2005a). Efficiency optimization of multichannel plate (MCP) neutron imaging detectors. Nucl. Instrum. Meth. A 539(1–2), 278311.CrossRefGoogle Scholar
Tremsin, A. S., Feller, W.B., Downing, R. G., and Mildner, D. F. R. (2005b). The efficiency of thermal neutron detection and collimation with microchannel plates of square and circular geometry. IEEE T. Nucl. Sci. 52, 1739–44.CrossRefGoogle Scholar
Tremsin, A., Vallerga, J. V., McPhate, J. B., Siegmund, O. H. W., Feller, W. B., Crow, L., and Cooper, R. G. (2008). On the possibility to image thermal and cold neutrons with sub-15 µm spatial resolution. Nucl. Instrum. Meth. A, 592, 374–84.CrossRefGoogle Scholar
Trott, G. J., Taub, H., Hansen, F. Y., and Nanner, H. R. (1981). Determination of orientational order in submonolayer butane films adsorbed on graphite by elastic neutron diffraction. Chem. Phys. Lett. 78(3), 504–8.CrossRefGoogle Scholar
Turchin, V. F. (1965). Slow Neutrons. Jerusalem: Israel Program for Scientific Translations, Appendix D.Google Scholar
Van Hove, L. (1958). A remark on the time-dependent pair distribution. Physica 24, 404–8.CrossRefGoogle Scholar
Vanier, P. (2003). Improvement in coded-aperture thermal neutron imaging. Proc. SPIE, Vol. 5199. Bellingham, WA: SPIE.Google Scholar
Vineyard, G. H. (1954). Multiple scattering of neutrons. Phys. Rev. 96, 93–8.CrossRefGoogle Scholar
von Halban, H., and Preiswerk, P. (1936). Preuve expérimentale de la diffraction des neutrons: Experimental proof of neutron diffraction. Comptes Rendus 203, 73.Google Scholar
Waldmann, O., Carver, G., Dobe, C., Biner, D., Sieber, A., Güdel, H. U., Mutka, H., Ollivier, J., Chakov, N. E. (2006). Magnetic relaxation studies on a single-molecule magnet by time-resolved inelastic neutron scattering. Appl. Phys. Lett. 88, 042507–1–3.CrossRefGoogle Scholar
Wang, Z., Morris, C. L., Bacon, J. D., Brockwell, M. I., and Ramsey, J. C. (2014). A double-helix neutron detector using micron-size 10B powder. Nucl. Instr. & Meth. In Phy. Res. A 704, pp. 261267.CrossRefGoogle Scholar
Warren, B. E. (1941), X-ray diffraction in random layer lattices. Phys. Rev. 59(9), 693–8.CrossRefGoogle Scholar
Weinberg, A. M. and Wigner, E. P. (1958). The Physical Theory of Neutron Chain Reactors. Chicago: The University of Chicago Press, pp. 111–15.Google Scholar
Weisskopf, V. (1937). Statistics and nuclear reactions. Phys. Rev. 52, 295.CrossRefGoogle Scholar
Werner, S. A. and Arrott, A. S. (1966). Theory of neutron diffraction: multiple Bragg scattering in mosaic crystals. University of Michigan internal report, April 30, 1966.Google Scholar
Westcott, C. H. (1970). Effective cross section values for well-moderated thermal reactor spectra. CRRP 960 AECL-1101, 3rd edn, corrected. Chalk River, Ontario: Atomic Energy of Canada Ltd.Google Scholar
Wilkinson, C. (1973). The theory of the spin-density patterson function. Acta Cryst. A 29, 449–52.CrossRefGoogle Scholar
Williams, M. M. R. (1966). The Slowing Down and Thermalization of Neutrons. New York: John Wiley & Sons Inc., p. 429.Google Scholar
Wills, A. S. (2001). Magnetic structures and their determination using group theory. J. Phys. IV France 11, 133–58.CrossRefGoogle Scholar
Wills, A. S. (2005). Symmetry in the solid state; working beyond the space group. J. Mater. Chem. 15, 245–52.CrossRefGoogle Scholar
Wilpert, T. (2012) Boron trifluoride detectors. Neutron News 23(4), 14–8.CrossRefGoogle Scholar
Wright, A. C. (2008). More about total scattering cross-sections and a related common misconception. Neutron News 19(1), 25–7.CrossRefGoogle Scholar
Yamada, M., Iwashita, Y., Kanaya, T., Yamada, N. L., Shimizu, H. M., Mishima, K., Hino, M., Kitaguchi, M., Hirota, K., Geltenbort, P., Guerard, B., Manzin, G., Andersen, K., Lal, J., Carpenter, J. M., Bleuel, M., Kennnedy, S. J. (2011). A compact TOF-SANS using focusing lens and very cold neutrons. Physica B 406(12), 2453–7.CrossRefGoogle Scholar
Yethiraj, M., Robinson, R. A., Sivia, D. S., Lynn, J. W., and Mook, H. A. (1991). Neutron-scattering study of the magnon energies and intensities in iron. Phys. Rev. B 43, 2565–74.CrossRefGoogle ScholarPubMed
Yoshikawa, A., Yanagita, T., Yakota, Y., Kawaguchi, N., Ishizu, S., Fukuda, K., Suyama, T., Kim, K., Pejchal, J., Nikl, M., Watanabe, K., Miyake, M., Baba, M., Yamada, K. (2009). Single crystal growth, optical properties and neutron response of Ce3+ doped LiCaAlF6. IEEE Trans. Nucl. Sci. 56, 3796–9.CrossRefGoogle Scholar
Zachariasen, W. H. (1945). Theory of X-ray Diffraction in Crystals. John Wiley and Sons Inc. Reprinted Mineola, NY: Dover Publications, 1994.Google Scholar
Zagar, T., Galy, J., Magill, J., and Kellett, M. (2005). Laser-generated nanosecond pulsed neutron sources: scaling from VULCAN to table-top. New J. Phys. 7, 253.CrossRefGoogle Scholar
Zeitelhack, K. (2012). Search for alternative techniques to helium-3 based detectors for neutron scattering applications. Neutron News 23(4), 10–3.CrossRefGoogle Scholar
Zernike, F. and Prins, J. A. (1927). Die beugung von Röntgenstrahlen in flüssig-keiten als effekt der molekülanordnung. Z. Phys. 41, 184–94.Google Scholar
Zimm, B. H. (1946). Application of the methods of molecular distribution to solutions of large molecules. J. Chem. Phys. 14: 164-79.CrossRefGoogle Scholar
Zsigmond, G. and Carpenter, J. M. (2005). A numerical analysis of time focusing of crystal analyzer spectrometers on pulsed sources. Nucl. Instrum. Meth. A 550, 359–78.CrossRefGoogle Scholar
Zsigmond, G., Lieutenant, K., Manoshin, H., Bordallo, H. N., Champion, J. D. M., Carpenter, J. M., and Mezei, F. (2003). A survey of simulations of complex neutronics systems by VITESS. Nucl. Instrum. Meth. A 529, 218–22.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • J. M. Carpenter, Argonne National Laboratory, Illinois, C.-K. Loong, Argonne National Laboratory, Illinois
  • Book: Elements of Slow-Neutron Scattering
  • Online publication: 05 October 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139029315.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • J. M. Carpenter, Argonne National Laboratory, Illinois, C.-K. Loong, Argonne National Laboratory, Illinois
  • Book: Elements of Slow-Neutron Scattering
  • Online publication: 05 October 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139029315.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • J. M. Carpenter, Argonne National Laboratory, Illinois, C.-K. Loong, Argonne National Laboratory, Illinois
  • Book: Elements of Slow-Neutron Scattering
  • Online publication: 05 October 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139029315.021
Available formats
×