Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T00:26:13.286Z Has data issue: false hasContentIssue false

Chapter 9 - Physiology of Copper Balance and Metabolism

from Section 3 - Copper and Vitamin D Deficiency

Published online by Cambridge University Press:  02 April 2019

Robert T. Means Jr
Affiliation:
East Tennessee State University
Get access
Type
Chapter
Information
Nutritional Anemia
Scientific Principles, Clinical Practice, and Public Health
, pp. 103 - 110
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fox, P. L. The copper-iron chronicles: the story of an intimate relationship. Biometals. 2003;16(1):940.CrossRefGoogle ScholarPubMed
Tapiero, H., Townsend, D. M., Tew, K. D. Trace elements in human physiology and pathology. Copper. Biomed Pharmacother. 2003;57(9):386–98.Google ScholarPubMed
Klevay, L. M. Is the Western diet adequate in copper? J Trace Elem Med Biol. 2011;25(4):204–12.CrossRefGoogle ScholarPubMed
van den Berghe, P. V., Klomp, L. W. New developments in the regulation of intestinal copper absorption. Nutr Rev. 2009;67(11):658–72.CrossRefGoogle ScholarPubMed
Prodan, C. I., Bottomley, S. S., Vincent, A. S., et al. Copper deficiency after gastric surgery: a reason for caution. Am J Med Sci. 2009;337(4):256–8.CrossRefGoogle ScholarPubMed
Ohgami, R. S., Campagna, D. R., McDonald, A., Fleming, M. D. The Steap proteins are metalloreductases. Blood. 2006;108(4):1388–94.CrossRefGoogle ScholarPubMed
Tennant, J., Stansfield, M., Yamaji, S., Srai, S. K., Sharp, P. Effects of copper on the expression of metal transporters in human intestinal Caco-2 cells. FEBS Lett. 2002;527(1–3):239–44.CrossRefGoogle ScholarPubMed
Lambe, T., Simpson, R. J., Dawson, S., et al. Identification of a Steap3 endosomal targeting motif essential for normal iron metabolism. Blood. 2008:2007.Google ScholarPubMed
Liu, D., Yi, S., Zhang, X., et al. Human STEAP3 mutations with no phenotypic red cell changes. Blood. 2016;127(8):1067–71.CrossRefGoogle ScholarPubMed
Zhang, F., Tao, Y., Zhang, Z., et al. Metalloreductase Steap3 coordinates the regulation of iron homeostasis and inflammatory responses. Haematologica. 2012;97(12):1826–35.CrossRefGoogle ScholarPubMed
Scarl, R. T., Lawrence, C. M., Gordon, H. M., Nunemaker, C. S. STEAP4: its emerging role in metabolism and homeostasis of cellular iron and copper. J Endocrinol. 2017;234(3): R123–R134.CrossRefGoogle ScholarPubMed
Madsen, E., Gitlin, J. D. Copper deficiency. Curr Opin Gastroenterol. 2007;23(2):187–92.CrossRefGoogle ScholarPubMed
Mims, M. P., Prchal, J. T. Divalent metal transporter 1. Hematology. 2005;10(4):339–45.CrossRefGoogle ScholarPubMed
Turnlund, J. R., Keyes, W. R., Anderson, H. L., Acord, L. L. Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am J Clin Nutr. 1989;49(5):870–8.CrossRefGoogle ScholarPubMed
de Romana, D. L., Olivares, M., Uauy, R., Araya, M. Risks and benefits of copper in light of new insights of copper homeostasis. J Trace Elem Med Biol. 2011;25(1):313.CrossRefGoogle ScholarPubMed
Troost, F. J., Brummer, R. J., Dainty, J. R., et al. Iron supplements inhibit zinc but not copper absorption in vivo in ileostomy subjects. Am J Clin Nutr. 2003;78(5):1018–23.CrossRefGoogle Scholar
O'Halloran, T. V., Culotta, V. C. Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem. 2000;275(33):25057–60.CrossRefGoogle ScholarPubMed
Field, L. S., Luk, E., Culotta, V. C. Copper chaperones: personal escorts for metal ions. J Bioenerg Biomembr. 2002;34(5):373–9.CrossRefGoogle ScholarPubMed
Hamza, I., Gitlin, J. D. Copper chaperones for cytochrome c Oxidase and human disease. J Bioenerg Biomembr. 2002;34(5):381–8.CrossRefGoogle ScholarPubMed
Dodani, S. C., Leary, S. C., Cobine, P. A., Winge, D. R., Chang, C. J. A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis. J Am Chem Soc. 2011;133(22):8606–16.CrossRefGoogle ScholarPubMed
Lutsenko, S., Efremov, R. G., sivkovskii, R., Alker, J. M. Human copper-transporting ATPase ATP7B (the Wilson's Disease protein): biochemical properties and regulation. J Bioenerg Biomembr. 2002;34(5):351–62.CrossRefGoogle ScholarPubMed
Lutsenko, S., Bhattacharjee, A., Hubbard, A. L. Copper handling machinery of the brain. Metallomics. 2010;2(9):596608.CrossRefGoogle ScholarPubMed
Voskoboinik, I., Camakaris, J. Menkes copper-translocating P-type ATPase (ATP7A): biochemical and cell biology properties, and role in Menkes Disease. J Bioenerg Biomembr. 2002;34(5):363–71.CrossRefGoogle ScholarPubMed
Monty, J. F., Llanos, R. M., Mercer, J. F., Kramer, D. R. Copper exposure induces trafficking of the menkes protein in intestinal epithelium of ATP7A transgenic mice. J Nutr. 2005;135(12):2762–6.CrossRefGoogle ScholarPubMed
Hardman, B., Manuelpillai, U., Wallace, E. M., et al. Expression, localisation and hormone regulation of the human copper transporter hCTR1 in placenta and choriocarcinoma Jeg-3 cells. Placenta. 2006;27(9–10):968–77.CrossRefGoogle ScholarPubMed
Miyajima, H. Aceruloplasminemia, an iron metabolic disorder. Neuropathology. 2003;23(4):345–50.CrossRefGoogle ScholarPubMed
Nittis, T., Gitlin, J. D. The copper-iron connection: hereditary aceruloplasminemia. Semin Hematol. 2002;39(4):282–9.CrossRefGoogle ScholarPubMed
Sasina, L. K., Puchkova, L. V., Gaitskhoki, V. S. Study of intracellular localization and traffic of newly synthesized ceruloplasmin receptor in cultured human fibroblasts. Biochemistry (Mosc). 1998;63(10):1172–7.Google ScholarPubMed
Sasina, L. K., Tsymbalenko, N. V., Platonova, N. A., et al. Isolation and partial characterization of cDNA clone of human ceruloplasmin receptor. Bull. Exp. Biol. Med. 2000;129(5):491–5.CrossRefGoogle ScholarPubMed
Turnlund, J. R., Keyes, W. R., Peiffer, G. L., Scott, K. C. Copper absorption, excretion, and retention by young men consuming low dietary copper determined by using the stable isotope 65Cu. Am J Clin Nutr. 1998;67(6):1219–25.CrossRefGoogle ScholarPubMed
Chao, P. Y., Allen, K. G. Glutathione production in copper-deficient isolated rat hepatocytes. Free Radic Biol Med. 1992;12(2):145–50.Google ScholarPubMed
Kim, H., Son, H. Y., Bailey, S. M., Lee, J. Deletion of hepatic Ctr1 reveals its function in copper acquisition and compensatory mechanisms for copper homeostasis. Am J Physiol Gastrointest Liver Physiol. 2009;296(2):G356–G64.CrossRefGoogle ScholarPubMed
Afrin, L. B. Fatal copper deficiency from excessive use of zinc-based denture adhesive. Am Med Sci. 2010;340(2).Google ScholarPubMed
Scott, K. C., Turnlund, J. R. A compartmental model of zinc metabolism in adult men used to study effects of three levels of dietary copper. Am J Physiol. 1994;267(1 Pt 1):E165–E73.Google ScholarPubMed
Tsai, C. Y., Liebig, J. K., Tsigelny, I. F., Howell, S. B. The copper transporter 1 (CTR1) is required to maintain the stability of copper transporter 2 (CTR2). Metallomics. 2015;7(11):1477–87.CrossRefGoogle ScholarPubMed
Bertinato, J., Swist, E., Plouffe, L. J., Brooks, S. P., L'Abbe, M. R. Ctr2 is partially localized to the plasma membrane and stimulates copper uptake in COS-7 cells. Biochem J. 2008;409(3):731–40.CrossRefGoogle Scholar
Hart, E. B., Steenbock, H., Waddell, J., Elvehjem, C. A, With the cooperation of Evelyn Van D, Blanche. Iron in nutrition. VII. Copper as a supplement to iron for hemoglobin building in the rat. J Biol Chem. 1928;77(2):797833.CrossRefGoogle Scholar
Skidmore, F. M., Drago, V., Foster, P., et al. Aceruloplasminemia with progressive atrophy without brain iron overload: treatment with oral chelation. J Neurol Neurosurg Psychiatry. 2008;79:467–70.CrossRefGoogle Scholar
Videt-Gibou, D., Belliard, S., Bardou-Jacquet, E., et al. Iron excess treatable by copper supplementation in acquired aceruloplasminemia: a new form of secondary human iron overload? Blood. 2009;114(11):2360–1.CrossRefGoogle ScholarPubMed
Klevay, L. M. Iron overload can induce mild copper deficiency. J Trace Elem Med Biol. 2001;14(4):237–40.CrossRefGoogle ScholarPubMed
Delaby, C., Pilard, N., Goncalves, A. S., Beaumont, C., Canonne-Hergaux, F. Presence of the iron exporter ferroportin at the plasma membrane of macrophages is enhanced by iron loading and down-regulated by hepcidin. Blood. 2005;106(12):3979–84.CrossRefGoogle ScholarPubMed
Nemeth, E., Tuttle, M. S., Powelson, J., et al. Hepcidin regulates iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.CrossRefGoogle ScholarPubMed
Han, O., Kim, E. Y. Colocalization of ferroportin-1 with hephaestin on the basolateral membrane of human intestinal absorptive cells. J Cell Biochem. 2007;101(4):1000–10.CrossRefGoogle ScholarPubMed
Chen, H., Attieh, Z. K., Dang, T., et al. Decreased hephaestin expression and activity leads to decreased iron efflux from differentiated Caco2 cells. J Cell Biochem. 2009;107(4):803–8.CrossRefGoogle ScholarPubMed
Chen, H., Su, T., Attieh, Z. K., et al. Systemic regulation of Hephaestin and Ireg1 revealed in studies of genetic and nutritional iron deficiency. Blood. 2003;102:1893–9.CrossRefGoogle ScholarPubMed
Prohaska, J. R. Impact of copper limitation on expression and function of multicopper oxidases (ferroxidases). Adv Nutr.2011;2(2):8995.CrossRefGoogle ScholarPubMed
De Domenico, I., Ward, D. M., di Patti, M. C., et al. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J. 2007;26(12):2823–31.CrossRefGoogle ScholarPubMed
Chen, H., Attieh, Z. K., Syed, B. A., et al. Identification of zyklopen, a new member of the vertebrate multicopper ferroxidase family, and characterization in rodents and human cells. J Nutr. 2010;140(10):1728–35.CrossRefGoogle ScholarPubMed
McArdle, H. J., Gambling, L., Kennedy, C. Iron deficiency during pregnancy: the consequences for placental function and fetal outcome. Proc Nutr Soc. 2014;73(1):915.CrossRefGoogle ScholarPubMed
Harrison, M. D., Jones, C. E., Dameron, C. T. Copper chaperones: function, structure and copper-binding properties. J Biol Inorg Chem. 1999;4(2):145–53.CrossRefGoogle ScholarPubMed
Markossian, K. A., Kurganov, B. I. Copper chaperones, intracellular copper trafficking proteins. Function, structure, and mechanism of action. Biochemistry (Mosc). 2003;68(8):827–37.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×