Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-24T00:31:49.644Z Has data issue: false hasContentIssue false

Section 2 - Sexual and Reproductive Healthcare

Published online by Cambridge University Press:  16 January 2024

Johannes Bitzer
Affiliation:
University Women's Hospital, Basel
Tahir A. Mahmood
Affiliation:
Victoria Hospital, Kirkcaldy
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

DiMarco, CS, Speroff, L, Glass, RH, Kase, NG (eds.). Clinical gynecologic endocrinology and infertility. 6th edition. Baltimore, MD: Lippincott, Williams & Wilkins, 1999.Google Scholar
Moghissi, KS. Gonadotropin releasing hormones: Clinical applications in gynecology. J Reprod Med. 1990;35(12):10971107.Google ScholarPubMed
Moghissi, KS. Vulnerable targets for contraception in the female. Global Libra Women’s Med FIGO. 2009.Google Scholar
Skorupskaite, K, George, JT, Anderson, RA. The kisspeptin–GnRH pathway in human reproductive health and disease. Hum Reprod Update. 2014;20(4):485500.CrossRefGoogle ScholarPubMed
Adashi, EY. Intraovarian peptides: Stimulators and inhibitors of follicular growth and differentiation. Endocrinol Metab Clin of North Am. 1992;21(1):117.CrossRefGoogle ScholarPubMed
Chengalvala, MV, Meade, EH, Cottom, JE et al. Regulation of female fertility and identification of future contraceptive targets. Curr Pharm Des. 2006;12(30):3915–28.CrossRefGoogle ScholarPubMed
ES H. Transport of spermatozoa in the female reproductive tract. Am J Obstet Gynecol. 1973;115(5):703–17.Google Scholar
Lyons, RA, Saridogan, E, Djahanbakhch, O. The reproductive significance of human Fallopian tube cilia. Hum Reprod Update. 2006;12(4):363–72.CrossRefGoogle ScholarPubMed
Deligdisch, L. Hormonal pathology of the endometrium. Mod Pathol. 2000;13(3):285–94.CrossRefGoogle ScholarPubMed
Salamonsen, LA. Tissue injury and repair in the female human reproductive tract. Reproduction. 2003;125(3):301–11.CrossRefGoogle ScholarPubMed
Hickey, M, Salamonsen, LA. Endometrial structural and inflammatory changes with exogenous progestogens. Trends in Endocrinology and Metabolism. 2008;19(5):167–74.CrossRefGoogle ScholarPubMed
Han, L, Taub, R, Jensen, JT. Cervical mucus and contraception: What we know and what we don’t. Contraception. 2017;96(5):310–21.CrossRefGoogle ScholarPubMed
Ortiz, ME, Croxatto, HB. Copper-T intrauterine device and levonorgestrel intrauterine system: Biological bases of their mechanism of action. Contraception. 2007;75(6 Suppl):S16–30.CrossRefGoogle ScholarPubMed
Erkkola, R. Recent advances in hormonal contraception. Curr Opin Obstet Gynecol. 2007;19(6):547–53.CrossRefGoogle ScholarPubMed
Baird, DT, Collins, J, Cooke, I et al. Ovarian and endometrial function during hormonal contraception. Hum Reprod. 2001;16(7)1527–35.Google Scholar
Burkman, RT. Transdermal hormonal contraception: Benefits and risks. Am J Obstet Gynecol. 2007;197(2):134.e16.CrossRefGoogle ScholarPubMed
Brache, V, Faundes, A. Contraceptive vaginal rings: A review. Contraception. 2010;82(5):418–27.CrossRefGoogle ScholarPubMed
Sitruk-Ware, R, Nath, A. The use of newer progestins for contraception. Contraception. 2010;82(5):410–17.CrossRefGoogle ScholarPubMed
Jacobstein, R, Polis, CB. Progestin-only contraception: Injectables and implants. Best Pract Res Clin Obstet Gynaecol. 2014;28(6):795806.CrossRefGoogle ScholarPubMed
Apter, D, Gemzell-Danielsson, K, Hauck, B, Rosen, K, Zurth, C. Pharmacokinetics of two low-dose levonorgestrel-releasing intrauterine systems and effects on ovulation rate and cervical function: Pooled analyses of phase II and III studies. Fertil Steril. 2014;101(6):1656–62.CrossRefGoogle ScholarPubMed
Wagenfeld, A, Saunders, PTK, Whitaker, L, Critchley, HOD. Selective progesterone receptor modulators (SPRMs): Progesterone receptor action, mode of action on the endometrium and treatment options in gynecological therapies. Expert Opin Ther Targets. 2016;20(9):1045–54.CrossRefGoogle ScholarPubMed
Jadav, SP, Parmar, DM. Ulipristal acetate: A progesterone receptor modulator for emergency contraception. J Pharmacol aPharmacother. 2012;3(2):109–11.Google ScholarPubMed
Araû, VR, Gastal, MO, Figueiredo, JR, Gastal, EL. In vitro culture of bovine prenatal follicles: A review. Reprod. Biol. Endocrinol. 2014;12:78. https://doi.org/10.1186/1477-7827-12-78.Google Scholar
Andersen, AN, Ernst, E, 2011. Gynækologisk Endokrinologi. In Ottesen, B, Mogensen, O, Forman, A (eds.), Gynækologi. 4th edition. Copenhagen: Munksgaard Danmark, 2011.Google Scholar

References

International Conference on Population and Development (ICPD). Programme of Action of the International Conference on Population and Development, Cairo, Egypt, 5–13 September 1994, ch. VII, para. 7.2, 7.12, U.N. Doc. A/CONF.171/13/ Rev.1 (1995).Google Scholar
Center for Reproductive Rights. The right to contraceptive information and services for women and adolescents. New York: Center for Reproductive Rights, 2010.Google Scholar
Kaplan, DM, Tarvydas, VM, Gladding, ST. 20/20: A vision for the future of counselling. Journal of Counseling & Development. 2014;92:366–72.CrossRefGoogle Scholar
Lambert, M, Barley, DE. Research summary of the therapeutic relationship and psychotherapy outcome. Psychotherapy Theory Research & Practice. 2001;38(4):357–61.CrossRefGoogle Scholar
Shelton, JD, Jacobstein, RA, Angle, MA. Medical barriers to access to family planning. Lancet. 1992;340(8831):1334–5. https://doi.org/10.1016/0140-6736(92)92505-A. Pmid: 1360046.CrossRefGoogle ScholarPubMed
Solo, J, Festin, M. Provider bias in family planning services: A review of its meaning and manifestations. Global Health: Science and Practice, September 2019. GHSP-D-19–00130. https://doi.org/10.9745/GHSp-D-19-00130.CrossRefGoogle Scholar
Calhoun, LM, Speizer, IS, Rimal, R et al. Provider imposed restrictions to clients’ access to family planning in urban Uttar Pradesh, India: A mixed methods study. BMC Health Serv Res. 2013;13(1):532. https://doi.org/10.1186/1472-6963-13-532. Pmid:23465015.CrossRefGoogle ScholarPubMed
Dehlendorf, C, Krajewski, C, Borrero, S. Contraceptive counseling: Best practices to ensure quality communication and enable effective contraceptive use. Clinical Obstetrics and Gynecology. 2014;57(4):659–73. https://doi.org/10.1097/GRF.0000000000000059.CrossRefGoogle ScholarPubMed
Gavin, L, Moskosky, S, Carter, M et al. Providing quality family planning services: Recommendations of CDC and the U.S. Office of Population Affairs. Morbidity and Mortality Weekly Report: Recommendations and Reports. 2014;63(4):154.Google ScholarPubMed
Stanford, JB, Mikolajczyk, RT. Mechanisms of action of intrauterine devices: Update and estimation of postfertilization effects. Am J Obstet Gynecol. 2002;187:16991708.CrossRefGoogle ScholarPubMed
Hubacher, D. Intrauterine devices & infection: Review of the literature. Indian J Med Res. 2014;140(Suppl 1):S53S57.Google ScholarPubMed
Bruce, J. Fundamental elements of the quality of care: A simple framework. Studies in Family Planning. 1990;21(2):6191. https://doi.org/10.2307/19666691.CrossRefGoogle ScholarPubMed
World Health Organization, Department of Reproductive Health and Research and Johns Hopkins Bloomberg School of Public Health/Center for Communication Programs, Knowledge for Health Project. Family planning: A global handbook for providers (2018 update). Geneva: World Health Organization, Department of Reproductive Health and Research and Johns Hopkins Bloomberg School of Public Health/Center for Communication Programs, Knowledge for Health Project, 2018.Google Scholar
Cavallaro, FL, Benova, L, Owolabi, OO et al. A systematic review of the effectiveness of counselling strategies for modern contraceptive methods: What works and what doesn’t? BMJ Sex Reprod Health. 2019;0:116. Published Online First: 11 December 2019. https://doi.org/10.1136/bmjsrh-2019-200377.Google Scholar
Bitzer, J, Abalos, V, Apter, D, Martin, R, Black, A for Global CARE Group. Targeting factors for change: Contraceptive counselling and care of female adolescents. European Journal of Contraception and Reproductive Health Care. 2016;21(6):417–30. https://doi.org/10.1080/13625187.2016.1237629.Google Scholar
Rinehart, W, Rudy, S, Drennan, M. GATHER guide to counseling. Popul Rep J. 1998;48:131.Google Scholar

References

Sitruk-Ware, R, Nath, A. Characteristics and metabolic effects of estrogen and progestins contained in oral contraceptive pills. Best Pract Res Clin Endocrinol Metab. 2013;27(1):1324.CrossRefGoogle ScholarPubMed
Godsland, IF, Crook, D, Simpson, R et al. The effects of different formulations of oral contraceptive agents on lipid and carbohydrate metabolism. N Engl J Med. 1990;323(20):1375–81.CrossRefGoogle ScholarPubMed
Dragoman, M, Curtis, KM, Gaffield, ME. Combined hormonal contraceptive use among women with known dyslipidemias: A systematic review of critical safety outcomes. Contraception. 2016;94(3):280–7.CrossRefGoogle ScholarPubMed
Speroff, L. Clinical gynecologic endocrinology and infertility. 8th edition. Philadelphia, PA: Lippincott, Williams and Wilkins, 2010.Google Scholar
Petersen, KR, Skouby, SO, Vedel, P, Haaber, AB. Hormonal contraception in women with IDDM: Influence on glycometabolic control and lipoprotein metabolism. Diabetes Care. 1995;18(6):800–6.CrossRefGoogle ScholarPubMed
Trussell, J, Portman, D. The creeping pearl: Why has the rate of contraceptive failure increased in clinical trials of combined hormonal contraceptive pills? Contraception. 2013;88(5):604–10.CrossRefGoogle ScholarPubMed
European Society for Contraception Teaching and Training tool CHC session. 2019. https://escrheu/education/training-improvement-programme/tt-tool-sessions-eng.Google Scholar
Merki-Feld, GS, Bitzer, J. Contraception in adolescents with anorexia nervosa: Is there evidence for a negative impact of combined hormonal contraceptives on bone mineral density and the course of the disease? Eur J Contracept Reprod Health Care. 2020;25(3):213–20.CrossRefGoogle Scholar
Fernandez, E, La Vecchia, C, Balducci, A et al. Oral contraceptives and colorectal cancer risk: A meta-analysis. Br J Cancer. 2001;84(5):722–7.CrossRefGoogle ScholarPubMed
Iversen, L, Sivasubramaniam, S, Lee, AJ, Fielding, S, Hannaford, PC. Lifetime cancer risk and combined oral contraceptives: The Royal College of General Practitioners’ Oral Contraception Study. Am J Obstet Gynecol. 2017;216(6):580e581–580e589.CrossRefGoogle ScholarPubMed
Combined hormonal contraceptives (CHCs) and the risk of cardiovascular disease endpoints. CHC-CVD final report 111022v2. 2011.Google Scholar
Dragoman, MV, Tepper, NK, Fu, R. A systematic review and meta-analysis of venous thrombosis risk among users of combined oral contraception. Int J Gynaecol Obstet. 2018;141(3):287–94.CrossRefGoogle ScholarPubMed
VTE risk with CHC. European medical agency. 2013. bit.ly/3DoQFLC.Google Scholar
Dinger, J, Assmann, A, Mohner, S, Minh, TD. Risk of venous thromboembolism and the use of dienogest- and drospirenone-containing oral contraceptives: Results from a German case-control study. J Fam Plann Reprod Health Care. 2010;36(3):123–9.CrossRefGoogle ScholarPubMed
Van Vlijmen, EF, Wiewel-Verschueren, S, Monster, TB, Meijer, K. Combined oral contraceptives, thrombophilia and the risk of venous thromboembolism: A systematic review and meta-analysis. J Thromb Haemost. 2016;14(7):13931403.CrossRefGoogle ScholarPubMed
Bezemer, ID, Van der Meer, FJ, Eikenboom, JC, Rosendaal, FR, Doggen, CJ. The value of family history as a risk indicator for venous thrombosis. Arch Intern Med. 2009;169(6):610–15.CrossRefGoogle ScholarPubMed
Zoller, B, Li, X, Ohlsson, H, Sundquist, J, Sundquist, K. Age-and sex-specific seasonal variation of venous thromboembolism in patients with and without family history: A nationwide family study in Sweden. Thromb Haemost. 2013;110(6):1164–71.Google ScholarPubMed
Acute myocardial infarction and combined oral contraceptives: Results of an international multicentre case-control study. WHO Collaborative Study of Cardiovascular Disease and Steroid Hormone Contraception. Lancet. 1997;349(9060):1202–9.Google Scholar
Lidegaard, O, Lokkegaard, E, Jensen, A, Skovlund, CW, Keiding, N. Thrombotic stroke and myocardial infarction with hormonal contraception. N Engl J Med. 2012;366(24):2257–66.CrossRefGoogle ScholarPubMed
Curtis, KM, Mohllajee, AP, Peterson, HB. Use of combined oral contraceptives among women with migraine and nonmigrainous headaches: A systematic review. Contraception. 2006;73(2):189–94.Google ScholarPubMed
Tzourio, C, Kittner, SJ, Bousser, MG, Alperovitch, A. Migraine and stroke in young women. Cephalalgia. 2000;20(3):190–9.CrossRefGoogle ScholarPubMed
Merki-Feld, GS, Skouby, S, Serfaty, D. European society of contraception statement on contraception in obese women. Eur J Contracept Reprod Health Care. 2015;20(1):1928.CrossRefGoogle ScholarPubMed
Sacco, S, Merki-Feld, GS, Bitzer, J et al. Effect of exogenous estrogens and progestogens on the course of migraine during reproductive age: A consensus statement by the European Headache Federation (EHF) and the European Society of Contraception and Reproductive Health (ESCRH). J Headache Pain. 2018;19(1):76.CrossRefGoogle ScholarPubMed
Merki-Feld, GS, Imthurn, B, Langner, R, Seifert, B, Gantenbein, AR. Positive effects of the progestin desogestrel 75 mug on migraine frequency and use of acute medication are sustained over a treatment period of 180 days. J Headache Pain. 2015;16:522.CrossRefGoogle Scholar
Morch, LS, Skovlund, CW, Hannaford, PC et al. Contemporary hormonal contraception and the risk of breast cancer. N Engl J Med. 2017;377(23):2228–39.CrossRefGoogle ScholarPubMed
Loopik, DL, IntHout, J, Melchers, WJG et al. Oral contraceptive and intrauterine device use and the risk of cervical intraepithelial neoplasia grade III or worse: A population-based study. Eur J Cancer. 2020;124 :102–9.CrossRefGoogle ScholarPubMed
International Collaboration of Epidemiological Studies of Cervical Cancer, Appleby, P, Beral, V et al. Cervical cancer and hormonal contraceptives: Collaborative reanalysis of individual data for 16,573 women with cervical cancer and 35,509 women without cervical cancer from 24 epidemiological studies. Lancet. 2007;370(9599):1609–21.Google Scholar
Skovlund, CW, Morch, LS, Kessing, LV, Lidegaard, O. Association of hormonal contraception with depression. JAMA Psychiatry. 2016;73(11):1154–62.CrossRefGoogle ScholarPubMed
Hani, D, Imthurn, B, Merki-Feld, GS. [Weight gain due to hormonal contraception: Myth or truth?]. Gynakol Geburtshilfliche Rundsch. 2009;49(2):8793.Google ScholarPubMed
Gallo, MF, Lopez, LM, Grimes, DA et al. Combination contraceptives: Effects on weight. Cochrane Database Syst Rev. 201;1:CD003987.Google Scholar

References

Trussell, J. Contraceptive failure in the United States. Contraception. 2011;83:397404.CrossRefGoogle ScholarPubMed
Palacios, S, Colli, E, Regidor, PA. Multicenter, phase III trials on the contraceptive efficacy, tolerability and safety of a new drospirenone-only pill. Acta Obstet Gynecol Scand. 2019;98:1549–57.CrossRefGoogle ScholarPubMed
Philips, SJ, Tepper, NK, Kapp, N et al. Progestogen-only contraceptive use among breastfeeding women: A systematic review. Contraception. 2016;94:226–52.CrossRefGoogle Scholar
Tepper, NK, Whiteman, MK, Marchbanks, PA, James, AH, Curtis, KM. Progestin-only contraception and thromboembolism: A systematic review. Contraception. 2016;94:678800.CrossRefGoogle ScholarPubMed
World Health Organization. Medical eligibility criteria for contraceptive use. 5th edition. Geneva: World Health Organization, 2015. bit.ly/3RiJdHy.Google Scholar
Zigler, RE, McNicholas, C. Unscheduled vaginal bleeding with progestin-only contraceptive use. Am J Obstet Gynecol. 2017;5:443–50.Google Scholar
Abdel-Aleem, H, d’Arcangues, C, Vogelsong, KM, Gaffield, ML, Gülmezoglu, AM. Treatment of vaginal bleeding irregularities induced by progestin only contraceptives. Cochrane Database Syst Rev. 2013;CD003449.CrossRefGoogle Scholar
Lopez, LM, Ramesh, S, Chen, M et al. Progestin-only contraceptives: Effects on weight. Cochrane Database Syst Rev. 2016;CD008815.CrossRefGoogle Scholar
Mørch, LS, Skovlund, CW, Hannaford, PC et al. Contemporary hormonal contraception and the risk of breast cancer. N Engl J Med. 2017;377:2228–39.CrossRefGoogle ScholarPubMed
Skovlund, CW, Mørch, LS, Kessing, LV, Lidegaard, Ø. Association of hormonal contraceptives with depression. JAMA Psychiatry. 2016;73:1154–62.CrossRefGoogle ScholarPubMed
Benagiano, G, Primiero, FM. Seventy-five microgram desogestrel minipill, a new perspective in estrogen-free contraception. Ann N Y Acad Sci. 2003;997:163–73.CrossRefGoogle ScholarPubMed
Archer, DF, Ahrendt, H-J, Drouin, D. Drospirenone-only oral contraceptive: Results from a multicenter noncomparative trial of efficacy, safety and tolerability. Contraception. 2015;92:439–44.CrossRefGoogle ScholarPubMed
Duijkers, IJ, Heger-Mahn, D, Drouin, D, Skouby, S. A randomised study comparing the effect on ovarian activity of a progestogen-only pill (POP) containing desogestrel and a new POP containing drospirenone in a 24/4 regimen. Eur J Contracept Reprod Health Care. 2015;20:419–27.CrossRefGoogle Scholar
Sacco, S, Merki-Feld, GS, Aegidius, KL et al. Effect of exogenous estrogens and progestogens on the course of migraine during reproductive age: A consensus statement by the European Headache Federation (EHF) and the European Society of Contraception and Reproductive health (ESCRH). Journal of Headache and Pain. 2018;19:7696.CrossRefGoogle ScholarPubMed
Brache, V, Cochon, L, Duijkers, IJM et al. A prospective, randomized, pharmacodynamic study of quick-starting a desogestrel progestin-only pill following ulipristal acetate for emergency contraception. Hum Reprod. 2015;13:2785–93.Google Scholar
Palomba, S, Falbo, A, Di Cello, A, Materazzo, C, Zullo, F. Nexplanon: The new implant for long-term contraception. A comprehensive descriptive review. Gynecol Endocrinol. 2012;9:710–21.Google Scholar
Lazorwitz, A, Aquilante, CL, Sheeder, J, Guiahi, M, Teal, S. Relationship between patient characteristics and serum etonogestrel concentrations in contraceptive implant users. Contraception. 2019;100:3741.CrossRefGoogle ScholarPubMed
McNicholas, C, Swor, E, Wan, L, Peipert, JF. Prolonged use of the etonogestrel implant and levonorgestrel intrauterine device: 2 years beyond FDA-approved duration. Am J Obstet Gynecol. 2017;6:586.e1586.e6.CrossRefGoogle Scholar
Mansour, D, Korver, T, Marintcheva-Petrova, M, Fraser, IS. The effects of Implanon on menstrual bleeding patterns. Eur J Contracept Reprod Health Care. 2008;13(Suppl 1):1328.CrossRefGoogle ScholarPubMed
Blumenthal, PD, Gemzell-Danielsson, K, Marintcheva-Petrova, M. Tolerability and clinical safety of Implanon. Eur J Contracept Reprod Health Care. 2008;13(Suppl 1):2936.CrossRefGoogle ScholarPubMed
Kaunitz, AM, Darney, PD, Ross, D, Wolter, KD, Speroff, L. Subcutaneous DMPA vs. intramuscular DMPA: A 2-year randomized study of contraceptive efficacy and bone mineral density. Contraception. 2009;80:717.CrossRefGoogle ScholarPubMed
Said, S, Omar, K, Koetsawang, S et al. A multicentered phase III comparative clinical trial of depot-medroxyprogesterone acetate given three-monthly at doses of 100 mg or 150 mg. II: The comparison of bleeding patterns. Contraception. 1987;35:591607.CrossRefGoogle ScholarPubMed
Lange, HLH, Manos, BE, Gothard, MD, Rogers, LK, Bonny, AE. Bone mineral density and weight changes in adolescents randomized to 3 doses of depot medroxyprogesterone acetate. J Pediatr Adolesc Gynecol. 2017;30:169–75.CrossRefGoogle ScholarPubMed
Kohn, JE, Simons, HR, Badia, LD et al. Increased 1-year continuation of DMPA among women randomized to self-administration: Results from a randomized controlled trial at Planned Parenthood. Contraception. 2018;97:198204.CrossRefGoogle ScholarPubMed
Reinecke, I, Hofmann, B, Mesic, E, Drenth, HJ, Garmann, D. An integrated population pharmacokinetic analysis to characterize levonorgestrel pharmacokinetics after different administration routes. J Clin Pharmacol. 2018;58:1639–54.CrossRefGoogle ScholarPubMed
Apter, D, Gemzell-Danielsson, K, Hauck, B, Rosen, K, Zurth, C. Pharmacokinetics of two low-dose levonorgestrel-releasing intrauterine systems and effects on ovulation rate and cervical function: Pooled analyses of phase II and III studies. Fertil Steril. 2014;101:1656–62.e1–4.CrossRefGoogle ScholarPubMed
Goldthwaite, LM, Creinin, MD. Comparing bleeding patterns for the levonorgestrel 52 mg, 19.5 mg, and 13.5 mg intrauterine systems. Contraception. 2019;100:128–31.CrossRefGoogle ScholarPubMed
Sergison, JE, Maldonado, LY, Gao, X, Hubacher, D. Levonorgestrel intrauterine system associated amenorrhea: A systematic review and metaanalysis. Am J Obstet Gynecol. 2019;220:440–8.e8.CrossRefGoogle ScholarPubMed
Gemzell-Danielsson, K, Schellschmidt, I, Apter, D. A randomized, phase II study describing the efficacy, bleeding profile, and safety of two low-dose levonorgestrel-releasing intrauterine contraceptive systems and Mirena. Fertil Steril. 2012;97:616–22.e1–3.CrossRefGoogle ScholarPubMed

References

Kavanaugh, ML, Jerman, J. Contraceptive method use in the United States: Trends and characteristics between 2008, 2012 and 2014. Contraception. 2018;97:1421. https://doi.org/10.1016/j.contraception.2017.10.003.CrossRefGoogle ScholarPubMed
Hassoun, D. [Natural family planning methods and barrier: CNGOF contraception guidelines]. Gynecol Obstet Fertil Senol. 2018;46:873–82. https://doi.org/10.1016/j.gofs.2018.10.002.Google ScholarPubMed
Han, L, Taub, R, Jensen, JT. Cervical mucus and contraception: What we know and what we don’t. Contraception. 2017;96:310–21. https://doi.org/10.1016/j.contraception.2017.07.168.CrossRefGoogle ScholarPubMed
Sung, S, Abramovitz, A. Natural family planning. Bethesda, MD: StatPearls, 2020.Google Scholar
Klaus, H. Natural family planning: A review. Obstet Gynecol Surv. 1982;37:128–50. https://doi.org/10.1097/00006254-198202000-00026.CrossRefGoogle ScholarPubMed
Bradley, SEK, Polis, CB, Bankole, A, Croft, T. Global contraceptive failure rates: Who is most at risk? Stud Fam Plann. 2019;50:324. https://doi.org/10.1111/sifp.12085.CrossRefGoogle ScholarPubMed
Polis, CB, Jones, RK. Multiple contraceptive method use and prevalence of fertility awareness based method use in the United States, 2013–2015. Contraception. 2018;98:188–92. https://doi.org/10.1016/j.contraception.2018.04.013.CrossRefGoogle ScholarPubMed
Duane, M, Contreras, A, Jensen, ET, White, A. The performance of fertility awareness–based method apps marketed to avoid pregnancy. J Am Board Fam Med. 2016;29:508–11. https://doi.org/10.3122/jabfm.2016.04.160022.CrossRefGoogle ScholarPubMed
Grimes, DA, Gallo, MF, Grigorieva, V et al. Fertility awareness-based methods for contraception: Systematic review of randomized controlled trials. Contraception. 2005;72:8590. https://doi.org/10.1016/j.contraception.2005.03.010.CrossRefGoogle ScholarPubMed
Peragallo Urrutia, R, Polis, CB, Jensen, ET et al. Effectiveness of fertility awareness–based methods for pregnancy prevention: A systematic review. Obstet Gynecol. 2018;132:591604. https://doi.org/10.1097/AOG.0000000000002784.CrossRefGoogle ScholarPubMed
Daunter, B, Counsilman, C. Cervical mucus: Its structure and possible biological functions. Eur J Obstet Gynecol Reprod Biol. 1980;10:141–61. https://doi.org/10.1016/0028-2243(80)90056-8.CrossRefGoogle ScholarPubMed
Su, H-W, Yi, Y-C, Wei, T-Y et al. Detection of ovulation: A review of currently available methods. Bioeng Transl Med. 2017;2:238–46. https://doi.org/10.1002/btm2.10058.CrossRefGoogle ScholarPubMed
Johnson, S, Marriott, L, Zinaman, M. Can apps and calendar methods predict ovulation with accuracy? Curr Med Res Opin. 2018;34:1587–94. https://doi.org/10.1080/03007995.2018.1475348.CrossRefGoogle ScholarPubMed
Nilsson, A, Ahlborg, T, Bernhardsson, S. Use of non-medical contraceptive methods: A survey of women in western Sweden. Eur J Contracept Reprod Health Care. 2018;23:400–6. https://doi.org/10.1080/13625187.2018.1541079.CrossRefGoogle ScholarPubMed
Marston, CA, Church, K. Does the evidence support global promotion of the calendar-based Standard Days Method® of contraception? Contraception. 2016;93:492–7. https://doi.org/10.1016/j.contraception.2016.01.006.CrossRefGoogle ScholarPubMed
Pyper, C. Natural family planning: Low failure rate with symptothermal method. BMJ. 1993;307:1359–60. https://doi.org/10.1136/bmj.307.6915.1359-c.CrossRefGoogle ScholarPubMed
Soler, F, Barranco-Castillo, E. The symptothermal (double check) method: An efficient natural method of family planning. Eur J Contracept Reprod Health Care. 2010;15:379–80, author reply at 381. https://doi.org/10.3109/13625187.2010.505990.CrossRefGoogle ScholarPubMed
Geerling, JH. Natural family planning. Am Fam Physician. 1995;52:1749–56, 1759.Google ScholarPubMed
Bouchard, TP, Genuis, SJ. Personal fertility monitors for contraception. Can Med Assoc J. 2011;183:73–6. https://doi.org/10.1503/cmaj.090195.CrossRefGoogle ScholarPubMed
Bonnar, J, Flynn, A, Freundl, G et al. Personal hormone monitoring for contraception. Br J Fam Plann. 1999;24:128–34.Google ScholarPubMed
Moglia, ML, Nguyen, HV, Chyjek, K et al. Evaluation of smartphone menstrual cycle tracking applications using an adapted APPLICATIONS scoring system. Obstet Gynecol. 2016;127:1153–60. https://doi.org/10.1097/AOG.0000000000001444.CrossRefGoogle ScholarPubMed
Freis, A, Freundl-Schütt, T, Wallwiener, LM et al. Plausibility of menstrual cycle apps claiming to support conception. Front Public Health. 2018;6:98102. https://doi.org/10.3389/fpubh.2018.00098.CrossRefGoogle ScholarPubMed
Zwingerman, R, Chaikof, M, Jones, C. A critical appraisal of fertility and menstrual tracking apps for the iPhone. J Obstet Gynaecol Can. 2019. https://doi.org/10.1016/j.jogc.2019.09.023.CrossRefGoogle Scholar
Gambier-Ross, K, McLernon, DJ, Morgan, HM. A mixed methods exploratory study of women’s relationships with and uses of fertility tracking apps. Digit Health. 2018;4:2055207618785077. https://doi.org/10.1177/2055207618785077.Google ScholarPubMed
Berglund Scherwitzl, E, Lindén Hirschberg, A, Scherwitzl, R. Identification and prediction of the fertile window using NaturalCycles. Eur J Contracept Reprod Health Care. 2015;20:403–8. https://doi.org/10.3109/13625187.2014.988210.CrossRefGoogle ScholarPubMed
Berglund Scherwitzl, E, Lundberg, O, Kopp Kallner, H et al. Perfect-use and typical-use Pearl Index of a contraceptive mobile app. Contraception. 2017;96:420–5. https://doi.org/10.1016/j.contraception.2017.08.014.CrossRefGoogle ScholarPubMed
Evans, WD, Ulasevich, A, Hatheway, M, Deperthes, B. Systematic review of peer-reviewed literature on global condom promotion programs. Int J Environ Res Public Health. 2020. https://doi.org/10.3390/ijerph17072262.CrossRefGoogle Scholar
Gossman, W, Shaeffer, AD, McNabb, DM. Condoms. StatPearls, 2020.Google Scholar
Sanders, SA, Yarber, WL, Kaufman, EL et al. Condom use errors and problems: A global view. Sex Health. 2012;9:8195. https://doi.org/10.1071/SH11095.CrossRefGoogle ScholarPubMed
Raidoo, S, Kaneshiro, B. Contraception counseling for adolescents. Curr Opin Obstet Gynecol. 2017;29:310–15. https://doi.org/10.1097/GCO.0000000000000390.CrossRefGoogle ScholarPubMed
Beksinska, M, Wong, R, Smit, J. Male and female condoms: Their key role in pregnancy and STI/HIV prevention. Best Pract Res Clin Obstet Gynaecol. 2020;66:5567. https://doi.org/10.1016/j.bpobgyn.2019.12.001.CrossRefGoogle ScholarPubMed
Maksut, JL, Eaton, LA. Female condoms = missed opportunities: Lessons learned from promotion-centered interventions. Women’s Health Issues. 2015;25:366–76. https://doi.org/10.1016/j.whi.2015.03.015.CrossRefGoogle ScholarPubMed
Bounds, W. Female condoms. Eur J Contracept Reprod Health Care. 1997;2:113–16. https://doi.org/10.3109/13625189709167464.CrossRefGoogle ScholarPubMed
Edouard, L. The renaissance of barrier methods. J Fam Plann Reprod Health Care. 2012;38:131–3. https://doi.org/10.1136/jfprhc-2012-100314.CrossRefGoogle ScholarPubMed
Mauck, C, Callahan, M, Weiner, DH, Dominik, R. A comparative study of the safety and efficacy of FemCap, a new vaginal barrier contraceptive, and the Ortho All-Flex diaphragm: The FemCap Investigators’ Group. Contraception. 1999;60:7180. https://doi.org/10.1016/s0010-7824(99)00068-2.CrossRefGoogle ScholarPubMed
Lech, MM. Spermicides 2002: An overview. Eur J Contracept Reprod Health Care. 2002;7:173–7.CrossRefGoogle ScholarPubMed
Dev, R, Kohler, P, Feder, M et al. A systematic review and meta-analysis of postpartum contraceptive use among women in low- and middle-income countries. Reprod Health. 2019;16:154. https://doi.org/10.1186/s12978-019-0824-4.CrossRefGoogle ScholarPubMed
Tredway, DR, Umezaki, CU, Mishell, DR Jr, Settlage, DS. Effect of intrauterine devices on sperm transport in the human being: Preliminary report. Am J Obstet Gynecol. 1975;123(7):734–5.CrossRefGoogle ScholarPubMed
Winner, B, Peipert, JF, Zhao, Q et al. Effectiveness of long-acting reversible contraception. N Engl J Med. 2012;366(21):19982007.CrossRefGoogle ScholarPubMed
World Health Organization. Medical eligibility criteria for contraceptive use. 5th edition. Geneva: World Health Organization, 2015. www.who.int/publications/i/item/9789241549158.Google Scholar
Castellsagué, X, Thompson, WD, Dubrow, R. Intra-uterine contraception and the risk of endometrial cancer. Int J Cancer. 1993;54(6):911–16.CrossRefGoogle ScholarPubMed
Milsom, I, Andersson, K Jonasson, K, Lindstedt, G, Rybo, G. Contraception: The influence of the Gyne-T 380S IUD on menstrual blood loss and iron status. Contraception. 1995;52(3):175–9.CrossRefGoogle ScholarPubMed
Whiteman, MK, Tyler, CP, Folger, SG, Gaffield, ME, Curtis, KM. When can a woman have an intrauterine device inserted? A systematic review. Contraception. 2013;87(5):666–73.CrossRefGoogle ScholarPubMed
Lopez, LM, Bernholc, A, Hubacher, D, Stuart, G, Van Vliet, HA. Immediate postpartum insertion of intrauterine device for contraception. Cochrane Database Syst Rev. 2015;(6):CD003036.Google ScholarPubMed
Gemzell-Danielsson, K, Jensen, JT, Monteiro, I et al. Interventions for the prevention of pain associated with the placement of intrauterine contraceptives: An updated review. Acta Obstet Gynecol Scand. 2019;98(12):1500–13.CrossRefGoogle ScholarPubMed
Sääv, I, Aronsson, A, Marions, L, Stephansson, O, Gemzell-Danielsson, K. Cervical priming with sublingual misoprostol prior to insertion of an intrauterine device in nulliparous women: A randomized controlled trial. Hum Reprod. 2007;22(10):2647–52.CrossRefGoogle ScholarPubMed
Mishell, DR Jr, Bell, JH, Good, RG, Moyer, DL. The intrauterine device: A bacteriologic study of the endometrial cavity. Am J Obstet Gynecol. 1966;96 (1):119–26. https://doi.org/10.1016/s0002-9378(16)34650-6.CrossRefGoogle ScholarPubMed
FSRH Guidance. Intrauterine contraception. 2015. bit.ly/3kVvj1Y.Google Scholar
Farley, TM, Rosenberg, MJ, Rowe, PJ, Chen, JH, Meirik, O. Intrauterine devices and pelvic inflammatory disease: An international perspective. Lancet. 1992;339(8796):785–8.CrossRefGoogle ScholarPubMed
Hubacher, D, Lara-Ricalde, R, Taylor, DJ, Guerra-Infante, F, Guzmán-Rodríguez, R. Use of copper intrauterine devices and the risk of tubal infertility among nulligravid women. N Engl J Med. 2001;345(8):561–7.CrossRefGoogle ScholarPubMed
Brahmi, D, Steenland, MW, Renner, RM, Gaffield, ME, Curtis, KM. Pregnancy outcomes with an IUD in situ: A systematic review. Contraception. 2012;85(2):131–9.CrossRefGoogle ScholarPubMed
Tepper, NK, Steenland, MW, Gaffield, ME, Marchbanks, PA, Curtis, KM. Retention of intrauterine devices in women who acquire pelvic inflammatory disease: A systematic review. Contraception. 2013;87(5):655–60.CrossRefGoogle ScholarPubMed

References

Daniels, K, Daugherty, J, Jones, J. Current contraceptive status among women aged 15–44: United States, 2011–2013. NCHS Data Brief. 2014;173:18.Google Scholar
March, CM. Female tubal sterilization. In Shoupe, D (ed.), The handbook of contraception. 3rd edition. Cham: Humana, 2020, pp. 193238.CrossRefGoogle Scholar
Hulka, JF. Methods of female sterilization. In Nichols, DH, Clarke-Pearson, DL (eds.), Gynecologic and obstetric surgery. St. Louis, MO: Mosby, 2000, pp. 626–40.Google Scholar
Beerthuizen, R. State-of-the-art of non-hormonal methods of contraception: V. Female sterilisation. Eur J Contracept Reprod Health Care. 2010;15:124–35.CrossRefGoogle ScholarPubMed
Steele, SJ. The potential for improved abdominal procedures and approaches for tubal occlusion. Int J Gynaecol Obstet. 1995;51:S17S22.CrossRefGoogle ScholarPubMed
Rodriguez, M, Seuc, A, Sokal, D. Comparative efficacy of postpartum sterilization with the titanium clip versus partial salpingectomy: A randomized controlled trial. BJOG. 2013;120(1):108–12.CrossRefGoogle Scholar
Peterson, HB, Xia, Z, Hughes, JM et al. The risk of pregnancy after tubal sterilization: Findings from the U.S. Collaborative Review of Sterilization. Am J Obstet Gynecol. 1996;174:1161–8.CrossRefGoogle ScholarPubMed
Peterson, HB, Xia, Z, Wilcox, LS et al. Pregnancy after tubal sterilization with bipolar electrocoagulation: U.S. Collaborative Review of Sterilization Working Group. Obstet Gynecol. 1999;94:163–7.Google ScholarPubMed
Abbott, J. Transcervical sterilization. Best Pract Res Clin Obstet Gynaecol. 2005;19:743–56.CrossRefGoogle ScholarPubMed
Quiñones, R, Alvarado, A, Ley, E. Hysteroscopic sterilization. Int J Gynaecol Obstet. 1976;14:2734.CrossRefGoogle ScholarPubMed
Miño, M, Arjona, JE, Cordón, J et al. Success rate and patient satisfaction with the Essure sterilisation in an outpatient setting: A prospective study of 857 women. BJOG. 2007;114:763–6.CrossRefGoogle Scholar
Walter, R, Ghobadi, C, Haymen, E, Xu, S. Hysteroscopic sterilization with Essure. Obstetrics & Gynecology. 2017;129(1):1019.CrossRefGoogle ScholarPubMed
Vancaillie, TG, Harrington, DC, Anderson, JM. Mechanism of action of the Adiana device: A histologic perspective. Contraception. 2011;84:299301.CrossRefGoogle ScholarPubMed
Herbst, SJ, Evantash, EG. Clinical performance characteristics of the Adiana system for permanent contraception: The first year of commercial use. Rev Obstet Gynecol. 2010;3:156–62.Google ScholarPubMed
Johns, DA. Advances in hysteroscopic sterilization: Report on 600 patients enrolled in the Adiana EASE pivotal trial. J Minim Invasive Gynecol. 2005;12:3940.CrossRefGoogle Scholar
Westburg, J, Scott, F, Creinin, F. Safety outcomes of female sterilization by salpingectomy and tubal occlusion. Contraception. 2017;95:505–8.Google Scholar
Peterson, HB, DeStefano, F, Rubin, GL et al. Deaths attributable to tubal sterilization in the United States, 1977 to 1981. Am J Obstet Gynecol. 1983; 146:131–6.CrossRefGoogle ScholarPubMed
Van Seeters, JAH, Chua, SJ, Mol, BWJ, Koks, CAM. Tubal anastomosis after previous sterilization: A systematic review. Human Reproduction Update. 2017;113.CrossRefGoogle Scholar
Whittemore, AS, Wu, ML, Paffenbarger, RS et al. Personal and environmental characteristics related to epithelial ovarian cancer-exposures to talcum powder, tobacco, alcohol and coffee. Am J Epidemiol. 1988;128:1228.CrossRefGoogle ScholarPubMed
Cibula, D, Widschwendter, M, Majek, O et al. Tubal ligation and the risk of ovarian cancer: Review and meta-analysis. Hum Reprod Update. 2011;17:5567.CrossRefGoogle ScholarPubMed

References

International Consortium for Emergency Contraception. In depth country information. www.cecinfo.org/country-by-country-information/in-depth.Google Scholar
Cleland, K, Zhu, H, Goldstuck, N, Cheng, L, Trussell, J. The efficacy of intrauterine devices for emergency contraception: A systematic review of 35 years of experience. Hum Reprod. 2012;27(7):19942000.CrossRefGoogle ScholarPubMed
WHO Model list of essential medicines April 2015. www.who.int/medicines/publications/essentialmedicines/en.s.Google Scholar
Polis, CB, Schaffer, K, Blanchard, K et al. Advance provision of emergency contraception for pregnancy prevention (full review). Cochrane Database Syst Rev. 2007;2:CD005497.Google Scholar
Trussell, J, Ellertson, C, von Hertzen, H et al. Estimating the effectiveness of emergency contraceptive pills. Contraception. 2003;67(4):259–65.CrossRefGoogle ScholarPubMed
Glasier, A, Cameron, ST, Fine, PM et al. Ulipristal acetate versus levonorgestrel for emergency contraception: A randomised non-inferiority trial and meta-analysis. Lancet. 2010;375:555–62.CrossRefGoogle ScholarPubMed
Brache, V, Cochon, L, Deniaud, M, Croxatto, HB. Ulipristal acetate prevents ovulation more effectively than levonorgestrel: Analysis of pooled data from three randomized trials of emergency contraception regimens. Contraception. 2013;88(5):611–18.CrossRefGoogle ScholarPubMed
Lalitkumar, PG, Lalitkumar, S, Meng, CX et al. Mifepristone, but not levonorgestrel, inhibits human blastocyst attachment to an in vitro endometrial three-dimensional cell culture model. Hum Reprod. 2007;22(11):3031–7.CrossRefGoogle ScholarPubMed
Berger, C, Boggavarapu, NR, Menezes, J, Lalitkumar, PG, Gemzell-Danielsson, K. Effects of ulipristal acetate on human embryo attachment and endometrial cell gene expression in an in vitro co-culture system. Hum Reprod. 2015;30(4):800–11.CrossRefGoogle Scholar
Zhang, L, Ye, W, Yu, W et al. Physical and mental development of children after levonorgestrel emergency contraception exposure: A follow-up prospective cohort study. Biol Reprod. 2014;91(1):27.CrossRefGoogle ScholarPubMed
Cleland, K, Raymond, E, Trussell, J et al. Ectopic pregnancy and emergency contraceptive pills: A systematic review. Obstet Gynecol. 2010;115:1263–6. https://doi.org/10.1097/AOG.0b013e3181dd22ef.CrossRefGoogle ScholarPubMed
Levy, DP, Jager, M, Kapp, N, Abitbol, JL. Ulipristal acetate for emergency contraception: Postmarketing experience after use by more than 1 million women. Contraception. 2014;89(5):431–3.CrossRefGoogle ScholarPubMed
World Health Organization. Medical eligibility criteria for contraceptive use. 5th edition. Geneva: World Health Organization, 2015. www.who.int/publications/i/item/9789241549158.Google Scholar
Faculty of Sexual & Reproductive Healthcare. Emergency contraception (March 2017, amended December 2017). bit.ly/3Y2277Q.Google Scholar
Shen, J, Che, Y, Showell, E, Chen, K, Cheng, L. Interventions for emergency contraception. Cochrane Database Syst Rev. 2019;1(1):CD001324. https://doi.org/10.1002/14651858.CD001324.pub6. PMID: 30661244; PMCID: PMC7055045.Google ScholarPubMed
Glasier, A, Cameron, ST, Blithe, D et al. Can we identify women at risk of pregnancy despite using emergency contraception? Data from randomized trials of ulipristal acetate and levonorgestrel. Contraception. 2011;84(4):363–7.CrossRefGoogle ScholarPubMed
Edelman, AB, Cherala, G, Blue, SW, Erikson, DW, Jensen, JT. Impact of obesity on the pharmacokinetics of levonorgestrel-based emergency contraception: Single and double dosing. Contraception. 2016;94(1):52–7.CrossRefGoogle ScholarPubMed
Praditpan, P, Hamouie, A, Basaraba, CN et al. Pharmacokinetics of levonorgestrel and ulipristal acetate emergency contraception in women with normal and obese body mass index. Contraception. 2017;95(5): 464–9. Published Online First: 23 January 2017. https://doi.org/10.1016/j.contraception.2017.01.004. Epub 2017 Jan 23.CrossRefGoogle ScholarPubMed
Cameron, ST, Glasier, A, McDaid, L et al. Use of effective contraception following provision of the progestogen-only pill for women presenting to community pharmacies for emergency contraception (Bridge-It): A pragmatic cluster-randomised crossover trial. Lancet. 2020;396(10262):1585–94. https://doi.org/10.1016/S0140-6736(20)31785-2. PMID: 33189179; PMCID: PMC7661838.CrossRefGoogle ScholarPubMed
Stanford, JB, Mikolajczyk, RT. Mechanisms of action of intrauterine devices: Update and estimation of postfertilization effects. Am J Obstet Gynecol. 2002;187:16991708.CrossRefGoogle ScholarPubMed
Moreau, C, Bouyer, J, Goulard, H, Bajos, N. The remaining barriers to the use of emergency contraception: Perception of pregnancy risk by women undergoing induced abortions. Contraception. 2005;71:202–7.CrossRefGoogle Scholar
Massai, MR, Forcelledo, ML, Brache, V et al. Does meloxicam increase the incidence of anovulation induced by single administration of levonorgestrel in emergency contraception? A pilot study. Hum Reprod. 2007;22:434–9.CrossRefGoogle ScholarPubMed
Cameron, ST, Critchley, HOD, Buckley, CH, Kelly, RW, Baird, DT. Effect of two antiprogestins (mifepristone and onapristone) on endometrial factors of potential importance for implantation. Fertility and Sterility. 1997;67:1046–53.CrossRefGoogle ScholarPubMed
Willetts, SJ, MacDougall, M, Cameron, ST. A survey regarding acceptability of oral emergency contraception according to the posited mechanism of action. Contraception. 2017;96(2):81–8. https://doi.org/10.1016/j.contraception.2017.03.012. Epub 2017 Apr 3. PMID: 28385554.CrossRefGoogle Scholar
Xiao, B, von Hertzen, H, Zhao, H, Piaggio, G. Menstrual induction with mifepristone and misoprostol. Contraception. 2003;68(6):489–94.CrossRefGoogle ScholarPubMed

References

Bitzer, J, Simon, JA. Current issues and available options in combined hormonal contraception. Contraception. 2011;84(4):342–56.CrossRefGoogle ScholarPubMed
Sabatini, R, Cagiano, R. Comparison profiles of cycle control, side effects and sexual satisfaction of three hormonal contraceptives. Contraception. 2006;74(3):220–3.CrossRefGoogle ScholarPubMed
Yu, Q, Huang, Z, Ren, M et al. Contraceptive efficacy and safety of estradiol valerate/dienogest in a healthy female population: A multicenter, open-label, uncontrolled Phase III study. Int J Womens Health. 2018;10:257–66.CrossRefGoogle Scholar
Van Vliet, HA, Grimes, DA, Lopez, LM, Schulz, KF, Helmerhorst, FM. Triphasic versus monophasic oral contraceptives for contraception. Cochrane Database Syst Rev. 2011;11:CD003553.Google Scholar
Lawrie, TA, Helmerhorst, FM, Maitra, NK et al. Types of progestogens in combined oral contraception: Effectiveness and side-effects. Cochrane Database Syst Rev. 2011;5:CD004861.Google Scholar
Lopez, LM, Grimes, DA, Gallo, MF, Stockton, LL, Schulz, KF. Skin patch and vaginal ring versus combined oral contraceptives for contraception. Cochrane Database Syst Rev. 2013;4:CD003552.Google Scholar
Palacios, S, Colli, E, Regidor, PA. A multicenter, double-blind, randomized trial on the bleeding profile of a drospirenone-only pill 4 mg over nine cycles in comparison with desogestrel 0.075 mg. Arch Gynecol Obstet. 2019;300(6):1805–12.CrossRefGoogle ScholarPubMed
ESHRE Capri Workshop Group. Ovarian and endometrial function during hormonal contraception. Hum Reprod. 2001;16(7):1527–35.Google Scholar
Diedrich, JT, Zhao, Q, Madden, T, Secura, GM, Peipert, JF. Three-year continuation of reversible contraception. Am J Obstet Gynecol. 2015;213(5):662.e18.CrossRefGoogle ScholarPubMed
Fruzzetti, F, Paoletti, AM, Fidecicchi, T et al. Contraception with estradiol valerate and dienogest: Adherence to the method. Open Access J Contracept. 2019;10:16.CrossRefGoogle ScholarPubMed
Zigler, RE, McNicholas, C. Unscheduled vaginal bleeding with progestin-only contraceptive use. Am J Obstet Gynecol. 2017;216(5):443–50.CrossRefGoogle ScholarPubMed
Vincent, AJ, Zhang, J, Ostör, A et al. Decreased tissue inhibitor of metalloproteinase in the endometrium of women using depot medroxyprogesterone acetate: A role for altered endometrial matrix metalloproteinase/tissue inhibitor of metalloproteinase balance in the pathogenesis of abnormal uterine bleeding? Hum Reprod. 2002;17(5):1189–98.CrossRefGoogle ScholarPubMed
Hickey, M, Crewe, J, Mahoney, LA et al. Mechanisms of irregular bleeding with hormone therapy: The role of matrix metalloproteinases and their tissue inhibitors. J Clin Endocrinol Metab. 2006;91(8):3189–98.CrossRefGoogle ScholarPubMed
Foran, T. The management of irregular bleeding in women using contraception. Aust Fam Physician. 2017;46(10):717–20.Google ScholarPubMed
Duijkers, I, Klipping, C, Heger-Mahn, D et al. Phase II dose-finding study on ovulation inhibition and cycle control associated with the use of contraceptive vaginal rings containing 17β-estradiol and the progestagens etonogestrel or nomegestrol acetate compared to NuvaRing. Eur J Contracept Reprod Health Care. 2018;23(4):245–54.CrossRefGoogle ScholarPubMed
Virro, JJ, Besinque, K, Carney, CE et al. Long-lasting, patient-controlled, procedure-free contraception: A review of Annovera with a pharmacist perspective. Pharmacy (Basel). 2020;8(3):156–61.Google ScholarPubMed
Kaneshiro, B, Edelman, A, Carlson, NE et al. A randomized controlled trial of subantimicrobial-dose doxycycline to prevent unscheduled bleeding with continuous oral contraceptive pill use. Contraception. 2012;85(4):351–8.CrossRefGoogle ScholarPubMed
Madden, T, Proehl, S, Allsworth, JE, Secura, GM, Peipert, JF. Naproxen or estradiol for bleeding and spotting with the levonorgestrel intrauterine system: A randomized controlled trial. Am J Obstet Gynecol. 2012;206(2):129.e18.CrossRefGoogle ScholarPubMed
Weisberg, E, Hickey, M, Palmer, D et al. A pilot study to assess the effect of three short-term treatments on frequent and/or prolonged bleeding compared to placebo in women using Implanon. Hum Reprod. 2006;21(1):295302.CrossRefGoogle ScholarPubMed
Sørdal, T, Inki, P, Draeby, J, O’Flynn, M, Schmelter, T. Management of initial bleeding or spotting after levonorgestrel-releasing intrauterine system placement: A randomized controlled trial. Obstet Gynecol. 2013;121(5):934–41.CrossRefGoogle ScholarPubMed
Papaikonomou, K, Kopp Kallner, H, Söderdahl, F, Gemzell-Danielsson, K. Mifepristone treatment prior to insertion of a levonorgestrel releasing intrauterine system for improved bleeding control: A randomized controlled trial. Hum Reprod. 2018;33(11):2002–9.CrossRefGoogle ScholarPubMed
Cohen, MA, Simmons, KB, Edelman, AB, Jensen, JT. Tamoxifen for the prevention of unscheduled bleeding in new users of the levonorgestrel 52-mg intrauterine system: A randomized controlled trial. Contraception. 2019;100(5):391–6.CrossRefGoogle ScholarPubMed
Simmons, KB, Edelman, AB, Fu, R, Jensen, JT. Tamoxifen for the treatment of breakthrough bleeding with the etonogestrel implant: A randomized controlled trial. Contraception. 2017;95(2):198204.CrossRefGoogle ScholarPubMed
Zigler, RE, Madden, T, Ashby, C, Wan, L, McNicholas, C. Ulipristal acetate for unscheduled bleeding in etonogestrel implant users: A randomized controlled trial. Obstet Gynecol. 2018;132(4):888–94.CrossRefGoogle ScholarPubMed

References

Skovlund, CW, Mørch, LS, Kessing, LV, Lidegaard, Ø. Association of hormonal contraception with depression. JAMA Psychiatry. 2016:73:1154–62.CrossRefGoogle ScholarPubMed
Keyes, KM, Cheslack-Postava, K, Westhoff, C et al. Association of hormonal contraceptive use with reduced levels of depressive symptoms: A national study of sexually active women in the United States. Am J Epidemiol. 2013;178:1378–88.CrossRefGoogle ScholarPubMed
Wien, AB, Foldemo, A, Josefsson, A, Lindberg, M. Use of hormonal contraceptives in relation to antidepressant therapy: A nationwide population-based study. Eur J Contracept Reprod Health Care. 2010;15:41–7.Google Scholar
Lindberg, M, Foldemo, A, Josefsson, A, Wiréhn, AB. Differences in prescription rates and odds ratios of antidepressant drugs in relation to individual hormonal contraceptives: A nationwide population-based study with age-specific analyses. Eur J Contracept Reprod Health Care. 2012;17:106–18.CrossRefGoogle ScholarPubMed
Young, EA, Kornstein, SG, Harvey, AT et al. Influences of hormone-based contraception on depressive symptoms in premenopausal women with major depression. Psychoneuroendocrinology. 2007;32:843–53.CrossRefGoogle ScholarPubMed
Pearlstein, TB, Bachmann, GA, Zacur, HA, Yonkers, KA. Treatment of premenstrual dysphoric disorder with a new drospirenone-containing oral contraceptive formulation. Contraception. 2005;72:414–21.CrossRefGoogle ScholarPubMed
Oinonen, KA, Mazmanian, D. To what extent do oral contraceptives influence mood and affect? J Affect Disord. 2002;70:229–40.CrossRefGoogle ScholarPubMed
Rapkin, AJ, Morgan, M, Sogliano, C et al. Decreased neuroactive steroids induced by combined oral contraceptive pills are not associated with mood changes. Fertil Steril. 2006;85:1371–8.CrossRefGoogle Scholar

References

Pfaus, JG. Pathways of sexual desire. J Sex Med. 2009;6:1506–33.CrossRefGoogle ScholarPubMed
Brotto, LA, Bitzer, J, Laan, E, Leiblum, S, Luria, M. Women’s sexual desire and arousal disorders. J Sex Med. 2010;7:586614.CrossRefGoogle ScholarPubMed
Dei, M, Verni, A, Bigozzi, L, Bruni, V. Sex steroids and libido. Eur J Contracept Reprod Health Care. 1997;2(4):253–8.CrossRefGoogle ScholarPubMed
Davis, A, Castano, P. Oral contraceptives and libido in women. Annu Rev Sex Res. 2004;15:297320.Google ScholarPubMed
Graham, CA, Ramos, R, Bancroft, J, Maglaya, C, Farley, TM. The effects of steroidal contraceptives on the well-being and sexuality of women: A double-blind, placebo-controlled, two-centre study of combined and progestogen-only methods. Contraception. 1995;52:363–9.CrossRefGoogle ScholarPubMed
Cullberg, J, Gelli, MG, Jonsson, CO. Mental and sexual adjustment before and after six months’ use of an oral contraceptive. Acta Psychiatrica Scandinavica. 1969;45: 259–76.CrossRefGoogle ScholarPubMed
Graham, C, Sherwin, B. The relationship between mood and sexuality in women using an oral contraceptive as a treatment for premenstrual symptoms. Psychoneuroendocrinology. 1993;18(4):273–81.CrossRefGoogle ScholarPubMed
Plewig, G, Cunliffe, W, Binder, N, Höschen, K. Efficacy of an oral contraceptive containing ethinyl estradiol 0.03 mg and chlormadinone acetate 2 mg (EE/CMA; Belara®) in moderate acne resolution: A randomised, double-blind, placebo-controlled phase III trial. Contraception. 2008:123–30.CrossRefGoogle Scholar
Erkkola, R, Hirvonen, E, Luikku, J et al. Ovulation inhibitors containing cyproterone acetate or desogestrel in the treatment of hyperandrogenic symptoms. Acta Obstetricia et Gynecologica Scandinavica. 1990;69:61–5.CrossRefGoogle ScholarPubMed
Endrikat, J, Hite, R, Bannemerschult, R, Gerlinger, C, Schmidt, W. Multicenter, comparative study of cycle control, efficacy and tolerability of two low-dose oral contraceptives containing 20 microg ethinylestradiol/100 microg levonorgestrel and 20 microg ethinylestradiol/500 microg norethisterone. Contraception. 2001;64(1):310.CrossRefGoogle ScholarPubMed
Worret, I, Arp, W, Zahradnik, H, Andreas, J, Binder, N. Acne resolution rates: Results of a single-blind, randomized, controlled, parallel phase III trial with EE/CMA (Belara) and EE/LNG (Microgynon). Dermatology. 2001;203(1):3844.CrossRefGoogle ScholarPubMed
Sanders, S, Graham, C, Bass, J, Bancroft, J. A prospective study of the effects of oral contraceptives on sexuality and well-being and their relationship to discontinuation. Contraception. 2001;64(1):51–8.CrossRefGoogle ScholarPubMed
Aznar-Ramos, R, Ginger-Velazquez, J, Lara-Ricalde, R, Martinez-Manautou, J. Incidence of side effects with contraceptive placebo. Am J Obstet Gynecol. 1969;105(7):1144–9.CrossRefGoogle ScholarPubMed
Martin-Loeches, M, Orti, R, Monfort, M, Ortega, E, Rius, J. A comparative analysis of the modification of sexual desire of users of oral hormonal contraceptives and intrauterine contraceptive devices. Eur J Contracept Reprod Health Care. 2003;8(3):129–34.CrossRefGoogle ScholarPubMed
Schaffir, J. Hormonal contraception and sexual desire: A critical review. J Sex Marital Ther. 2006;32(4):305–14.CrossRefGoogle ScholarPubMed

References

Pohl, O, Osterloh, I, Lecomte, V, Gotteland, JP. Changes in gastric pH and in pharmacokinetics of ulipristal acetate: A drug–drug interaction study using the proton pump inhibitor esomeprazole. Int J Clin Pharmacol Ther. 2013;51(1):2633.CrossRefGoogle ScholarPubMed
Simmons, KB, Kumar, N, Plagianos, M et al. Effects of concurrent vaginal miconazole treatment on the absorption and exposure of Nestorone® (segesterone acetate) and ethinyl estradiol delivered from a contraceptive vaginal ring: A randomized, crossover drug–drug interaction study. Contraception. 2018;97(3):270–6.CrossRefGoogle ScholarPubMed
Reimers, A, Brodtkorb, E, Sabers, A. Interactions between hormonal contraception and antiepileptic drugs: Clinical and mechanistic considerations. Seizure. 2015;28:6670.CrossRefGoogle ScholarPubMed
Lee, CR. Drug interactions and hormonal contraception. Trends in Urology Gynaecology & Sexual Health. 2009:23–6.CrossRefGoogle Scholar
US Food and Drug Administration. Drug development and drug interactions: Table of substrates, inhibitors and inducers. http://bit.ly/3JpjGL7.Google Scholar
Reddy, DS. Clinical pharmacokinetic interactions between antiepileptic drugs and hormonal contraceptives. Expert Rev Clin Pharmacol. 2010;3(2):183–92.CrossRefGoogle ScholarPubMed
Herzog, AG, Mandle, HB, Cahill, KE, Fowler, KM, Hauser, WA. Differential impact of contraceptive methods on seizures varies by antiepileptic drug category: Findings of the Epilepsy Birth Control Registry. Epilepsy Behav. 2016;60:112–17.CrossRefGoogle ScholarPubMed
Berry-Bibee, EN, Kim, MJ, Simmons, KB et al. Drug interactions between hormonal contraceptives and psychotropic drugs: A systematic review. Contraception. 2016;94(6):650–67.CrossRefGoogle ScholarPubMed
Schoretsanitis, G, Kane, JM, de Leon, J. Adding oral contraceptives to clozapine may require halving the clozapine dose: A new case and a literature review. J Clin Psychopharmacol. 2020;40(3):308–10.CrossRefGoogle Scholar
Ti, A, Stone, RH, Whiteman, M, Curtis, KM. Safety and effectiveness of hormonal contraception for women who use opioids: A systematic review. Contraception. 2019;100(6):480–3.CrossRefGoogle ScholarPubMed
Qian, Y, Gurley, BJ, Markowitz, JS. The potential for pharmacokinetic interactions between cannabis products and conventional medications. J Clin Psychopharmacol. 2019;39(5):462–71.CrossRefGoogle ScholarPubMed
Robertson, P, DeCory, HH, Madan, A, Parkinson, A. In vitro inhibition and induction of human hepatic cytochrome P450 enzymes by modafinil. Drug Metab Dispos. 2000;28(6):664–71.Google ScholarPubMed
Robertson, P, Jr, Hellriegel, ET, Arora, S, Nelson, M. Effect of modafinil on the pharmacokinetics of ethinyl estradiol and triazolam in healthy volunteers. Clin Pharmacol Ther. 2002;71(1):4656.CrossRefGoogle ScholarPubMed
Simmons, KB, Haddad, LB, Nanda, K, Curtis, KM. Drug interactions between rifamycin antibiotics and hormonal contraception: A systematic review. BJOG. 2018;125(7):804–11.CrossRefGoogle ScholarPubMed
Simmons, KB, Haddad, LB, Nanda, K, Curtis, KM. Drug interactions between non-rifamycin antibiotics and hormonal contraception: A systematic review. Am J Obstet Gynecol. 2018;218(1):88–97.e14.CrossRefGoogle ScholarPubMed
Dogterom, P, van den Heuvel, MW, Thomsen, T. Absence of pharmacokinetic interactions of the combined contraceptive vaginal ring NuvaRing with oral amoxicillin or doxycycline in two randomised trials. Clin Pharmacokinet. 2005;44(4):429–38.CrossRefGoogle ScholarPubMed
Hendrix, CW, Jackson, KA, Whitmore, E et al. The effect of isotretinoin on the pharmacokinetics and pharmacodynamics of ethinyl estradiol and norethindrone. Clin Pharmacol Ther. 2004;75(5):464–75.CrossRefGoogle ScholarPubMed
Bailard, N, Rebello, E. Aprepitant and fosaprepitant decrease the effectiveness of hormonal contraceptives. Br J Clin Pharmacol. 2018;84(3):602–3.CrossRefGoogle ScholarPubMed
Van Giersbergen, PL, Halabi, A, Dingemanse, J. Pharmacokinetic interaction between bosentan and the oral contraceptives norethisterone and ethinyl estradiol. Int J Clin Pharmacol Ther. 2006;44(3):113–18.Google ScholarPubMed
Zhang, N, Shon, J, Kim, MJ et al. Role of CYP3A in oral contraceptives clearance. Clin Transl Sci. 2018;11(3):251–60.CrossRefGoogle ScholarPubMed
Verhoeven, CH, van den Heuvel, MW, Mulders, TM, Dieben, TO. The contraceptive vaginal ring, NuvaRing, and antimycotic co-medication. Contraception. 2004;69(2):129–32.Google ScholarPubMed
Ezuruike, U, Humphries, H, Dickins, M et al. Risk-benefit assessment of ethinylestradiol using a physiologically based pharmacokinetic modeling approach. Clin Pharmacol Ther. 2018;104(6):1229–39.CrossRefGoogle ScholarPubMed
Catalano, PM, Blank, H. Griseofulvin–oral contraceptive interaction. Arch Dermatol. 1985;121(11):1381–7.CrossRefGoogle ScholarPubMed
Berry-Bibee, EN, Kim, MJ, Tepper, NK, Riley, HE, Curtis, KM. Co-administration of St. John’s wort and hormonal contraceptives: A systematic review. Contraception. 2016;94(6):668–77.CrossRefGoogle ScholarPubMed
Edelman, AB, Jensen, JT, McCrimmon, S et al. Combined oral contraceptive interference with the ability of ulipristal acetate to delay ovulation: A prospective cohort study. Contraception. 2018;98(6):463–6.CrossRefGoogle ScholarPubMed
Cameron, ST, Berger, C, Michie, L, Klipping, C, Gemzell-Danielsson, K. The effects on ovarian activity of ulipristal acetate when ‘quickstarting’ a combined oral contraceptive pill: A prospective, randomized, double-blind parallel-arm, placebo-controlled study. Hum Reprod. 2015;30(7):1566–72.CrossRefGoogle Scholar

References

Dominick, SA, McLean, MR, Whitcomb, BW et al. Contraceptive practices among female cancer survivors of reproductive age. Obstet Gynecol. 2015;126(3):498507.CrossRefGoogle ScholarPubMed
Hadnott, TN, Stark, SS, Medica, A et al. Perceived infertility and contraceptive use in the female, reproductive-age cancer survivor. Fertil Steril. 2019;111(4):763–71.CrossRefGoogle ScholarPubMed
Plu-Bureau, G, Maitrot-Mantelet, L, Hugon-Rodin, J, Canonico, M. Hormonal contraceptives and venous thromboembolism: An epidemiological update. Best Pract Res Clin Endocrinol Metab. 2013;27(1):2534.CrossRefGoogle ScholarPubMed
Chelmow, D, Pearlman, MD, Young, A et al. Executive summary of the Early-Onset BC Evidence Review Conference. Obstet Gynecol. 2020;135(6):1457–78.CrossRefGoogle Scholar
Thavendiranathan, P, Nolan, MT. An emerging epidemic: Cancer and heart failure. Clin Sci (Lond). 2017;131(2):113–21.CrossRefGoogle ScholarPubMed
Taylor, C, Correa, C, Duane, FK et al. Estimating the risks of BC radiotherapy: Evidence from modern radiation doses to the lungs and heart and from previous randomized trials. J Clin Oncol. 2017;35(15):1641–9.CrossRefGoogle Scholar
Heer, E, Harper, A, Escandor, N et al. Global burden and trends in premenopausal and postmenopausal BC: A population-based study. Lancet Glob Health. 2020;8(8):e1027–37.CrossRefGoogle Scholar
Parisi, F, Razeti, MG, Blondeaux, E et al. Current state of the art in the adjuvant systemic treatment of premenopausal patients with early BC. Clin Med Insights Oncol. 2020;14:1179554920931816.CrossRefGoogle Scholar
Sofiyeva, N, Siepmann, T, Barlinn, K, Seli, E, Ata, B. Gonadotropin-releasing hormone analogs for gonadal protection during gonadotoxic chemotherapy: A systematic review and meta-analysis. Reprod Sci. 2019;26(7):939–53.CrossRefGoogle ScholarPubMed
Gompel, A, Ramirez, I, Bitzer, J, European Society of Contraception Expert Group on Hormonal Contraception. Contraception in cancer survivors: An expert review Part I. Breast and gynaecological cancers.Eur J Contracept Reprod Health Care. 2019;24(3):167–74.CrossRefGoogle ScholarPubMed
Valachis, A, Tsali, L, Pesce, LL et al. Safety of pregnancy after primary breast carcinoma in young women: A meta-analysis to overcome bias of healthy mother effect studies. Obstet Gynecol Surv. 2010;65(12):786–93.CrossRefGoogle ScholarPubMed
World Health Organization. Medical eligibility criteria for contraceptive use. 5th edition. Geneva: World Health Organization, 2015. www.who.int/publications/i/item/9789241549158.Google Scholar
Dominick, S, Hickey, M, Chin, J, Su, HI. Levonorgestrel intrauterine system for endometrial protection in women with BC on adjuvant tamoxifen. Cochrane Database Syst Rev. 2015;12:CD007245.CrossRefGoogle Scholar
Kotsopoulos, J, Lubinski, J, Moller, P et al. Timing of oral contraceptive use and the risk of BC in BRCA1 mutation carriers. BC Res Treat. 2014;143(3):579–86.Google Scholar
Endometrial cancer statistics [Internet]. World Cancer Research Fund. 2018. https://bit.ly/3HmkBJI.Google Scholar
Dominguez-Valentin, M, Sampson, JR, Seppälä, TT et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: Findings from the Prospective Lynch Syndrome Database. Genet Med. 2020;22(1):1525.CrossRefGoogle ScholarPubMed
Baker, J, Obermair, A, Gebski, V, Janda, M. Efficacy of oral or intrauterine device-delivered progestin in patients with complex endometrial hyperplasia with atypia or early endometrial adenocarcinoma: A meta-analysis and systematic review of the literature. Gynecol Oncol. 2012;125(1):263–70.CrossRefGoogle ScholarPubMed
Koskas, M, Azria, E, Walker, F et al. Progestin treatment of atypical hyperplasia and well-differentiated adenocarcinoma of the endometrium to preserve fertility. Anticancer Res. 2012;32(3):1037–43.Google ScholarPubMed
Bray, F, Ferlay, J, Soerjomataram, I et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018;68(6):394424.Google ScholarPubMed
Summary Chart of U.S. Medical Eligibility Criteria for Contraceptive Use.: 2.Google Scholar
Rousset-Jablonski, C, Selle, F, Adda-Herzog, E et al. Fertility preservation, contraception and menopause hormone therapy in women treated for rare ovarian tumours: Guidelines from the French national network dedicated to rare gynaecological cancers. Eur J Cancer. 2019;116:3544.CrossRefGoogle ScholarPubMed
Syngal, S, Brand, RE, Church, JM et al. ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110(2):223–62.CrossRefGoogle ScholarPubMed
Cagnacci, A, Ramirez, I, Bitzer, J, Gompel, A. Contraception in cancer survivors: An expert review Part II. Skin, gastrointestinal, haematological and endocrine cancers. Eur J Contracept Reprod Health Care. 2019;24(4):299304.CrossRefGoogle ScholarPubMed
Dashti, SG, Chau, R, Ouakrim, DA et al. Female hormonal factors and the risk of endometrial cancer in Lynch syndrome. JAMA. 2015;314(1):6171.CrossRefGoogle ScholarPubMed
Medical Eligibility Criteria for Contraceptive Use: A WHO Family Planning Cornerstone. 4th edition. Geneva: World Health Organization, 2010. (WHO Guidelines Approved by the Guidelines Review Committee.) www.ncbi.nlm.nih.gov/books/NBK138639.Google Scholar
Leukaemia (all subtypes combined) incidence statistics. Cancer Research UK. 2015. www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/leukaemia/incidence.Google Scholar
Meirow, D, Rabinovici, J, Katz, D et al. Prevention of severe menorrhagia in oncology patients with treatment-induced thrombocytopenia by luteinizing hormone-releasing hormone agonist and depo-medroxyprogesterone acetate. Cancer. 2006;107(7):1634–41.CrossRefGoogle ScholarPubMed
Bates, JS, Buie, LW, Woodis, CB. Management of menorrhagia associated with chemotherapy-induced thrombocytopenia in women with hematologic malignancy. Pharmacotherapy. 2011;31(11):10921110.CrossRefGoogle ScholarPubMed
Kane, EV, Roman, E, Becker, N et al. Menstrual and reproductive factors, and hormonal contraception use: Associations with non-Hodgkin lymphoma in a pooled analysis of InterLymph case-control studies. Ann Oncol. 2012;23(9):2362–74.CrossRefGoogle Scholar
Iversen, L, Sivasubramaniam, S, Lee, AJ, Fielding, S, Hannaford, PC. Lifetime cancer risk and combined oral contraceptives: The Royal College of General Practitioners’ Oral Contraception Study. Am J Obstet Gynecol. 2017;216(6):580.e1–580.e9.CrossRefGoogle ScholarPubMed
Stapelfeld, C, Dammann, C, Maser, E. Sex-specificity in lung cancer risk. Int J Cancer. 2020;146(9):2376–82.CrossRefGoogle ScholarPubMed

References

Milosevic, ZC, Nadrljanski, MM, Milovanovic, ZM et al. Breast dynamic contrast enhanced MRI: Fibrocystic changes presenting as a non-mass enhancement mimicking malignancy. Radiol Oncol. 2017;51(2):130–6.CrossRefGoogle ScholarPubMed
Dupont, WD, Page, DL, Parl, FF et al. Long-term risk of breast cancer in women with fibroadenoma. N Engl J Med. 1994;331(1):1015.CrossRefGoogle ScholarPubMed
Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and hormonal contraceptives: Collaborative reanalysis of individual data on 53,297 women with breast cancer and 100,239 women without breast cancer from 54 epidemiological studies. Lancet. 1996;347:1713–22.Google Scholar
Vessey, M, Yeates, D. Oral contraceptives and benign breast disease: An update of findings in a large cohort study. Contraception. 2007;76:418–24.CrossRefGoogle Scholar
Rohan, TE, Miller, AB. A cohort study of oral contraceptive use and risk of benign breast disease. Int J Cancer. 1999;82:191–6.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Cibula, D, Gompel, A, Mueck, AO et al. Hormonal contraception and risk of cancer. Hum Reprod Update. 2010;16(6):631–50.CrossRefGoogle ScholarPubMed
Li, J, Humphreys, K, Ho, PJ et al. Family history, reproductive, and lifestyle risk factors for fibroadenoma and breast cancer. JNCI Cancer Spectr. 2018;2(3):pky051.CrossRefGoogle ScholarPubMed
Faculty of Sexual & Reproductive Healthcare. UK medical eligibility criteria for contraceptive use (UKMEC). London: Faculty of Sexual & Reproductive Healthcare,2016. www.fsrh.org/standards-and-guidance/documents/ukmec-2016.Google Scholar
Centers for Disease Control and Prevention. US medical eligibility criteria for contraceptive use (USCDC). 2016. http://bit.ly/3RhFASx.Google Scholar
World Health Organization. Medical eligibility criteria for contraceptive use. 5th edition. Geneva: World Health Organization, 2015.Google Scholar
McGurgan, P, Taylor, LJ, Duffy, SR et al. Are endometrial polyps from pre-menopausal women similar to post-menopausal women? An immunohistochemical comparison of endometrial polyps from pre- and post-menopausal women. Maturitas. 2006;54:277–84.CrossRefGoogle ScholarPubMed
Cohen, I. Endometrial pathologies associated with postmenopausal tamoxifen treatment. Gynecol Oncol. 2004;94:256–66.CrossRefGoogle ScholarPubMed
Wada-HiraikeE, O, Osuga, Y, Hiroi, H et al. Sessile polyps and pedunculated polyps respond differently to oral contraceptives. Gynecol Endocrinol. 2011;27(5):351–5.CrossRefGoogle Scholar
Meresman, GF, Auge, L, Baranao, RI et al. Oral contraceptives suppress cell proliferation and enhance apoptosis of eutopic endometrial tissue from patients with endometriosis. Fertil Steril. 2002;77:1141–7.CrossRefGoogle ScholarPubMed
Chowdary, P, Maher, P, Ma, T et al. The role of the Mirena intrauterine device in the management of endometrial polyps: A pilot study. J Minim Invasive Gynecol. 2019;26(7):12971302.CrossRefGoogle ScholarPubMed
Vannuccini, S, Luisi, S, Tosti, C et al. Role of medical therapy in the management of uterine adenomyosis. Fertil Steril. 2018;109(3):398405.CrossRefGoogle ScholarPubMed
Fedele, L, Portuese, A, Bianchi, S et al. Treatment of adenomyosis-associated menorrhagia with a levonorgestrel-releasing intrauterine device. Fertil Steril. 1997;68:426–9.CrossRefGoogle ScholarPubMed
Critchley, HOD, Wang, H, Kelly, RW et al. Progestin receptor isoforms and prostaglandin dehydrogenase in the endometrium of women using a levonorgestrel-releasing intrauterine system. Hum Reprod. 1998;13:1210–17.CrossRefGoogle ScholarPubMed
Sheng, J, Zhang, WY, Zhang, JP et al. The LNG-IUS study on adenomyosis: A 3-year follow-up study on the efficacy and side effects of the use of levonorgestrel intrauterine system for the treatment of dysmenorrhea associated with adenomyosis. Contraception. 2009;79:189–93.CrossRefGoogle Scholar
Ozdegirmenci, O, Kayikcioglu, F, Akgul, MA et al. Comparison of levonorgestrel intrauterine system versus hysterectomy on efficacy and quality of life in patients with adenomyosis. Fertil Steril. 2011;95:497502.CrossRefGoogle ScholarPubMed
Shaaban, OM, Ali, MK, Sabra, AM et al. Levonorgestrel-releasing intrauterine system versus a low-dose combined oral contraceptive for treatment of adenomyotic uteri: A randomized clinical trial. Contraception. 2015;92(4):301–7.CrossRefGoogle ScholarPubMed
Grandi, G, De Fata, R, Varliero, F et al. Contemporary prescriptions pattern of different dose levonorgestrel-releasing intrauterine systems in an Italian service for family planning. Gynecol Endocrinol. 2020;36(12):1086–9.CrossRefGoogle Scholar
Ross, RK, Pike, MC, Vessey, MP et al. Risk factors for uterine fibroids: Reduced risk associated with oral contraceptives. BMJ. 1988;293:359–62.Google Scholar
Lethaby, AE, Cooke, I, Rees, M. Progesterone or progestogen-releasing intrauterine systems for heavy menstrual bleeding. Cochrane Database Syst Rev. 2006:CD002126.CrossRefGoogle Scholar
Starczewski, A, Iwanicki, M. Intrauterine therapy with levonorgestrel releasing IUD of women with hypermenorrhea secondary to uterine fibroids. Ginekol Pol. 2000;71(9):1221–5.Google ScholarPubMed
Soysal, S, Soysal, ME. The efficacy of levonorgestrel-releasing intrauterine device in selected cases of myoma-related menorrhagia: A prospective controlled trial. Gynecol Obstet Invest. 2005;59(1):2935.CrossRefGoogle ScholarPubMed
Sayed, GH, Zakherak, MS, El-Nashar, SA et al. A randomized clinical trial of levonorgestrel-releasing intrauterine system and a low-dose combined oral contraceptive for fibroid-related menorrhagia. International Journal of Gynecology and Obstetrics. 2011;112:126–30.CrossRefGoogle Scholar
Zapata, LB, Whiteman, MK, Tepper, NK et al. Intrauterine device use among women with uterine fibroids: A systematic review. Contraception. 2010;82:4155.CrossRefGoogle ScholarPubMed
Marret, H, Fritel, X, Ouldamer, L et al. Therapeutic management of uterine fibroid tumors: Updated French guidelines. Eur J Obstet Gynecol Reprod Biol. 2012;165:156–64.CrossRefGoogle ScholarPubMed
Sletten, ET, Arnes, M, Vereide, AB et al. Low-dose LNG-IUS as therapy for endometrial hyperplasia: A prospective cohort pilot study. Anticancer Res. 2018;38(5):2883–9.Google ScholarPubMed
Whiteman, MK, Zapata, LB, Tepper, NK et al. Use of contraceptive methods among women with endometrial hyperplasia: A systematic review. Contraception. 2010;82(1):5663.CrossRefGoogle ScholarPubMed
Coburn, SB, Bray, F, Sherman, ME et al. International patterns and trends in ovarian cancer incidence, overall and by histologic subtype. Int J Cancer. 2017;140(11):2451–60.CrossRefGoogle ScholarPubMed
Grimes, DA, Jones, LB, Lopez, LM et al. Oral contraceptives for functional ovarian cysts. Cochrane Database Syst Rev. 9:CD006134.Google Scholar
Holt, VL, Daling, JR, McKnight, B et al. Functional ovarian cysts in relation to the use of monophasic and triphasic oral contraceptives. Obstet Gynecol. 1992;79:529–33.Google Scholar
Grandi, G, Barra, F, Ferrero, S et al. Hormonal contraception in women with endometriosis: Asystematic review. Eur J Contracept Reprod Health Care. 2019;24(1):6170.CrossRefGoogle Scholar
Grandi, G, Toss, A, Cortesi, L et al. The association between endometriomas and ovarian cancer: Preventive effect of inhibiting ovulation and menstruation during reproductive life. Biomed Res Int. 2015:751571.CrossRefGoogle Scholar
De Melo, AS, Dos Reis, RM, Ferriani, RA et al. Hormonal contraception in women with polycystic ovary syndrome: Choices, challenges, and noncontraceptive benefits. Open Access J Contraception. 2017;8:1323.CrossRefGoogle ScholarPubMed
Charitidou, C, Farmakiotis, D, Zournatzi, V et al. The administration of estrogens, combined with anti-androgens, has beneficial effects on the hormonal features and asymmetric dimethyl-arginine levels, in women with the polycystic ovary syndrome. Atherosclerosis. 2008:196(2):958–65.CrossRefGoogle ScholarPubMed
Bhattacharya, SM, Jha, A. Comparative study of the therapeutic effects of oral contraceptive pills containing desogestrel, cyproterone acetate, and drospirenone in patients with polycystic ovary syndrome. Fertil Steril. 2012;98(4):1053–9.CrossRefGoogle ScholarPubMed
Legro, RS, Arslanian, SA, Ehrmann, DA et al. Diagnosis and treatment of polycystic ovary syndrome: An Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2013;98:4565–92.CrossRefGoogle ScholarPubMed
Fauser, BC, Tarlatzis, BC, Rebar, RW et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM–Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril. 2012;97(1):2838.CrossRefGoogle ScholarPubMed
Conway, G, Dewailly, D, Diamanti-Kandarakis, E et al. The polycystic ovary syndrome: A position statement from the European Society of Endocrinology. Eur J Endocrinol. 2014;171(4):P129.CrossRefGoogle ScholarPubMed
Li, J, Ren, J, Sun, W. A comparative systematic review of Yasmin (drospirenone pill) versus standard treatment options for symptoms of polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2017;210:1321.CrossRefGoogle ScholarPubMed
Del Savio, MC, De Fata, R, Facchinetti, F et al. Drospirenone 4 mg-only pill (DOP) in 24+4 regimen: A new option for oral contraception. Expert Rev Clin Pharmacol. 2020;13(7):685–94.Google Scholar

References

Yusuf, S, Hawken, S, Ounpuu, S et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet. 2004;364(9438):937–52.CrossRefGoogle ScholarPubMed
O’Donnell, MJ, Xavier, D, Liu, L et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): A case-control study. Lancet. 2010;376(9735):112–23.Google ScholarPubMed
Hannaford, PC, Croft, PR, Kay, CR. Oral contraception and stroke: Evidence from the Royal College of General Practitioners’ Oral Contraception Study. Stroke. 1994;25:935–42.CrossRefGoogle ScholarPubMed
Poulter, NR for the WHO Collaborative Study of Cardiovascular Disease and Steroid Hormone Contraception. Ischaemic stroke and combined oral contraceptives: Results of an international, multicentre, case-control study. Lancet. 1996;348:498505.Google Scholar
Weill, A, Dalichampt, M, Raguideau, F et al. Low dose oestrogen combined oral contraception and risk of pulmonary embolism, stroke, and myocardial infarction in five million French women: Cohort study. BMJ. 2016;353:i2002.CrossRefGoogle ScholarPubMed
Roach, RE, Helmerhorst, FM, Lijfering, WM et al. Combined oral contraceptives: The risk of myocardial infarction and ischemic stroke. Cochrane Database Syst Rev. 2015;8:CD011054.Google Scholar
Lidegaard, Ø, Kreiner, S. Contraceptives and cerebral thrombosis: A five-year national case-control study. Contraception. 2002;65:197205.CrossRefGoogle ScholarPubMed
Lidegaard, Ø, Løkkegaard, E, Jensen, A, Skovlund, CW, Keiding, N. Thrombotic stroke and myocardial infarction with hormonal contraception. N Engl J Med. 2012;366(24):2257–66.CrossRefGoogle ScholarPubMed
Dinger, J, Mohner, S, Heinemann, K. Cardiovascular risks associated with the use of drospirenone-containing combined oral contraceptives. Contraception. 2016;93:378–85.CrossRefGoogle ScholarPubMed
Dinger, J, Mohner, S, Heinemann, K. Combined oral contraceptives containing dienogest and estradiol valerate may carry a lower risk of venous and arterial thromboembolism compared to conventional preparations: Results from the extended INAS-SCORE study. Front Women’s Health. 2020; 5:18.CrossRefGoogle Scholar
World Health Organization. Medical eligibility criteria for contraceptive use. 5th edition. Geneva: World Health Organization, 2015. www.who.int/publications/i/item/9789241549158.Google Scholar
Ezihe-Ejifor, JA, Hutchinson, N. Anticlotting mechanisms I: Physiology and pathology. Contin Educ Anaesth Crit Care Pain. 2013;13:8792.CrossRefGoogle Scholar
Cagnacci, A. Hormonal contraception: Venous and arterial disease. EJCRHC. 2017;22:191–9.Google ScholarPubMed
Rosendaal, FR, Van Hylckama Vlieg, A, Tanis, BC, Helmerhorst, FM. Estrogens, progestogens and thrombosis. J Thromb Haemost. 2003;1:1371–80.CrossRefGoogle ScholarPubMed
Pisoni, CN, Cuadrado, MJ, Khamashta, MA, Hunt, BJ. Treatment of menorrhagia associated with oral anticoagulation: Efficacy and safety of the levonorgestrel releasing intrauterine device (Mirena coil). Lupus. 2006;15:877–80.CrossRefGoogle ScholarPubMed
Kilic, S, Yuksel, B, Doganay, M et al. The effect of levonorgestrel-releasing intrauterine device on menorrhagia in women taking anticoagulant medication after cardiac valve replacement. Contraception. 2009;80:152–7.CrossRefGoogle ScholarPubMed
Faculty of Sexual & Reproductive Healthcare. UK medical eligibility use. UKMEK 2016 (amended September 2019).Google Scholar
Roach, RE, Lijfering, WM, Van Hylckama Vlieg, A et al. The risk of venous thrombosis in individuals with a history of superficial vein thrombosis and acquired venous thrombotic risk factors. Blood. 2013;122:4264–9.CrossRefGoogle ScholarPubMed
De Bastos, M, Stegeman, BH, Rosendaal, FR et al. Combined oral contraceptives: Venous thrombosis. Cochrane Database Syst Rev. 2014;CD010813.CrossRefGoogle Scholar
Reich, LM, Bower, M, Key, NS. Role of the geneticist in testing and counseling for inherited thrombophilia. Genet Med. 2003;5:133–43.CrossRefGoogle ScholarPubMed
Fruzzetti, F, Cagnacci, A. Venous thrombosis and hormonal contraception: What’s new with estradiol-based hormonal contraceptives? Open Access J Contracept. 2018;9:75–9.CrossRefGoogle ScholarPubMed
Prandoni, P, Prins, MH, Ghirarduzzi, A et al. Family history of venous thrombosis or sudden death as a risk factor for venous thromboembolism. Thromb Haemost. 2012;107:1191–2.Google ScholarPubMed
Oger, E. Incidence of venous thromboembolism: A community-based study in Western France. EPI-GETBP Study Group. Groupe d’Etude de la Thrombose de Bretagne Occidentale. Thromb Haemost. 2000;83:657–60.Google Scholar
Sugiura, K, Ojima, T, Urano, T, Kobayashi, T. The incidence and prognosis of thromboembolism associated with oral contraceptives: Age-dependent difference in Japanese population. J Obstet Gynaecol Res. 2018;44:1766–72.CrossRefGoogle ScholarPubMed
Parkin, L, Sweetland, S, Balkwill, A et al. Body mass index, surgery, and risk of venous thromboembolism in middle-aged women: A cohort study. Circulation. 2012;125:18971904.CrossRefGoogle ScholarPubMed
Horton, LG, Simmons, KB, Curtis, KM. Combined hormonal contraceptive use among obese women and risk for cardiovascular events: A systematic review. Contraception. 2016;94:590604.CrossRefGoogle ScholarPubMed
Merki-Feld, GS, Skouby, S, Serfaty, D et al. European society of contraception statement on contraception in obese women. Eur J Contracept Reprod Health Care. 2015;20:1928.CrossRefGoogle ScholarPubMed
Cagnacci, A, Ferrari, S, Napolitano, A et al. Combined oral contraceptive containing drospirenone does not modify 24-h ambulatory blood pressure but increases heart rate in healthy young women: Prospective study. Contraception. 2013;88:413–17.Google Scholar
Grandi, G, Napolitano, A, Cagnacci, A. Metabolic impact of combined hormonal contraceptives containing estradiol. Expert Opin Drug Metab Toxicol. 2016;12:779–87.CrossRefGoogle ScholarPubMed
Sánchez-Guerrero, J, Uribe, AG, Jiménez-Santana, L et al. A trial of contraceptive methods in women with systemic lupus erythematosus. N Engl J Med. 2005;353:2539–49.CrossRefGoogle ScholarPubMed
Etminan, M, Takkouche, B, Isorna, FC, Samii, A. Risk of ischaemic stroke in people with migraine: Systematic review and meta-analysis of observational studies. BMJ. 2005;8:330(7482):63.Erratum in: BMJ. 2005;330(7487):345.Erratum in: BMJ. 2005;330(7491):596.CrossRefGoogle Scholar
Edlow, AG, Bartz, D. Hormonal contraceptive options for women with headache: A review of the evidence. Rev Obstet Gynecol. 2010;3:5565.Google ScholarPubMed

References

Yusuf, S, Hawken, S, Ounpuu, S et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet. 2004;364(9438):937–52.CrossRefGoogle ScholarPubMed
O’Donnell, MJ, Xavier, D, Liu, L et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): A case-control study. Lancet. 2010;376(9735):112–23.Google ScholarPubMed
World Health Organization. Medical eligibility criteria for contraceptive use. 5th edition. Geneva: World Health Organization, 2015.Google Scholar
Faculty of Sexual and Reproductive Healthcare. UK medical eligibility use. UKMEK 2016 (amended September 2019).Google Scholar
Cagnacci, A, Tuveri, F, Cirillo, R et al. The effect of transdermal 17-beta-estradiol on glucose metabolism of postmenopausal women is evident during the oral but not the intravenous glucose administration. Maturitas. 1997;28:163–7.CrossRefGoogle Scholar
Lindheim, SR, Presser, SC, Ditkoff, EC et al. A possible bimodal effect of estrogen on insulin sensitivity in postmenopausal women and the attenuating effect of added progestin. Fertil Steril. 1993;60:664–7.CrossRefGoogle ScholarPubMed
De Pirro, R, Fusco, A, Bertoli, A, Greco, AV, Lauro, R. Insulin receptors during the menstrual cycle in normal women. J Clin Endocrinol Metab. 1978;47:1387–9.Google ScholarPubMed
Kojima, T, Lindheim, SR, Duffy, DM et al. Insulin sensitivity is decreased in normal women by doses of ethinyl estradiol used in oral contraceptives. Am J Obstet Gynecol. 1993;169:1540–54.CrossRefGoogle ScholarPubMed
Sitruk-Ware, R, Nath, A. Characteristics and metabolic effects of estrogen and progestins contained in oral contraceptive pills. Best Pract Res Clin Endocrinol Metab. 2013;27:1324.CrossRefGoogle ScholarPubMed
Cagnacci, A, Ferrari, S, Tirelli, A, Zanin, R, Volpe, A. Route of administration of contraceptives containing desogestrel/etonorgestrel and insulin sensitivity: A prospective randomized study. Contraception. 2009;80:34–9.CrossRefGoogle ScholarPubMed
Junge, W, Mellinger, U, Parke, S, Serrani, M. Metabolic and haemostatic effects of estradiol valerate/dienogest, a novel oral contraceptive: A randomized, open-label, single-centre study. Clin Drug Investig. 2011;31:573–84.CrossRefGoogle ScholarPubMed
Ågren, UM, Anttila, M, Mäenpää-Liukko, K et al. Effects of a monophasic combined oral contraceptive containing nomegestrol acetate and 17β-oestradiol compared with one containing levonorgestrel and ethinylestradiol on haemostasis, lipids and carbohydrate metabolism. Eur J Contracept Reprod Health Care. 2011;16:444–57.Google ScholarPubMed
Grandi, G, Piacenti, I, Volpe, A, Cagnacci, A. Modification of body composition and metabolism during oral contraceptives containing non-androgenic progestins in association with estradiol or ethinyl estradiol. Gynecol Endocrinol. 2014;30:676–80.CrossRefGoogle ScholarPubMed
Waine, HFE. Metabolic effects of Enovid in rheumatoid patients. Arthritis Rheum. 1963;6:796.Google Scholar
Godsland, I, Walton, C, Felton, C, Proudler, A. Insulin resistance, secretion and metabolism in users of oral contraceptives. J Clin Endocrinol Metab. 1991;74:6470.Google Scholar
Cagnacci, A. Hormonal contraception: Venous and arterial disease. EJCRHC. 2017;22:191–9.Google ScholarPubMed
Corbould, A. Chronic testosterone treatment induces selective insulin resistance in subcutaneous adipocytes of women. J Endocrinol. 2007;192:585–94.CrossRefGoogle ScholarPubMed
National Institute for Health and Clinical Excellence. Management of diabetes from preconception to the postnatal period: Summary of NICE guidance. BMJ. 2008;336:714–17.Google Scholar
Napoli, A, Colatrella, A, Botta, R et al. Contraception in diabetic women: An Italian study. Diabetes Res Clin Pract. 2005;67:267–72.CrossRefGoogle ScholarPubMed
Cagnacci, A, Ferrari, S, Tirelli, A, Zanin, R, Volpe, A. Insulin sensitivity and lipid metabolism with oral contraceptives containing chlormadinone acetate or desogestrel: a randomized trial. Contraception. 2009;79:111–16.CrossRefGoogle ScholarPubMed
Monster, TB, Janssen, WM, De Jong, PE, De Jong–Van den Berg, LT. Prevention of renal and vascular end stage disease study group: Oral contraceptive use and hormone replacement therapy are associated with microalbuminuria. Arch Intern Med. 2001;161:2000–5.CrossRefGoogle Scholar
Dinger, J, Mohner, S, Heinemann, K. Combined oral contraceptives containing dienogest and estradiol valerate may carry a lower risk of venous and arterial thromboembolism compared to conventional preparations: Results from the extended INAS-SCORE study. Front Women’s Health. 2020;5:18.CrossRefGoogle Scholar
Kivelä, A, Ruuskanen, M, Agren, U, Dieben, T. The effects of two progestogen-only pills containing either desogestrel (75 microgram/day) or levonorgestrel (30 microgram/day) on carbohydrate metabolism and adrenal and thyroid function. Eur J Contracept Reprod Health Care. 2001;6:71677.CrossRefGoogle ScholarPubMed
Benagiano, G, Primiero, FM. Seventy-five microgram desogestrel mini pill, a new perspective in estrogen-free contraception. Ann N Y Acad Sci. 2003;997:163–73.CrossRefGoogle Scholar
Grandi, G, Cagnacci, A, Volpe, A. Pharmacokinetic evaluation of desogestrel as a female contraceptive. Expert Opin Drug Metab Toxicol. 2013;10:110.CrossRefGoogle ScholarPubMed
Biswas, A, Viegas, OA, Coeling Bennink, HJ, Korver, T, Ratnam, SS. Implanon® contraceptive implants: Effects on carbohydrate metabolism. Contraception. 2001;63:137–41.CrossRefGoogle ScholarPubMed
Cagnacci, A, Tirelli, A, Cannoletta, M, Pirillo, D, Volpe, A. Effect on insulin sensitivity of Implanon vs. GnRH agonist in women with endometriosis. Contraception. 2005;72:443–6.CrossRefGoogle ScholarPubMed
Vicente, L, Mendonça, D, Dingle, M, Duarte, R, Boavida, JM. Etonogestrel implant in women with diabetes mellitus. Eur J Contracept Reprod Health Care. 2008;13:387–95.CrossRefGoogle ScholarPubMed
Rosenfield, RL, Ehrmann, DA. The pathogenesis of polycystic ovary syndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 2016;37:467520.CrossRefGoogle ScholarPubMed
Randeva, HS, Tan, BK, Weickert, MO et al. Cardiometabolic aspects of the polycystic ovary syndrome. Endocr Rev. 2012;33:812–41.CrossRefGoogle ScholarPubMed
Dokras, A. Noncontraceptive use of oral combined hormonal contraceptives in polycystic ovary syndrome: Risks versus benefits. Fertil Steril. 2016;106:1572–9.CrossRefGoogle ScholarPubMed
De Medeiros, SF. Risks, benefits size and clinical implications of combined oral contraceptive use in women with polycystic ovary syndrome. Reprod Biol Endocrinol. 2017;15:93.CrossRefGoogle ScholarPubMed
Cagnacci, A, Paoletti, AM, Arangino, S, Melis, GB, Volpe, A. Effect of ovarian suppression on glucose metabolism of young lean women with and without ovarian hyperandrogenism. Hum Reprod. 1999;14:893–7.CrossRefGoogle ScholarPubMed
Dahlgren, E, Landin, K, Krotkiewski, M, Holm, G, Janson, PO. Effects of two antiandrogen treatments on hirsutism and insulin sensitivity in women with polycystic ovary syndrome. Hum Reprod. 1998;13:2706–11.CrossRefGoogle ScholarPubMed
Moghetti, P. Insulin resistance and polycystic ovary syndrome. Curr Pharm Des. 2016;22:5526–34.CrossRefGoogle ScholarPubMed
Van der Mooren, MJ, Klipping, C, Van Aken, B et al. A comparative study of the effects of gestodene 60 microg/ethinylestradiol 15 microg and desogestrel 150 microg/ethinylestradiol 20 microg on hemostatic balance, blood lipid levels and carbohydrate metabolism. Eur J Contracept Reprod Health Care. 1999;4(Suppl 2):2735.CrossRefGoogle ScholarPubMed
Lüdicke, F, Gaspard, UJ, Demeyer, F, Scheen, A, Lefebvre, P. Randomized controlled study of the influence of two low estrogen dose oral contraceptives containing gestodene or desogestrel on carbohydrate metabolism. Contraception. 2002;66:411–15.CrossRefGoogle ScholarPubMed
De Medeiros, SF. Risks, benefits size and clinical implications of combined oral contraceptive use in women with polycystic ovary syndrome. Reprod Biol Endocrinol. 2017;15:93.CrossRefGoogle ScholarPubMed
Amiri, M, Ramezani Tehrani, F, Nahidi, F et al. Effects of oral contraceptives on metabolic profile in women with polycystic ovary syndrome: A meta-analysis comparing products containing cyproterone acetate with third generation progestins. Metabolism. 2017;73:2235.CrossRefGoogle ScholarPubMed
De Leo, V, Fruzzetti, F, Musacchio, MC et al. Effect of a new oral contraceptive with estradiol valerate/dienogest on carbohydrate metabolism. Contraception. 2013;88:364–8.CrossRefGoogle ScholarPubMed
Cagnacci, A, Paoletti, AM, Renzi, A et al. Glucose metabolism and insulin resistance in women with polycystic ovary syndrome during therapy with oral contraceptives containing cyproterone acetate or desogestrel. J Clin Endocrinol Metab. 2003;88:3621–5.CrossRefGoogle ScholarPubMed
Oger, E. Incidence of venous thromboembolism: A community-based study in Western France. EPI-GETBP Study Group. Groupe d’Etude de la Thrombose de Bretagne Occidentale. Thromb Haemost. 2000;83:657–60.Google Scholar
Fruzzetti, F, Cagnacci, A. Venous thrombosis and hormonal contraception: What’s new with estradiol-based hormonal contraceptives? Open Access J Contracept. 2018;9:75–9.CrossRefGoogle ScholarPubMed
Klipping, C, Duijkers, I, Mawet, M et al. Endocrine and metabolic effects of an oral contraceptive containing estetrol and drospirenone. Contraception. 2021;103:213–21.CrossRefGoogle ScholarPubMed
Salazar, MR, Carbajal, HA, Espeche, WG et al. Identifying cardiovascular disease risk and outcome: Use of the plasma triglyceride/high-density lipoprotein cholesterol concentration ratio versus metabolic syndrome criteria. J Intern Med. 2013;273:595601.CrossRefGoogle ScholarPubMed
Knopp, RH, Zhu, X, Bonet, B. Effects of estrogens on lipoprotein metabolism and cardiovascular disease in women. Atherosclerosis. 1994;110(Suppl):S83S91.CrossRefGoogle ScholarPubMed
Sitruk-Ware, R, Plu-Bureau, G, Menard, J et al. Effects of oral and transvaginal ethinyl estradiol on hemostatic factors and hepatic proteins in a randomized, crossover study. J Clin Endocrinol Metab. 2007;92:2074–9.CrossRefGoogle Scholar
La Rosa, JC. The varying effects of progestins on lipid levels and cardiovascular disease. Am J Obstet Gynecol. 1988;158:1821–9.CrossRefGoogle ScholarPubMed
Upton, V. Lipids, cardiovascular disease, and oral contraceptives: A practical perspective. Fertil Steril. 1990;53:112.Google ScholarPubMed
Godsland, IF, Crook, D, Simpson, R et al. The effects of different formulations of oral contraceptive agents on lipid and carbohydrate metabolism. N Engl J Med. 1990;323:1375–81.CrossRefGoogle ScholarPubMed
Barkfeldt, J, Virkkunen, A, Dieben, T. The effects of two progestogen-only pills containing either desogestrel (75 μg/day) or levonorgestrel (30 μg/day) on lipid metabolism. Contraception. 2001;64:295–9.CrossRefGoogle Scholar
Suherman, SK, Affandi, B KT. The effects of Implanon on lipid metabolism in comparison with Norplant. Contraception. 1999;60:281–7.CrossRefGoogle ScholarPubMed
Mascarenhas, L, Van Beek, A, Bennink, HC NJ. Twenty-four month comparison of apolipoproteins A-1, A-II and B in contraceptive implant users (Norplant and Implanon) in Birmingham, United Kingdom. Contraception. 1998;58:215–19.CrossRefGoogle Scholar
Dragoman, M, Curtis, KM, Gaffield, ME. Combined hormonal contraceptive use among women with known dyslipidemias: A systematic review of critical safety outcomes. Contraception. 2016;94:280–7.CrossRefGoogle ScholarPubMed
Ng, YW, Liang, S, Singh, K. Effects of Mirena (levonorgestrel-releasing intrauterine system) and Ortho Gynae T380 intrauterine copper device on lipid metabolism: A randomized comparative study. Contraception. 2009;79:24–8.CrossRefGoogle ScholarPubMed
Zueff, LFN, Melo, AS de, Vieira, CS, Martins, WP, Ferriani, RA. Cardiovascular risk markers among obese women using the levonorgestrel-releasing intrauterine system: A randomised controlled trial. Obes Res Clin Pract. 2017;11:687–93.CrossRefGoogle ScholarPubMed

References

UN Women. Facts and figures: HIV and AIDS. 2018. https://bit.ly/3wGpmsu.Google Scholar
World Health Organization. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: Recommendations for a public health approach. 2nd edition. Geneva: World Health Organization, 2016. www.who.int/hiv/pub/arv/arv-2016/en.Google Scholar
Amin, A. Addressing gender inequalities to improve the sexual and reproductive health and wellbeing of women living with HIV. J Int AIDS Soc. 2015;18(Suppl 5):20302.CrossRefGoogle ScholarPubMed
Sharma, M, Walmsley, SL. Contraceptive options for HIV-positive women: Making evidence-based, patient-centred decisions. HIV Med. 2015;16(6):329–36.CrossRefGoogle ScholarPubMed
Scarsi, KK, Darin, KM, Chappell, CA, Nitz, SM, Lamorde, M. Drug–drug interactions, effectiveness, and safety of hormonal contraceptives in women living with HIV. Drug Saf. 2016;39(11):1053–72.CrossRefGoogle ScholarPubMed
Scarsi, KK, Cramer, YS, Rosenkranz, SL et al. Antiretroviral therapy and vaginally administered contraceptive hormones: A three-arm, pharmacokinetic study. Lancet HIV. 2019;6(9):e601e612.CrossRefGoogle ScholarPubMed
Nanda, K, Stuart, GS, Robinson, J et al. Drug interactions between hormonal contraceptives and antiretrovirals. AIDS. 2017;31(7):917–52.CrossRefGoogle ScholarPubMed
Hel, Z, Stringer, E, Mestecky, J. Sex steroid hormones, hormonal contraception, and the immunobiology of human immunodeficiency virus-1 infection. Endocr Rev. 2010;31(1):7997.CrossRefGoogle ScholarPubMed
Morrison, CS, Hofmeyr, GJ, Thomas, KK et al. Effects of depot medroxyprogesterone acetate, copper intrauterine devices, and levonorgestrel implants on early HIV disease progression. AIDS Res Hum Retroviruses. 2020;36(8):632–40.CrossRefGoogle ScholarPubMed
Curtis, KM, Hannaford, PC, Rodriguez, MI et al. Hormonal contraception and HIV acquisition among women: An updated systematic review. BMJ Sex Reprod Health. 2020;46(1):816.CrossRefGoogle ScholarPubMed
Tepper, NK, Curtis, KM, Nanda, K, Jamieson, DJ. Safety of intrauterine devices among women with HIV: A systematic review. Contraception. 2016;94(6):713–24.Google ScholarPubMed
Todd, CS, Jones, HE, Langwenya, N et al. Safety and continued use of the levonorgestrel intrauterine system as compared with the copper intrauterine device among women living with HIV in South Africa: A randomized controlled trial. PLoS Med. 2020;17(5):e1003110.CrossRefGoogle ScholarPubMed
Lutalo, T, Musoke, R, Kong, X et al. Effects of hormonal contraceptive use on HIV acquisition and transmission among HIV-discordant couples. AIDS. 2013;27(Suppl 1):S2734.CrossRefGoogle ScholarPubMed
Heffron, R, Donnell, D, Rees, H et al. Use of hormonal contraceptives and risk of HIV-1 transmission: A prospective cohort study. Lancet Infect Dis. 2012;12(1):1926.CrossRefGoogle ScholarPubMed
Evidence for Contraceptive Options and HIV Outcomes (ECHO) Trial Consortium. HIV incidence among women using intramuscular depot medroxyprogesterone acetate, a copper intrauterine device, or a levonorgestrel implant for contraception: A randomised, multicentre, open-label trial. Lancet. 2019;394(10195):303–13.Google Scholar
World Health Organization. Medical eligibility criteria for contraceptive use. 5th edition. Geneva: World Health Organization, 2015.Google Scholar
Patel, RC, Bukusi, EA, Baeten, JM. Current and future contraceptive options for women living with HIV. Expert Opin Pharmacother. 2018;19(1):112.CrossRefGoogle ScholarPubMed
Hannaford, PC, Ti, A, Chipato, T, Curtis, KM. Copper intrauterine device use and HIV acquisition in women: A systematic review. BMJ Sex Reprod Health. 2020;46(1):1725.CrossRefGoogle ScholarPubMed
Majeed, SR, West, S, Ling, KH, Das, M, Kearney, BP. Confirmation of the drug–drug interaction potential between cobicistat-boosted antiretroviral regimens and hormonal contraceptives. Antivir Ther. 2019;24(8):557–66.CrossRefGoogle ScholarPubMed
Agrati, C, Mazzotta, V, Pinnetti, C, Biava, G, Bibas, M. Venous thromboembolism in people living with HIV infection (PWH). Transl Res. 2020;S1931–5244(20):30174–2.Google Scholar
Hsue, PY, Waters, DD. HIV infection and coronary heart disease: Mechanisms and management. Nat Rev Cardiol. 2019;16(12):745–59.CrossRefGoogle ScholarPubMed
Patel, RC, Onono, M, Gandhi, M et al. A retrospective cohort analysis comparing pregnancy rates among HIV-positive women using contraceptives and efavirenzor nevirapine-based antiretroviral therapy in Kenya. Lancet HIV. 2015;2(11):e474e482.CrossRefGoogle Scholar
Elliot, ER, Bisdomini, E, Penchala, SD et al. Pharmacokinetics (PK) of ethinylestradiol/levonorgestrel co-administered with atazanavir/cobicistat. HIV Res Clin Pract. 2019;23:110.Google Scholar
Trezza, C, Ford, SL, Gould, E et al. Lack of effect of oral cabotegravir on the pharmacokinetics of a levonorgestrel/ethinyl oestradiol-containing oral contraceptive in healthy adult women. Br J Clin Pharmacol. 2017;83(7):1499–1505.CrossRefGoogle ScholarPubMed

References

Alonso, A, Clark, CJ. Oral contraceptives and the risk of multiple sclerosis: A review of the epidemiologic evidence. J Neurol Sci. 2009;286(1–2):73–5.CrossRefGoogle ScholarPubMed
Confavreux, C, Hutchinson, M, Hours, MM et al. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N Engl J Med. 1998;339(5):285–91.CrossRefGoogle ScholarPubMed
Houtchens, MK, Zapata, LB, Curtis, KM, Whiteman, MK. Contraception for women with multiple sclerosis: Guidance for healthcare providers. Mult Scler. 2017;23(6):757–64.CrossRefGoogle ScholarPubMed
Peeters, PJ, Bazelier, MT, Uitdehaag, BM et al. The risk of venous thromboembolism in patients with multiple sclerosis: The Clinical Practice Research Datalink. J Thromb Haemost. 2014;12(4):444–51.CrossRefGoogle ScholarPubMed
Thijs, RD, Surges, R, O’Brien, TJ, Sander, JW. Epilepsy in adults. Lancet. 2019;393(10172):689701.CrossRefGoogle ScholarPubMed
Beerhorst, K, Van der Kruijs, SJ, Verschuure, P et al. Bone disease during chronic antiepileptic drug therapy: General versus specific risk factors. J Neurol Sci. 2013;331(1–2):1925.CrossRefGoogle ScholarPubMed
Harris, L, Lowes, O, Angus-Leppan, H. Treatment decisions in women of childbearing age on valproate. Acta Neurol Scand. 2020;141(4):287–93.CrossRefGoogle ScholarPubMed
Rauchenzauner, M, Deichmann, S, Pittschieler, S et al. Bidirectional interaction between oral contraception and lamotrigine in women with epilepsy: Role of progestins. Seizure. 2020;74:8992.CrossRefGoogle ScholarPubMed
World Health Organization. Selected practice recommendations for contraceptive use. Geneva: World Health Organization, 2016.Google Scholar
Vetvik, KG, Macgregor, EA, Lundqvist, C, Russell, MB. Prevalence of menstrual migraine: A population-based study. Cephalalgia. 2014;34(4):280–8.CrossRefGoogle ScholarPubMed
Tzourio, C, Kittner, SJ, Bousser, MG, Alperovitch, A. Migraine and stroke in young women. Cephalalgia. 2000;20(3):190–9.CrossRefGoogle ScholarPubMed
Bousser, MG, Welch, KM. Relation between migraine and stroke. Lancet Neurol. 2005;4(9):533–42.CrossRefGoogle ScholarPubMed
Sacco, S, Merki-Feld, GS, Bitzer, J et al. Hormonal contraceptives and risk of ischemic stroke in women with migraine: A consensus statement. J Headache Pain. 2017;18(1):108.CrossRefGoogle ScholarPubMed
Morotti, M, Remorgida, V, Buccelli, E et al. Comparing treatments for endometriosis-related pain symptoms in patients with migraine without aura. J Comp Eff Res. 2012;1(4):347–57.CrossRefGoogle ScholarPubMed
Merki-Feld, GS, Imthurn, B, Langner, R et al. Headache frequency and intensity in female migraineurs using desogestrel-only contraception: A retrospective pilot diary study. Cephalalgia. 2013;33(5):340–6.CrossRefGoogle ScholarPubMed
Merki-Feld, GS, Imthurn, B, Gantenbein, AR, Sandor, P. Effect of desogestrel 75 microg on headache frequency and intensity in women with migraine: A prospective controlled trial. Eur J Contracept Reprod Health Care. 2019;24(3):175–81.CrossRefGoogle Scholar

References

WHO: Prevalence of mental disorders. https://bit.ly/3wPpx4F.Google Scholar
Pagano, HP, Zapata, LB, Berry-Bibee, EN et al. Safety of hormonal contraception and intrauterine devices among women with depressive and bipolar disorders: A systematic review. Contraception. 2016;94(6):641–9.CrossRefGoogle ScholarPubMed
Robakis, T, Williams, KE, Nutkiewicz, L, Rasgon, NL. Hormonal contraceptives and mood: Review of the literature and implications for future research. Curr Psychiatry Rep. 2019;21(7):57.CrossRefGoogle ScholarPubMed
Skovlund, CW, Morch, LS, Kessing, LV, Lidegaard, O. Association of hormonal contraception with depression. JAMA Psychiatry. 2016;73(11):1154–62.CrossRefGoogle ScholarPubMed
De Wit, AE, Booij, SH, Giltay, EJ et al. Association of use of oral contraceptives with depressive symptoms among adolescents and young women. JAMA Psychiatry. 2019.CrossRefGoogle Scholar
Merki-Feld, GS, Apter, D, Bartfai, G et al. ESC expert statement on the effects on mood of the natural cycle and progestin-only contraceptives. Eur J Contracept Reprod Health Care. 2017;22(4):247–9.CrossRefGoogle ScholarPubMed
Civic, D, Scholes, D, Ichikawa, L et al. Depressive symptoms in users and non-users of depot medroxyprogesterone acetate. Contraception. 2000;61(6):385–90.CrossRefGoogle ScholarPubMed
Westhoff, C, Wieland, D, Tiezzi, L. Depression in users of depo-medroxyprogesterone acetate. Contraception. 1995;51(6):351–4.CrossRefGoogle ScholarPubMed
Worly, BL, Gur, TL, Schaffir, J. The relationship between progestin hormonal contraception and depression: A systematic review. Contraception. 2018;97(6):478–89.CrossRefGoogle ScholarPubMed
Rasgon, N, Bauer, M, Glenn, T et al. Menstrual cycle related mood changes in women with bipolar disorder. Bipolar Disord. 2003;5(1):4852.CrossRefGoogle ScholarPubMed
Berenson, AB, Asem, H, Tan, A, Wilkinson, GS. Continuation rates and complications of intrauterine contraception in women diagnosed with bipolar disorder. Obstet Gynecol. 2011;118(6):1331–6.CrossRefGoogle ScholarPubMed
Tsai, R, Schaffir, J. Effect of depot medroxyprogesterone acetate on postpartum depression. Contraception. 2010;82(2):174–7.CrossRefGoogle ScholarPubMed
Charlson, FJ, Ferrari, AJ, Santomauro, DF et al. Global epidemiology and burden of schizophrenia: Findings from the Global Burden of Disease Study 2016. Schizophr Bull. 2018;44(6):11951203.CrossRefGoogle ScholarPubMed
Disease GBD, Injury I, Prevalence C: Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–59.Google Scholar
Gonzalez-Rodriguez, A, Guardia, A, Alvarez Pedrero, A et al. Women with schizophrenia over the life span: Health promotion, treatment and outcomes. Int J Environ Res Public Health. 2020;17(15):n.p.CrossRefGoogle ScholarPubMed
Merki-Feld, GS, Bitzer, J. Contraception in adolescents with anorexia nervosa: Is there evidence for a negative impact of combined hormonal contraceptives on bone mineral density and the course of the disease? Eur J Contracept Reprod Health Care. 2020;25(3):213–20.CrossRefGoogle Scholar

References

Bickenbach, JE, Chatterji, S, Badley, EM, Üstün, TB. Models of disablement, universalism and the ICIDH. Social Science and Medicine. 1999;48:1173–87.Google Scholar
Kripke, C. Supported health care decision-making for people with intellectual and cognitive disabilities. Family Practice. 2016;33(5):445–6.CrossRefGoogle ScholarPubMed
World Health Organization. Medical eligibility criteria for contraceptive use. 5th edition, 2015.Google Scholar
World Health Organization, Johns Hopkins Bloomberg School of Public Health Center for Communication Programs. Family planning: A global handbook for providers. Geneva: World Health Organization, 2018.Google Scholar
Wu, JP, McKee, KS, McKee, MM et al. Use of reversible contraceptive methods among US women with physical or sensory disabilities. Perspect Sex Reprod Health. 2017;49(3):141–7.CrossRefGoogle ScholarPubMed
Dickson, J, Thwaites, A, Bacon, L. Contraception for adolescents with disabilities: Taking control of periods, cycles and conditions. BMJ Sex Reprod Health. 2018;44(1):713. First published as 10.1136/jfprhc-2017–101746 on 8 November 2017. http://jfprhc.bmj.com.CrossRefGoogle ScholarPubMed
International Consortium for Emergency Contraception and International Federation of Gynecology and Obstetrics. Emergency contraceptive pills (medical and service delivery guidelines). 3rd edition. N.p.: International Federation of Gynecology and Obstetrics, 2012.Google Scholar

References

Heise, ER. Diseases associated with immunosuppression. Environ Health Perspect. 1982;43:919. https://doi.org/10.1289/ehp.82439.CrossRefGoogle ScholarPubMed
Mor, G, Cardenas, I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63(6):425–33. https://doi.org/10.1111/j.1600-0897.2010.00836.x.CrossRefGoogle ScholarPubMed
Hofmeyr, GJ, Singata, M, Lawrie, TA. Copper containing intra‐uterine devices versus depot progestogens for contraception. Cochrane Database of Systematic Reviews 2010;6:CD007043. https://doi.org/10.1002/14651858.CD007043.pub2.Google Scholar
Shah, NM, Lai, PF, Imami, N, Johnson, MR. Progesterone-related immune modulation of pregnancy and labor. Front. Endocrinol. 2019;10:119. https://doi.org/10.3389/fendo.2019.00198.CrossRefGoogle ScholarPubMed
Matubu, A, Hillier, SL, Meyn, LA et al. Depot medroxyprogesterone acetate and norethisterone enanthate differentially impact T‐cell responses and expression of immunosuppressive markers. Am J Reprod Immunol. 2020;83:e13210. https://doi.org/10.1111/aji.13210.CrossRefGoogle ScholarPubMed
World Health Organization. Medical eligibility criteria for contraceptive use. 5th edition. Geneva: World Health Organization, 2015.Google Scholar
Culwell, KR, Curtis, KM. Contraception for women with systemic lupus erythematosus. Journal of Family Planning and Reproductive Health Care 2013;39:911. https://doi.org/10.1136/jfprhc-2012-100437.CrossRefGoogle ScholarPubMed
Williams, WV. Hormonal contraception and the development of autoimmunity: A review of the literature. Linacre Q. 2017;84(3):275–95. https://doi.org/10.1080/00243639.2017.1360065.CrossRefGoogle ScholarPubMed
Aggarwal, V, Williams, MD, Beath, SV. Gastrointestinal problems in the immunosuppressed patient. Archives of Disease in Childhood 1998;78:58.CrossRefGoogle ScholarPubMed
Tseng, A, Hills-Nieminen, C. Drug interactions between antiretrovirals and hormonal contraceptives. Expert Opin Drug Metab Toxicol. 2013;9(5):559–72.CrossRefGoogle ScholarPubMed
Migali, G, Tintillier, M. Interaction between estradiol and tacrolimus in kidney-transplanted menopausal women. NDT Plus. 2008;1(4):277–8. https://doi.org/10.1093/ndtplus/sfn035.Google ScholarPubMed
Faculty of Sexual and Reproductive Healthcare. Clinical guidance: Drug interactions with hormonal contraception. London: Faculty of Sexual and Reproductive Healthcare, 2017.Google Scholar
Mann, DR, Ansari, AA, Akinbami, MA et al. Neonatal treatment with luteinizing hormone-releasing hormone analogs alters peripheral lymphocyte subsets and cellular and humorally mediated immune responses in juvenile and adult male monkeys. J Clin Endocrinol Metab. 1994;78(2):292–8.Google ScholarPubMed
Khalili, H, Granath, F, Smedby, KE et al. Association between long-term oral contraceptive use and risk of Crohn’s disease complications in a nationwide study. Gastroenterology 2016;150(7):1561–7.e1.CrossRefGoogle Scholar
Gavin, L, Moskosky, S, Carter, M et al. Providing quality family planning services: Recommendations of CDC and the U.S. Office of Population Affairs. Morbidity and mortality weekly report. Recommendations and Reports 2014;63(4):154.Google Scholar

References

World Health Organization. WHO model list of essential medications 21st list 2019. Geneva: World Health Organization, 2019, pp. 46–7.Google Scholar
Parks, C, de Souza Espindola Santos, A, Barbhaiya, M, Costenbader, K. Understanding the role of environmental factors in the development of systemic lupus erythematosus. Best Practice & Research Clinical Rheumatology. 2017;31(3):306–20.CrossRefGoogle ScholarPubMed
Culwell, K, Curtis, K. Contraception for women with systemic lupus erythematosus. BMJ Sexual and Reproductive Health. 2013;39(1):911. https://srh.bmj.com/content/39/1/9.Google ScholarPubMed
Recurrent pregnancy loss. 2nd edition. Strombek-Bever: European Society of Human Reproduction and Embryology, 2017. http://bit.ly/3RuaUxs.Google Scholar
Unlu, O, Zuily, S, Erkan, D. The clinical significance of antiphospholipid antibodies in systemic lupus erythematosus. European Journal of Rheumatology. 2016;3(2):7584. https://bit.ly/40pvQts.CrossRefGoogle ScholarPubMed
United Kingdom Medical Eligibility Criteria (UK MEC). 2016. http://ukmec.pagelizard.com/2016.Google Scholar
Tesher, M, Whitaker, A, Gilliam, M, Wagner-Weiner, L, Onel, K. Contraception for adolescents with lupus. Pediatric Rheumatology. 2010;8(1):10.CrossRefGoogle ScholarPubMed
National Institute for Health and Care Excellence. Heavy menstrual bleeding: Assessment and management. 2018. https://bit.ly/3JEZ3KP.Google Scholar
Progesterone only pill. 2nd edition. Edinburgh: Clinical Effectiveness Unit, 2015. https://bit.ly/3Y8mVuT.Google Scholar
Progesterone only implants. 1st edition. Edinburgh: Clinical Effectiveness Unit, 2014. http://bit.ly/3l2xNf7.Google Scholar
World Health Organization. Medical Eligibility Criteria for contraceptive use. Geneva: World Health Organization, 2015. https://bit.ly/40wrqRt.Google Scholar
Centers for Disease Control. US Medical Eligibility Criteria (US MEC) for contraceptive use. 2016 | CDC. Cdc.gov. 2020. http://bit.ly/3RhFASx.Google Scholar
Faculty of Sexual and Reproductive Healthcare. FSRH clinical guideline: Emergency contraception (March 2017, amended December 2017). 2017. http://bit.ly/3Y26ZKN.Google Scholar
World Health Organization. Emergency contraception factsheet. 2018. http://bit.ly/3DFpUTh.Google Scholar
Bermas, B, Smith, NA. UpToDate. 2020. http://bit.ly/3DEDmqI.Google Scholar
National Institute for Health and Care Excellence. Cytotoxic drugs | Treatment summary | BNF content published by NICE. 2020. http://bit.ly/3YlspC7.Google Scholar

References

Attini, R, Cabiddu, G, Montersino, B et al. Contraception in chronic kidney disease: A best practice position statement by the Kidney and Pregnancy Group of the Italian Society of Nephrology. J Nephrol. 2020;33(6):1343–59.CrossRefGoogle Scholar
Wiles, KS, Nelson-Piercy, C, Bramham, K. Reproductive health and pregnancy in women with chronic kidney disease. Nat Rev Nephrol. 2018;14:165–84.CrossRefGoogle ScholarPubMed
Ahmed, SB, Vitek, WS, Holley, JL. Fertility, contraception, and novel reproductive technologies in chronic kidney disease. Semin Nephrol. 2017;37:327–36.CrossRefGoogle ScholarPubMed
Burgner, A, Hladunewich, MA. Women’s reproductive health for the nephrologist. Am J Kidney Dis. 2019;74:675–81.CrossRefGoogle ScholarPubMed
Ahmed, SB, Ramesh, S. Sex hormones in women with kidney disease. Nephrol Dial Transplant. 2016;31:1787–95.CrossRefGoogle ScholarPubMed
Nadeau-Fredette, A-C, Hladunewich, M, Hui, D, Keunen, J, Chan, CT. End-stage renal disease and pregnancy. Adv Chronic Kidney Dis. 2013;20:246–52.CrossRefGoogle ScholarPubMed
Lessan-Pezeshki, M, Ghazizadeh, S, Khatami, MR et al. Fertility and contraceptive issues after kidney transplantation in women. Transplant Proc. 2004;36:1405–6.CrossRefGoogle ScholarPubMed
Paulen, ME, Folger, SG, Curtis, KM, Jamieson, DJ. Contraceptive use among solid organ transplant patients: A systematic review. Contraception. 2010;82:102–12.Google ScholarPubMed
World Health Organization. Medical eligibility criteria for contraceptive use. 2015. https://bit.ly/3HxV1BB.Google Scholar
Ramhendar, T, Byrne, P. Use of the levonorgestrel-releasing intrauterine system in renal transplant recipients: A retrospective case review. Contraception. 2012;86:288–9.CrossRefGoogle ScholarPubMed
Gupta, K, Stamm, WE. Pathogenesis and management of recurrent urinary tract infections in women. World J Urol. 1999;17:415–20.CrossRefGoogle ScholarPubMed
Evans, EC, Matteson, KA, Orejuela, FJ et al. Salpingo-oophorectomy at the time of benign hysterectomy. Obstet Gynecol. 2016;128:476–85.CrossRefGoogle ScholarPubMed
Inker, LA, Astor, BC, Fox, CH et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014;63:713–35.CrossRefGoogle ScholarPubMed

References

Robinson, A, Nwolise, C, Shawe, J. Contraception for women with diabetes: Challenges and solutions. Journal of Contraception. 2016;7:1118.Google ScholarPubMed
UK Diabetes Prevalence 2019. Diabetes UK. 2020. http://bit.ly/3IlbRnp.Google Scholar
National Institute of Clinical Excellence. Diabetes in pregnancy: Management from preconception to the postnatal period. London: National Institute of Clinical Excellence, 2015, pp. 811.Google Scholar
Guillebaud, J, MacGregor, A. Contraception: Your questions answered. 7th edition. London: Elsevier, 2017.Google Scholar
World Health Organization. Medical eligibility criteria for contraceptive use. 5th edition. Geneva: World Health Organization, 2020, pp. 5, 111, 157, 186, 189, 211. https://bit.ly/3HxV1BB.Google Scholar
UK MEC 2016. Digital version. Ukmec.pagelizard.com. 2016. http://ukmec.pagelizard.com/2016.Google Scholar
World Health Organization. Emergency contraception factsheet. WHO International. 2018. https://bit.ly/3DFpUTh.Google Scholar
US Medical Eligibility Criteria (US MEC) for Contraceptive Use, 2016. Cdc.gov. 2016. http://bit.ly/3RhFASx.CrossRefGoogle Scholar
World Health Organization. Report of a WHO Technical report on birth spacing. 1st edition. Geneva: World Health Organization, 2005. https://bit.ly/3EvtmAi.Google Scholar
Faculty of Sexual and Reproductive Healthcare. Contraception after pregnancy. 1st edition. London: Faculty of Sexual and Reproductive Healthcare, 2017. https://bit.ly/3SmTNhf.Google Scholar

References

Broughton, C, Ahmad, B. Thyroid anatomy and physiology. In Llahana, S, Follin, C, Yedinak, C, Grossman, A (eds.). Advanced practice in endocrinology nursing. Cham: Springer, 2019, 497503. https://doi.org/10.1007/978-3-319-99817-6_26.CrossRefGoogle Scholar
Santin, AP, Furlanetto, TW. Role of estrogen in thyroid function and growth regulation. J Thyroid Res. 2011:875125.CrossRefGoogle Scholar
Knopp, RH, Bergelin, RO, Wahl, PW, Walden, CE, Chapman, MB. Clinical chemistry alterations in pregnancy and oral contraceptive use. Obstet Gynecol. 1985;66:682–90.Google ScholarPubMed
Krassas, GE, Poppe, K, Glinoer, D. Thyroid function and human reproductive health. Endocr Rev. 2010;31:702–55.CrossRefGoogle ScholarPubMed
Alexander, EK, Pearce, EN, Brent, GA et al. Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease during Pregnancy and the Postpartum. Thyroid. 2017;27:315–89.CrossRefGoogle ScholarPubMed
Busnelli, A, Somigliana, E, Benaglia, L et al. In vitro fertilization outcomes in treated hypothyroidism. Thyroid. 2013;23:1319–25.CrossRefGoogle ScholarPubMed
Chetkowski, RJ, Meldrum, DR, Steingold, KA et al. Biologic effects of transdermal estradiol. N Engl J Med. 1986;314:1615–20.CrossRefGoogle ScholarPubMed
Westhoff, CL, Petrie, KA, Cremers, S. Using changes in binding globulins to assess oral contraceptive compliance. Contraception. 2013;87:176–81.CrossRefGoogle ScholarPubMed
Sathi, P, Kalyan, S, Hitchcock, CL, Pudek, M, Prior, JC. Progesterone therapy increases free thyroxine levels: Data from a randomized placebo-controlled 12-week hot flush trial. Clin Endocrinol (Oxf). 2013;79:282–7.CrossRefGoogle ScholarPubMed
Torre, F, Calogero, AE, Condorelli, RA et al. Effects of oral contraceptives on thyroid function and vice versa. J Endocrinol Invest. 2020;43:1181–8.CrossRefGoogle ScholarPubMed
Wiegratz, I, Kutschera, E, Lee, JH et al. Effect of four oral contraceptives on thyroid hormones, adrenal and blood pressure parameters. Contraception. 2003;67:361–6.CrossRefGoogle ScholarPubMed
Sänger, N, Stahlberg, S, Manthey, T et al. Effects of an oral contraceptive containing 30 mcg ethinyl estradiol and 2 mg dienogest on thyroid hormones and androgen parameters: conventional vs. extended-cycle use. Contraception. 2008;77:420–5.CrossRefGoogle ScholarPubMed
Raps, M, Curvers, J, Helmerhorst, FM et al. Thyroid function, activated protein C resistance and the risk of venous thrombosis in users of hormonal contraceptives. Thromb Res. 2014;133:640–4.CrossRefGoogle ScholarPubMed
Ali, S, Abbara, A, Comninos, A et al. A case of Graves’ disease occurring following cessation of the oral combined contraceptive pill. Endocrine Abstracts. 2015;38:P124. https://doi.org/10.1530/endoabs.38.P124.Google Scholar
Quintino-Moro, A, Zantut-Wittmann, DE, Silva Dos Santos, PN et al. Thyroid function during the first year of use of the injectable contraceptive depot medroxyprogesterone acetate. Eur J Contracept Reprod Health Care. 2019;24:102–8.CrossRefGoogle ScholarPubMed
Biswas, A, Viegas, OA, Bennink, HJ, Korver, T, Ratnam, SS. Effect of Implanon use on selected parameters of thyroid and adrenal function. Contraception. 2000;62:247–51.CrossRefGoogle ScholarPubMed
Olsson, SE, Wide, L, Odlind, V. Aspects of thyroid function during use of Norplant implants. Contraception. 1986;34:583–7.CrossRefGoogle ScholarPubMed
Kivelä, A, Ruuskanen, M, Agren, U, Dieben, T. The effects of two progrestogen-only pills containing either desogestrel (75 microgram/day) or levonorgestrel (30 microgram/day) on carbohydrate metabolism and adrenal and thyroid function. Eur J Contracept Reprod Health Care. 2001;6:71–7.CrossRefGoogle ScholarPubMed
Duijkers, I, Killick, S, Bigrigg, A, Dieben, TO. A comparative study on the effects of a contraceptive vaginal ring NuvaRing and an oral contraceptive on carbohydrate metabolism and adrenal and thyroid function. Eur J Contracept Reprod Health Care. 2004;9(3):131–40.CrossRefGoogle Scholar
Hernandez-Juarez, J, Garcia-Latorre, EA, Moreno-Hernandez, M et al. Metabolic effects of the contraceptive skin patch and subdermal contraceptive implant in Mexican women: A prospective study. Reprod Health. 2014;11:33.CrossRefGoogle ScholarPubMed
Stavreus-Evers, AC, Freyschuss, B, Eriksson, HA. Hormonal regulation of the estrogen receptor in primary cultures of hepatocytes from female rats. Steroids. 1997;62:647–54.CrossRefGoogle ScholarPubMed
Benagiano, G, Benagiano, M, Bianchi, P, D’Elios, MM, Brosens, I . Contraception in autoimmune diseases. Best Pract Res Clin Obstet Gynaecol. 2019;60:111–23.CrossRefGoogle ScholarPubMed

References

Villarroel, C, López, P, Merino, PM et al. Hirsutism and oligomenorrhea are appropriate screening criteria for polycystic ovary syndrome in adolescents. Gynecol Endocrinol. 2015;31:625–9.CrossRefGoogle ScholarPubMed
Ibáñez, L, Oberfield, SE, Witchel, S et al. An international consortium update: Pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence. Horm Res Paediatr. 2017;88:371–95.CrossRefGoogle Scholar
Dos Santos, IK, Ashe, MC, Cobucci, RN et al. The effect of exercise as an intervention for women with polycystic ovary syndrome: A systematic review and meta-analysis. Medicine (Baltimore). 2020;99:e19644.CrossRefGoogle ScholarPubMed
Shang, Y, Zhou, H, Hu, M, Feng, H. Effect of diet on insulin resistance in polycystic ovary syndrome. J Clin Endocrinol Metab. 2020;105:dgaa425.CrossRefGoogle ScholarPubMed
Yen, H, Chang, YT, Yee, FJ, Huang, YC. Metformin therapy for acne in patients with polycystic ovary syndrome: A systematic review and meta-analysis. Am J Clin Dermatol. 2020.CrossRefGoogle Scholar
Kim, CH, Chon, SJ, Lee, SH. Effects of lifestyle modification in polycystic ovary syndrome compared to metformin only or metformin addition: A systematic review and meta-analysis. Sci Rep. 2020;10:7802.CrossRefGoogle ScholarPubMed
Gariani, K, Hugon-Rodin, J, Philippe, J, Righini, M, Blondon, M. Association between polycystic ovary syndrome and venous thromboembolism: A systematic review and meta-analysis. Thromb Res. 2020;185:102–8.CrossRefGoogle ScholarPubMed
Ignatov, A, Ortmann, O. Endocrine risk factors of endometrial cancer: Polycystic ovary syndrome, oral contraceptives, infertility, Tamoxifen. Cancers (Basel). 2020;12:1766.CrossRefGoogle ScholarPubMed
Costello, M, Shrestha, B, Eden, J, Sjoblom, P, Johnson, N. Insulin-sensitising drugs versus the combined oral contraceptive pill for hirsutism, acne and risk of diabetes, cardiovascular disease, and endometrial cancer in polycystic ovary syndrome. Cochrane Database Syst Rev. 2007;(1):CD005552.Google ScholarPubMed
Domecq, JP, Prutsky, G, Mullan, RJ et al. Adverse effects of the common treatments for polycystic ovary syndrome: A systematic review and meta-analysis. J Clin Endocrinol Metab. 2013;98:4646–54.Google ScholarPubMed
Menshawy, A, Ismail, A, Abdel-Maboud, M et al. J Gynecol Obstet Hum Reprod. 2019;48:763–70.CrossRefGoogle Scholar
Amiri, M, Ramezani Tehrani, F, Nahidi, F, Kabir, A, Azizi, F. Comparing the effects of combined oral contraceptives containing progestins with low androgenic and antiandrogenic activities on the hypothalamic-pituitary-gonadal axis in patients with polycystic ovary syndrome: Systematic review and meta-analysis. JMIR Res Protoc. 2018;7:e113.CrossRefGoogle ScholarPubMed
Amiri, M, Ramezani-Tehrani, F, Nahidi, F, Kabir, A, Azizi, F. Effects of oral contraceptives on metabolic profile in women with polycystic ovary syndrome: A meta-analysis comparing products containing cyproterone acetate with third generation progestins. Metabolism. 2017;73:2235.CrossRefGoogle ScholarPubMed
Amiri, M, Kabir, A, Nahidi, F, Shekofteh, M, Ramezani–Tehrani, F. Effects of combined oral contraceptives on the clinical and biochemical parameters of hyperandrogenism in patients with polycystic ovary syndrome: A systematic review and meta-analysis. Eur J Contracept Reprod Health Care. 2018;23:6477.CrossRefGoogle ScholarPubMed
Silva-Bermudez, LS, Toloza, FJK, Perez-Matos, MC et al. Effects of oral contraceptives on metabolic parameters in adult premenopausal women: A meta-analysis. Endocr Connect. 2020;9:978–98.CrossRefGoogle ScholarPubMed
Naderpoor, N, Shorakae, S, de Courten, B et al. Metformin and lifestyle modification in polycystic ovary syndrome: Systematic review and meta-analysis. Hum Reprod Update. 2015;21:560–74.CrossRefGoogle ScholarPubMed
Barrionuevo, P, Nabhan, M, Altayar, O et al. Treatment options for hirsutism: A systematic review and network meta-analysis. J Clin Endocrinol Metab. 2018;103:1258–64.CrossRefGoogle ScholarPubMed
Conway, G, Dewailly, D, Diamanti-Kandarakis, E et al. The polycystic ovary syndrome: A position statement from the European Society of Endocrinology. Eur J Endocrinol. 2014;171:P129.CrossRefGoogle ScholarPubMed
Bhattacharya, SM, Jha, A. Comparative study of the therapeutic effects of oral contraceptive pills containing desogestrel, cyproterone acetate, and drospirenone in patients with polycystic ovary syndrome. Fertil Steril. 2012;98:1053–9.CrossRefGoogle ScholarPubMed
Legro, RS, Arslanian, SA, Ehrmann, DA et al. Diagnosis and treatment of polycystic ovary syndrome: An Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2013;98:4565–92.CrossRefGoogle ScholarPubMed
Teede, HJ, Misso, ML, Costello, MF et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril. 2018;110:364–79.CrossRefGoogle ScholarPubMed
Teede, H, Tassone, EC, Piltonen, T et al. Effect of the combined oral contraceptive pill and/or metformin in the management of polycystic ovary syndrome: A systematic review with meta-analyses. Clin Endocrinol (Oxf). 2019;91:479–89.CrossRefGoogle ScholarPubMed
Mendoza, N, Simoncini, T, Genazzani, AD. Hormonal contraceptive choice for women with PCOS: A systematic review of randomized trials and observational studies. Gynecol Endocrinol. 2014;30:850–60.CrossRefGoogle ScholarPubMed
Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19:41–7.Google Scholar
World Health Organization. WHO guidelines: Medical eligibility criteria for contraceptive use. 5th edition. Geneva: World Health Organization, 2015. www.who.int/publications/i/item/9789241549158.Google Scholar

References

World Health Organization. Health at key stages of life: The life-course approach to public health. Updated. Copenhagen: WHO Regional Office for Europe, 2015. www.euro.who.int/__data/assets/pdf.Google Scholar
unfpa.org/sites/default/files/resource-pdf/One pager on youth demographics GF.pdf.Google Scholar
World Health Organization. Medical eligibility criteria. 5th edition. Geneva: World Health Organization, 2015. https://bit.ly/3kTOzNk.Google Scholar
FSRH Faculty of Sexual & Reproductive Healthcare (FSRH). UK Medical Eligibility Criteria for Contraceptive Use (UKMEC). 2016. https://bit.ly/3l9Vi6c.Google Scholar
U.S. Medical Eligibility Criteria for contraceptive use, 2016 Recommendations and Reports / Vol. 65 / No. 3.CrossRefGoogle Scholar
World Health Organization Department of Reproductive Health and Research (WHO/RHR) and Johns Hopkins Bloomberg School of Public Health/Center for Communication Programs (CCP), Knowledge for Health Project. Family planning: A global handbook for providers (2018 update). Baltimore, MD and Geneva: Center for Communication Programs and World Health Organization, 2018.Google Scholar
Bitzer, J. Oral contraceptives in adolescent women.Best Pract Res Clin Endocrinol Metab. 2013;27(1):7789. https://doi.org/10.1016/j.beem.2012.09.005.CrossRefGoogle ScholarPubMed
Bitzer, J, Abalos, V, Apter, D, Martin, R, Black A for Global CARE Group. Targeting factors for change: Contraceptive counselling and care of female adolescents. European Journal of Contraception & Reproductive Health Care. 2016;21(6):417–30. doi.org/10.1080/13625187.2016.1237629.CrossRefGoogle ScholarPubMed
FSRH Clinical Guideline: Progestogen-only Injectable (December 2014, amended October 2020).Google Scholar
Mahmood, T (Chair). EBCOG Standards of Care for Women’s Health in Europe: Gynaecology Services. 2014. https://bit.ly/3l4ntDs.Google Scholar
Curtis, KM, Jatlaoui, TC, Tepper, NK et al. U.S. selected practice recommendations for contraceptive use. MMWR Recomm Rep. 2016;65(No. RR–4):166. http://dx.doi.org/10.15585/mmwr.rr6504a1.Google ScholarPubMed
Dehlendorf, C, Krajewski, C, Borrero, S. Contraceptive counseling: Best practices to ensure quality communication and enable effective contraceptive use. Clinical Obstetrics and Gynecology. 2014;57(4):659–73. https://doi.org/10.1097/GRF.0000000000000059.CrossRefGoogle ScholarPubMed
Bitzer, J. Overview of perimenopausal contraception. Climacteric. 2019;22:4450.CrossRefGoogle ScholarPubMed

References

Nieschlag, E, Behre, HM, Nieschlag, S, eds. Andrology, male reproductive health and dysfunction. 3rd completely revised and updated edition. Berlin: Springer, 2010.Google Scholar
Gilbert, SF. Developmental biology. 6th edition. Sunderland: Sinauer Associates, 2000. Spermatogenesis. www.ncbi.nlm.nih.gov/books/NBK10095.Google Scholar
Shah, I, Ahman, E. Unsafe abortion in 2008: Global and regional level and trends. Reprod Health Matters 2008;18:90101.CrossRefGoogle Scholar
Gava, G, Meriggiola, MC. Update on male hormonal contraception. Ther Adv Endocrinol Metab. 2019;10:19.CrossRefGoogle ScholarPubMed
Trussell, J, Vaughan, B. Contraceptive failure, method-related discontinuation and resumption of use: Results from the 1995 National Survey of Family Growth. Fam Plann Perspect. 1999:31:6472.CrossRefGoogle ScholarPubMed
Heinemann, K, Saad, F, Wiesemes, M, White, S, Heinemann, L. Attitudes towards male fertility control: Results of a multinational survey on four continents. Human Repro. 2005;20:549–56.CrossRefGoogle Scholar
Glasier, AF, Anakwe, R, Everington, D et al. Would women trust their partners to use a male pill? Human Repro. 2000;15:646–9.CrossRefGoogle ScholarPubMed
Eberhardt, J, Van Wersch, A, Meikle, N. Attitudes towards the male contraceptive pill in men and women in casual and stable sexual relationships. J Fam Plann Reprod Health Care 2009;35:161–5.CrossRefGoogle ScholarPubMed
Nya-Ngatchou, JJ, Amory, JK. New approaches to male non-hormonal contraception. Contraception 2013;87:296–9.CrossRefGoogle ScholarPubMed
Trussell, J. Contraceptive efficacy. In Hatcher, RA, Trussell, J, Nelson, AL et al. (eds.), Contraceptive technology. 20th revised edition. New York: Ardent Media, 2011, pp. 65112.Google Scholar
Daniels, K, Daugherty, J, Jones, J, Mosher, W. Current contraceptive use and variation by selected characteristics among women aged 15–44: US, 2011–2013. Natl Health Stat Report 2015;86:114.Google Scholar
Roth, MY. Male hormonal contraception. Virtual Mentor 2012;14(2):126–32.Google ScholarPubMed
Randolph, ME, Pinkerton, SD, Bogart, LM et al. Sexual pleasure and condom use. Arch Sex Behav. 2007;36:844–8.CrossRefGoogle ScholarPubMed
Li, S-Q, Goltein, M, Shu, J, Huber, D. The no-scalpel vasectomy. J Urol. 1991;145:341–4.CrossRefGoogle ScholarPubMed
Cook, LA, Van Vliet, HAAM, Lopez, LM, Pun, A, Gallo, MF. Vasectomy occlusion techniques for male sterilization. Cochrane Database of Systematic Reviews 2007;(2):Art. No.: CD003991. https://doi.org/10.1002/14651858.CD003991.pub3.CrossRefGoogle ScholarPubMed
Myers, SA, Mershon, CE, Fuchs, EF. Vasectomy reversal for treatment of the postvasectomy pain syndrome. J Urol 1997;157:518–20.CrossRefGoogle Scholar
Campbell, AD, Turok, DK, White, K. Fertility intentions and perspectives on contraceptive involvement among low-income men aged 25 to 55. Perspect Sex Reprod Health 2019;51:125–33.CrossRefGoogle ScholarPubMed
Tsuruta, JK, Dayton, PA, Gallippi, CM et al. Therapeutic ultrasound as a potential male contraceptive: Power, frequency and temperature required to deplete rat testes of meiotic cells and epididymites of sperm determined using a commercially available system. Reprod Biol Endocrin. 2012;10:7. https://doi.org/10.1186/1477-7827-10-7.CrossRefGoogle Scholar
Jha, RK, Jha, PK, Guha, SK. Smart RISUG: A potential new contraceptive and its magnetic field-mediated sperm interaction. Int J Nanomedicine 2009;4,5564.CrossRefGoogle ScholarPubMed
Guha, SK, Singh, G, Ansari, S et al. Phase ll clinical trial of a vas deferens injectable contraceptive for the male. Contraception 1997;56:245–50.CrossRefGoogle Scholar
Mathew, V, Bantwal, G. Male contraception. Ind J Endo Metab. 2012;16:910–17.Google ScholarPubMed
Reynolds-Wright, JJ, Anderson, RA. Male contraception: Where are we going and where have we been? BMJ Sex Reprod Health 2019;45:236–42.CrossRefGoogle Scholar
Tulsiani, DRP, Abou-Haila, A. Biology of male fertility control: An overview of various male contraceptive approaches. Minerva Ginecol. 2015;67:169–83.Google ScholarPubMed
Aalronen, P, Amor, JK, Anderson, R et al. 10th summit meeting consensus: Recommendations for regulatory approval for hormonal contraception. J Androl 2007;28:362–3.Google Scholar
WHO Task Force on Methods for the Regulation of Male Fertility. Contraceptive efficacy of induced azoospermia and oligozoospermia in normal men. Fertil Steril 1996;65:821–9.Google Scholar

References

Singh, S, Remez, L, Sedgh, G, Kwok, L, Onda, T. Abortion worldwide 2017: Uneven progress and unequal access. New York: Guttmacher Institute, 2018. www.guttmacher.org/report/abortion-worldwide-2017.CrossRefGoogle Scholar
Raymond, EG, Grossman, D, Weaver, MA, Toti, S, Winikoff, B. Mortality of induced abortion, other outpatient surgical procedures and common activities in the United States. Contraception. 2014;90(5):476–9. www.ncbi.nlm.nih.gov/pubmed/25152259.CrossRefGoogle ScholarPubMed
Raymond, EG, Grimes, DA. The comparative safety of legal induced abortion and childbirth in the United States. Obstet Gynecol. 2012;119(2 Pt 1):215–19. www.ncbi.nlm.nih.gov/pubmed/22270271.CrossRefGoogle ScholarPubMed
Exelgyn. European abortion data. France: Exelgyn, 2019. https://abort-report.eu/europe.Google Scholar
Reynolds-Wright, JJ, Belleuvre, F, Daberius, A et al. Information on early medical abortion for women using an audiovisual animation versus face-to-face consultation: A consortium randomized and quasi-randomized trial. Acta Obstet Gynecol Scand. 2020;99(12):1611–17. https://doi.org/10.1111/aogs.13944.CrossRefGoogle Scholar
National Institute for Health and Care Excellence. NICE abortion care guideline: Patient decision aids. London: National Institute for Health and Care Excellence. 2019. http://bit.ly/3DGI6Mp.Google Scholar
Baird, DT, Rodger, M, Cameron, IT, Roberts, I. Prostaglandins and antigestagens for the interruption of early pregnancy. J Reprod Fertil Suppl. 1988;36:173–9. www.ncbi.nlm.nih.gov/pubmed/3193407.Google ScholarPubMed
National Institute for Health and Care Excellence. Abortion care. NG140 edition. London: National Institute for Health and Care Excellence, 2019. www.nice.org.uk/guidance/NG140.Google Scholar
World Health Organization. Medical management of abortion. Geneva: World Health Organization, 2018.Google Scholar
Faculty of Sexual and Reproductive Healthcare. Contraception after pregnancy. 2017. http://bit.ly/3DFyBwT.Google Scholar
Raymond, EG, Weaver, MA, Louie, KS et al. Effects of depot medroxyprogesterone acetate injection timing on medical abortion efficacy and repeat pregnancy: A randomized controlled trial. Obstet Gynecol. 2016;128(4). https://bit.ly/3Y4uBy8.CrossRefGoogle ScholarPubMed

References

World Health Organization. Medical management of abortion. Geneva: World Health Organization, 2018.Google Scholar
Baird, DT, Rodger, M, Cameron, IT, Roberts, I. Prostaglandins and antigestagens for the interruption of early pregnancy. J Reprod Fertil Suppl. 1988;36:173–9. www.ncbi.nlm.nih.gov/pubmed/3193407.Google ScholarPubMed
Akin, A, Dabash, R, Dilbaz, B et al. Increasing women’s choices in medical abortion: A study of misoprostol 400 microg swallowed immediately or held sublingually following 200 mg mifepristone. European Journal of Contraception and Reproductive Health Care: Official Journal of the European Society of Contraception. 2009;14(3):169–75. https://bit.ly/3Y4dRHh.CrossRefGoogle ScholarPubMed
Kapp, N, Eckersberger, E, Lavelanet, A, Rodriguez, MI. Medical abortion in the late first trimester: A systematic review. Contraception. 2019;99(2):7786. www.ncbi.nlm.nih.gov/pubmed/30444970.CrossRefGoogle ScholarPubMed
Raymond, EG, Shannon, C, Weaver, MA, Winikoff, B. First-trimester medical abortion with mifepristone 200 mg and misoprostol: A systematic review. Contraception. 2013;87(1):2637. www.sciencedirect.com/science/article/pii/S0010782412006439.CrossRefGoogle ScholarPubMed
National Institute for Health and Care Excellence. Abortion care. NG140 edition. London: National Institute for Health and Care Excellence, 2019. www.nice.org.uk/guidance/NG140.Google Scholar
Cameron, ST, Glasier, A, Dewart, H, Johnstone, A, Burnside, A. Telephone follow-up and self-performed urine pregnancy testing after early medical abortion: A service evaluation. Contraception. 2012;86(1):6773. https://bit.ly/3HVuH5w.CrossRefGoogle ScholarPubMed
Reeves, MF, Fox, MC, Lohr, PA, Creinin, MD. Endometrial thickness following medical abortion is not predictive of subsequent surgical intervention. Ultrasound in Obstetrics and Gynecology. 2009;34(1):104–9. https://doi.org/10.1002/uog.6404.CrossRefGoogle Scholar
Ngoc, NTN, Shochet, T, Raghavan, S et al. Mifepristone and misoprostol compared with misoprostol alone for second-trimester abortion: A randomized controlled trial. Obstetrics and Gynecology. 2011;118(3):601–8. https://bit.ly/3jvGIW8.CrossRefGoogle ScholarPubMed
Royal College of Obstetricians and Gynaecologists. The care of women requesting induced abortion: Evidence-based clinical guideline number 7. London: Royal College of Obstetricians and Gynaecologists, 2011. http://bit.ly/3l9NnWr.Google Scholar
Avraham, S, Gat, I, Duvdevani, N-R et al. Pre-emptive effect of ibuprofen versus placebo on pain relief and success rates of medical abortion: A double-blind, randomized, controlled study. Fertility and Sterility. 2012;97(3):612–15. https://bit.ly/3HTInhC.CrossRefGoogle ScholarPubMed
Livshits, A, Machtinger, R, David, LB et al. Ibuprofen and paracetamol for pain relief during medical abortion: A double-blind randomized controlled study. Fertility and Sterility. 2009;91(5):1877–80. https://bit.ly/3wWhSla.CrossRefGoogle ScholarPubMed
Fiala, C, Swahn, ML, Stephansson, O, Gemzell-Danielsson, K. The effect of non-steroidal anti-inflammatory drugs on medical abortion with mifepristone and misoprostol at 13–22 weeks gestation. Hum Reprod. 2005;20(11):3072–7. www.ncbi.nlm.nih.gov/pubmed/16055455.CrossRefGoogle ScholarPubMed
Jackson, E, Kapp, N. Pain control in first-trimester and second-trimester medical termination of pregnancy: A systematic review. Contraception. 2011;83(2):116–26. https://bit.ly/3wUEnHe.CrossRefGoogle ScholarPubMed

References

Abortion statistics, England and Wales. 2018. http://bit.ly/3DBgIPS.Google Scholar
The care of women requesting induced abortion. 40 B 3270 RCOG Abortion guideline.qxd:3270 RCOG Abortion guideline.qxd 11/11/11.Google Scholar
World Health Organization. Safe abortion: Technical and policy guidance for health systems. 2nd edition. Geneva: World Health Organization, 2011.Google Scholar
Meirik, O, Huong, NT, Piaggio, G et al. Complications of first-trimester abortion by vacuum aspiration after cervical preparation with and without misoprostol: a multicentre randomised trial. Lancet. 2012;379(9828):1817–24.CrossRefGoogle ScholarPubMed
Dean, G, Cardenas, L, Darney, P, Goldberg, A. Acceptability of manual versus electric aspiration for first trimester abortion: A randomized trial. Contraception. 2003;67(3):201–6.CrossRefGoogle ScholarPubMed
Darney, PD, Sweet, RL. Routine intraoperative ultrasonography for second trimester abortion reduces incidence of uterine perforation. Journal of Ultrasound in Medicine. 1989;8(2):71–5.CrossRefGoogle ScholarPubMed
National Institute for Health and Care Excellence. Abortion care. NICE guideline [NG140]. London: National Institute for Health and Care Excellence, 2019. www.nice.org.uk/guidance/ng140.Google Scholar
Kapp, N, Lohr, PA, Ngo, TD, Hayes, JL. Cervical preparation for first trimester surgical abortion. Cochrane Database Syst Rev. 2010(2): Art. No.: CD007207. https://doi.org/10.1002/14651858.CD007207.pub2.Google Scholar
Low, N, Mueller, M, Van Vliet, HA, Kapp, N. Perioperative antibiotics to prevent infection after first-trimester abortion. Cochrane Database Syst Rev. 2012(3):CD005217. https://doi.org/10.1002/14651858.CD005217.pub2.Google Scholar
Shakir, F, Diab, Y. The perforated uterus. Obstetrician and Gynaecologist. 2013;15:256–61.CrossRefGoogle Scholar
Carlsson, I, Breding, K, Larsson, PG. Complications related to induced abortion: A combined retrospective and longitudinal follow-up study. BMC Womens Health. 2018;18(1):158–64. https://doi.org/10.1186/s12905-018-0645-6.CrossRefGoogle ScholarPubMed
Sawaya, GF, Grady, D, Kerlikowske, K, Grimes, DA. Antibiotics at the time of induced abortion: The case for universal prophylaxis based on a meta-analysis. Obstetrics and Gynecology. 1996;87(5):884–90.Google ScholarPubMed
Hooker, A, Fraenk, D, Brölmann, H, Huirne, J. Prevalence of intrauterine adhesions after termination of pregnancy: A systematic review. European Journal of Contraception & Reproductive Health Care. 2016;21(4):329–35.CrossRefGoogle ScholarPubMed
Mentula, M, Männistö, J, Gissler, M, Heikinheimo, O, Niinimäki, M. Intrauterine adhesions following an induced termination of pregnancy: A nationwide cohort study. BJOG. 2018;125:1424–31.CrossRefGoogle ScholarPubMed
Grimes, DA, Lopez, LM, Schulz, KF, Stanwood, NL. Immediate postabortal insertion of intrauterine devices. Cochrane Database Syst Rev. 2010;(6):CD001777.Google Scholar
National Collaborating Centre for Mental Health. Induced abortion and mental health: A systematic review of the mental health outcomes of induced abortion, including their prevalence and associated factors. London: Academy of Medical Royal Colleges, 2011.Google Scholar
Reeves, MF, Smith, KJ, Creinin, MD. Contraceptive effectiveness of immediate compared with delayed insertion of intrauterine devices after abortion: A decision analysis. Obstet Gynecol. 2007;109:1286–94.CrossRefGoogle ScholarPubMed

References

Singh, S, Remez, L, Sedgh, G, Kwok, L, Onda, T. Abortion worldwide 2017: Uneven progress and unequal access. Vol. 2019. New York: Guttmacher Institute, 2018. www.guttmacher.org/report/abortion-worldwide-2017.CrossRefGoogle Scholar
World Health Organization. Expanding health worker roles for safe abortion in the first trimester of pregnancy. Geneva: World Health Organization, 2019. Report No.: WHO/RHR/16.02. https://bit.ly/3XTKt5U.Google Scholar
World Health Organization. Medical management of abortion. Geneva: World Health Organization, 2018.Google Scholar
Avraham, S, Gat, I, Duvdevani, N-R et al. Pre-emptive effect of ibuprofen versus placebo on pain relief and success rates of medical abortion: A double-blind, randomized, controlled study. Fertil Steril. 2012;97(3):612–15. https://bit.ly/3HTInhC.CrossRefGoogle ScholarPubMed
Livshits, A, Machtinger, R, David, LB et al. Ibuprofen and paracetamol for pain relief during medical abortion: A double-blind randomized controlled study. Fertil Steril. 2009;91(5):1877–80. https://bit.ly/3wWhSla.CrossRefGoogle ScholarPubMed
Hamoda, H, Ashok, PW, Flett, GMM, Templeton, A. A randomised controlled trial of mifepristone in combination with misoprostol administered sublingually or vaginally for medical abortion up to 13 weeks of gestation. BJOG 2005;112(8):1102–8. https://doi.org/10.1111/j.1471-0528.2005.00638.x.CrossRefGoogle ScholarPubMed
Faúndes, A, Fiala, C, Tang, OS, Velasco, A. Misoprostol for the termination of pregnancy up to 12 completed weeks of pregnancy. Int J Gynecol & Obstet. 2007;99:S172–7. www.sciencedirect.com/science/article/pii/S0020729207005097.CrossRefGoogle ScholarPubMed
Tang, OS, Schweer, H, Lee, SWH, Ho, PC. Pharmacokinetics of repeated doses of misoprostol. Hum Reprod. 2009;24(8):1862–9. https://doi.org/10.1093/humrep/dep108.CrossRefGoogle ScholarPubMed
Fiala, C, Swahn, ML, Stephansson, O, Gemzell-Danielsson, K. The effect of non-steroidal anti-inflammatory drugs on medical abortion with mifepristone and misoprostol at 13–22 weeks gestation. Hum Reprod. 2005;20(11):3072–7. www.ncbi.nlm.nih.gov/pubmed/16055455.CrossRefGoogle ScholarPubMed
Jackson, E, Kapp, N. Pain control in first-trimester and second-trimester medical termination of pregnancy: A systematic review. Contraception. 2011;83(2):116–26. https://bit.ly/3wUEnHe.CrossRefGoogle ScholarPubMed
Pasquini, L, Pontello, V, Kumar, S. Intracardiac injection of potassium chloride as method for feticide: Experience from a single UK tertiary centre. BJOG: An International Journal of Obstetrics & Gynaecology 2008;115(4):528–31. https://doi.org/10.1111/j.1471-0528.2007.01639.x.CrossRefGoogle ScholarPubMed
Molaei, M, Jones, HE, Weiselberg, T et al. Effectiveness and safety of digoxin to induce fetal demise prior to second-trimester abortion. Contraception. 2008;77(3):223–5. www.sciencedirect.com/science/article/pii/S0010782407005112.CrossRefGoogle ScholarPubMed
Sharvit, M, Klein, Z, Silber, M et al. Intra-amniotic digoxin for feticide between 21 and 30 weeks of gestation: A prospective study. BJOG: An International Journal of Obstetrics & Gynaecology. 2019;126(7):885–9. https://doi.org/10.1111/1471-0528.15640.CrossRefGoogle ScholarPubMed
Faculty of Sexual and Reproductive Healthcare. Contraception after pregnancy. 2017. https://bit.ly/3DFyBwT.Google Scholar
World Health Organization. Preventing unsafe abortion. 2019. http://bit.ly/3kh4R37.Google Scholar
Sääv, I, Kopp Kallner, H, Fiala, C, Gemzell-Danielsson, K. Sublingual versus vaginal misoprostol for cervical dilatation 1 or 3 h prior to surgical abortion: A double-blinded RCT. Hum Reprod. 2015;30(6):1314–22. www.ncbi.nlm.nih.gov/pubmed/25840429.CrossRefGoogle ScholarPubMed
National Institute for Health and Care Excellence. Abortion care. NG140 ed. 2019. www.nice.org.uk/guidance/NG140.Google Scholar

References

World Health Organization. Safe abortion: Technical and policy guidance for health systems. 2nd edition. Geneva: World Health Organization, 2012.Google Scholar
National Institute for Health and Care Excellence. Abortion care. London: National Institute for Health and Care Excellence, 2019.Google Scholar
World Health Organization. Preventing unsafe abortion. September 2020. http://bit.ly/3HjI4uQ.Google Scholar
World Health Organization.Abortion in Europe. Entre Nous: The European Magazine for Sexual and Reproductive Health. 2005;59–72.Google Scholar
World Health Organization. Unsafe abortion incidence and mortality: Global and regional levels in 2008 and trends during 1990–2008. Geneva: World Health Organization, 2012.Google Scholar
Themmerman, M. Missed opportunities in women’s health: Post-abortion care. Lancet Global Health. 2019;7(1):e12e13.CrossRefGoogle Scholar
World Health Organization. Clinical practice handbook for safe abortion. Geneva: World Health Organization, 2014.Google Scholar
Tidy, J, Seckl, M, Hancock, BW. Management of gestational trophoblastic disease. Green-Top Guideline No. 38. BJOG. 2021;128(3):e1e27.Google Scholar
Yassin, AS, Cordwell, D. Does dedicated pre-abortion contraception counselling help to improve post-abortion contraception uptake? J Fam Plann Reprod Health Care. 2005;31(2):115–16.CrossRefGoogle ScholarPubMed
Royal College of Obstetricians and Gynaecologists. Best practice in comprehensive abortion care. Best practice paper No. 2. June 2015.Google Scholar
Gambir, K, Kim, C, Necastro, KA, Ganatra, B, Ngo, TD. Self-administered versus provider-administered medical abortion (review). Cochrane Database of Systematic Reviews. 2020;3(3):CD013181.Google Scholar
Royal College of Obstetricians and Gynaecologists. The care of women requesting induced abortion. Evidence-Based Clinical Guideline Number 7. November 2011.Google Scholar
Bernard, N, Elefant, E, Carlier, P, et al. Continuation of pregnancy after first-trimester exposure to mifepristone: An observational prospective study. BJOG. 2013;120:568–75.CrossRefGoogle ScholarPubMed
Scott, A, Glasier, A. Failed medical and surgical termination of pregnancy. Obstetrician and Gynaecologist. 2002;4:217–21.CrossRefGoogle Scholar
Low, N, Mueller, M, Van Vliet, HAAM, Kapp, N. Perioperative antibiotics to prevent infection after first-trimester abortion (review). Cochrane Database of Systematic Reviews. 2012;3.Google Scholar
Kerns, J, Steinauer, J. Management of post abortion hemorrhage. Society of Family Planning. Contraception. 2013;87:331–42.Google Scholar
Royal College of Obstetricians and Gynaecologists. Surgical management of miscarriage and removal of persistent placental or fetal remains. Consent Advice No. 10 (Joint with AEPU) January 2018.Google Scholar
National Institute for Health and Care Excellence. Abortion care: Follow-up after medical abortion up to 10+0 weeks. NICE guideline NG140, Evidence reviews. September 2019.Google Scholar
Mahmood, T, Benefetto, C. European Board and College of Obstetrics and Gynaecology position paper: EBCOG call for action for the prevention of unintended pregnancies. 2015.Google Scholar
Oppegaard, KS. European Board and College of Obstetrics and Gynaecology. EBCOG position paper on medical abortion. 2015.Google Scholar
Liu, N, Vigod, SN, Farrugia, MM, Urquia, ML, Ray, JG. Venous thromboembolism after induced abortion: A population-based, propensity-score-matched cohort study in Canada. Lancet Haematol. 2018;5(7):e279e288.CrossRefGoogle ScholarPubMed
Carlsson, I, Breding, K, Larsson, PG. Complications related to induced abortion: A combined retrospective and longitudinal follow-up study. BMC Women’s Health. 2018;18:158.CrossRefGoogle ScholarPubMed

References

Zegers-Hochschild, F, Adamson, GD, de Mouzon, J et al. The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) Revised Glossary on ART Terminology, 2009. Hum Reprod. 2009;24:2683–7.CrossRefGoogle ScholarPubMed
Strickler, RC. Factors influencing fertility. In Keye, Jr WR, Chang, RJ, Rebar, RW and Soules, MR (eds.) Infertility evaluation and treatment. Philadelphia, PA: W. B. Saunders 1995, pp. 818.Google Scholar
National Institute for Health and Care Excellence (NICE). Fertility problems: Assessment and treatment. Clinical guideline 2013. London: National Institute for Health and Care Excellence, 2013.Google Scholar
Wilcox, AJ, Weinberg, CR, Baird, DD. Timing of sexual intercourse in relation to ovulation. Effects on the probability of conception, survival of the pregnancy, and sex of the baby. N Engl J Med. 1995;333:1517–21.CrossRefGoogle ScholarPubMed
Thurston, L, Abbara, A, Dhillo, WS. Investigation and management of subfertility. J Clin Pathol. 2019;72:579–87.CrossRefGoogle ScholarPubMed
Messinis, IE. Ovulation induction: A mini review. Hum Reprod. 2005;20:2688–97.CrossRefGoogle ScholarPubMed
Gelbaya, TA, Potdar, N, Jeve, YB, Nardo, LG. Definition and epidemiology of unexplained infertility. Obstet Gynecol Surv. 2014;69:109–15.CrossRefGoogle ScholarPubMed
Broekmans, FJ, Kwee, J, Hendriks, DJ, Mol, BW, Lambalk, CB. A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update. 2006;12(6):685718.CrossRefGoogle ScholarPubMed
Reichman, DE, Goldschlag, D, Rosenwaks, Z. Value of antimüllerian hormone as a prognostic indicator of in vitro fertilization outcome. Fertil Steril. 2014;101:1012–8.e1.CrossRefGoogle ScholarPubMed
Balen, AH, Morley, LC, Misso, M et al. The management of anovulatory infertility in women with polycystic ovary syndrome: An analysis of the evidence to support the development of global WHO guidance. Hum Reprod Update. 2016;22:687708.CrossRefGoogle ScholarPubMed
Practice Committee of the American Society for Reproductive Medicine. Electronic address: ; Practice Committee of the American Society for Reproductive Medicine. Role of metformin for ovulation induction in infertile patients with polycystic ovary syndrome (PCOS): A guideline. Fertil Steril. 2017;108:426–41.Google Scholar
Johnson, N, Van Voorst, S, Sowter, MC, Strandell, A, Mol, BW. Surgical treatment for tubal disease in women due to undergo in vitro fertilisation. Cochrane Database Syst Rev. 2010;1:CD002125.Google Scholar
Dreyer, K, Van Rijswijk, J, Mijatovic, V et al. Oil-based or water-based contrast for hysterosalpingography in infertile women. N Engl J Med. 2017;376:2043–52.CrossRefGoogle ScholarPubMed
Tanbo, T, Fedorcsak, P. Endometriosis-associated infertility: Aspects of pathophysiological mechanisms and treatment options. Acta Obstet Gynecol Scand. 2017;96:659–67.CrossRefGoogle ScholarPubMed
Gunn, DD, Bates, GW. Evidence-based approach to unexplained infertility: A systematic review. Fertil Steril. 2016;105:1566–74.e1.CrossRefGoogle ScholarPubMed
Practice Committee of the American Society for Reproductive Medicine. Evidence-based treatments for couples with unexplained infertility: A guideline. Fertil Steril. 2020;113:305–22.Google Scholar
Bosteels, J, Van Wessel, S, Weyers, S et al.Hysteroscopy for treating subfertility associated with suspected major uterine cavity abnormalities. Cochrane Database Syst Rev. 2018;12(12):CD009461.Google ScholarPubMed
Benner, M, Ferwerda, G, Joosten, I, Van der Molen, RG . How uterine microbiota might be responsible for a receptive, fertile endometrium. Hum Reprod Update. 2018;24:393415.CrossRefGoogle ScholarPubMed
Tournaye, H. Male factor infertility and ART. Asian J Androl. 2012;14:103–8.CrossRefGoogle ScholarPubMed
Jensen, CFS, Østergren, P, Dupree, JM et al. Varicocele and male infertility. Nat Rev Urol. 2017;14:523–33.CrossRefGoogle ScholarPubMed
Inhorn, MC, Patrizio, P. Infertility around the globe: New thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2015;21:411–26.CrossRefGoogle Scholar
Bakhtiyar, K, Beiranvand, R, Ardalan, A et al. An investigation of the effects of infertility on women’s quality of life: A case-control study. BMC Womens Health. 2019;19:114–22.CrossRefGoogle ScholarPubMed
Senapati, S. Infertility: A marker of future health risk in women? Fertil Steril. 2018;110:783–9.CrossRefGoogle ScholarPubMed
Ezzell, W. The impact of infertility on women’s mental health. N C Med J. 2016;77:427–8.Google ScholarPubMed
De Geyter, C, Calhaz-Jorge, C, Kupka, MS et al. ART in Europe, 2015: Results generated from European registries by ESHRE. Hum Reprod Open. 2020;1:hoz038.CrossRefGoogle Scholar
Toftager, M, Bogstad, J, Løssl, K et al. Cumulative live birth rates after one ART cycle including all subsequent frozen-thaw cycles in 1050 women: Secondary outcome of an RCT comparing GnRH-antagonist and GnRH-agonist protocols. Hum Reprod. 2017;32:556–67.Google ScholarPubMed
Calhaz-Jorge, C, De Geyter, CH, Kupka, MS et al. Survey on ART and IUI: Legislation, regulation, funding and registries in European countries. The European IVF-monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE). Hum Reprod Open. 2020;1:hoz044.CrossRefGoogle Scholar
Verhaak, CM, Smeenk, JM, Evers, AW et al. Women’s emotional adjustment to IVF: A systematic review of 25 years of research. Hum Reprod Update. 2007;13:2736.CrossRefGoogle ScholarPubMed
Zhou, FJ, Cai, YN, Dong, YZ. Stress increases the risk of pregnancy failure in couples undergoing IVF. Stress. 2019;22:414–20.CrossRefGoogle ScholarPubMed
Hart, VA. Infertility and the role of psychotherapy. Issues Ment Health Nurs. 2002;23:3141.CrossRefGoogle ScholarPubMed
Purewal, S, Chapman, SCE, Van den Akker, OBA. A systematic review and meta-analysis of psychological predictors of successful assisted reproductive technologies. BMC Res Notes. 2017;10:711.CrossRefGoogle ScholarPubMed
Luk, BH, Loke, AY. The impact of infertility on the psychological well-being, marital relationships, sexual relationships, and quality of life of couples: A systematic review. J Sex Marital Ther. 2015;41:610–25.CrossRefGoogle ScholarPubMed
Rooney, KL, Domar, AD. The relationship between stress and infertility. Dialogues Clin Neurosci. 2018;20:41–7.CrossRefGoogle ScholarPubMed
Frederiksen, Y, Farver-Vestergaard, I, Skovgård, NG, Ingerslev, HJ, Zachariae, R. Efficacy of psychosocial interventions for psychological and pregnancy outcomes in infertile women and men: A systematic review and meta-analysis. BMJ Open. 2015;5(1):e006592.CrossRefGoogle Scholar

References

Pfaus, JG, Jones, SL, Flanagan-Cato, LM, Blaustein, JD. Female sexual behavior. In Plant, TM, Zeleznik, AJ (eds.). Knobil and Neill’s physiology of reproduction. 4th edition. Cambridge: Academic Press, 2015, pp. 22872370.CrossRefGoogle Scholar
Bulun, SE, Adashi, E. The physiology and pathology of the female reproductive axis. In Kronenberg, HM, Melmed, S, Polonsky, KS, Larsen, PR (eds.). Williams textbook of endocrinology. Philadelphia, PA: Elsevier Health Sciences, 2007, pp. 587663.Google Scholar
Cellai, I, Di Stasi, V, Comeglio, P et al. Insight on the intracrinology of menopause: Androgen production within the human vagina. Endocrinology. 2020:bqaa219.CrossRefGoogle Scholar
Maseroli, E, Vignozzi, L. Testosterone and vaginal function. Sex Med Rev. 2020;8(3):379–92.Google ScholarPubMed
Clayton, AH, Vignozzi, L. Pathophysiology and medical management of hypoactive sexual desire disorder. In Goldstein, I, Clayton, AH, Goldstein, AT, Kim, NN, Kingsberg, SA (eds.). Textbook of female sexual function and dysfunction. Oxford: Wiley, 2018, pp. 59100.CrossRefGoogle Scholar
Wierman, ME. Sex steroid effects at target tissues: Mechanisms of action. Adv Physiol Educ. 2007;31(1):2633.CrossRefGoogle ScholarPubMed
McEwen, BS, Milner, TA. Understanding the broad influence of sex hormones and sex differences in the brain. J Neurosci Res. 2017;95:2439.CrossRefGoogle ScholarPubMed
Pletzer, B, Harris, TA, Scheuringer, A, Hidalgo-Lopez, E. The cycling brain: Menstrual cycle related fluctuations in hippocampal and fronto-striatal activation and connectivity during cognitive tasks. Neuropsychopharmacology. 2019;44(11):1867–75.CrossRefGoogle ScholarPubMed
Slob, AK, Ernste, M, Van der Werff ten Bosch, JJ. Menstrual cycle phase and sexual arousability in women. Arch Sex Behav. 1991;20(6):567–77.CrossRefGoogle ScholarPubMed
Davison, SL, Bell, R, Donath, S, Montalto, JG, Davis, SR. Androgen levels in adult females: Changes with age, menopause, and oophorectomy. J Clin Endocrinol Metab. 2005;90(7):3847–53.CrossRefGoogle ScholarPubMed
Simon, JA, Goldstein, I, Kim, NN et al. The role of androgens in the treatment of genitourinary syndrome of menopause (GSM): International Society for the Study of Women’s Sexual Health (ISSWSH) expert consensus panel review. Menopause. 2018;25(7):837–47.Google Scholar
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th edition, text rev. Washington, DC: American Psychiatric Association, 2000.Google Scholar
Basson, R. Rethinking low sexual desire in women. BJOG. 2002;109(4):357–63.CrossRefGoogle ScholarPubMed
Carpenter, D, Janssen, E, Graham, C, Vorst, H, Wicherts, J. Women’s scores on the sexual inhibition/sexual excitation scales (SIS/SES): Gender similarities and differences. J Sex Res. 2008;45(1):3648.CrossRefGoogle ScholarPubMed
Perelman, MA. Why the Sexual Tipping Point® Model? Curr Sex Health Rep. 2016;8:3946.CrossRefGoogle Scholar
Traish, AM, Botchevar, E, Kim, NN. Biochemical factors modulating female genital sexual arousal physiology. J Sex Med. 2010;7(9):2925–46.CrossRefGoogle ScholarPubMed
Salonia, A, Giraldi, A, Chivers, ML et al. Physiology of women’s sexual function: Basic knowledge and new findings. J Sex Med. 2010;7(8):2637–60.CrossRefGoogle ScholarPubMed
Maseroli, E, Santangelo, A, Lara-Fontes, B et al. The non-aromatizable androgen dihydrotestosterone (DHT) facilitates sexual behavior in ovariectomized female rats primed with estradiol. Psychoneuroendocrinology. 2020;115:104606.CrossRefGoogle ScholarPubMed
Jennings, KJ, de Lecea, L. Neural and hormonal control of sexual behavior. Endocrinology. 2020;161(10):bqaa150.CrossRefGoogle ScholarPubMed
Domínguez-Salazar, E, Camacho, FJ, Paredes, RG. Prenatal blockade of androgen receptors reduces the number of intromissions needed to induce conditioned place preference after paced mating in female rats. Pharmacol Biochem Behav. 2005;81(4):871–8.CrossRefGoogle ScholarPubMed
Traish, AM, Vignozzi, L, Simon, JA, Goldstein, I, Kim, NN. Role of androgens in female genitourinary tissue structure and function: Implications in the genitourinary syndrome of menopause. Sex Med Rev. 2018;6(4):558–71.Google ScholarPubMed
Maseroli, E, Vignozzi, L. Testosterone and vaginal function. Sex Med Rev. 2020;8(3):379–92.Google ScholarPubMed
Maseroli, E, Cellai, I, Filippi, S et al. Anti-inflammatory effects of androgens in the human vagina. J Mol Endocrinol. 2020;65(3):109–24.CrossRefGoogle ScholarPubMed
Comeglio, P, Cellai, I, Filippi, S et al. Differential effects of testosterone and estradiol on clitoral function: An experimental study in rats. J Sex Med. 2016;13(12):1858–71.CrossRefGoogle ScholarPubMed
Traish, AM, Kim, N, Min, K, Munarriz, R, Goldstein, I. Role of androgens in female genital sexual arousal: Receptor expression, structure, and function. Fertil Steril. 2002;77(Suppl 4):S11S18.CrossRefGoogle ScholarPubMed
Zheng, J, Islam, RM, Skiba, MA, Bell, RJ, Davis, SR. Associations between androgens and sexual function in premenopausal women: A cross-sectional study. Lancet Diabetes Endocrinol. 2020;8(8):693702.CrossRefGoogle ScholarPubMed
Islam, RM, Bell, RJ, Green, S, Page, MJ, Davis, SR. Safety and efficacy of testosterone for women: A systematic review and meta-analysis of randomised controlled trial data. Lancet Diabetes Endocrinol. 2019;7(10):754–66.CrossRefGoogle ScholarPubMed
Davis, SR, Baber, R, Panay, N et al. Global consensus position statement on the use of testosterone therapy for women. J Clin Endocrinol Metab. 2019;104(10):4660–6.CrossRefGoogle ScholarPubMed
Scavello, I, Maseroli, E, Di Stasi, V, Vignozzi, L. Sexual health in menopause. Medicina (Kaunas). 2019;55(9):559.CrossRefGoogle ScholarPubMed
Nastri, CO, Lara, LA, Ferriani, RA et al. Hormone therapy for sexual function in perimenopausal and postmenopausal women. Cochrane Database Syst Rev. 2013;(6):CD009672.Google ScholarPubMed
The 2017 hormone therapy position statement of the North American Menopause Society. Menopause. 2018;25(11):1362–87.Google Scholar
Stuenkel, CA, Davis, SR, Gompel, A et al. Treatment of symptoms of the menopause: An Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(11):39754011.CrossRefGoogle ScholarPubMed
Labrie, F, Derogatis, L, Archer, DF et al. Effect of intravaginal prasterone on sexual dysfunction in postmenopausal women with vulvovaginal atrophy. J Sex Med. 2015;12(12):2401–12.CrossRefGoogle ScholarPubMed

References

Donders, GG. Definition and classification of abnormal vaginal flora. Best Pract Res Clin Obstet Gynaecol. 2007;21:355–73.CrossRefGoogle ScholarPubMed
Donders, GG, Bellen, G, Byttebier, G et al. Individualized maintenance regimen using individualised decreasing: Dose of fluconazole for recurrent vulvo-vaginal Candidiasis (ReCiDiF trial). Am J Obstet Gynecol. 2008;199:613–19.CrossRefGoogle Scholar
Sherrard, J, Wilson, J, Donders, G, Mendling, W, Jensen, JS. 2018 European (IUSTI/WHO) International Union against sexually transmitted infections (IUSTI) World Health Organisation (WHO) guideline on the management of vaginal discharge. International Journal of STD & AIDS. 2018:956462418785451.CrossRefGoogle Scholar
Donders, GG, Bellen, G, Mendling, W. Management of recurrent vulvovaginal candidosis as a chronic illness. Gynecol Obstet Invest. 2010;70(4):306–21.CrossRefGoogle ScholarPubMed

References

Holmes, KK, Sparling, PF, Stamm, WE et al. (eds.). Sexually transmitted diseases. 4th edition. New York: McGraw-Hill, 2008.Google Scholar
Unemo, M, Bradshaw, CS, Hocking, JS et al. Sexually transmitted infections: Challenges ahead. Lancet Infect Dis. 2017;17(8):e235e279.CrossRefGoogle ScholarPubMed
Gupta, S, Kumar, B. Sexually transmitted infections. 2nd edition. New Delhi: Reed Elsevier, 2012.Google ScholarPubMed

References

Janier, M, Unjemo, M, Dupin, N et al. 2020 European guideline on the management of syphilis. JEADV. 2021.35(3):574–88.Google ScholarPubMed
Kingston, M, French, P, Higgins, S et al. UK national guidelines on the management of syphilis 2015. Int J STD AIDS. 2016;27(6):421–46.CrossRefGoogle ScholarPubMed
Gökengin, D, Wilson-Davies, E, NAzli Zeka, A et al. 2021 European guideline on HIV testing in genito-urinary medicine settings. JEADV 2021;35(5):1043–57.Google ScholarPubMed
Hampel, B, Böni, J, Vernazza, P et al. Neues aus der HIV: Diagnostik. Swiss Medical Forum. 2021;21(3–4):52–4.Google Scholar
Tarr, P, Boffi el-Amari, E, Haerry, D et al. HIV-Prä-Expositionsprophylaxe (PrEP). Swiss Medical Forum. 2017;17(26–7):579–82.CrossRefGoogle Scholar
Brook, G, Brockmeyer, N, Van de Laar, T. et al. 2017 European guideline for the screening, prevention and initial management of hepatitis B and C infections in sexual health settings. Int J STD AIDS. 2018;29(10):949–67.CrossRefGoogle Scholar
www.bashh.org/guidelines: 2017 interim update of the 2015 BASHH National Guidelines for the Management of the Viral Hepatitides.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×