Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-26T18:17:07.007Z Has data issue: false hasContentIssue false

Part I - Introduction to Pain: Pain Signaling Pathways

Published online by Cambridge University Press:  01 December 2023

Omar Viswanath
Affiliation:
Creighton University, Omaha
Ivan Urits
Affiliation:
Southcoast Brain & Spine Center, Wareham
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Jensen, TS, Baron, R, Haanpää, M et al. A new definition of neuropathic pain. Pain. 2011; 152(10): 22042205. doi: 10.1016/j.pain.2011.06.017.CrossRefGoogle ScholarPubMed
Yekkirala, AS, Roberson, DP, Bean, BP, Woolf, CJ. Breaking barriers to novel analgesic drug development. Nature Reviews Drug Discovery. 2017; 16(8): 545564. doi: 10.1038/nrd.2017.87.CrossRefGoogle ScholarPubMed
Staudt, MD, Clark, AJ, Gordon, AS et al. Long-term outcomes in the management of central neuropathic pain syndromes: A prospective observational cohort study. Can J Neurol Sci. 2018; 45(5): 545552. doi: 10.1017/cjn.2018.55.CrossRefGoogle ScholarPubMed
Warner, FM, Cragg, JJ, Jutzeler, CR et al. Progression of neuropathic pain after acute spinal cord injury: A meta-analysis and framework for clinical trials. J Neurotrauma. 2019 15(1):4048. doi: 10.1016/j.jpain.2013.09.008.Google Scholar
Finnerup, NB, Norrbrink, C, Trok, K et al. Phenotypes and predictors of pain following traumatic spinal cord injury: A prospective study. J Pain. 2014;15(1):4048. doi: 10.1016/j.jpain.2013.09.008.CrossRefGoogle ScholarPubMed
Warner, FM, Cragg, JJ, Jutzeler, CR et al. The progression of neuropathic pain after acute spinal cord injury: A meta‐analysis and framework for clinical trials. J Neurotrauma. 2018;36(9):14611468.CrossRefGoogle ScholarPubMed
Gruener, H, Zeilig, G, Laufer, Y, Blumen, N, Defrin, R. Increased psychological distress among individuals with spinal cord injury is associated with central neuropathic pain rather than the injury characteristics. Spinal Cord. 2018;56(2):176184. doi: 10.1038/s41393-017-0014-6.CrossRefGoogle Scholar
Vuckovic, A, Jajrees, M, Purcell, M, Berry, H, Fraser, M. Electroencephalographic predictors of neuropathic pain in subacute spinal cord injury. J Pain. 2018;19(11):1256.e1–1256.e17. doi: 10.1016/j.jpain.2018.04.011.CrossRefGoogle ScholarPubMed
Wang, Y, Ye, F, Huang, C et al. Bioinformatic analysis of potential biomarkers for spinal cord-injured patients with intractable neuropathic pain. Clin J Pain. 2018;34(9):825830. doi: 10.1097/AJP.0000000000000608.CrossRefGoogle ScholarPubMed
Tang, Y, Liu, L, Xu, D et al. Interaction between astrocytic colony stimulating factor and its receptor on microglia mediates central sensitization and behavioral hypersensitivity in chronic post ischemic pain model. Brain Behav Immun. 2018;68:248260.CrossRefGoogle ScholarPubMed
Chhaya, SJ, Quiros-Molina, D, Tamashiro-Orrego, AD, Houlé, JD, Detloff, MR. Exercise-induced changes to the macrophage response in the dorsal root ganglia prevent neuropathic pain after spinal cord injury. J Neurotrauma. 2019;36:877890.CrossRefGoogle Scholar
Du, X-J, Chen, Y-X, Zheng, Z-C et al. Neural stem cell transplantation inhibits glial cell proliferation and P2X receptor-mediated neuropathic pain in spinal cord injury rats. Neural Regen Res. 2019;14(5):876885.Google ScholarPubMed
Lee, SH, Shi, XQ, Fan, A, West, B, Zhang, J. Targeting macrophage and microglia activation with colony stimulating factor 1 receptor inhibitor is an effective strategy to treat injury-triggered neuropathic pain. Mol Pain. 2018;14:112.CrossRefGoogle ScholarPubMed
Kazuki, K, Toshiya, T, Yamanaka, H et al. Upregulation of calcium channel alpha-2-delta-1 subunit in dorsal horn contributes to spinal cord injury-induced tactile allodynia- ClinicalKey. Spinal J. 2018;18(6):10621069.Google Scholar
Sánchez-Brualla, I, Boulenguez, P, Brocard, C et al. Activation of 5-HT 2 A receptors restores KCC2 function and reduces neuropathic pain after spinal cord injury. Neuroscience. 2018;387:4857.CrossRefGoogle ScholarPubMed
Li, T, Wan, Y, Sun, L et al. Inhibition of microRNA-15a/16 expression alleviates neuropathic pain development through upregulation of G protein-coupled receptor kinase 2. Biomol Ther. 2019;27(4):414422.CrossRefGoogle ScholarPubMed
Yang, Z, Xu, J, Zhu, R, Liu, L. Down-regulation of miRNA-128 contributes to neuropathic pain following spinal cord injury via activation of P38. Med Sci Monit. 2017;23:405411.CrossRefGoogle ScholarPubMed
Sanna, MD, Les, F, Lopez, V, Galeotti, N. Lavender (Lavandula angustifolia Mill.) essential oil alleviates neuropathic pain in mice with spared nerve injury. Front Pharmacol. 2019;10:472. doi: 10.3389/fphar.2019.00472. eCollection 2019.CrossRefGoogle ScholarPubMed
Warner, FM, Cragg, JJ, Jutzeler, CR et al. The progression of neuropathic pain after acute spinal cord injury: A meta‐analysis and framework for clinical trials. J Neurotrauma. 2018;36(9):14611468.CrossRefGoogle ScholarPubMed
Rosendahl, A, Krogh, S, Kasch, H. Pain assessment in hospitalized spinal cord injured patients–a controlled cross-sectional study. Sc and J Pain. 2018;19(2):299307.CrossRefGoogle Scholar
Thibaut, A, Carvalho, S, Morse, L, Zafonte, R, Fregni, F. Delayed pain decrease following M1 tDCS in spinal cord injury: A randomized controlled clinical trial. Neurosci Lett. 2017;658:1926.CrossRefGoogle ScholarPubMed
Widerström-Noga, E, Loeser, JD, Jensen, TS, Finnerup, NB. AAPT diagnostic criteria for central neuropathic pain. J Pain. 2017;18(12):14171426. doi: 10.1016/j.jpain.2017.06.003.CrossRefGoogle ScholarPubMed
Horan, NA, Pugh, TM. Intractable central pain in a patient with diffuse glioma. Am J Phys Med Rehabil. 2019;98:107110.CrossRefGoogle Scholar
Levendoglu, F, Ogun, CO, Ozerbil, O, Ogun, TC, Ugurlu, H. Gabapentin is a first line drug for treatment of neuropathic pain in spinal cord injury. Spine. 2004;29:743751.CrossRefGoogle ScholarPubMed
Siddall, PJ, Cousins, MJ, Otte, A et al. Pregabalin in central neuropathic pain associated with spinal cord injury: A placebo-controlled trial. Neurol. 2006;67:17921800.CrossRefGoogle ScholarPubMed
Cardenas, DD, Nieshoff, EC, Suda, K et al. A randomized trial of pregabalin in patients with neuropathic pain due to spinal cord injury. Neurol. 2013;80:533539.CrossRefGoogle ScholarPubMed
Vranken, JH, Dijkgraaf, MG, Kruis, MR et al. Pregabalin in patients with central neuropathic pain: A randomized, double-blind, placebo-controlled trial of a flexible-dose regimen. Pain. 2008;136:150157.CrossRefGoogle ScholarPubMed
Finnerup, NB, Sindrup, SH, Bach, FW, Johannesen, IL, Jensen, TS. Lamotrigine in spinal cord injury pain: A randomized controlled trial. Pain. 2002;96:375383.CrossRefGoogle ScholarPubMed
Leijon, G, Boivie, J. Central post-stroke pain – A controlled trial of amitriptyline and carbamazepine. Pain. 1989;36:2736.CrossRefGoogle Scholar
Rintala, DH, Holmes, SA, Courtade, D et al. Comparison of the effectiveness of amitriptyline and gabapentin on chronic neuropathic pain in persons with spinal cord injury. Arch Phys Med Rehabil. 2007;88:15471560.CrossRefGoogle ScholarPubMed
Vollmer, TL, Robinson, MJ, Risser, RC, Malcolm, SK. A randomized, double-blind, placebo-controlled trial of duloxetine for the treatment of pain in patients with multiple sclerosis. Pain Pract. 2014;14:732744.CrossRefGoogle ScholarPubMed
Ellis, A, Grace, PM, Wieseler, J et al. Morphine amplifies mechanical allodynia via TLR4 in a rat model of spinal cord injury. Brain Behav Immun. 2016;58:348356.CrossRefGoogle Scholar
Svendsen, KB, Jensen, TS, Bach, FW. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double blind placebo controlled crossover trial. BMJ. 2004;329:253260.CrossRefGoogle ScholarPubMed
Li, L, Han, Y, Li, T et al. The analgesic effect of intravenous methylprednisolone on acute neuropathic pain with allodynia due to central cord syndrome: A retrospective study. J Pain Res. 2018;11:12311238CrossRefGoogle ScholarPubMed
Kumru, H, Benito-Penalva, J, Kofler, M, Vidal, J. Analgesic effect of intrathecal baclofen bolus on neuropathic pian in spinal cord injury patients. Brain Res Bull. 2018;140:205211.CrossRefGoogle Scholar
Brinzeu, A, Berthiller, J, Caillet, J-B, Staquet, H, Mertens, P. Ziconotide for spinal cord injury‐related pain. Eur J Pain. 2019;23(9):16881700.CrossRefGoogle ScholarPubMed
Galhardoni, R, da Silva, VA, Garcia-Larrea, L et al. Insular and anterior cingulate cortex deep stimulation for central neuropathic pain disassembling the percept of pain. Neurol. 2019;92(18):21652175.Google ScholarPubMed
Melzack, R. Pain and neuromatrix in the brain. J Dent Educ. 2001;65(12):13781382.CrossRefGoogle ScholarPubMed
Melzack, R, Wall, P. Pain mechanisms: a new theory. Surv Anesth. 1967;11:8990.CrossRefGoogle Scholar
Melzack, R, Loeser, J. Phantom body pain in paraplegics: Evidence for a central “pattern generating mechanism” for pain. Pain. 1977;4:195210.CrossRefGoogle Scholar
Karri, J, Li, S, Zhang, L et al. Neuropathic pain modulation after spinal cord injury by breathing-controlled electrical stimulation (BreEStim) is associated with restoration of autonomic dysfunction. J Pain Res. 2018;11:23312341.CrossRefGoogle ScholarPubMed
Boord, P, Siddall, P, Tran, Y et al. Electroencephalographic slowing and reduced reactivity in neuropathic pain following spinal cord injury. Spinal Cord. 2008;46:118123.CrossRefGoogle ScholarPubMed
Wydenkeller, S, Maurizio, S, Dietz, V, Halder, P. Neuropathic pain in spinal cord injury: Significance of clinical and electrophysiological measures. Eur J Neurosci. 2009;30:9199.CrossRefGoogle ScholarPubMed

References

Starowicz, K, Finn, DP. Cannabinoids and pain: Sites and mechanisms of action. Adv Pharmacol Sci. 2017;80:437475.CrossRefGoogle ScholarPubMed
Di Marzo, V, Fontana, A, Cadas, H, Schinelli, S, Cimino, G, Schwartz, J-C, Piomelli, D. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature. 1994;372(6507):686691.CrossRefGoogle ScholarPubMed
Giuffrida, A, Beltramo, M, Piomelli, D. Mechanisms of endocannabinoid inactivation: Biochemistry and pharmacology. J Pharmacol Exp Ther. 2001;298(1):714.Google Scholar
Parolaro, D, Realini, N, Vigano, D, Guidali, C, Rubino, T. The endocannabinoid system and psychiatric disorders. Exp Neurol. 2010;224(1):314.CrossRefGoogle ScholarPubMed
Manzanares, J, Julian, M, Carrascosa, A. Role of the cannabinoid system in pain control and therapeutic implications for the management of acute and chronic pain episodes. Curr Neuropharmacol. 2006;4(3):239257.CrossRefGoogle ScholarPubMed
Walker, JM, Krey, JF, Chu, CJ, Huang, SM. Endocannabinoids and related fatty acid derivatives in pain modulation. Chem Phys Lipids. 2002;121(1–2):159172.CrossRefGoogle ScholarPubMed
Devane, WA, Hanus, L, Breuer, A, Pertwee, RG, Stevenson, LA, Griffin, G, Gibson, D, Mandelbaum, A, Etinger, A, Mechoulam, R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258(5090):19461949.CrossRefGoogle Scholar
Mechoulam, R, Ben-Shabat, S, Hanus, L, Ligumsky, M, Kaminski, NE, Schatz, AR, Gopher, A, Almog, S, Martin, BR, Compton, DR. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50(1):8390.CrossRefGoogle ScholarPubMed
Porter, AC, Sauer, J-M, Knierman, MD, Becker, GW, Berna, MJ, Bao, J, Nomikos, GG, Carter, P, Bymaster, FP, Leese, AB, Felder, CC. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther. 2002;301(3):10201024.CrossRefGoogle ScholarPubMed
Mackie, K. Cannabinoid receptors: Where they are and what they do. J Neuroendocrinol. 2008;20(s1):1014.CrossRefGoogle Scholar
Sañudo-Peña, MC, Strangman, NM, Mackie, K, Walker, JM, Tsou, K. CB1 receptor localization in rat spinal cord and roots, dorsal root ganglion, and peripheral nerve. Zhongguo Yao Li Xue Bao. 1999;20(12):11151120.Google ScholarPubMed
Manning, BH, Martin, WJ, Meng, ID. The rodent amygdala contributes to the production of cannabinoid-induced antinociception. Neuroscience. 2003;120(4):11571170.CrossRefGoogle Scholar
Martin, WJ, Hohmann, AG, Walker, JM. Suppression of noxious stimulus-evoked activity in the ventral posterolateral nucleus of the thalamus by a cannabinoid agonist: Correlation between electrophysiological and antinociceptive effects. J Neurosci. 1996;16(20):66016611.CrossRefGoogle ScholarPubMed
Lichtman, AH, Cook, SA, Martin, BR. Investigation of brain sites mediating cannabinoid-induced antinociception in rats: Evidence supporting periaqueductal gray involvement. J Pharmacol Exp Ther. 1996;276(2):585593.Google ScholarPubMed
Luo, C, Kumamoto, E, Furue, H, Chen, J, Yoshimura, M. Anandamide inhibits excitatory transmission to rat substantia gelatinosa neurones in a manner different from that of capsaicin. Neurosci Lett. 2002;321(1–2):1720.CrossRefGoogle Scholar
Morisset, V, Urban, L. Cannabinoid-induced presynaptic inhibition of glutamatergic EPSCs in substantia gelatinosa neurons of the rat spinal cord. J Neurophysiol. 2001;86(1):4048.CrossRefGoogle ScholarPubMed
Bridges, D, Rice, ASC, Egertová, M, Elphick, MR, Winter, J, Michael, GJ. Localisation of cannabinoid receptor 1 in rat dorsal root ganglion using in situ hybridisation and immunohistochemistry. Neuroscience. 2003;119(3):803812.CrossRefGoogle ScholarPubMed
Hill, KP, Palastro, MD, Johnson, B, Ditre, JW. Cannabis and pain: A clinical review. Cannabis cannabinoid Res. 2017;2(1):96104.CrossRefGoogle Scholar
Ibrahim, MM, Porreca, F, Lai, J, Albrecht, PJ, Rice, FL, Khodorova, A, Davar, G, Makriyannis, A, Vanderah, TW, Mata, HP, Malan, TP. CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proc Natl Acad Sci. 2005;102(8):30933098.CrossRefGoogle ScholarPubMed
Abrams, D, Guzman, M. Cannabis in cancer care. Clin Pharmacol Ther. 2015;97(6):575586.CrossRefGoogle ScholarPubMed
Scavone, JL, Sterling, RC, Van Bockstaele, EJ. Cannabinoid and opioid interactions: Implications for opiate dependence and withdrawal. Neuroscience. 2013;248:637654.CrossRefGoogle ScholarPubMed
Pertwee, RG. Endocannabinoids and their pharmacological actions. Handb. Exp. Pharmacol. 2015;231:137. doi: 10.1007/978-3-319-20825-1_1.CrossRefGoogle ScholarPubMed
Katona, I, Sperlágh, B, Maglóczky, Z, Sántha, E, Köfalvi, A, Czirják, S, Mackie, K, Vizi, ES, Freund, TF. GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience. 2000;100(4):797804.CrossRefGoogle ScholarPubMed
Schlicker, E, Kathmann, M. Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci. 2001;22(11):565572.CrossRefGoogle ScholarPubMed
Ibsen, MS, Connor, M, Glass, M. Cannabinoid CB 1 and CB 2 receptor signaling and bias. Cannabis Cannabinoid Res. 2017;2(1):4860.CrossRefGoogle ScholarPubMed
Niu, J, Huang, D, Zhou, R, Yue, M, Xu, T, Yang, J, He, L, Tian, H, Liu, X, Zeng, J. Activation of dorsal horn cannabinoid CB2 receptor suppresses the expression of P2Y12 and P2Y13 receptors in neuropathic pain rats. J Neuroinflammation. 2017;14(1):185.CrossRefGoogle ScholarPubMed
Fine, PG, Rosenfeld, MJ. The endocannabinoid system, cannabinoids, and pain. Rambam Maimonides Med J. 2013;4(4):e0022.CrossRefGoogle ScholarPubMed
Lowin, T, Straub, RH. Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis. Arthritis Res Ther. 2015;17(1):226.CrossRefGoogle ScholarPubMed
Cristino, L, de Petrocellis, L, Pryce, G, Baker, D, Guglielmotti, V, Di Marzo, V. Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience. 2006;139(4):14051415.CrossRefGoogle ScholarPubMed
Rahn, EJ, Hohmann, AG. Cannabinoids as pharmacotherapies for neuropathic pain: from the bench to the bedside. Neurotherapeutics. 2009;6(4):713737.CrossRefGoogle Scholar
Gui, H, Liu, X, Liu, L-R, Su, D-F, Dai, S-M. Activation of cannabinoid receptor 2 attenuates synovitis and joint destruction in collagen-induced arthritis. Immunobiology. 2015;220(6):817822.CrossRefGoogle ScholarPubMed
Toth, CC, Jedrzejewski, NM, Ellis, CL, Frey, WH. Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain. Mol Pain. 2010;6:17448069.CrossRefGoogle Scholar
Nielsen, S, Sabioni, P, Trigo, JM, Ware, MA, Betz-Stablein, BD, Murnion, B, Lintzeris, N, Khor, KE, Farrell, M, Smith, A, Le Foll, B. Opioid-sparing effect of cannabinoids: A systematic review and meta-analysis. Neuropsychopharmacology. 2017;42(9):17521765.CrossRefGoogle ScholarPubMed
Hojo, M, Sudo, Y, Ando, Y, Minami, K, Takada, M, Matsubara, T, Kanaide, M, Taniyama, K, Sumikawa, K, Uezono, Y. μ-Opioid receptor forms a functional heterodimer with cannabinoid CB1 receptor: Electrophysiological and FRET assay analysis. J Pharmacol Sci. 2008;108(3):308319.CrossRefGoogle ScholarPubMed
Salio, C, Fischer, J, Franzoni, MF et al. CB1-cannabinoid and μ -Opioid receptor co-localization on postsynaptic target in the rat dorsal horn. Neuroreport. 2001;12(17):36893692.CrossRefGoogle ScholarPubMed
Cathel, AM, Reyes, BAS, Wang, Q et al. Cannabinoid modulation of alpha2 adrenergic receptor function in rodent medial prefrontal cortex. Eur J Neurosci. 2014;40(8):32023214.CrossRefGoogle ScholarPubMed
Takeda, S, Misawa, K, Yamamoto, I, Watanabe, K. Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis. Drug Metab Dispos. 2008;36(9):19171921.CrossRefGoogle ScholarPubMed
Romero-Sandoval, EA, Kolano, AL, Alvarado-Vázquez, PA. Cannabis and cannabinoids for chronic pain. Curr Rheumatol Rep. 2017;19(11):67.CrossRefGoogle ScholarPubMed
Rai, A, Meng, H, Weinrib, A, Englesakis, M. A review of adjunctive CNS medications used for the treatment of post-surgical pain. CNS Drugs. 2017;31(7):605615.CrossRefGoogle ScholarPubMed
Kleine-brueggeney, M, Greif, R, Brenneisen, R et al. Intravenous delta-9-tetrahydrocannabinol to prevent postoperative nausea and vomiting: A randomized controlled trial. Anesth Analg. 2015;121(5).CrossRefGoogle ScholarPubMed
Khelemsky, Y, Goldberg, AT, Hurd, YL et al. Perioperative patient beliefs regarding potential effectiveness of marijuana (cannabinoids) for treatment of pain: A prospective population survey. Reg Anesth Pain Med. 2017;42(5):652659.CrossRefGoogle Scholar
Meng, H, Johnston, B, Englesakis, M et al. Selective cannabinoids for chronic neuropathic pain: A systemic review and meta-analysis. Anesth Analg. 2017;125(5):16381652.CrossRefGoogle Scholar
Fitzcharles, M-A, Baerwald, C, Ablin, J, Häuser, W. Efficacy, tolerability and safety of cannabinoids in chronic pain associated with rheumatic diseases (fibromyalgia syndrome, rheumatoid arthritis): A systematic review of randomized controlled trials. Schmerz (Berlin, Germany). 2016;30(1):4761.CrossRefGoogle ScholarPubMed
Karst, M, Salim, K, Burstein, S et al. Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain. JAMA. 2003;290(13):1757.CrossRefGoogle ScholarPubMed
Hall, N, Eldabe, S. Phantom limb pain: A review of pharmacological management. Br J Pain. 2018;12(4):202207.CrossRefGoogle ScholarPubMed
Russo, EB. Cannabis Therapeutics and the Future of Neurology. Front Integr Neurosci. 2018;12:51.CrossRefGoogle ScholarPubMed
Davis, MP. Cannabinoids for symptom management and cancer therapy: The evidence. J Natl Compr Canc Netw. 2016;14(7):915922.CrossRefGoogle ScholarPubMed
Kenyon, J, Liu, W, Dalgleish, A. Report of objective clinical responses of cancer patients to pharmaceutical-grade synthetic cannabidiol. Anticancer Res. 2018;38(10):58315835.CrossRefGoogle ScholarPubMed
Baron, EP. Medicinal properties of cannabinoids, terpenes, and flavonoids in cannabis, and benefits in migraine, headache, and pain: An update on current evidence and cannabis science. Headache J Head Face Pain. 2018;58(7):11391186.CrossRefGoogle ScholarPubMed
Kandasamy, R, Dawson, CT, Craft, RM, Morgan, MM. Anti-migraine effect of Δ 9-tetrahydrocannabinol in the female rat. Eur J Pharmacol. 2018;818:271277.CrossRefGoogle ScholarPubMed
Pamplona, FA, Phytolab, E, Giniatullin Rashidginiatullin, R et al. Emerging role of (endo)cannabinoids in migraine. Front Pharmacol. 2018;9:420.Google Scholar
Torres-moreno, MC, Papaseit, E, Torrens, M, Farré, M. Assessment of efficacy and tolerability of medicinal cannabinoids in patients with multiple sclerosis: A systematic review and meta-analysis. JAMA. 2018;1(6):116.Google ScholarPubMed
Smith, PF. Therapeutics and clinical risk management new approaches in the management of spasticity in multiple sclerosis patients: Role of cannabinoids. Ther Clin Risk Manag. 2010;6:659.Google ScholarPubMed
Langford, RM, Mares, J, Novotna, A et al. A double-blind, randomized, placebo-controlled, parallel-group study of THC/CBD oromucosal spray in combination with the existing treatment regimen, in the relief of central neuropathic pain in patients with multiple sclerosis. J Neurol. 2013;260(4):984997.CrossRefGoogle ScholarPubMed
Russo, EB. Clinical endocannabinoid deficiency reconsidered: Current research supports the theory in migraine, fibromyalgia, irritable bowel, and other treatment-resistant syndromes. Cannabis Cannabinoid Res. 2016;1(1):154165.CrossRefGoogle ScholarPubMed

References

Zhang, Y-J, Li, S, Gan, R-Y et al. Impacts of gut bacteria on human health and diseases. Int J Mol Sci. 2015;16(12):74937519.CrossRefGoogle ScholarPubMed
Sheflin, AM, Whitney, AK, Weir, TL. Cancer-promoting effects of microbial dysbiosis. Curr Oncol Rep. 2014;16(10):406.CrossRefGoogle ScholarPubMed
Vuong, HE, Hsiao, EY. Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry. 2017;81(5):411423.CrossRefGoogle ScholarPubMed
Geurts, L, Neyrinck, AM, Delzenne, NM et al. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: Novel insights into molecular targets and interventions using prebiotics. Benef Microbes. 2014;5(1):317.CrossRefGoogle ScholarPubMed
Rigoni, R, Fontana, E, Guglielmetti, S et al. Intestinal microbiota sustains inflammation and autoimmunity induced by hypomorphic RAG defects. J Exp Med. 2016;213(3):355375.CrossRefGoogle ScholarPubMed
Gagnière, J, Raisch, J, Veziant, J et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 2016;22(2):501518.CrossRefGoogle ScholarPubMed
Schulberg, J, De Cruz, P. Characterisation and therapeutic manipulation of the gut microbiome in inflammatory bowel disease. Intern Med J. 2016;46(3):266273.CrossRefGoogle ScholarPubMed
Nicholson, JK, Holmes, E, Kinross, J et al. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):12621267.CrossRefGoogle ScholarPubMed
Cryan, JF, Dinan, TG. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701712.CrossRefGoogle ScholarPubMed
Hsiao, EY, McBride, SW, Hsien, S et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):14511463.CrossRefGoogle ScholarPubMed
So, D, Whelan, K, Rossi, M et al. Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis. Am J Clin Nutr. 2018;107(6):965983.CrossRefGoogle ScholarPubMed
Harrison, CA, Taren, D. How poverty affects diet to shape the microbiota and chronic disease. Nat. Rev. Immunol. 2018;18:279287.CrossRefGoogle ScholarPubMed
Shipton, EA, Shipton, EE. Vitamin D and pain: Vitamin D and its role in the aetiology and maintenance of chronic pain states and associated comorbidities. Pain Res Treat. 2015;2015: 904967.Google ScholarPubMed
Hoban, AE, Moloney, RD, Golubeva, AV et al. Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat. Neurosci. 2016;339:463477.CrossRefGoogle ScholarPubMed
O’Mahony, SM, Felice, VD, Nally, K et al. Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neurosci. 2014;277:885901.CrossRefGoogle ScholarPubMed
Verdú, EF, Bercik, P, Verma-Gandhu, M et al. Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut. 2006;55(2):182190.CrossRefGoogle ScholarPubMed
Halliez, MCM, Motta, J-P, Feener, TD et al. Giardia duodenalis induces paracellular bacterial translocation and causes postinfectious visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol. 2016;310(8):G574G585.CrossRefGoogle ScholarPubMed
Meng, J, Yu, H, Ma, J et al. Morphine induces bacterial translocation in mice by compromising intestinal barrier function in a TLR-dependent manner. PLoS One. 2013;8(1):e54040.CrossRefGoogle Scholar
Banerjee, S, Sindberg, G, Wang, F et al. Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol. 2016;9(6):14181428.CrossRefGoogle ScholarPubMed
Wang, F, Meng, J, Zhang, L et al. Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model. Sci Rep. 2018;8(1):115.Google Scholar
Schott, EM, Farnsworth, CW, Grier, A et al. Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight. 2018;3(8):e95997.CrossRefGoogle ScholarPubMed
Shoskes, DA, Wang, H, Polackwich, AS et al. Analysis of gut microbiome reveals significant differences between men with chronic prostatitis / chronic pelvic pain syndrome and controls. J Urol. 2016;196(2):435441.CrossRefGoogle ScholarPubMed
Malatji, BG, Meyer, H, Mason, S et al. A diagnostic biomarker profile for fibromyalgia syndrome based on an NMR metabolomics study of selected patients and controls. BMC Neurol. 2017;17(1):115.CrossRefGoogle Scholar
Minerbi, A, Gonzalez, E, Brereton, NJB et al. Altered microbiome composition in individuals with fibromyalgia. Pain. 2019;160(11):25892602.CrossRefGoogle ScholarPubMed
Shukla, SK, Cook, D, Meyer, J et al. Changes in gut and plasma microbiome following exercise challenge in myalgic encephalomyelitis / chronic fatigue syndrome (ME / CFS). PLoS One. 2015;10:115.CrossRefGoogle ScholarPubMed
Maes, M, Twisk, FNM, Kubera, M et al. Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome. J Affect Disord. 2012;136(3):909917.CrossRefGoogle Scholar
Lei, M, Guo, C, Wang, D, Zhang, C, Hua, L. The effect of probiotic Lactobacillus casei Shirota on knee osteoarthritis: A randomised double-blind, placebo-controlled clinical trial. Benef Microbes. 2017;8(5):697703.CrossRefGoogle ScholarPubMed
Roman, P, Estévez, AF, Miras, A et al. A pilot randomized controlled trial to explore cognitive and emotional effects of probiotics in fibromyalgia. Sci Rep. 2018;8(1):19.CrossRefGoogle ScholarPubMed
Cámara-Lemarroy, CR, Rodriguez-Gutierrez, R, Monreal-Robles, R, Marfil-Rivera, A. Gastrointestinal disorders associated with migraine: A comprehensive review. World J Gastroenterol. 2016;22:81498160.CrossRefGoogle ScholarPubMed
Naghibi, MM, Day, R. The microbiome, the gut-brain axis and migraine. Gastrointest Nurs. 2019;17(8):3845.CrossRefGoogle Scholar
Zhong, S, Zhou, Z, Liang, Y et al. Targeting strategies for chemotherapy-induced peripheral neuropathy: Does gut microbiota play a role? Crit. Rev. Microbiol. 2019;45:369393.CrossRefGoogle ScholarPubMed
Yang, C, Fang, X, Zhan, G et al. Key role of gut microbiota in anhedonia-like phenotype in rodents with neuropathic pain. Transl Psychiatry. 2019;9(1):57.CrossRefGoogle ScholarPubMed
Huang, J, Zhang, C, Wang, J, Guo, Q, Zou, W. Oral Lactobacillus reuteri LR06 or Bifidobacterium BL5b supplement do not produce analgesic effects on neuropathic and inflammatory pain in rats. Brain Behav. 2019;9(4):e01260.CrossRefGoogle Scholar
Sunagawa, Y, Okamura, N, Miyazaki, Y et al. Effects of products containing Bacillus subtilis var. natto on healthy subjects with neck and shoulder stiffness, a double-blind, placebo-controlled, randomized crossover study. Biol Pharm Bull. 2018;41(4):504509.CrossRefGoogle ScholarPubMed
Maes, M, Leunis, J-C. Normalization of leaky gut in chronic fatigue syndrome (CFS) is accompanied by a clinical improvement: Effects of age, duration of illness and the translocation of LPS from gram-negative bacteria. Neuro Endocrinol Lett. 2008;29(6):902910.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×