Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-04-30T23:46:44.239Z Has data issue: false hasContentIssue false

Part VI - Absolute Dating Methods

Published online by Cambridge University Press:  19 December 2019

Michael P. Richards
Affiliation:
Simon Fraser University, British Columbia
Kate Britton
Affiliation:
University of Aberdeen
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Archaeological Science
An Introduction
, pp. 405 - 438
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aitken, M. J. 1989. Science-Based Dating in Archaeology. London: Longman.Google Scholar
Arnold, J. R. and Libby, W. F.. 1949. Radiocarbon from pile graphite: Chemical methods for its concentrations. Argonne National Laboratory, United States Department of Energy (through predecessor agency the Atomic Energy Commission).Google Scholar
Aldhouse-Green, S. and Pettitt, P. 1998. Paviland Cave: Contextualizing the ‘‘Red Lady.’’ Antiquity 72:756772.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., and Kaufman, A. 2000. Timing and hydrological conditions of Sapropel events in the Eastern Mediterranean, as evident from speleothems, Soreq cave. Israel Chemical Geology 169:145156.Google Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., and Wasserburg, G. 1999. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth and Planetary Science Letters 166:8595.CrossRefGoogle Scholar
Bar-Yosef, O. 1998. The Natufian culture in the Levant: Threshold to the origins of agriculture. Evoutionary Anthropology 6:159177.Google Scholar
Bar-Yosef, O. 2001. From sedentary foragers to village hierarchies: The emergence of social institutions. In: `Runciman, G. (ed.) The Origin of Human Social Institutions, pp. 138. Oxford: Oxford University Press.Google Scholar
Bar-Yosef, O. and Belfer-Cohen, A. 2002. Facing environmental crisis. In: `Cappers, R. T. J. and `Bottema, S. (eds.) The Dawn of Farming in the Near East: Studies in Early Near Eastern Production, Subsistence, and Environment, pp. 5566. Berlin: Ex Oriente.Google Scholar
Bird, M. I., Ayliffe, L. K., Fifield, L. K., Turney, C. S. M., Cresswell, R. G., Barrows, T. T., and David, B. 1999. Radiocarbon dating of “old” charcoal using a wet oxidation, stepped-combustion procedure. Radiocarbon 41:127140.Google Scholar
Blockley, S. P. E. and Pinhasi, R. 2011. A revised chronology for the adoption of agriculture in the Southern Levant and the role of Lateglacial climatic change. Quaternary Science Reviews 30:98108.Google Scholar
Blockley, S. P. E., Lowe, J. J., Walker, J. J., Asioli, A., Trincardi, F., Coope, G. R., Donahue, R. E., and Pollard, A. M. 2004. Bayesian analysis of radiocarbon chronologies: Examples from the European Lateglacial. Journal of Quaternary Science 19:159175.Google Scholar
Blockley, S. P. E., Ramsey, C. B., and Higham, T. 2008a. The Middle to Upper Palaeolithic transition: Dating, stratigraphy and isochronous markers. Journal of Human Evolution 55:764771.Google Scholar
Blockley, S. P. E., Ramsey, C. B., Lane, C. S., and Lotter, A. F. 2008b. Improved age modelling approaches as exemplified by the Revised Chronology for the Central European Varved Lake, Soppensee. Quaternary Science Reviews 27:6171.CrossRefGoogle Scholar
Brock, F., Bronk Ramsey, C., and Higham, T. F. G. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49:187192.Google Scholar
Brock, F., Higham, T., Ditchfield, P., and Ramsey, C. B. 2010a. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112.Google Scholar
Brock, F., Higham, T., and Ramsey, C. B. 2010b. Pre-screening techniques for identification of samples suitable for radiocarbon dating of poorly preserved bones. Journal of Archaeological Science 37(4):855865.Google Scholar
Bronk Ramsey, C. 2008. Deposition models for chronological records. Quaternary Science Reviews 27:4260.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51:337360.CrossRefGoogle Scholar
Buck, C. E., Cavanagh, W. G., and Litton, C. D. 1996. The Bayesian Approach to Interpreting Archaeological Data. Wiley: Chichester.Google Scholar
Buck, C. E., Christen, J. A., and James, G. N. 1999. BCal: An on-line Bayesian radiocarbon calibration tool. Internet Archaeology 7. http://intarch.ac.uk/journal/issue7/buck/ (accessed July 19, 2019).Google Scholar
Buck, C. E., Kenworthy, J. B., Litton, C. D., and Smith, A. F. M. 1991. Combining archaeological and radiocarbon information – a Bayesian-approach to calibration. Antiquity 65:808821.Google Scholar
Buck, C. E., Litton, C. D., and Smith, A. F. M. 1992. Calibration of radiocarbon results pertaining to related archaeological events. Journal of Archaeological Science 19:497512.Google Scholar
Chappell, J., Head, J., and Magee, J. 1996. Beyond the radiocarbon limit in Australian archaeology and Quaternary research. Antiquity 70:543552.Google Scholar
Childe, V. G. 1951. Man Makes Himself. London: Watts.Google Scholar
Damon, P. E., Donahue, D. J., Gore, B. H., Hatheway, A. L., Jull, A. J. T., Linick, T. W., Sercel, P. J., Toolin, L. J., Bronk, C. R., Hall, E. T., Hedges, R. E. M., Housley, R., Law, I. A., Perry, C., Bonani, G., Trumbore, S., Woelfli, W., Ambers, J. C., Bowman, S. G. E., Leese, M. N., and Tite, M. S. 1989. Radiocarbon dating of the Shroud of Turin. Nature 337:611615.Google Scholar
Duarte, C., Mauricio, J., Pettitt, P. B., Souto, P., Trinkaus, E., van der Plicht, H., and Zilhaom, J. 1999. The early Upper Paleolithic human skeleton from the Abrigo do Lagar Velho (Portugal) and modern human emergence in Iberia. Proceedings of the National Academy of Sciences of the USA 96:76047609.CrossRefGoogle ScholarPubMed
d’Errico, F. and Sanchez-Goni, M. F. 2003. Neandertal extinction and the millennial scale climatic variability of OIS 3. Quaternary Science Reviews 22:769788.Google Scholar
de Vivo, B., Rolandi, G., Gans, P. B., Calvert, A., Bohrson, W. A., Spera, F. J., and Belkin, H. E. 2001. New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineralogy and Petrology 73:4765.CrossRefGoogle Scholar
Eiriksson, J., Larsen, G., Knudsen, K. L., Heinemeier, J., and Simonarson, L. A. 2004. Marine reservoir age variability and water mass distribution in the Iceland Sea. Quaternary Science Reviews 23:22472268.Google Scholar
Fedele, F. G.,Giaccio, B., and Hajdas, I. 2008. Timescales and cultural process at 40,000 BP in the light of the Campanian Ignimbrite eruption, Western Eurasia. Journal of Human Evolution 55:834857.Google Scholar
Gravina, B., Mellars, P., and Ramsey, C. B. 2005. Radiocarbon dating of interstratified Neanderthal and early modern human occupations at the Chatelperronian type-site. Nature 438:5156.Google Scholar
Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H.-Y., Hansen, N. F., Durand, E. Y., Malaspinas, A.-S., Jensen, J. D., Marques-Bonet, T., Alkan, C., Prüfer, K., Meyer, M., Burbano, H. A., Good, J. M., Schultz, R., Aximu-Petri, A., Butthof, A., Höber, B., Höffner, B., Siegemund, M., Weihmann, A., Nusbaum, C., Lander, E. S., Russ, C., Novod, N., Affourtit, J., Egholm, M., Verna, C., Rudan, P., Brajkovic, D., Kucan, Ž., Gušic, I., Doronichev, V. B., Golovanova, L. V., Lalueza-Fox, C., De La Rasilla, M., Fortea, J., Rosas, A., Schmitz, R. W., Johnson, P. L. F., Eichler, E. E., Falush, D., Birney, E., Mullikin, J. C., Slatkin, M., Nielsen, R., Kelso, J., Lachmann, M., Reich, D., and Pääbo, S. 2010. A draft sequence of the Neandertal genome. Science 328 :710722.Google Scholar
Hedges, R. E. M. and van Klinken, G. J. 1992. A review of current approaches in the pre-treatment of bone for radiocarbon dating by AMS. Radiocarbon 34(3):279291.Google Scholar
Higham, T. F. G., Jacobi, R. M., and Bronk Ramsey, C. 2006. AMS radiocarbon dating of ancient bone using ultrafiltration. Radiocarbon 48:179195.CrossRefGoogle Scholar
Higham, T., Brock, F., Peresani, M., Broglio, A., Wood, R., and Douka, K. 2009. Problems with radiocarbon dating the Middle to Upper Palaeolithic transition in Italy. Quaternary Science Reviews 28:12571267.Google Scholar
Housley, R. A. 1991. AMS dates from the Late Glacial and early Postglacial in north-west Europe. In: `Barton, R. N. E, `Roberts, A. J., and `Roe, D. A. (eds.) The Late Glacial in North-West Europe: Human Adaptation and Environmental Change at the End of the Pleistocene, pp. 227233. London: Council for British Archaeology.Google Scholar
Housley, R. A., Gamble, C. S., Street, M., and Pettitt, P. 1997. Radiocarbon evidence for the Lateglacial human recolonisation of northern Europe. Proceedings of the Prehistoric Society 63:2554.Google Scholar
Hughen, K., Lehman, S., Southon, J., Overpeck, J., Marchal, O., Herring, C., and Turnbull, J. 2004. 14C activity and global carbon cycle changes over the past 50,000 years. Science 303:202207.CrossRefGoogle ScholarPubMed
Hughen, K. A., Overpeck, J. T., Lehman, S. J., Kashgarian, M., Southon, J., Petersen, L. C., Alley, R. B., and Sigman, D. M. 1998. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391:6568.Google Scholar
Hughen, K., Southon, J., Lehmanc, S. Bertrand, C., and Turnbull, J. 2007. Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quaternary Science Reviews 25:32163227.CrossRefGoogle Scholar
Jacobi, R. M. and Higham, T.F.G. 2008. The ‘‘Red Lady’’ ages gracefully: new ultrafiltration AMS determinations from Paviland. Journal of Human Evolution 55:898907.Google Scholar
Jacobi, R. M. and Higham, T. F. G. 2009. The early Lateglacial re-colonization of Britain: New radiocarbon evidence from Gough’s Cave, southwest England. Quaternary Science Reviews 28:18951913.Google Scholar
Joris, O. and Street, M. 2008. At the end of the C-14 time scale – the Middle to Upper Paleolithic record of western Eurasia. Journal of Human Evolution 55:782802.CrossRefGoogle Scholar
Kuijt, I. and Goring-Morris, N. 2002. Foraging, farming, and social complexity in the pre-pottery Neolithic of the Southern Levant: A review and synthesis. Journal of World Prehistory 16:361440.Google Scholar
Libby, W. F. 1955. Radiocarbon Dating, 2nd ed. Chicago, IL: University of Chicago Press.Google Scholar
Lowe, J. J., Coope, G. R., Sheldrick, C., Harkness, D., and Walker, M. J. C. 1995. Direct comparison of UK temperatures and Greenland snow accumulation rates, 15,000 to 12,000 years ago. Journal of Quaternary Science 10:175180.Google Scholar
McCormac, F. G., Hogg, A. G., Blackwell, P. G., Buck, C. E., Higham, T. F. G., and Reimer, P. J. 2004. SHCal04 Southern Hemisphere Calibration 0–1000 cal BP. Radiocarbon 46:10871092.CrossRefGoogle Scholar
Mellars, P., Gravina, B., and Ramsey, C. B. 2007. Confirmation of Neanderthal/modern human interstratification at the Chatelperronian type-site. Proceedings of the National Academy of Sciences of the United States of America 104:36573662.Google Scholar
Muscheler, R., Kromer, B., Björck, S., Svensson, A., Friedrich, M., Kaiser, K. F. K., and Southon, J. 2008. Tree rings and ice cores reveal 14C calibration uncertainties during the Younger Dryas. Nature Geoscience 1:263267.Google Scholar
Nakagawa, T., Gotanda, K., Haraguchi, T., Danhara, T., Yonenobu, H., Brauer, A.,Yokoyama, Y., Tada, R., Takemura, K., Staff, R. A., Payne, R., Bronk Ramsey, C., Bryant, C., Brock, F., Schlolaut, G., Marshall, M., Tarasov, P., Lamb, H., and Suigetsu 2006 Project Members. 2012. SG06, a fully continuous and varved sediment core from Lake Suigetsu, Japan: Stratigraphy and potential for improving the radiocarbon calibration model and understanding of late Quaternary climate changes. Quaternary Science Reviews 36:164176.Google Scholar
Polach, H. A. 1987. Perspectives in radiocarbon dating by radiometry. Nuclear Instruments and Methods B 29:415423.Google Scholar
Pyle, D. M., Ricketts, G. D., Margari, V., van Andel, T. H., Sinitsyn, A. A., Praslov, N. D., Nicolai, D., and Lisitsyn, S. 2006. Wide dispersal and deposition of distal tephra during the Pleistocene “Campanian Ignimbrite/Y5” eruption, Italy. Quaternary Science Reviews 25:27132728.Google Scholar
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M. L., Johnsen, S. J., Larsen, L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M. E., and Ruth, U. 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111, D06102.Google Scholar
Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Bertrand, C. J. H., Blackwell, P. G., Buck, C. E., Burr, G. S., Cutler, K. B., Damon, P. E., Edwards, R. L., Fairbanks, R. G., Friedrich, M., Guilderson, T. P., Hogg, A. G., Hughen, K. A., Kromer, B., McCormac, G., Manning, S., Ramsey, C. B., Reimer, R. W., Remmele, S., Southon, J. R., Stuiver, M., Talamo, S., Taylor, F. W., van der Plicht, J., and Weyhenmeyer, C. E. 2004. IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46:10291058.Google Scholar
Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J., and Weyhenmeyer, C. E. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:11111150.Google Scholar
Scott, E. M., Harkness, D. D., and Cook, G. T. 1998 Interlaboratory comparisons: lessons learned. Radiocarbon 40:331340.Google Scholar
Siani, G., Paterne, M., Arnold, M., Bard, E., Metivier, B., Tisnérat, N., and Bassinot, F. 2000. Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea. Radiocarbon 42:271280.Google Scholar
`Stuiver, M. and `Kra, R. S. (eds.) 1986. Calibration issue, proceedings of the 12th International 14C conference. Radiocarbon 28:8051030.Google Scholar
Stuiver, M. and Reimer, P. J. 1993. Extended 14 C data base and revised CALIB 3.0 14 C age calibration program. Radiocarbon 35(1):215230.Google Scholar
Stuiver, M., Reimer, P. J., Bard, E., Beck, J. W., Burr, G. S., Hughen, K. A., Kromer, B., McCormac, G., van der Plicht, J., and Spurk, M. 1998. INTCAL98 Radiocarbon Age Calibration, 24000–0 cal BP. Radiocarbon 40:10411083.Google Scholar
Suess, H. and Clarke, M. 1976. Calibration curve for radiocarbon-dates Antiquity 50:6163.Google Scholar
Svensson, A, Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M. 2008. A 60 000 year Greenland stratigraphic ice core chronology. Climates of the Past 4:4757.Google Scholar
Turney, C. S. M., Bird, M. I., Fifield, L. K., Kershaw, A. P., Cresswell, R. G., Santos, G. M., di Tada, M. L., Hausladen, P. A., and Youping, Z. 2001. Development of a robust C-14 chronology for Lynch’s Crater (north Queensland, Australia) using different pretreatment strategies. Radiocarbon 43:4554.Google Scholar

References

Adamiec, G. and Aitken, M. J. 1998. Dose rate conversion factors: Update Ancient TL 16:37–49.Google Scholar
Aitken, M. J. 1985. Thermoluminescence Dating. Academic Press: London.Google Scholar
Aitken, M. J. 1989. Luminescence dating: A guide for non-specialists. Archaeometry 31:147159.Google Scholar
Aitken, M. J. 1997. Luminescence dating. In: `Taylor, R. E. and `Aitken, M. J. (eds.) Chronometric Dating in Archaeology, pp. 183216. Boston, MA: Springer.Google Scholar
Aitken, M. J. 1998. An Introduction to Optical Dating. Oxford: Oxford University Press.Google Scholar
Aitken, M. J., Tite, M. S., and Reid, J. 1964. Thermoluminescent dating of ancient ceramics. Nature 202:10321033.Google Scholar
Anikovich, M. V., Anikovich, M. V., Sinitsyn, A. A., Hoffecker, J. F., Holliday, V. T., Popov, V. V., Lisitsyn, S. N., Forman, S. L., Levkovskaya, G. M., Pospelova, G. A., Kuz’Mina, I., and Burova, N. D. 2007. Early Upper Paleolithic in Eastern Europe and implications for the dispersal of modern humans. Science 315(5809):223226.Google Scholar
Bailey, R. M. 2000. The slow component of quartz optically stimulated luminescence. Radiation Measurements 32(3):233246.Google Scholar
Bailey, R. and Arnold, L. 2006. Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25(19–20):24752502.CrossRefGoogle Scholar
Bailey, R. M. and McKeever, S. W. S. 2009. The physical basis of luminescence dating. In: `Krbetschek, M. (ed.) Luminescence Dating: An Introduction and Handbook. Berlin: Springer.Google Scholar
Bailey, R. M., Singarayer, J. S., Ward, S., and Stokes, S. 2003. Identification of partial resetting using De as a function of illumination time. Radiation Measurements 37(4–5):511518.CrossRefGoogle Scholar
Bailey, R. M., Smith, B. W., and Rhodes, E. J. 1997. Partial bleaching and the decay form characteristics of quartz OSL. Radiation Measurements 27(2):123136.Google Scholar
Bateman, M. 2003. Investigations into the potential effects of pedoturbation on luminescence dating. Quaternary Science Reviews 22(10–13):11691176.Google Scholar
Bateman, M. D., Boulter, C. H., Carr, A. S., Frederick, C. D., Peter, D., and Wilder, M. 2007. Detecting post-depositional sediment disturbance in sandy deposits using optical luminescence. Quaternary Geochronology 2(1–4):5764.Google Scholar
Bowler, J. M., Johnston, H., Olley, J. M., Prescott, J. R., Roberts, R. G., Shawcross, W., and Spooner, N. A. 2003. New ages for human occupation and climatic change at Lake Mungo, Australia. Nature 421(6925):837840.Google Scholar
Burrough, S. L, Thomas, D. S. G., and Bailey, R. M. 2009. Mega-Lake in the Kalahari: A Late Pleistocene record of the Palaeolake Makgadikgadi system. Quaternary Science Reviews 28:13921411.Google Scholar
David, B., Roberts, R. G., Magee, J., Mialanes, J., Turney, C., Bird, M., White, C., Fifield, L. K., and Tibby, J. 2007. Sediment mixing at Nonda Rock: Investigations of stratigraphic integrity at an early archaeological site in northern Australia and implications for the human colonisation of the continent. Journal of Quaternary Science 22:449479.Google Scholar
Duller, G. A. T. 2008. Single-grain optical dating of Quaternary sediments: Why aliquot size matters in luminescence dating. Boreas 37(4):589612.Google Scholar
Daniels, F., Boyd, C. A., and Saunders, D. F. 1953. Thermoluminescence as a research tool. Science 117:343349.CrossRefGoogle ScholarPubMed
Feathers, J. K., Rhodes, E. J., Huot, S., and Mcavoy, J. M. 2006. Luminescence dating of sand deposits related to late Pleistocene human occupation at the Cactus Hill Site, Virginia, USA. Quaternary Geochronology 1(3):167187.Google Scholar
Galbraith, R. F. and Green, P. F. 1990. Estimating the component ages in a finite mixture. Nuclear Tracks and Radiation Measurements 17:97206.Google Scholar
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., and Olley, J. M. 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia: Part I, experimetal design and statistical models. Archaeometry 41(2):339364.Google Scholar
Grine, F. E., Bailey, R. M., Harvati, K., Nathan, R. P., Morris, A. G., Henderson, G. M., Ribot, I., and Pike, A. W. 2007. Late Pleistocene human skull from Hofmeyr, South Africa, and modern human origins. Science 315(5809):226229.Google Scholar
Henshilwood, C. S. 2002. Emergence of modern human behavior: Middle Stone Age engravings from South Africa. Science 295(5558):12781280.Google Scholar
Huntley, D. J., Godfrey-Smith, D. I., and Thewalt, M. L. W. 1985. Optical dating of sediments. Nature, 313(5998):105107.Google Scholar
Kuzmin, Y. V., Hall, S., Tite, M. S., Bailey, R., O’Malley, J. M., and Medvedev, V. E. 2001. Radiocarbon and thermoluminescence dating of the pottery from the early Neolithic site of Gasya (Russian Far East): Initial results. Quaternary Science Reviews 20:945948.Google Scholar
Lauer, T., Krbetschek, M., Frechen, M., Tsukamoto, S., Hoselmann, C., and Weidenfeller, M. 2011. Infrared radiofluorescence (Ir-Rf) dating of middle pleistocene fluvial archives of the Heidelberg Basin (Southwest Germany). Geochronometria 38(1):2333.Google Scholar
Madsen, A. T., Murray, A. S., Andersen, T. J., Pejrup, M., and Breuning-Madsen, H. 2005. Optically stimulated luminescence dating of young estuarine sediments: a comparison with 210Pb and 137Cs dating. Marine Geology 214(1–3): 251268.Google Scholar
McKeever, S. W. S. 1988. Thermoluminescence of Solids. Cambridge: Cambridge University Press.Google Scholar
McKeever, S. W. S. and Chen, R. 1997. Luminescence models. Radiation Measurements 27(5):625661.CrossRefGoogle Scholar
Mercier, N. and Valladas, H. 2003. Reassessment of TL age estimates of burnt flints from the Paleolithic site of Tabun Cave, Israel. Journal of Human Evolution 45:401409.Google Scholar
Morwood, M. J., Soejono, R. P., Roberts, R. G., Sutikna, T., Turney, C. S., Westaway, K. E., Rink, W. J., Zhao, J. X., van den Bergh, G. D., Due, R. A., and Hobbs, D. R. 2004. Archaeology and age of a new hominin from Flores in eastern Indonesia. Nature 431(7012):10871091.CrossRefGoogle ScholarPubMed
Murray, A. and Olley, J. M. 2002. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: A status review. Geochronometria 21:116.Google Scholar
Nathan, R. P., Thomas, P. J., Jain, M., Murray, A. S., and Rhodes, E. J. 2003. Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation. Radiation Measurements 37:305313.Google Scholar
Olley, J., Caitcheon, G., and Murray, A. 1998. The distribution of apparent dose as determined by Optically Stimulated Luminescence in small aliquots of fluvial quartz: implications for dating young sediments. Quaternary Science Reviews 17(11):10331040.Google Scholar
Olley, J. M., Murray, A., and Roberts, R. 1996. The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quaternary Science Reviews 15(7):751760.Google Scholar
Olley, J. M. and Pietsch, T. 2004. Optical dating of Holocene sediments from a variety of geomorphic settings using single grains of quartz. Geomorphology 60:337358.Google Scholar
Roberts, R. G., Flannery, T. F., Ayliffe, L. K., Yoshida, H., Olley, J. M., Prideaux, G. J., Laslett, G. M., Baynes, A., Smith, M. A., Jones, R., and Smith, B. L. 2001. New ages for the last Australian megafauna: Continent-wide extinction about 46,000 years ago. Science 292(5523):18881892.Google Scholar
Roberts, R., Galbraith, R., and Olley, J. 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part II, results and implications. Archaeometry 41(2):365395.Google Scholar
Singarayer, J. S., Bailey, R. M., Ward, S., and Stokes, S. 2005. Assessing the completeness of optical resetting of quartz OSL in the natural environment. Radiation Measurements 40(1):1325.Google Scholar
Sivia, D. S., Burbidge, C., Roberts, R. G., and Bailey, R. M. 2004. A Bayesian approach to the evaluation of equivalent doses in sediment mixtures for luminescence dating. AIP Conference Proceedings 735:305311.Google Scholar
Stokes, S. 2004. Optical dating of aeolian dynamism on the West African Sahelian margin. Geomorphology 59(1–4):281291.Google Scholar
Stokes, S., Bailey, R. M., Fedoroff, N., and O’Marah, K. E. 2004. Optical dating of aeolian dynamism on the West African Sahelian margin. Geomorphology 59(1–4):281291.Google Scholar
Thomsen, K. J., Murray, A. S., and Jain, M. 2011. Stability of IRSL signals from sedimentary K-feldspar samples. Geochronometria 38(1):113.CrossRefGoogle Scholar
Tribolo, C., Mercier, N., Selo, M., Valladas, H., Joron, J. L., Reyss, J. L., Henshilwood, C., Sealy, J., and Yates, R., 2006. Tl dating of burnt lithics from Blombos Cave (South Africa): Further evidence for the antiquity of modern human behaviour. Archaeometry 48(2):341357.Google Scholar
Wang, X., Lu, Y., and Wintle, A. 2006. Recuperated OSL dating of fine-grained quartz in Chinese loess. Quaternary Geochronology 1(2):89100.Google Scholar
Waters, M. R., Forman, S. L., Jennings, T. A., Nordt, L. C., Driese, S. G., Feinberg, J. M., Keene, J. L., Halligan, J., Lindquist, A., Pierson, J., and Hallmark, C. T. 2011. The Buttermilk Creek complex and the origins of Clovis at the Debra L. Friedkin site, Texas. Science 331(6024):15991603.Google Scholar
Wintle, A. 2008. Luminescence dating: Where it has been and where it is going. Boreas 37:471482.Google Scholar
Wintle, A. and Murray, A. 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41(4):369391.Google Scholar
Yoshida, H., Roberts, R. G., Olley, J. M., Laslett, G. M., and Galbraith, R. F. 2000. Extending the age range of optical dating using single “supergrains” of quartz. Radiation Measurements 32:439446.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×