Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-04-30T19:42:43.276Z Has data issue: false hasContentIssue false

Section II - Open Combined Approaches

Published online by Cambridge University Press:  05 October 2021

Edited by
Get access
Type
Chapter
Information
Integrated Management of Complex Intracranial Lesions
Open, Endoscopic, and Keyhole Techniques
, pp. 51 - 222
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Sekhar, LN, Natarajan, SK, Ellenbogen, RG, Ghodke, B. Cerebral revascularization for ischemia, aneurysms, and cranial base tumors. Neurosurgery. 2008;62(6 Suppl 3):1373–408; discussion 408–10.Google Scholar
Walker, M, Acharya, J, Bird, CR, Partovi, S. Evaluation of EC-IC bypass grafts using CT angiography. Barrow Quarterly. 2001;17(3).Google Scholar
Mohit, AA, Sekhar, LN, Natarajan, SK, Britz, GW, Ghodke, B. High-flow bypass grafts in the management of complex intracranial aneurysms. Neurosurgery. 2007;60(2 Suppl 1):ONS105–22; discussion ONS22–3.Google Scholar
Wessels, L, Hecht, N, Vajkoczy, P. Bypass in neurosurgery-indications and techniques. Neurosurg Rev. 2019;42(2):389–93.CrossRefGoogle ScholarPubMed
Tayebi Meybodi, A, Huang, W, Benet, A, Kola, O, Lawton, MT. Bypass surgery for complex middle cerebral artery aneurysms: an algorithmic approach to revascularization. J Neurosurg. 2017;127(3):463–79.Google Scholar
Ramanathan, D, Temkin, N, Kim, LJ, Ghodke, B, Sekhar, LN. Cerebral bypasses for complex aneurysms and tumors: long-term results and graft management strategies. Neurosurgery. 2012;70(6):1442–57; discussion 57.Google Scholar
Group EIBS. Failure of extracranial-intracranial arterial bypass to reduce the risk of ischemic stroke. Results of an international randomized trial.New England Journal of Medicine. 1985;313(19):1191–200.Google Scholar
Grubb, RL Jr., Powers, WJ, Clarke, WR, Videen, TO, Adams, HP Jr., Derdeyn, CP, et al. Surgical results of the Carotid Occlusion Surgery Study. J Neurosurg. 2013;118(1):2533.Google Scholar
Miyamoto, S, Yoshimoto, T, Hashimoto, N, Okada, Y, Tsuji, I, Tominaga, T, et al. Effects of extracranial-intracranial bypass for patients with hemorrhagic moyamoya disease: results of the Japan Adult Moyamoya Trial. Stroke. 2014;45(5):1415–21.CrossRefGoogle ScholarPubMed
Esposito, G, Amin-Hanjani, S, Regli, L. Role of and Indications for Bypass Surgery After Carotid Occlusion Surgery Study (COSS)? Stroke. 2016;47(1):282–90.CrossRefGoogle ScholarPubMed
Ginat, DT, Smith, ER, Robertson, RL, Scott, RM, Schaefer, PW. Imaging after direct and indirect extracranial-intracranial bypass surgery. AJR Am J Roentgenol. 2013;201(1):W124–32.CrossRefGoogle ScholarPubMed
Langner, S, Fleck, S, Seipel, R, Schroeder, HW, Hosten, N, Perfusion, Kirsch M. CT scanning and CT angiography in the evaluation of extracranial-intracranial bypass grafts. J Neurosurg. 2011;114(4):978–83.Google Scholar
Teng, MM, Jen, SL, Chiu, FY, Kao, YH, Lin, CJ, Chang, FC. Change in brain perfusion after extracranial-intracranial bypass surgery detected using the mean transit time of computed tomography perfusion. J Chin Med Assoc. 2012;75(12):649–53.CrossRefGoogle ScholarPubMed
Low, SW, Teo, K, Lwin, S, Yeo, LL, Paliwal, PR, Ahmad, A, et al. Improvement in cerebral hemodynamic parameters and outcomes after superficial temporal artery-middle cerebral artery bypass in patients with severe stenoocclusive disease of the intracranial internal carotid or middle cerebral arteries. J Neurosurg. 2015;123(3):662–9.CrossRefGoogle ScholarPubMed
Serrone, JC, Jimenez, L, Hanseman, DJ, Carroll, CP, Grossman, AW, Wang, L, et al. Changes in computed tomography perfusion parameters after superficial temporal artery to middle cerebral artery bypass: an analysis of 29 cases. Journal of Neurological Surgery Part B, Skull Base. 2014;75(6):371–7.Google ScholarPubMed
Kwon, WK, Kwon, TH, Park, DH, Kim, JH, Ha, SK. Efficacy of superficial temporal artery-middle cerebral artery bypass in cerebrovascular steno-occlusive diseases: Hemodynamics assessed by perfusion computed tomography. Asian Journal of Neurosurgery. 2017;12(3):519–24.Google Scholar
Vos, PC, Riordan, AJ, Smit, EJ, de Jong, HW, van der Zwan, A, Velthuis, BK, et al. Computed tomography perfusion evaluation after extracranial-intracranial bypass surgery. Clinical Neurology and Neurosurgery. 2015;136:139–46.CrossRefGoogle ScholarPubMed
Kotapka, MJ, Kalia, KK, Martinez, AJ, Sekhar, LN. Infiltration of the carotid artery by cavernous sinus meningioma. J Neurosurg. 1994;81(2):252–5.Google Scholar
Sekhar, LN, Bucur, SD, Bank, WO, Wright, DC. Venous and arterial bypass grafts for difficult tumors, aneurysms, and occlusive vascular lesions: evolution of surgical treatment and improved graft results. Neurosurgery. 1999;44(6):1207–23; discussion 23–4.Google ScholarPubMed
Natarajan, SK, Sekhar, LN, Schessel, D, Morita, A. Petroclival meningiomas: multimodality treatment and outcomes at long-term follow-up. Neurosurgery. 2007;60(6):965–79; discussion 79–81.Google Scholar
Sekhar, LN, Kalavakonda, C. Cerebral revascularization for aneurysms and tumors. Neurosurgery. 2002;50(2):321–31.Google Scholar
Sekhar, LN, Tzortzidis, FN, Bejjani, GK, Schessel, DA. Saphenous vein graft bypass of the sigmoid sinus and jugular bulb during the removal of glomus jugulare tumors. Report of two cases. J Neurosurg. 1997;86(6):1036–41.Google Scholar
Tzortzidis, F, Elahi, F, Wright, D, Natarajan, SK, Sekhar, LN. Patient outcome at long-term follow-up after aggressive microsurgical resection of cranial base chordomas. Neurosurgery. 2006;59(2):230–7; discussion 207.CrossRefGoogle ScholarPubMed
Tzortzidis, F, Elahi, F, Wright, DC, Temkin, N, Natarajan, SK, Sekhar, LN. Patient outcome at long-term follow-up after aggressive microsurgical resection of cranial base chondrosarcomas. Neurosurgery. 2006;58(6):1090–8; discussion 1098.CrossRefGoogle ScholarPubMed
Kalavakonda, C, Sekhar, LN. Cerebral revascularization in cranial base tumors. Neurosurgery clinics of North America. 2001;12(3):557–74, viii–ix.Google Scholar
Akbarian-Tefaghi, H, Kalakoti, P, Sun, H, Sharma, K, Thakur, JD, Patra, DP, et al. Impact of hospital caseload and elective admission on outcomes after extracranial-intracranial bypass surgery. World Neurosurgery. 2017;108:716–28.CrossRefGoogle ScholarPubMed
Yang, T, Tariq, F, Chabot, J, Madhok, R, Sekhar, LN. Cerebral revascularization for difficult skull base tumors: a contemporary series of 18 patients. World Neurosurgery. 2014;82(5):660–71.Google Scholar
McCracken, DJ, Higginbotham, RA, Boulter, JH, Liu, Y, Wells, JA, Halani, SH, et al. Degree of vascular encasement in sphenoid wing meningiomas predicts postoperative ischemic complications. Neurosurgery. 2017;80(6):957–66.CrossRefGoogle ScholarPubMed
Wolfe, SQ, Tummala, RP, Morcos, JJ. Cerebral revascularization in skull base tumors. Skull Base. 2005;15(1):7182.CrossRefGoogle ScholarPubMed
Wolfswinkel, EM, Landau, MJ, Ravina, K, Kokot, NC, Russin, JJ, Carey, JN. EC-IC bypass for cerebral revascularization following skull base tumor resection: current practices and innovations. J Surg Oncol. 2018;118(5):815–25.CrossRefGoogle ScholarPubMed
Di Maio, S, Ramanathan, D, Garcia-Lopez, R, Rocha, MH, Guerrero, FP, Ferreira, M Jr., et al. Evolution and future of skull base surgery: the paradigm of skull base meningiomas. World Neurosurgery. 2012;78(3–4):260–75.Google Scholar
Farsad, K, Hayek, RA, Mamourian, AC, Friedman, JA. Computerized tomographic angiography for preoperative assessment of the superficial temporal artery for external carotid artery to internal carotid artery bypass: Case illustration. Cases J. 2008;1(1):119.Google Scholar
Kramer, M, Vairaktaris, E, Nkenke, E, Schlegel, KA, Neukam, FW, Lell, M. Vascular mapping of head and neck: computed tomography angiography versus digital subtraction angiography. Journal of Oral and Maxillofacial Surgery. 2008;66(2):302–7.CrossRefGoogle ScholarPubMed
Bi, WL, Brown, PA, Abolfotoh, M, Al-Mefty, O, Mukundan, S Jr., Dunn, IF. Utility of dynamic computed tomography angiography in the preoperative evaluation of skull base tumors. J Neurosurg. 2015;123(1):18.Google Scholar
Matsumoto, M, Kodama, N, Endo, Y, Sakuma, J, Suzuki, K, Sasaki, T, et al. Dynamic 3D-CT Angiography. 2007;28(2):299304.Google Scholar
Gupta, S, Bi, WL, Mukundan, S, Al-Mefty, O, Dunn, IF. Clinical applications of dynamic CT angiography for intracranial lesions. Acta Neurochirurgica. 2018;160(4):675–80.Google Scholar
Ramina, R, de Aguiar, PHP, Tatagiba, M. Samii’s Essentials in Neurosurgery. Springer Berlin Heidelberg; 2014.CrossRefGoogle Scholar
Sia, SF, Morgan, MK. High flow extracranial-to-intracranial brain bypass surgery. J Clin Neurosci. 2013;20(1):15.Google Scholar
Leech, PJ, Miller, JD, Fitch, W, Barker, J. Cerebral blood flow, internal carotid artery pressure, and the EEG as a guide to the safety of carotid ligation. J Neurol Neurosurg Psychiatry. 1974;37(7):854–62.Google Scholar
Sorteberg, A, Bakke, SJ, Boysen, M, Sorteberg, W. Angiographic balloon test occlusion and therapeutic sacrifice of major arteries to the brain. Neurosurgery. 2008;63(4):651–60; discussion 60–1.Google Scholar
Barr, JD, Lemley, TJ, McCann, RM. Carotid artery balloon test occlusion: combined clinical evaluation and xenon-enhanced computed tomographic cerebral blood flow evaluation without patient transfer or balloon reinflation: technical note. Neurosurgery. 1998;43(3):634–7; discussion 7–8.Google Scholar
Sorteberg, A. Balloon occlusion tests and therapeutic vessel occlusions revisited: when, when not, and how. AJNR American Journal of Neuroradiology. 2014;35(5):862–5.Google Scholar
Sorteberg, A, Sorteberg, W, Bakke, SJ, Lindegaard, KF, Boysen, M, Nornes, H. Varying impact of common carotid artery digital compression and internal carotid artery balloon test occlusion on cerebral hemodynamics. Head & Neck. 1998;20(8):687–94.Google Scholar
Origitano, TC, al-Mefty, O, Leonetti, JP, DeMonte, F, Reichman, OH. Vascular considerations and complications in cranial base surgery. Neurosurgery. 1994;35(3):351–62; discussion 62–3.Google Scholar
Lawton, MT, Hamilton, MG, Morcos, JJ, Spetzler, RF. Revascularization and aneurysm surgery: current techniques, indications, and outcome. Neurosurgery. 1996;38(1):8392; discussion 94.CrossRefGoogle ScholarPubMed
Lougheed, WM, Marshall, BM, Hunter, M, Michel, ER, Sandwith-Smyth, H. Common carotid to intracranial internal carotid bypass venous graft. Technical note. J Neurosurg. 1971;34(1):114–18.Google Scholar
Kawashima, M, Rhoton, AL Jr., Tanriover, N, Ulm, AJ, Yasuda, A, Fujii, K. Microsurgical anatomy of cerebral revascularization. Part I: Anterior circulation. J Neurosurg. 2005;102(1):116–31.Google Scholar
Ausman, JI, Nicoloff, DM, Chou, SN. Posterior fossa revascularization: anastomosis of vertebral artery to PICA with interposed radial artery graft. Surgical Neurology. 1978;9(5):281–6.Google Scholar
Evans, JJ, Sekhar, LN, Rak, R, Stimac, D. Bypass grafting and revascularization in the management of posterior circulation aneurysms. Neurosurgery. 2004;55(5):1036–49.Google Scholar
Strickland, BA, Rennert, RC, Bakhsheshian, J, Bulic, S, Correa, AJ, Amar, A, et al. Botulinum toxin to improve vessel graft patency in cerebral revascularization surgery: report of 3 cases. J Neurosurg. 2018;130:17.Google Scholar
Sia, SF, Davidson, AS, Assaad, NN, Stoodley, M, Morgan, MK. Comparative patency between intracranial arterial pedicle and vein bypass surgery. Neurosurgery. 2011;69(2):308–14.CrossRefGoogle ScholarPubMed
Regli, L, Piepgras, DG, Hansen, KK. Late patency of long saphenous vein bypass grafts to the anterior and posterior cerebral circulation. J Neurosurg. 1995;83(5):806–11.CrossRefGoogle Scholar
Bulsara, KR, Patel, T, Fukushima, T. Cerebral bypass surgery for skull base lesions: technical notes incorporating lessons learned over two decades. Neurosurgical Focus. 2008;24(2):E11.Google Scholar
Nwasokwa, ON. Coronary artery bypass graft disease. Annals of Internal Medicine. 1995;123(7):528–45.Google Scholar
Shuhaiber, JH, Evans, AN, Massad, MG, Geha, AS. Mechanisms and future directions for prevention of vein graft failure in coronary bypass surgery. European Journal of Cardio-Thoracic Surgery. 2002;22(3):387–96.Google Scholar
Streefkerk, HJ, Bremmer, JP, Tulleken, CA. The ELANA technique: high flow revascularization of the brain. Acta Neurochirurgica Supplement. 2005;94:143–8.CrossRefGoogle ScholarPubMed
Streefkerk, HJ, Bremmer, JP, van Weelden, M, van Dijk, RR, de Winter, E, Beck, RJ, et al. The excimer laser-assisted nonocclusive anastomosis practice model: development and application of a tool for practicing microvascular anastomosis techniques. Neurosurgery. 2006;58(1 Suppl):ONS148–56; discussion ONS56.Google Scholar
Streefkerk, HJ, Wolfs, JF, Sorteberg, W, Sorteberg, AG, Tulleken, CA. The ELANA technique: constructing a high flow bypass using a non-occlusive anastomosis on the ICA and a conventional anastomosis on the SCA in the treatment of a fusiform giant basilar trunk aneurysm. Acta Neurochirurgica. 2004;146(9):1009–19; discussion 1019.Google Scholar
Kalani, MY, Kalb, S, Martirosyan, NL, Lettieri, SC, Spetzler, RF, Porter, RW, et al. Cerebral revascularization and carotid artery resection at the skull base for treatment of advanced head and neck malignancies. J Neurosurg. 2013;118(3):637–42.Google Scholar
Terasaka, S, Asaoka, K, Kobayashi, H, Yamaguchi, S, Sawamura, Y. Natural history and surgical results of petroclival meningiomas. No Shinkei Geka. Neurological Surgery. 2010;38(9):817–24.Google Scholar
Van Havenbergh, T, Carvalho, G, Tatagiba, M, Plets, C, Samii, M. Natural history of petroclival meningiomas. Neurosurgery. 2003;52(1):5562; discussion 64.Google Scholar
Pearson, BE, Markert, JM, Fisher, WS, Guthrie, BL, Fiveash, JB, Palmer, CA, et al. Hitting a moving target: evolution of a treatment paradigm for atypical meningiomas amid changing diagnostic criteria. Neurosurgical Focus. 2008;24(5):E3.Google Scholar
Kshettry, VR, Ostrom, QT, Kruchko, C, Al-Mefty, O, Barnett, GH, Barnholtz-Sloan, JS. Descriptive epidemiology of World Health Organization grades II and III intracranial meningiomas in the United States. Neuro-oncology. 2015;17(8):1166–73.CrossRefGoogle ScholarPubMed
McGovern, SL, Aldape, KD, Munsell, MF, Mahajan, A, DeMonte, F, Woo, SY. A comparison of World Health Organization tumor grades at recurrence in patients with non-skull base and skull base meningiomas. J Neurosurg. 2010;112(5):925–33.CrossRefGoogle ScholarPubMed
Litre, CF, Colin, P, Noudel, R, Peruzzi, P, Bazin, A, Sherpereel, B, et al. Fractionated stereotactic radiotherapy treatment of cavernous sinus meningiomas: a study of 100 cases. International Journal of Radiation Oncology, Biology, Physics. 2009;74(4):1012–17.Google Scholar
Skeie, BS, Enger, PO, Skeie, GO, Thorsen, F, Pedersen, PH. Gamma knife surgery of meningiomas involving the cavernous sinus: long-term follow-up of 100 patients. Neurosurgery. 2010;66(4):661–8; discussion 8–9.Google Scholar
Aghi, MK, Carter, BS, Cosgrove, GR, Ojemann, RG, Amin-Hanjani, S, Martuza, RL, et al. Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation. Neurosurgery. 2009;64(1):5660.Google Scholar
Durand, A, Labrousse, F, Jouvet, A, Bauchet, L, Kalamarides, M, Menei, P, et al. WHO grade II and III meningiomas: a study of prognostic factors. Journal of Neuro-oncology. 2009;95(3):367–75.Google Scholar
Wanibuchi, M, Akiyama, Y, Mikami, T, Iihoshi, S, Miyata, K, Horita, Y, et al. Radical removal of recurrent malignant meningeal tumors of the cavernous sinus in combination with high-flow bypass. World Neurosurgery. 2015;83(4):424–30.Google Scholar
Di Maio, S, Rostomily, R, Sekhar, LN. Current surgical outcomes for cranial base chordomas: cohort study of 95 patients. Neurosurgery. 2011;70(6):1355–60.Google Scholar
Tzortzidis, F, Elahi, F, Wright, DC, Temkin, N, Natarajan, SK, Sekhar, LN. Patient outcome at long-term follow-up after aggressive microsurgical resection of cranial base chondrosarcomas. Neurosurgery. 2006;58(6):1090–8.Google Scholar
Sekhar, LN, Pranatartiharan, R, Chanda, A, Wright, DC. Chordomas and chondrosarcomas of the skull base: results and complications of surgical management. Neurosurgical Focus. 2001;10(3):14.Google Scholar
Gil, Z, Patel, SG, Singh, B, Cantu, G, Fliss, DM, Kowalski, LP, et al. Analysis of prognostic factors in 146 patients with anterior skull base sarcoma: an international collaborative study. Cancer. 2007;110(5):1033–41.Google Scholar
Ganly, I, Patel, SG, Singh, B, Kraus, DH, Bridger, PG, Cantu, G, et al. Complications of craniofacial resection for malignant tumors of the skull base: report of an International Collaborative Study. Head & Neck. 2005;27(6):445–51.Google Scholar
Feiz-Erfan, I, Han, PP, Spetzler, RF, Lanzino, G, Ferreira, MA, Gonzalez, LF, et al. Salvage of advanced squamous cell carcinomas of the head and neck: internal carotid artery sacrifice and extracranial-intracranial revascularization. Neurosurgical Focus. 2003;14(3):e6.Google Scholar
Chazono, H, Okamoto, Y, Matsuzaki, Z, Ogino, J, Endo, S, Matsuoka, T, et al. Extracranial-intracranial bypass for reconstruction of internal carotid artery in the management of head and neck cancer. Annals of Vascular Surgery. 2003;17(3):260–5.Google Scholar
Gormley, WB, Sekhar, LN, Wright, DC, Olding, M, Janecka, IP, Snyderman, CH, et al. Management and long-term outcome of adenoid cystic carcinoma with intracranial extension: a neurosurgical perspective. Neurosurgery. 1996;38(6):1105–12; discussion 12–13.Google Scholar
Lawton, MT, Lang, MJ. The future of open vascular neurosurgery: perspectives on cavernous malformations, AVMs, and bypasses for complex aneurysms. J Neurosurg. 2019;130(5):1409–25.Google Scholar
Abdulrauf, SI. Awake craniotomies for aneurysms, arteriovenous malformations, skull base tumors, high flow bypass, and brain stem lesions. Journal of Craniovertebral Junction & Spine. 2015;6(1):89.Google Scholar
Chen, C, Yang, Y, Ling, C, He, H, Luo, L, Wang, H. Percutaneous transluminal angioplasty for radial artery graft stenosis after high-flow superficial temporal artery trunk to middle cerebral artery interposition bypass. British Journal of Neurosurgery. 2019:14.Google Scholar
Aydin, E, Gok, M, Esenkaya, A, Cinar, C, Oran, I. Endovascular management of iatrogenic vascular injury in the craniocervical region. Turk Neurosurg. 2018;28(1):72–8.Google ScholarPubMed
Dlamini, N, Shah-Basak, P, Leung, J, Kirkham, F, Shroff, M, Kassner, A, et al. Breath-hold blood oxygen level–dependent MRI: a tool for the assessment of cerebrovascular reserve in children with Moyamoya disease. AJNR Am J Neuroradiol. 2018;39(9):1717–23.Google Scholar
Ge, X, Zhao, H, Zhou, Z, Li, X, Sun, B, Wu, H, et al. Association of fractional flow on 3D-TOF-MRA with cerebral perfusion in patients with MCA stenosis. AJNR Am J Neuroradiol. 2019;40(7):1124–31.Google Scholar

References

Samii, M, Gerganov, V, Samii, A. Improved preservation of hearing and facial nerve function in vestibular schwannoma surgery via the retrosigmoid approach in a series of 200 patients. Journal of Neurosurgery. 2006 Oct 1;105(4):527–35.Google Scholar
Raftopoulos, C, Serieh, BA, Duprez, T, Docquier, MA, Guerit, JM. Microsurgical results with large vestibular schwannomas with preservation of facial and cochlear nerve function as the primary aim. Acta Neurochirurgica. 2005 Jul 1;147(7):697706.Google Scholar
Sughrue, ME, Kaur, R, Rutkowski, MJ, Kane, AJ, Kaur, G, Yang, I, Pitts, LH, Parsa, AT. Extent of resection and the long-term durability of vestibular schwannoma surgery. Journal of Neurosurgery. 2011 May 1;114(5):1218–23.Google Scholar
Haque, R, Wojtasiewicz, TJ, Gigante, PR, Attiah, MA, Huang, B, Isaacson, SR, Sisti, MB. Efficacy of facial nerve-sparing approach in patients with vestibular schwannomas. Journal of Neurosurgery. 2011 Nov 1;115(5):917–23.Google Scholar
Falcioni, M, Fois, P, Taibah, A, Sanna, M. Facial nerve function after vestibular schwannoma surgery. Journal of Neurosurgery. 2011 Oct 1;115(4):820–6.Google Scholar
El Bakkouri, W, Kania, RE, Guichard, JP, Lot, G, Herman, P, Huy, PT. Conservative management of 386 cases of unilateral vestibular schwannoma: tumor growth and consequences for treatment. Journal of Neurosurgery. 2009 Apr 1;110(4):662–9.Google Scholar
Stangerup, SE, Caye-Thomasen, P, Tos, M, Thomsen, J. The natural history of vestibular schwannoma. Otology & Neurotology. 2006 Jun 1;27(4):547–52.Google Scholar
Pollock, BE, Driscoll, CL, Foote, RL, Link, MJ, Gorman, DA, Bauch, CD, Mandrekar, JN, Krecke, KN, Johnson, CH. Patient outcomes after vestibular schwannoma management: a prospective comparison of microsurgical resection and stereotactic radiosurgery. Neurosurgery. 2006 Jul 1;59(1):7785.Google ScholarPubMed
Raftopoulos, C, Serieh, BA, Duprez, T, Docquier, MA, Guerit, JM. Microsurgical results with large vestibular schwannomas with preservation of facial and cochlear nerve function as the primary aim. Acta Neurochirurgica. 2005 Jul 1;147(7):697706.Google Scholar
Monfared, A, Corrales, CE, Theodosopoulos, PV, Blevins, NH, Oghalai, JS, Selesnick, SH, Lee, H, Gurgel, RK, Hansen, MR, Nelson, RF, Gantz, BJ. Facial nerve outcome and tumor control rate as a function of degree of resection in treatment of large acoustic neuromas: preliminary report of the Acoustic Neuroma Subtotal Resection Study (ANSRS). Neurosurgery. 2016 Aug 1;79(2):194203.Google Scholar
Anaizi, AN, Gantwerker, E, Pensak, M, Theodosopoulos, PV. Facial nerve preservation surgery for Koos stage 3 and 4 vestibular schwannomas. Journal of Neurological Surgery, Part B: Skull Base. 2014 Feb;75(S 01):A131.Google Scholar
van de Langenberg, R, Hanssens, PE, van Overbeeke, JJ, Verheul, JB, Nelemans, PJ, de Bondt, BJ, Stokroos, RJ. Management of large vestibular schwannoma. Part I. Planned subtotal resection followed by Gamma Knife surgery: radiological and clinical aspects. Journal of Neurosurgery. 2011A Nov 1;115(5):875–84.Google Scholar
Theodosopoulos, PV, Pensak, ML. Contemporary management of acoustic neuromas. The Laryngoscope. 2011 Jun;121(6):1133–7.Google Scholar
Gurgel, RK, Theodosopoulos, PV, Jackler, RK. Subtotal/near-total treatment of vestibular schwannomas. Current Opinion in Otolaryngology & Head and Neck Surgery. 2012 Oct 1;20(5):380–4.Google Scholar
Breshears, JD, Osorio, JA, Cheung, SW, Barani, IJ, Theodosopoulos, PV. Surgery after primary radiation treatment for sporadic vestibular schwannomas: case series. Operative Neurosurgery. 2017 Aug 1;13(4):441–7.Google Scholar
Roche, PH, Khalil, M, Thomassin, JM, Delsanti, C, Régis, J. Surgical removal of vestibular schwannoma after failed gamma knife radiosurgery. In Modern Management of Acoustic Neuroma 2008 (Vol. 21, pp. 152–7). Karger Publishers.Google Scholar
Wise, SC, Carlson, ML, Tveiten, ØV, Driscoll, CL, Myrseth, E, Lund‐Johansen, M, Link, MJ. Surgical salvage of recurrent vestibular schwannoma following prior stereotactic radiosurgery. The Laryngoscope. 2016 Nov;126(11):2580–6.Google Scholar
Flickinger, JC, Kondziolka, D, Niranjan, A, Maitz, A, Voynov, G, Lunsford, LD. Acoustic neuroma radiosurgery with marginal tumor doses of 12 to 13 Gy. International Journal of Radiation Oncology, Biology, Physics. 2004 Sep 1;60(1):225–30.Google Scholar
Lunsford, LD, Niranjan, A, Kano, H, Kondziolka, D. The technical evolution of gamma knife radiosurgery for arteriovenous malformations. In Gamma Knife Radiosurgery for Brain Vascular Malformations 2013 (Vol. 27, pp. 2234). Karger Publishers.Google Scholar
Foote, RL, Coffey, RJ, Swanson, JW, Harner, SG, Beatty, CW, Kline, RW, Stevens, LN, Hu, TC. Stereotactic radiosurgery using the gamma knife for acoustic neuromas. International Journal of Radiation Oncology, Biology, Physics. 1995 Jul 15;32(4):1153–60.Google Scholar
Yang, I, Aranda, D, Han, SJ, Chennupati, S, Sughrue, ME, Cheung, SW, Pitts, LH, Parsa, AT. Hearing preservation after stereotactic radiosurgery for vestibular schwannoma: a systematic review. Journal of Clinical Neuroscience. 2009 Jun 1;16(6):742–7.Google Scholar
Murphy, ES, Suh, JH. Radiotherapy for vestibular schwannomas: a critical review. International Journal of Radiation Oncology, Biology, Physics. 2011A Mar 15;79(4):985–97.Google Scholar
Murphy, ES, Barnett, GH, Vogelbaum, MA, Neyman, G, Stevens, GH, Cohen, BH, Elson, P, Vassil, AD, Suh, JH. Long-term outcomes of Gamma Knife radiosurgery in patients with vestibular schwannomas. Journal of Neurosurgery. 2011B Feb 1;114(2):432–40.Google Scholar
Yang, HC, Kano, H, Awan, NR, Lunsford, LD, Niranjan, A, Flickinger, JC, Novotny, J, Bhatnagar, JP, Kondziolka, D. Gamma Knife radiosurgery for larger-volume vestibular schwannomas. Journal of Neurosurgery. 2011 Mar 1;114(3):801–7.Google Scholar
Kim, HJ, Roh, KJ, Oh, HS, Chang, WS, Moon, IS. Quality of life in patients with vestibular schwannomas according to management strategy. Otology & Neurotology. 2015 Dec 1;36(10):1725–9.Google Scholar
Lo, WL, Yang, KY, Huang, YJ, Chen, WF, Liao, CC, Huang, YH. Experience with Novalis stereotactic radiosurgery for vestibular schwannomas. Clinical Neurology and Neurosurgery. 2014 Jun 1;121:30–4.Google Scholar
van de Langenberg, R, de Bondt, BJ, Nelemans, PJ, Dohmen, AJ, Baumert, BG, Stokroos, RJ. Predictors of volumetric growth and auditory deterioration in vestibular schwannomas followed in a wait and scan policy. Otology & Neurotology. 2011B Feb 1;32(2):338–44.Google Scholar
Bozorg Grayeli, A, Kalamarides, M, Fraysse, B, Deguine, O, Favre, G, Martin, C, Mom, T, Sterkers, O. Comparison between intraoperative observations and electromyographic monitoring data for facial nerve outcome after vestibular schwannoma surgery. Acta oto-laryngologica. 2005 Jan 1;125(10):1069–74.Google Scholar
Brokinkel, B, Sauerland, C, Holling, M, Ewelt, C, Horstmann, G, van Eck, AT, Stummer, W. Gamma Knife radiosurgery following subtotal resection of vestibular schwannoma. Journal of Clinical Neuroscience. 2014 Dec 1;21(12):2077–82.Google Scholar
Huang, MJ, Kano, H, Mousavi, SH, Niranjan, A, Monaco, EA, Arai, Y, Flickinger, JC, Lunsford, LD. Stereotactic radiosurgery for recurrent vestibular schwannoma after previous resection. Journal of Neurosurgery. 2017 May 1;126(5):1506–13.Google Scholar
Iwai, Y, Ishibashi, K, Watanabe, Y, Uemura, G, Yamanaka, K. Functional preservation after planned partial resection followed by gamma knife radiosurgery for large vestibular schwannomas. World Neurosurgery. 2015 Aug 1;84(2):292300.Google Scholar
Pollock, BE, Link, MJ, Foote, RL. Failure rate of contemporary low-dose radiosurgical technique for vestibular schwannoma clinical article. Journal of Neurosurgery. 2009 Oct 1;111(4):840–4.Google Scholar
Pollock, BE, Lunsford, LD, Flickinger, JC, Clyde, BL, Kondziolka, D. Vestibular schwannoma management: Part I. Failed microsurgery and the role of delayed stereotactic radiosurgery. Journal of Neurosurgery. 1998 Dec 1;89(6):944–8.Google Scholar
Breshears, JD, Chang, J, Molinaro, A, Sneed, P, Mcdermott, MW, Tward, A, Theodosopoulos, PV. Duration and timing of transient tumor enlargement after gamma knife radiosurgery for vestibular schwannomas. Journal of Neurological Surgery, Part B: Skull Base. 2018 Feb;79(S 01):A086.Google Scholar
Andrews, DW, Suarez, O, Goldman, HW, Downes, MB, Bednarz, G, Corn, BW, Werner-Wasik, M, Rosenstock, J, Curran, WJ. Jr Stereotactic radiosurgery and fractionated stereotactic radiotherapy for the treatment of acoustic schwannomas: comparative observations of 125 patients treated at one institution. International Journal of Radiation Oncology, Biology, Physics. 2001 Aug 1;50(5):1265–78.Google Scholar
Combs, SE, Welzel, T, Schulz-Ertner, D, Huber, PE, Debus, J. Differences in clinical results after LINAC-based single-dose radiosurgery versus fractionated stereotactic radiotherapy for patients with vestibular schwannomas. International Journal of Radiation Oncology, Biology, Physics. 2010 Jan 1;76(1):193200.Google Scholar
Friedman, RA, Brackmann, DE, Hitselberger, WE, Schwartz, MS, Iqbal, Z, Berliner, KI. Surgical salvage after failed irradiation for vestibular schwannoma. The Laryngoscope. 2005 Oct;115(10):1827–32.Google Scholar
Iwai, Y, Yamanaka, K, Yamagata, K, Yasui, T. Surgery after radiosurgery for acoustic neuromas: surgical strategy and histological findings. Operative Neurosurgery. 2007 Feb 1;60(suppl 2):ONS-75.Google Scholar
Plotkin, SR, Stemmer-Rachamimov, AO, Barker, FG, Halpin, C, Padera, TP, Tyrrell, A, Sorensen, AG, Jain, RK, di Tomaso, E. Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. New England Journal of Medicine. 2009 Jul 23;361(4):358–67.Google Scholar
Nakatomi, H, Jacob, JT, Carlson, ML, Tanaka, S, Tanaka, M, Saito, N, Lohse, CM, Driscoll, CL, Link, MJ. Long-term risk of recurrence and regrowth after gross-total and subtotal resection of sporadic vestibular schwannoma. Journal of Neurosurgery. 2017 May 1;1(aop):17.Google Scholar

References

Horwitz, NH. Walter Edward Dandy (1886–1946). Neurosurgery. 1997 Jan 1;40(1):211–15.Google Scholar
Yamamoto, I, Jr AL, Rhoton, Peace, DA. Microsurgery of the third ventricle, Part 1: Microsurgical anatomy. Neurosurgery. 1981 Mar 1;8(3):334–56.Google Scholar
Wen, HT, Rhoton, AL, de Oliveira E Jr. Transchoroidal approach to the third ventricle: an anatomic study of the choroidal fissure and its clinical application. Neurosurgery. 1998 Jun 1;42(6):1205–17.Google Scholar
Carota, A, Rizzo, E, Broways, P, Calabrese, P. Pure anterograde memory deficit due to secondary lymphoma of the fornix. European Neurology. 2013;70(3–4):242.Google Scholar
Pendl, G, Öztürk, E, Haselsberger, K. Surgery of tumours of the lateral ventricle. Acta Neurochirurgica. 1992 Jun 1;116(2–4):128–36.Google Scholar
Kasowski, HJ, Nahed, BV, Piepmeier, JM. Transcallosal transchoroidal approach to tumors of the third ventricle. Operative Neurosurgery. 2005 Oct 1;57(suppl 4):ONS-361.Google Scholar
Fonseca, RB, Black, PM, Azevedo Filho, H. Approaches to the third ventricle. Arquivos Brasileiros de Neurocirurgia: Brazilian Neurosurgery. 2012 Mar;31(01):39.Google Scholar
Fujii, K, Lenkey, C, Rhoton, Jr AL. Microsurgical anatomy of the choroidal arteries: Lateral and third ventricles. Journal of Neurosurgery. 1980 Feb;52(2):165–88.Google Scholar
Villani, RM, Tomei, G. Approach to tumors of the third ventricle. In Schmidek, HH, Roberts, DW, eds., Schmidek and Sweet’s Operative Neurosurgical Techniques: Indications, Methods, and Results, 5th ed. Philadelphia: Saunders Elsevier; 2006:772–85.Google Scholar
Hirsch, JF, Zouaoui, A, Renier, D, Pierre-Kahn, A. A new surgical approach to the third ventricle with interruption of the striothalamic vein. Acta Neurochirurgica. 1979 Sep 1;47(3–4):135–47.Google Scholar
Rhoton, AL Jr. The lateral and third ventricles. Neurosurgery. 2002;51(4 Suppl): S207–71.Google Scholar
Viale, GL, Turtas, S. The sub choroid approach to the third ventricle. Surgical Neurology. 1980 Jul;14(1):71–4.Google Scholar
Cikla, U, Swanson, KI, Tumturk, A, Keser, N, Uluc, K, Cohen-Gadol, A, Baskaya, MK. Microsurgical resection of tumors of the lateral and third ventricles: operative corridors for difficult-to-reach lesions. Journal of Neuro-oncology. 2016 Nov 1;130(2):331–40.CrossRefGoogle ScholarPubMed
Ito, Y, Inoue, T, Tamura, A, Tsutsumi, K. Interhemispheric transchoroidal approach to resect third ventricular teratoma. Neurosurgical focus. 2016 Jan;40(Video Suppl 1):1.Google Scholar
Ding, D, Furneaux, CE. Combined transchoroidal and subchoroidal approach for resection of a large hemorrhagic epithelial cyst: Expanding the operative corridor to the third ventricle. Journal of Neurosciences in Rural Practice. 2017 Jan;8(1):145.Google Scholar
Anderson, RC, Ghatan, S, Feldstein, NA. Surgical approaches to tumors of the lateral ventricle. Neurosurgery Clinics. 2003 Oct 1;14(4):509–25.Google Scholar
Yasargil, MG, Abdulrauf, SI. Surgery of intraventricular tumors. Neurosurgery. 2008;62(6 Suppl 3):1029–40.Google Scholar
Finch, NW, Ding, D, Oldfield, EH, Druzgal, J. Agenesis of anterior falx cerebri in patient with planned interhemispheric approach to third ventricle mass. World Neurosurgery. 2018 Jan 1;109:162–4.Google Scholar
Petridis, Athanasios K. Commentary. Journal of Neurosciences in Rural Practice 2017; 8(1):147.Google Scholar
Türe, U, Yaşargil, MG, Al-Mefty, O. The transcallosal–transforaminal approach to the third ventricle with regard to the venous variations in this region. Journal of Neurosurgery. 1997 Nov;87(5):706–15.Google Scholar
Lang, J. Topographic anatomy of preformed intracranial spaces. In Minimally Invasive Neurosurgery I. Vienna: Springer; 1992: 110.Google Scholar
Tubbs, RS, Oakes, P, Maran, IS, Salib, C, Loukas, M. The foramen of Monro: a review of its anatomy, history, pathology, and surgery. Child’s Nervous System. 2014 Oct 1;30(10):1645–9.Google Scholar
Cai, Q, Wang, J, Wang, L, Deng, G, Chen, Q, Chen, Z. A classification of lesions around interventricular foramen and its clinical value. International Journal of Clinical and Experimental Pathology. 2015;8(9):9950.Google Scholar
Taghva, A, Liu, CY, Apuzzo, ML. Transcallosal surgery of lesions affecting the third ventricle: basic principles. In Schmidek and Sweet Operative Neurosurgical Techniques. 6th ed. Amsterdam: Elsevier; 2012: 339–50.Google Scholar
Patel, P, Cohen-Gadol, AA, Boop, F, Klimo, Jr P. Technical strategies for the transcallosal transforaminal approach to third ventricle tumors: expanding the operative corridor. Journal of Neurosurgery: Pediatrics. 2014 Oct;14(4):365–71.Google Scholar

References

Jane, JA, Park, TS, Pobereskin, LH, Winn, HR, Butler, AB. The supraorbital approach: technical note. Neurosurgery. 1982;11(4):537–42.Google Scholar
Delashaw, JB, Jane, JA, Kassell, NF, Luce, C. Supraorbital craniotomy by fracture of the anterior orbital roof. J Neurosurg. 1993;79(4):615–18.Google Scholar
Shanno, G, Maus, M, Bilyk, J, et al. Image-guided transorbital roof craniotomy via a suprabrow approach: a surgical series of 72 patients. Neurosurgery. 2001;48(3):559–68.Google Scholar
Paluzzi, A, Gardner, PA, Fernandez-Miranda, JC, et al. Round-the-clock surgical access to the orbit. J Neurol Surgery, Part B: Skull Base. 2015;76(1):1224.Google Scholar
Wang, Y, Tooley, AA, Mehta, VJ, Garrity, JA, Harrison, AR, Thyroid Orbitopathy, Mettu P.. Int Ophthalmol Clin. 2018;58(2):137–79.Google Scholar
Srinivasan, A, Bilyk, JR. Transcranial approaches to the orbit. Int Ophthalmol Clin. 2018;58(2):101–10.Google Scholar
Bejjani, GK, Cockerham, KP, Kennerdel, JS, Maroon, JC. A reappraisal of surgery for orbital tumors. Part I: extraorbital approaches. Neurosurg Focus. 2001;10(5):16.Google Scholar
Abuzayed, B, Kucukyuruk, B, Tanriover, N, et al. Transcranial superior orbitotomy for the treatment of intraorbital intraconal tumors: surgical technique and long-term results in single institute. Neurosurg Rev. 2012;35(4):573–82.Google Scholar
Bradley, EA, Bartley, GB, Garrity, JA. Surgical management of Graves’ ophthalmopathy. In Bahn, RS, ed. Thyroid Eye Disease. Boston: Springer; 2001: 219–33.Google Scholar
Naffziger, HC. The surgical treatment of progressive exophthalmos following thyroidectomy. J Am Med Assoc. 1932;99(8):638.Google Scholar
Stranc, M, West, M. A four-wall orbital decompression for dysthyroid orbitopathy. J Neurosurg. 1988;68(5):671–7.Google Scholar
Linnet, J, Hegedus, L, Bjerre, P. Results of a neurosurgical two-wall orbital decompression in the treatment of severe thyroid associated ophthalmopathy. Acta Ophthalmol Scand. 2001;79(1):4952.Google Scholar
Garrity, JA, Fatourechi, V, Bergstralh, EJ, et al. Results of transantral orbital decompression in 428 patients with severe Graves’ ophthalmopathy. Am J Ophthalmol. 1993;116(5):533–47.Google Scholar
Fatourechi, V, Bartley, GB, Garrity, JA, Bergstralh, EJ, Ebersold, MJ, Gorman, CA. Transfrontal orbital decompression after failure of transantral decompression in optic neuropathy of Graves’ disease. Mayo Clin Proc. 1993;68(6):552–5.Google Scholar
Maroon, JC, Kennerdell, JS. Surgical approaches to the orbit: indications and techniques. J Neurosurg. 1984;60(6):1226–35.Google Scholar
Cockerham, KP, Bejjani, GK, Kennerdell, JS, Maroon, JC. Surgery for orbital tumors. Part II: transorbital approaches. Neurosurg Focus. 2001;10(5):E3.Google Scholar
Ditzel Filho, LFS, McLaughlin, N, Bresson, D, Solari, D, Kassam, AB, Kelly, DF. Supraorbital eyebrow craniotomy for removal of intraaxial frontal brain tumors: a technical note. World Neurosurg. 2014;81(2):348–56.Google Scholar
Owusu Boahene, KD, Lim, M, Chu, E, Quinones-Hinojosa, A. Transpalpebral orbitofrontal craniotomy: a minimally invasive approach to anterior cranial vault lesions. Skull Base. 2010;20(4):237–44.Google Scholar
Jordan, DR, Mawn, LA, Anderson, RL. Surgical Anatomy of the Ocular Adnexa, 2nd ed. Oxford: Oxford University Press; 2012.Google Scholar
Greenfield, L, Mulholland, M, Doherty, G, eds. Greenfield’s Surgery: Scientific Principles and Practice. 4th ed. New York: Lippincott Williams & Wilkins; 2005.Google Scholar
Rolston, JD, Han, SJ, Lau, CY, Berger, MS, Parsa, AT. Frequency and predictors of complications in neurological surgery: national trends from 2006 to 2011. J Neurosurg. 2014;120(3):736–45.Google Scholar
Ling, JD, Mehta, V, Fathy, C, et al. Racial disparities in corneal transplantation rates, complications, and outcomes. Semin Ophthalmol. 2016;31(4):337–44.Google Scholar
Sosa, JA, Mehta, PJ, Wang, TS, Yeo, HL, Roman, SA. Racial disparities in clinical and economic outcomes from thyroidectomy. Ann Surg. 2007;246(6):1083–91.Google Scholar
Latz, B, Mordhorst, C, Kerz, T, et al. Post-operative nausea and vomiting in patients after craniotomy: incidence and risk factors. J Neurosurg. 2011;114(2):491–6.Google Scholar
Gan, TJ, Meyer, T, Apfel, CC, et al. Consensus guidelines for managing post-operative nausea and vomiting. Anesth Analg. 2003;97(1):6271.Google Scholar

References

Patel, SG, Singh, B, Polluri, A, et al. Craniofacial surgery for malignant skull base tumors. Cancer. 2003;98(6):1179–87.Google Scholar
Feiz-Erfan, I, Spetzler, RF, Horn, EM, et al. Proposed classification for the transbasal approach and its modifications. Skull Base. 2008;18(1):2947.Google Scholar
Jittapiromsak, P, Wu, A, Deshmukh, P, et al. Comparative analysis of extensions of transbasal approaches: effect on access to midline and paramedian structures. Skull Base. 2009;19(6):387–99.Google Scholar
Kim, SR, Lee, JW, Han, YS, Kim, HK. Transfacial surgical approaches to secure wide exposure of the skull base, transfacial surgical approaches to secure wide exposure of the skull base. Arch Craniofac Surg. 2015;16(1):1723.Google Scholar
Spetzler, RF, Herman, JM, Beals, S, Joganic, E, Milligan, J. Preservation of olfaction in anterior craniofacial approaches. Journal of Neurosurgery. 1993;79(1):4852.Google Scholar

References

Sanna, M, Fois, P, Russo, A, Falcioni, M. Management of meningoencephalic herniation of the temporal bone: personal experience and literature review. Laryngoscope 2009;119:1579–85.Google Scholar
Egilmez, OK, Hanege, FM, Kalcioglu, MT, Kaner, T, Kokten, N. Tegmen tympani defect and brain herniation secondary to mastoid surgery: case presentation. Case Rep Otolaryngol 2014;2014:756280.Google Scholar
Alonso, RC, de la Pena, MJ, Caicoya, AG, Rodriguez, MR, Moreno, EA, de Vega Fernandez VM: Spontaneous skull base meningoencephaloceles and cerebrospinal fluid fistulas. Radiographics 2013;33:553–70.Google Scholar
Marchioni, D, Bonali, M, Alicandri-Ciufelli, M, Rubini, A, Pavesi, G, Presutti, L. Combined approach for tegmen defects repair in patients with cerebrospinal fluid otorrhea or herniations: our experience. J Neurol Surg B Skull Base 2014;75:279–87.Google Scholar
Jeevan, DS, Ormond, DR, Kim, AH, et al. Cerebrospinal fluid leaks and encephaloceles of temporal bone origin: nuances to diagnosis and management. World Neurosurg 2015;83:560–6.Google Scholar
Schuknecht, B, Simmen, D, Briner, HR, Holzmann, D. Nontraumatic skull base defects with spontaneous CSF rhinorrhea and arachnoid herniation: imaging findings and correlation with endoscopic sinus surgery in 27 patients. AJNR Am J Neuroradiol 2008;29:542–9.Google Scholar
Souliere, CR, Jr., Langman, AW. Combined mastoid/middle cranial fossa repair of temporal bone encephalocele. Skull Base Surg 1998;8:185–9.Google Scholar
Byrne, RW, Smith, AP, Roh, D, Kanner, A. Occult middle fossa encephaloceles in patients with temporal lobe epilepsy. World Neurosurg 2010;73:541–6.Google Scholar
Gacek, RR, Gacek, MR, Tart, R. Adult spontaneous cerebrospinal fluid otorrhea: diagnosis and management. Am J Otol 1999;20:770–6.Google Scholar
Stucken, EZ, Selesnick, SH, Brown, KD. The role of obesity in spontaneous temporal bone encephaloceles and CSF leak. Otol Neurotol 2012;33:1412–17.Google Scholar
Sugerman, HJ, DeMaria, EJ, Felton, WL, 3rd, Nakatsuka, M, Sismanis, A. Increased intra-abdominal pressure and cardiac filling pressures in obesity-associated pseudotumor cerebri. Neurology 1997;49:507–11.CrossRefGoogle ScholarPubMed
Bakhsheshian, J, Hwang, MS, Friedman, M. Association between obstructive sleep apnea and spontaneous cerebrospinal fluid leaks: a systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg 2015;141:733–8.Google Scholar
Woodworth, BA, Prince, A, Chiu, AG, et al. Spontaneous CSF leaks: a paradigm for definitive repair and management of intracranial hypertension. Otolaryngol Head Neck Surg 2008;138:715–20.Google Scholar
Braca, JA, 3rd, Marzo, S, Prabhu, VC. Cerebrospinal fluid leakage from tegmen tympani defects repaired via the middle cranial fossa approach. J Neurol Surg B Skull Base 2013;74:103–7.Google Scholar
Parisier, SC. The middle cranial fossa approach to the internal auditory canal – an anatomical study stressing critical distances between surgical landmarks. Laryngoscope 1977;87:120.Google Scholar
Toth, M, Helling, K, Baksa, G, Mann, W. Localization of congenital tegmen tympani defects. Otol Neurotol 2007;28:1120–3.Google Scholar
Semaan, MT, Gilpin, DA, Hsu, DP, Wasman, JK, Megerian, CA. Transmastoid extradural-intracranial approach for repair of transtemporal meningoencephalocele: a review of 31 consecutive cases. Laryngoscope 2011;121:1765–72.Google Scholar
Rao, AK, Merenda, DM, Wetmore, SJ. Diagnosis and management of spontaneous cerebrospinal fluid otorrhea. Otol Neurotol 2005;26:1171–5.Google Scholar
Dutt, SN, Mirza, S, Irving, RM. Middle cranial fossa approach for the repair of spontaneous cerebrospinal fluid otorrhoea using autologous bone pate. Clin Otolaryngol Allied Sci 2001;26:117–23.CrossRefGoogle ScholarPubMed
Perez, E, Carlton, D, Alfarano, M, Smouha, E. Transmastoid repair of spontaneous cerebrospinal fluid leaks. J Neurol Surg B Skull Base 2018;79:451–7.Google Scholar
Mayeno, JK, Korol, HW, Nutik, SL. Spontaneous meningoencephalic herniation of the temporal bone: case series with recommended treatment. Otolaryngol Head Neck Surg 2004;130:486–9.Google Scholar
Gioacchini, FM, Cassandro, E, Alicandri-Ciufelli, M, et al. Surgical outcomes in the treatment of temporal bone cerebrospinal fluid leak: A systematic review. Auris Nasus Larynx 2018;45:903–10.Google Scholar
Kutz, JW, Jr., Husain, IA, Isaacson, B, Roland, PS. Management of spontaneous cerebrospinal fluid otorrhea. Laryngoscope 2008;118:2195–9.Google Scholar
Carlson, ML, Copeland, WR III, Driscoll, CL, et al. Temporal bone encephalocele and cerebrospinal fluid fistula repair utilizing the middle cranial fossa or combined mastoid-middle cranial fossa approach. J Neurosurg 2013;119:1314–22.Google Scholar
Brown, NE, Grundfast, KM, Jabre, A, Megerian, CA, O’Malley, BW Jr., Rosenberg, SI. Diagnosis and management of spontaneous cerebrospinal fluid-middle ear effusion and otorrhea. Laryngoscope 2004;114:800805.Google Scholar
Hoang, S, Ortiz Torres, MJ, Rivera, AL, Litofsky, NS. Middle cranial fossa approach to repair tegmen defects with autologous or alloplastic graft. World Neurosurg 2018;118:e10e17.Google Scholar
Sanna, M, Dispenza, F, Flanagan, S, De Stefano, A, Falcioni, M. Management of chronic otitis by middle ear obliteration with blind sac closure of the external auditory canal. Otol Neurotol 2008;29:1922.Google Scholar
Leonetti, JP, Marzo, S, Anderson, D, Origitano, T, Vukas, DD. Spontaneous transtemporal CSF leakage: a study of 51 cases. Ear Nose Throat J 2005;84:700,2–4, 6.Google Scholar
Wootten, CT, Kaylie, DM, Warren, FM, Jackson, CG. Management of brain herniation and cerebrospinal fluid leak in revision chronic ear surgery. Laryngoscope 2005;115:1256–61.Google Scholar
Lloyd, KM, DelGaudio, JM, Hudgins, PA. Imaging of skull base cerebrospinal fluid leaks in adults. Radiology 2008;248:725–36.Google Scholar
Gubbels, SP, Selden, NR, Delashaw, JB Jr., McMenomey, SO. Spontaneous middle fossa encephalocele and cerebrospinal fluid leakage: diagnosis and management. Otol Neurotol 2007;28:1131–9.Google Scholar
Bovo, R, Ceruti, S, Padovani, R, Martini, A. Temporal bone brain herniation. Otol Neurotol 2006;27:576–7.Google Scholar
De Foer, B, Vercruysse, JP, Bernaerts, A, et al. Detection of postoperative residual cholesteatoma with non-echo-planar diffusion-weighted magnetic resonance imaging. Otol Neurotol 2008;29:513–7.Google Scholar
Gonen, L, Handzel, O, Shimony, N, Fliss, DM, Margalit, N. Surgical management of spontaneous cerebrospinal fluid leakage through temporal bone defects–case series and review of the literature. Neurosurg Rev 2016;39:141–50; discussion 50.Google Scholar
Zanetti, DG, Werner, G, Gaini, L. Transmastoid repair of temporal meningoencephaloceles and cerebrospinal fluid otorrhea. Otorhinolaryngology Clinics: An International Journal 2011;3:3141.Google Scholar
Jackson, CG, Pappas, DG Jr., Manolidis, S, et al. Brain herniation into the middle ear and mastoid: concepts in diagnosis and surgical management. Am J Otol 1997;18:198205; discussion 206.Google Scholar
Zanoletti, E, Mazzoni, A, Martini, A, et al. Surgery of the lateral skull base: a 50-year endeavour. Acta Otorhinolaryngol Ital 2019;39:S1S146.Google Scholar
Sergi, B, Passali, GC, Picciotti, PM, De Corso, E, Paludetti, G. Transmastoid approach to repair meningoencephalic herniation in the middle ear. Acta Otorhinolaryngol Ital 2013;33:97101.Google Scholar
Scheich, M, Ginzkey, C, Ehrmann Muller, D, Shehata Dieler, W, Hagen, R. Complications of the Middle Cranial Fossa Approach for Acoustic Neuroma Removal. J Int Adv Otol 2017;13:186–90.Google Scholar
Scheich, M, Ginzkey, C, Ehrmann-Muller, D, Shehata-Dieler, W, Hagen, R. Management of CSF leakage after microsurgery for vestibular schwannoma via the middle cranial fossa approach. Eur Arch Otorhinolaryngol 2016;273:2975–81.Google Scholar
Teachey, W, Grayson, J, Cho, DY, Riley, KO, Woodworth, BA. Intervention for elevated intracranial pressure improves success rate after repair of spontaneous cerebrospinal fluid leaks. Laryngoscope 2017;127:2011–16.Google Scholar
Governale, LS, Fein, N, Logsdon, J, Black, PM. Techniques and complications of external lumbar drainage for normal pressure hydrocephalus. Neurosurgery 2008;63:379–84; discussion 384.Google Scholar
Kim, L, Wisely, CE, Dodson, EE. Transmastoid approach to spontaneous temporal bone cerebrospinal fluid leaks: hearing improvement and success of repair. Otolaryngol Head Neck Surg 2014;150:472–8.Google Scholar

References

Oghalai, J.S., and Driscoll, C.L.W., Atlas of Neurotologic and Lateral Skull Base Surgery. 1st ed. 2016: Berlin, Heidelberg: Springer.Google Scholar
Sanna, M., et al., Atlas of Microsurgery of the Lateral Skull Base. 2nd ed. 2007: New York: Thieme.Google Scholar
Roberson, J.B., Jr., Brackmann, D.E., and Fayad, J.N., Complications of venous insufficiency after neurotologic-skull base surgery. Am J Otol, 2000. 21(5): pp. 701–5.Google ScholarPubMed
House, W.F., and Hitselberger, W.E., The transcochlear approach to the skull base. Arch Otolaryngol, 1976. 102(6): pp. 334–42.Google Scholar
Goddard, J.C., and McRackan, T.R., Transcochlear approach to cerebellopontine angle lesions, in Otologic Surgery, Brackmann, D.E., Shelton, C., and Arriaga, M.A., eds. 2016: Amsterdam: Elsevier; pp. 557–66.Google Scholar
Chawla, S, and Bowman, J.B., The transotic and transcochlear approaches. Operative Techniques in Otolaryngology – Head and Neck Surgery, 2013. 24(3): pp. 157–62.Google Scholar
Angeli, S.I., De la Cruz, A., and Hitselberger, W., The transcochlear approach revisited. Otology & Neurotology, 2001. 22(5): pp. 690–5.Google Scholar
Sanna, M., et al., Surgical management of jugular foramen schwannomas with hearing and facial nerve function preservation: a series of 23 cases and review of the literature. Laryngoscope, 2006. 116(12): pp. 2191–204.Google Scholar
Fisch, U., Infratemporal fossa approach to tumors of the temporal bone and base of the skull. Journal of Laryngology & Otology, 1978. 92(11): pp. 949–67.Google Scholar
Chan, J., et al., Anterior and subtemporal approaches to the infratemporal fossa, in Otologic Surgery, Brackmann, D.E., Shelton, C., and Arriaga, M.A., eds. 2016: Amsterdam: Elsevier; pp. 557–66.Google Scholar
Anderson, S.B., and Panizza, B.M., Petro-occipital transsigmoid approach. Operative Techniques in Otolaryngology – Head and Neck Surgery, 2013. 24(3): pp. 163–8.Google Scholar
Mazzoni, A., et al., Lower cranial nerve schwannomas involving the jugular foramen. Annals of Otology, Rhinology & Laryngology, 1997. 106(5): pp. 370–9.Google Scholar
Mazzoni, A., and Sanna, M., A posterolateral approach to the skull base: the petro-occipital transsigmoid approach. Skull Base Surg, 1995. 5(3): pp. 157–67.Google Scholar
Mann, W.J., et al., Transsigmoid approach for tumors of the jugular foramen. Skull Base Surg, 1991. 1(3): pp. 137–41.Google Scholar
Tucci, D.L., Kaylie, D.M., and Fukushima, T., Extreme lateral infrajugular transcondylar approach for resection of skull base tumors, in Otologic Surgery, Brackmann, D.E., Shelton, C., and Arriaga, M.A., eds. 2016: Amsterdam: Elsevier; pp. 634–45.Google Scholar
Lazard, D.S., et al., Early complications and symptoms of cerebellopontine angle tumor surgery: a prospective analysis. Eur Arch Otorhinolaryngol, 2011. 268(11): pp. 1575–82.Google Scholar
Darrouzet, V., et al., Vestibular schwannoma surgery outcomes: our multidisciplinary experience in 400 cases over 17 years. Laryngoscope, 2004. 114(4): pp. 681–8.Google Scholar
Samii, M., and Matthies, C., Management of 1000 vestibular schwannomas (acoustic neuromas): the facial nerve–preservation and restitution of function. Neurosurgery, 1997. 40(4): pp. 684–94; discussion 694–5.Google Scholar
Schick, B., and Dlugaiczyk, J., Surgery of the ear and the lateral skull base: pitfalls and complications. GMS Current Topics in Otorhinolaryngology, Head and Neck Surgery, 2013. 12: p. Doc05.Google Scholar
Russel, A., et al., Can the risks of cerebrospinal fluid leak after vestibular schwannoma surgery be predicted? Otol Neurotol, 2017. 38(2): pp. 248–52.Google Scholar
Fishman, A.J., et al., Prevention and management of cerebrospinal fluid leak following vestibular schwannoma surgery. The Laryngoscope, 2009. 114(3): pp. 501–5.Google Scholar
Heman-Ackah, S.E., J.G. Golfinos, and J.T. Roland, Management of surgical complications and failures in acoustic neuroma surgery. Otolaryngologic Clinics of North America, 2012. 45(2): pp. 455–70.Google Scholar
Teachey, W., et al., Intervention for elevated intracranial pressure improves success rate after repair of spontaneous cerebrospinal fluid leaks. The Laryngoscope, 2017. 127(9): pp. 2011–16.Google Scholar
Chaaban, M.R., et al., Acetazolamide for high intracranial pressure cerebrospinal fluid leaks. International Forum of Allergy & Rhinology, 2013. 3(9): pp. 718–21.Google Scholar
Rubin, R.C., et al., The production of cerebrospinal fluid in man and its modification by acetazolamide. J Neurosurg, 1966. 25(4): pp. 430–6.Google Scholar
Wilkinson, E.P., Brackmann, D.E., and Lupo, J.E., Management of postoperative cerebrospinal fluid leak, in Otologic Surgery, Brackmann, D.E., Shelton, C., and Arriaga, M.A., eds. 2016: Amsterdam: Elsevier; pp. 646–52.Google Scholar
Allen, K.P., et al., Lumbar subarachnoid drainage in cerebrospinal fluid leaks after lateral skull base surgery. Otol Neurotol, 2011. 32(9): pp. 1522–4.Google Scholar
Crowson, M.G., et al., Preoperative lumbar drain use during acoustic neuroma surgery and effect on CSF leak incidence. Ann Otol Rhinol Laryngol, 2016. 125(1): pp. 63–8.Google Scholar
Poe, D.S., et al., Long-term results after lateral cranial base surgery. Laryngoscope, 1991. 101(4 Pt 1): pp. 372–8.Google Scholar
Brackman, D., Kinney, S., and Fu, K., Glomus tumor: diagnosis and management. Head Neck Surg, 1987. 9(5): pp. 306–11.Google Scholar
Sanna, M., et al., Petrous bone cholesteatoma: classification, management and review of the literature. Audiol Neurootol, 2011. 16(2): pp. 124–36.Google Scholar
Russo, A., et al., Anterior and posterior facial nerve rerouting: a comparative study. Skull Base, 2003. 13(3): pp. 123–30.Google Scholar

Acknowledgments

The authors thank the staff of Neuroscience Publications at Barrow Neurological Institute for assistance with manuscript preparation.

Bambakidis, NC, Kakarla, UK, Kim, LJ, Nakaji, P, Porter, RW, Daspit, CP, et al. Evolution of surgical approaches in the treatment of petroclival meningiomas: a retrospective review. Neurosurgery. 2008;62(6 Suppl 3):1182–91.Google Scholar
Bernardo, A, Evins, AI, Visca, A, Stieg, PE. The intracranial facial nerve as seen through different surgical windows: an extensive anatomosurgical study. Neurosurgery. 2013;72(2 Suppl Operative):ons194–207.Google Scholar
Chanda, A, Nanda, A. Partial labyrinthectomy petrous apicectomy approach to the petroclival region: an anatomic and technical study. Neurosurgery. 2002;51(1):147–59; discussion 59–60.Google Scholar
Wu, CY, Lan, Q. Quantification of the presigmoid transpetrosal keyhole approach to petroclival region. Chin Med J (Engl). 2008;121(8):740–4.Google Scholar
Cho, CW, Al-Mefty, O. Combined petrosal approach to petroclival meningiomas. Neurosurgery. 2002;51(3):708–16; discussion 16–18.Google Scholar
Horgan, MA, Anderson, GJ, Kellogg, JX, Schwartz, MS, Spektor, S, McMenomey, SO, et al. Classification and quantification of the petrosal approach to the petroclival region. J Neurosurg. 2000;93(1):108–12.Google Scholar
Janjua, MB, Caruso, JP, Greenfield, JP, Souweidane, MM, Schwartz, TH. The combined transpetrosal approach: anatomic study and literature review. J Clin Neurosci. 2017;41:3640.Google Scholar
Miller, CG, van Loveren, HR, Keller, JT, Pensak, M, el-Kalliny, M, Tew, JM Jr. Transpetrosal approach: surgical anatomy and technique. Neurosurgery. 1993;33(3):461–9; discussion 9.Google Scholar
Miller, ME, Mastrodimos, B, Cueva, RA. Facial nerve function after the extended translabyrinthine approach. J Neurol Surg B Skull Base. 2015;76(1):16.Google Scholar
Yang, J, Zhang, F, Xu, A, Li, H, Ding, Z. Comparison of surgical exposure and maneuverability associated with microscopy and endoscopy in the retrolabyrinthine and transcrusal approaches to the retrochiasmatic region: a cadaveric study. Acta Neurochir (Wien). 2016;158(4):703–10.Google Scholar
Chang, SW, Wu, A, Gore, P, Beres, E, Porter, RW, Preul, MC, et al. Quantitative comparison of Kawase’s approach versus the retrosigmoid approach: implications for tumors involving both middle and posterior fossae. Neurosurgery. 2009;64(3 Suppl):ons44-51.Google Scholar
Mason, E, Rompaey, JV, Solares, CA, Figueroa, R, Prevedello, D. Subtemporal retrolabyrinthine (posterior petrosal) versus endoscopic endonasal approach to the petroclival region: an anatomical and computed tomography study. J Neurol Surg B Skull Base. 2016;77(3):231–7.Google Scholar
Xu, F, Karampelas, I, Megerian, CA, Selman, WR, Bambakidis, NC. Petroclival meningiomas: an update on surgical approaches, decision making, and treatment results. Neurosurg Focus. 2013;35(6):E11.Google Scholar
House, WF, Hitselberger, WE. The transcochlear approach to the skull base. Arch Otolaryngol. 1976;102(6):334–42.Google Scholar
House, WF, De la Cruz, A, Hitselberger, WE. Surgery of the skull base: transcochlear approach to the petrous apex and clivus. Otolaryngology. 1978;86(5):ORL-770–9.Google Scholar
Little, AS, Jittapiromsak, P, Crawford, NR, Deshmukh, P, Preul, MC, Spetzler, RF, et al. Quantitative analysis of exposure of staged orbitozygomatic and retrosigmoid craniotomies for lesions of the clivus with supratentorial extension. Neurosurgery. 2008;62(5 Suppl 2):ons318–23; discussion ons23–4.Google Scholar
Siwanuwatn, R, Deshmukh, P, Figueiredo, EG, Crawford, NR, Spetzler, RF, Preul, MC. Quantitative analysis of the working area and angle of attack for the retrosigmoid, combined petrosal, and transcochlear approaches to the petroclival region. J Neurosurg. 2006;104(1):137–42.Google Scholar
Lemole, GM, Jr., Henn, JS, Zabramski, JM, Spetzler, RF. Modifications to the orbitozygomatic approach. Technical note. J Neurosurg. 2003;99(5):924–30.Google Scholar
Bambakidis, NC, Kakarla, UK, Kim, LJ, Nakaji, P, Porter, RW, Daspit, CP, et al. Evolution of surgical approaches in the treatment of petroclival meningiomas: a retrospective review. Neurosurgery. 2008;62(6 Suppl 3):1182–91.Google Scholar
Bernardo, A, Evins, AI, Visca, A, Stieg, PE. The intracranial facial nerve as seen through different surgical windows: an extensive anatomosurgical study. Neurosurgery. 2013;72(2 Suppl Operative):ons194–207.Google Scholar
Chanda, A, Nanda, A. Partial labyrinthectomy petrous apicectomy approach to the petroclival region: an anatomic and technical study. Neurosurgery. 2002;51(1):147–59; discussion 59–60.Google Scholar
Wu, CY, Lan, Q. Quantification of the presigmoid transpetrosal keyhole approach to petroclival region. Chin Med J (Engl). 2008;121(8):740–4.Google Scholar
Cho, CW, Al-Mefty, O. Combined petrosal approach to petroclival meningiomas. Neurosurgery. 2002;51(3):708–16; discussion 16–18.Google Scholar
Horgan, MA, Anderson, GJ, Kellogg, JX, Schwartz, MS, Spektor, S, McMenomey, SO, et al. Classification and quantification of the petrosal approach to the petroclival region. J Neurosurg. 2000;93(1):108–12.Google Scholar
Janjua, MB, Caruso, JP, Greenfield, JP, Souweidane, MM, Schwartz, TH. The combined transpetrosal approach: anatomic study and literature review. J Clin Neurosci. 2017;41:3640.Google Scholar
Miller, CG, van Loveren, HR, Keller, JT, Pensak, M, el-Kalliny, M, Tew, JM Jr. Transpetrosal approach: surgical anatomy and technique. Neurosurgery. 1993;33(3):461–9; discussion 9.Google Scholar
Miller, ME, Mastrodimos, B, Cueva, RA. Facial nerve function after the extended translabyrinthine approach. J Neurol Surg B Skull Base. 2015;76(1):16.Google Scholar
Yang, J, Zhang, F, Xu, A, Li, H, Ding, Z. Comparison of surgical exposure and maneuverability associated with microscopy and endoscopy in the retrolabyrinthine and transcrusal approaches to the retrochiasmatic region: a cadaveric study. Acta Neurochir (Wien). 2016;158(4):703–10.Google Scholar
Chang, SW, Wu, A, Gore, P, Beres, E, Porter, RW, Preul, MC, et al. Quantitative comparison of Kawase’s approach versus the retrosigmoid approach: implications for tumors involving both middle and posterior fossae. Neurosurgery. 2009;64(3 Suppl):ons44-51.Google Scholar
Mason, E, Rompaey, JV, Solares, CA, Figueroa, R, Prevedello, D. Subtemporal retrolabyrinthine (posterior petrosal) versus endoscopic endonasal approach to the petroclival region: an anatomical and computed tomography study. J Neurol Surg B Skull Base. 2016;77(3):231–7.Google Scholar
Xu, F, Karampelas, I, Megerian, CA, Selman, WR, Bambakidis, NC. Petroclival meningiomas: an update on surgical approaches, decision making, and treatment results. Neurosurg Focus. 2013;35(6):E11.Google Scholar
House, WF, Hitselberger, WE. The transcochlear approach to the skull base. Arch Otolaryngol. 1976;102(6):334–42.Google Scholar
House, WF, De la Cruz, A, Hitselberger, WE. Surgery of the skull base: transcochlear approach to the petrous apex and clivus. Otolaryngology. 1978;86(5):ORL-770–9.Google Scholar
Little, AS, Jittapiromsak, P, Crawford, NR, Deshmukh, P, Preul, MC, Spetzler, RF, et al. Quantitative analysis of exposure of staged orbitozygomatic and retrosigmoid craniotomies for lesions of the clivus with supratentorial extension. Neurosurgery. 2008;62(5 Suppl 2):ons318–23; discussion ons23–4.Google Scholar
Siwanuwatn, R, Deshmukh, P, Figueiredo, EG, Crawford, NR, Spetzler, RF, Preul, MC. Quantitative analysis of the working area and angle of attack for the retrosigmoid, combined petrosal, and transcochlear approaches to the petroclival region. J Neurosurg. 2006;104(1):137–42.Google Scholar
Lemole, GM, Jr., Henn, JS, Zabramski, JM, Spetzler, RF. Modifications to the orbitozygomatic approach. Technical note. J Neurosurg. 2003;99(5):924–30.Google Scholar

References

Bambakidis, NC, Kakarla, UK, Kim, LJ, Nakaji, P, Porter, RW, Daspit, CP, et al. Evolution of surgical approaches in the treatment of petroclival meningiomas: a retrospective review. Neurosurgery. 2008;62(6 Suppl 3):1182–91.Google Scholar
Bernardo, A, Evins, AI, Visca, A, Stieg, PE. The intracranial facial nerve as seen through different surgical windows: an extensive anatomosurgical study. Neurosurgery. 2013;72(2 Suppl Operative):ons194–207.Google Scholar
Chanda, A, Nanda, A. Partial labyrinthectomy petrous apicectomy approach to the petroclival region: an anatomic and technical study. Neurosurgery. 2002;51(1):147–59; discussion 59–60.Google Scholar
Wu, CY, Lan, Q. Quantification of the presigmoid transpetrosal keyhole approach to petroclival region. Chin Med J (Engl). 2008;121(8):740–4.Google Scholar
Cho, CW, Al-Mefty, O. Combined petrosal approach to petroclival meningiomas. Neurosurgery. 2002;51(3):708–16; discussion 16–18.Google Scholar
Horgan, MA, Anderson, GJ, Kellogg, JX, Schwartz, MS, Spektor, S, McMenomey, SO, et al. Classification and quantification of the petrosal approach to the petroclival region. J Neurosurg. 2000;93(1):108–12.Google Scholar
Janjua, MB, Caruso, JP, Greenfield, JP, Souweidane, MM, Schwartz, TH. The combined transpetrosal approach: anatomic study and literature review. J Clin Neurosci. 2017;41:3640.Google Scholar
Miller, CG, van Loveren, HR, Keller, JT, Pensak, M, el-Kalliny, M, Tew, JM Jr. Transpetrosal approach: surgical anatomy and technique. Neurosurgery. 1993;33(3):461–9; discussion 9.Google Scholar
Miller, ME, Mastrodimos, B, Cueva, RA. Facial nerve function after the extended translabyrinthine approach. J Neurol Surg B Skull Base. 2015;76(1):16.Google Scholar
Yang, J, Zhang, F, Xu, A, Li, H, Ding, Z. Comparison of surgical exposure and maneuverability associated with microscopy and endoscopy in the retrolabyrinthine and transcrusal approaches to the retrochiasmatic region: a cadaveric study. Acta Neurochir (Wien). 2016;158(4):703–10.Google Scholar
Chang, SW, Wu, A, Gore, P, Beres, E, Porter, RW, Preul, MC, et al. Quantitative comparison of Kawase’s approach versus the retrosigmoid approach: implications for tumors involving both middle and posterior fossae. Neurosurgery. 2009;64(3 Suppl):ons44-51.Google Scholar
Mason, E, Rompaey, JV, Solares, CA, Figueroa, R, Prevedello, D. Subtemporal retrolabyrinthine (posterior petrosal) versus endoscopic endonasal approach to the petroclival region: an anatomical and computed tomography study. J Neurol Surg B Skull Base. 2016;77(3):231–7.Google Scholar
Xu, F, Karampelas, I, Megerian, CA, Selman, WR, Bambakidis, NC. Petroclival meningiomas: an update on surgical approaches, decision making, and treatment results. Neurosurg Focus. 2013;35(6):E11.Google Scholar
House, WF, Hitselberger, WE. The transcochlear approach to the skull base. Arch Otolaryngol. 1976;102(6):334–42.Google Scholar
House, WF, De la Cruz, A, Hitselberger, WE. Surgery of the skull base: transcochlear approach to the petrous apex and clivus. Otolaryngology. 1978;86(5):ORL-770–9.Google Scholar
Little, AS, Jittapiromsak, P, Crawford, NR, Deshmukh, P, Preul, MC, Spetzler, RF, et al. Quantitative analysis of exposure of staged orbitozygomatic and retrosigmoid craniotomies for lesions of the clivus with supratentorial extension. Neurosurgery. 2008;62(5 Suppl 2):ons318–23; discussion ons23–4.Google Scholar
Siwanuwatn, R, Deshmukh, P, Figueiredo, EG, Crawford, NR, Spetzler, RF, Preul, MC. Quantitative analysis of the working area and angle of attack for the retrosigmoid, combined petrosal, and transcochlear approaches to the petroclival region. J Neurosurg. 2006;104(1):137–42.Google Scholar
Lemole, GM, Jr., Henn, JS, Zabramski, JM, Spetzler, RF. Modifications to the orbitozygomatic approach. Technical note. J Neurosurg. 2003;99(5):924–30.Google Scholar

References

Fujitsu, K, Kitsuta, Y, Takemoto, Y, Matsunaga, S, Tateishi, K. Combined pre- and retrosigmoid approach for petroclival meningiomas with the aid of a rotatable head frame: peri-auricular three-quarter twist-rotation approach: technical note. Skull Base. 2004;14(4):209–15.Google Scholar
Rehder, R, Cohen, AR. Endoscope-assisted microsurgical subtemporal keyhole approach to the posterolateral suprasellar region and basal cisterns. World Neurosurgery. 2017 Jul 1;103:114–21.Google Scholar
Felbaum, D, Syed, HR, Ryan, JE, Jean, WC, Anaizi, A. Endoscope-assisted combined supracerebellar infratentorial and endoscopic transventricular approach to the pineal region: a technical note. Cureus. 2016 Mar;8(3).Google Scholar
Taniguchi, M, Takimoto, H, Yoshimine, T, Shimada, N, Miyao, Y, Hirata, M, Maruno, M, Kato, A, Kohmura, E, Hayakawa, T. Application of a rigid endoscope to the microsurgical management of 54 cerebral aneurysms: results in 48 patients. Journal of Neurosurgery. 1999 Aug 1;91(2):231–7.Google Scholar
Russell, SM, JT Jr., Roland, Golfinos, JG. Retrolabyrinthine craniectomy: the unsung hero of skull base surgery. Skull Base. 2004 Feb;14(1):63.Google Scholar
Chotai, S, Liu, Y, Qi, S. Review of surgical anatomy of the tumors involving cavernous sinus. Asian Journal of Neurosurgery. 2018 Jan;13(1):1.Google Scholar
Yoon, N, Shah, A, Couldwell, WT, Kalani, MY, Park, MS. Preoperative embolization of skull base meningiomas: current indications, techniques, and pearls for complication avoidance. Neurosurgical Focus. 2018 Apr 1;44(4):E5.Google Scholar
Truong, HQ, Sun, X, Celtikci, E, Borghei-Razavi, H, Wang, EW, Snyderman, CH, Gardner, PA, Fernandez-Miranda, JC. Endoscopic anterior transmaxillary “transalisphenoid” approach to Meckel’s cave and the middle cranial fossa: an anatomical study and clinical application. Journal of Neurosurgery. 2018 Feb 2;130(1):227–37.Google Scholar
Terasaka, S, Asaoka, K, Kobayashi, H, Sugiyama, T, Yamaguchi, S. Dural opening/removal for combined petrosal approach. Skull Base. 2011 Mar;21(2):123.Google Scholar
Van Gompel, JJ, Alikhani, P, Youssef, AS, Van Loveren, HR, Boyev, KP, Agazzi, S. Anterior petrosectomy: consecutive series of 46 patients with attention to approach-related complications. Journal of Neurological Surgery. Part B, Skull Base. 2015 Sep;76(5):379.Google Scholar
Fernández-de Thomas, RJ, De Jesus, O. Craniotomy. InStatPearls, Jul 11, 2020. StatPearls Publishing.Google Scholar

References

Kumar, R, Wani, AA. Unusual tumors of the posterior fossa skull base. Skull Base. 2006 May;16(2):75.Google Scholar
Agarwal, V, Babu, R, Grier, J, Adogwa, O, Back, A, Friedman, AH, Fukushima, T, Adamson, C. Cerebellopontine angle meningiomas: postoperative outcomes in a modern cohort. Neurosurgical Focus. 2013 Dec 1;35(6):E10.Google Scholar
Martínez, R, Vaquero, J, Areitio, E, Bravo, G. Meningiomas of the posterior fossa. Surgical Neurology. 1983 Mar 1;19(3):237–43.Google Scholar
Meyer, FB, Ebersold, MJ, Reese, DF. Benign tumors of the foramen magnum. Journal of Neurosurgery. 1984 Jul 1;61(1):136–42.Google Scholar
Sampson, JH, E Jr., Rossitch, Young, JN, Lane, KL, Friedman, AH. Solitary eosinophilic granuloma invading the clivus of an adult: case report. Neurosurgery. 1992 Oct 1;31(4):755–7.Google Scholar
Thust, SC, Yousry, T. Imaging of skull base tumours. Reports of Practical Oncology & Radiotherapy. 2016 Jul 1;21(4):304–18.Google Scholar
Pacak, K. Stressor-specific activation of the hypothalamic-pituitary adrenocortical axis. Physiological Research. 2000 Jan 1;49:S1118.Google Scholar
Katsuta, T, AL Jr., Rhoton, Matsushima, T. The jugular foramen: microsurgical anatomy and operative approaches. Neurosurgery. 1997 Jul 1;41(1):149202.Google Scholar

References

House, WF. Surgical exposure of the internal auditory canal and its contents through the middle, cranial fossa. The Laryngoscope. 1961;71:1363–85.Google Scholar
Hitselberger, WE, House, WF. A combined approach to the cerebellopontine angle. A suboccipital-petrosal approach. Archives of Otolaryngology. 1966;84(3):267–85.Google Scholar
Morrison, AW, King, TT. Experiences with a translabyrinthine-transtentorial approach to the cerebellopontine angle. Technical note. J Neurosurg. 1973;38(3):382–90.Google Scholar
Hakuba, A, Nishimura, S, Tanaka, K, Kishi, H, Nakamura, T. Clivus meningioma: six cases of total removal. Neurologia Medico-Chirurgica. 1977;17(1 Pt 1):6377.Google Scholar
Hakuba, A, Nishimura, S. Total removal of clivus meningiomas and the operative results. Neurologia Medico-Chirurgica. 1981;21(1):5973.Google Scholar
Hakuba, A, Nishimura, S, Jang, BJ. A combined retroauricular and preauricular transpetrosal-transtentorial approach to clivus meningiomas. Surgical Neurology. 1988;30(2):108–16.Google Scholar
Grossi, PM, Nonaka, Y, Watanabe, K, Fukushima, T. The history of the combined supra- and infratentorial approach to the petroclival region. Neurosurgical Focus. 2012;33(2):E8.Google Scholar
Day, JD, Fukushima, T, Giannotta, SL. Microanatomical study of the extradural middle fossa approach to the petroclival and posterior cavernous sinus region: description of the rhomboid construct. Neurosurgery. 1994;34(6):1009–16; discussion 16.Google Scholar
Fukushima, T. Combined supra- and infra-parapetrosal approach for petroclival lesions. Surgery of Cranial Base Tumors. 1993;39:661–9.Google Scholar
Couldwell, WT, Fukushima, T, Giannotta, SL, Weiss, MH. Petroclival meningiomas: surgical experience in 109 cases. J Neurosurg. 1996;84(1):20–8.Google Scholar
Little, KM, Friedman, AH, Sampson, JH, Wanibuchi, M, Fukushima, T. Surgical management of petroclival meningiomas: defining resection goals based on risk of neurological morbidity and tumor recurrence rates in 137 patients. Neurosurgery. 2005;56(3):546–59; discussion 559.Google Scholar
Kusumi, M, Fukushima, T, Mehta, AI, Aliabadi, H, Nonaka, Y, Friedman, AH, et al. Tentorial detachment technique in the combined petrosal approach for petroclival meningiomas. J Neurosurg. 2012;116(3):566–73.Google Scholar
Kusumi, M, Fukushima, T, Aliabadi, H, Mehta, AI, Noro, S, Rosen, CL, et al. Microplate-bridge technique for watertight dural closures in the combined petrosal approach. Neurosurgery. 2012;70(2 Suppl Operative):264–9.Google Scholar
Fukushima, TN. Fukushima Manual of Skull Base Dissection 3rd ed. AF-Neuro Video.Google Scholar

References

Ansari, SF, Young, RL, Bohnstedt, BN, Cohen-Gadol, AA. The extended supracerebellar transtentorial approach for resection of medial tentorial meningiomas. Surg Neurol Int 2014;5:35.Google Scholar
Campero, A, Troccoli, G, Martins, C et al. Microsurgical approaches to the medial temporal region: an anatomical study. Neurosurgery 2006;59:ons279308.Google Scholar
Choudhri, O, Davies, J, Lawton, MT. The supracerebellar-transtentorial approach to vascular lesions in the inferomedial temporal lobe: 3-dimensional operative video. Oper Neurosurg 2017;13(4):536.Google Scholar
de Oliveira, JG, Parraga, RG, Chaddad-Neto, F, Ribas, GC, de Oliveira, EPL. Supracerebellar transtentorial approach – resection of the tentorium instead of an opening – to provide broad exposure of the mediobasal temporal lobe: anatomical aspects and surgical applications. J Neurosurg 2012;116:764–72.Google Scholar
Goel, A, Shah, A. Lateral supracerebellar transtentorial approach to a middle fossa epidermoid tumor. J Clin Neurosci 2010;17(3):372–3.Google Scholar
Harput, MV, Ture, U. The paramedian supracerebellar-transtentorial approach to remove a posterior fusiform gyrus arteriovenous malformation. Neurosurg Focus 2017;43(Suppl 1):V7Google Scholar
Izci, Y, Seckin, H, Ates, O, Baskaya, MK. Supracerebellar transtentorial transcollateral sulcus approach to the atrium of the lateral ventricle: microsurgical anatomy and surgical technique in cadaveric dissections. Surg Neurol 2009;72(5):509–14.Google Scholar
Jeelani, Y, Gokoglu, A, Anor, T, Al-Mefty, O, Cohen, AR. Transtentorial transcollateral sulcus approach to the ventricular atrium: an endoscope-assisted anatomical study. J Neurosurg 2017;126:1246–52.Google Scholar
Jittapiromsak, P, Deshmukh, P, Nakaji, P, Spetzler, RF, Preul, MC. Comparative analysis of posterior approaches to the medial temporal region: supracerebellar transtentorial versus occipital transtentorial. Neurosurgery 2009;64(3 Suppl):ons35–42.Google Scholar
Kalani, MYS, Lei, T, Martirosyan, NL, Oppenlander, ME, Spetzler, RF, Nakaji, P. Endoscope-assisted supracerebellar transtentorial approach to the posterior medial temporal lobe for resection of cavernous malformation. Neurosurg Focus 2016;40(Suppl 1):v18.Google Scholar
Manilha, R, Harput, VM, Ture, U. The paramedian supracerebellar-transtentorial approach for a tentorial incisura meningioma: 3-dimensional operative video. Oper Neurosurg 2018;15(1):102.Google Scholar
Robert, T, Weil, AG, Obaid, S, Al-Jehani, H, Bojanowski, MW. Supracerebellar transtentorial removal of a large tentorial tumor. Neurosurg Focus 2016;40(Suppl 1):V12.Google Scholar
Swanson, KI, Cikla, U, Uluc, K, Baskaya, MK. Supracerebellar transtentorial approach to the tentorial incisura and beyond. Neurosurg Focus 2016;40(Suppl 1):V11.Google Scholar
Ture, U, Harput, MV, Kaya, AH et al. The paramedian supracerebellar-transtentorial approach to the entire length of the mediobasal temporal region: an anatomical and clinical study. J Neurosurg 2012;116:773–91.Google Scholar
Villanueva, P, Louis, RG, Cutler, AR et al. Endoscopic and gravity-assisted resection of medial temporo-occipital lesions through a supracerebellar transtentorial approach: technical notes with case illustrations. Oper Neurosurg 2015;11(4):475483.Google Scholar
Voigt, K, Yasargil, MG. Cerebral cavernous haemangiomas or cavernomas. Incidence, pathology, localization, diagnosis, clinical features and treatment. Review of the literature and report of an unusual case. Neurochirurgia 1976;19(2):5968.Google Scholar

References

Ivanova, MV, Isaev, DY, Dragoy, OV, Akinina, YS, Petrushevskiy, AG, Fedina, ON, et al. Diffusion-tensor imaging of major white matter tracts and their role in language processing in aphasia. Cortex 2016; 85: 165–81.Google Scholar
Chang, EF, Raygor, KP, Berger, MS. Contemporary model of language organization: an overview for neurosurgeons. Journal of Neurosurgery 2015; 122(2): 250–61.Google Scholar
Toba, MN, Migliaccio, R, Batrancourt, B, Bourlon, C, Duret, C, Pradat-Diehl, P, et al. Common brain networks for distinct deficits in visual neglect. A combined structural and tractography MRI approach. Neuropsychologia 2018; 115: 167–78.Google Scholar
Vaessen, MJ, Saj, A, Lovblad, KO, Gschwind, M, Vuilleumier, P. Structural white-matter connections mediating distinct behavioral components of spatial neglect in right brain-damaged patients. Cortex 2016; 77: 5468.Google Scholar
Urbanski, M, Thiebaut de Schotten, M, Rodrigo, S, Catani, M, Oppenheim, C, Touze, E, et al. Brain networks of spatial awareness: evidence from diffusion tensor imaging tractography. Journal of Neurology, Neurosurgery, and Psychiatry 2008; 79(5): 598601.Google Scholar
Ferrer, VP, Moura Neto, V, Mentlein, R. Glioma infiltration and extracellular matrix: key players and modulators. Glia 2018.Google Scholar
Hervey-Jumper, SL, Li, J, Lau, D, Molinaro, AM, Perry, DW, Meng, L, et al. Awake craniotomy to maximize glioma resection: methods and technical nuances over a 27-year period. Journal of Neurosurgery 2015; 123(2): 325–39.Google Scholar
Conner, AK, Burks, JD, Baker, CM, Smitherman, AD, Pryor, DP, Glenn, CA, et al. Method for temporal keyhole lobectomies in resection of low- and high-grade gliomas. Journal of Neurosurgery 2018; 128(5): 1388–95.Google Scholar
Glenn, C, Conner, AK, Rahimi, M, Briggs, RG, Baker, C, Sughrue, M. Common disconnections in glioma surgery: an anatomic description. Cureus 2017; 9(10): e1778.Google Scholar
Charras, P, Herbet, G, Deverdun, J, de Champfleur, NM, Duffau, H, Bartolomeo, P, et al. Functional reorganization of the attentional networks in low-grade glioma patients: a longitudinal study. Cortex 2015; 63: 2741.Google Scholar
Mandonnet, E, Sarubbo, S, Duffau, H. Proposal of an optimized strategy for intraoperative testing of speech and language during awake mapping. Neurosurgical Review 2017; 40(1): 2935.Google Scholar
Martino, J, Vergani, F, Robles, SG, Duffau, H. New insights into the anatomic dissection of the temporal stem with special emphasis on the inferior fronto-occipital fasciculus: implications in surgical approach to left mesiotemporal and temporoinsular structures. Neurosurgery 2010; 66(3 Suppl Operative): 412.Google Scholar
Ghareeb, F, Duffau, H. Intractable epilepsy in paralimbic Word Health Organization Grade II gliomas: should the hippocampus be resected when not invaded by the tumor? Journal of Neurosurgery 2012; 116(6): 1226–34.Google Scholar
Conner, AK, Baker, CM, Briggs, RG, Burks, JD, Glenn, CA, Smitherman, AD, et al. A technique for resecting occipital pole gliomas using a keyhole lobectomy. World Neurosurgery 2017; 106: 707–14.Google Scholar
Mori, S, Kaufmann, WE, Davatzikos, C, Stieltjes, B, Amodei, L, Fredericksen, K, et al. Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magnetic Resonance in Medicine 2002; 47(2): 215–23.Google Scholar
Baker, CM, Burks, JD, Briggs, RG, Conner, AK, Glenn, CA, Sali, G, et al. A connectomic atlas of the human cerebrum. Chapter 1: introduction, methods, and significance. Operative Neurosurgery 2018; 15(Suppl 1): s1–9.Google Scholar
Conner, AK, Briggs, RG, Rahimi, M, Sali, G, Baker, CM, Burks, JD, et al. A connectomic atlas of the human cerebrum. Chapter 10: tractographic description of the superior longitudinal fasciculus. Operative Neurosurgery 2018; 15(Suppl 1): s407–22.Google Scholar
Sali, G, Briggs, RG, Conner, AK, Rahimi, M, Baker, CM, Burks, JD, et al. A connectomic atlas of the human cerebrum. Chapter 11: tractographic description of the inferior longitudinal fasciculus. Operative Neurosurgery 2018; 15(Suppl 1): s423–8.Google Scholar
Baker, CM, Burks, JD, Briggs, RG, Stafford, J, Conner, AK, Glenn, CA, et al. A connectomic atlas of the human cerebrum. Chapter 9: the occipital lobe. Operative Neurosurgery 2018; 15(Suppl 1): S372–406.Google Scholar
Duffau, H. A new concept of diffuse (low-grade) glioma surgery. Advances and Technical Standards in Neurosurgery 2012; 38: 327.Google Scholar
Hebb, AO, Yang, T, Silbergeld, DL. The sub-pial resection technique for intrinsic tumor surgery. Surgical Neurology International 2011; 2: 180.Google Scholar

References

Patchell, RA, Tibbs, PA, Walsh, JW, Dempsey, RJ, Maruyama, Y, Kryscio, RJ, Markesbery, WR, Macdonald, JS, Young, B (1990) A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 322: 494500.Google Scholar
Hall, WA, Djalilian, HR, Nussbaum, ES, Cho, KH (2000) Long-term survival with metastatic cancer to the brain. Med Oncol 17: 279–86.Google Scholar
Kalkanis, SN, Kondziolka, D, Gaspar, LE, Burri, SH, Asher, AL, Cobbs, CS, Ammirati, M, Robinson, PD, Andrews, DW, Loeffler, JS, McDermott, M, Mehta, MP, Mikkelsen, T, Olson, JJ, Paleologos, NA, Patchell, RA, Ryken, TC, Linskey, ME (2010) The role of surgical resection in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 96: 3343.Google Scholar
Kondziolka, D, Parry, P V., Lunsford, LD, Kano, H, Flickinger, JC, Rakfal, S, Arai, Y, Loeffler, JS, Rush, S, Knisely, JPS, Sheehan, J, Friedman, W, Tarhini, AA, Francis, L, Lieberman, F, Ahluwalia, MS, Linskey, ME, McDermott, M, Sperduto, P, Stupp, R (2013) The accuracy of predicting survival in individual patients with cancer. J Neurosurg 120: 2430.Google Scholar
Panciani, P, Buffoni, L, Ronchetti, G, Spena, G, Tartara, F, Buglione, M, Pagano, M, Ducati, A, Fontanella, M, Garbossa, D, Agnoletti, A, Mencarani, C (2014) Surgery in cerebral metastases: are numbers so important? J Cancer Res Ther 10: 79.Google Scholar
Paek, SH, Audu, PB, Sperling, MR, Cho, J, Andrews, DW (2005) Reevaluation of surgery for the treatment of brain metastases: review of 208 patients with single or multiple brain metastases treated at one institution with modern neurosurgical techniques. Neurosurgery 56: 1021–33.Google Scholar
Baker, CM, Glenn, CA, Briggs, RG, Burks, JD, Smitherman, AD, Conner, AK, Williams, AE, Malik, MU, Algan, O, Sughrue, ME (2017) Simultaneous resection of multiple metastatic brain tumors with multiple keyhole craniotomies. World Neurosurg 106: 359–67.Google Scholar
Hassaneen, W, Levine, NB, Suki, D, Salaskar, AL, de Moura Lima, A, McCutcheon, IE, Prabhu, SS, Lang, FF, DeMonte, F, Rao, G, Weinberg, JS, Wildrick, DM, Aldape, KD, Sawaya, R (2010) Multiple craniotomies in the management of multifocal and multicentric glioblastoma. J Neurosurg 114: 576–84.Google Scholar
Hong, N, Yoo, H, Gwak, HS, Shin, SH, Lee, SH (2014) Outcome of surgical resection of symptomatic cerebral lesions in non-small cell lung cancer patients with multiple brain metastases. Brain Tumor Res Treat 1: 64.Google Scholar
Teo, C, Sughrue, ME (2015) Principles and Practice of Keyhole Brain Surgery. Georg Thieme Verlag, Stuttgart.Google Scholar
Gazzeri, R, Nalavenkata, S, Teo, C (2014) Minimally invasive key-hole approach for the surgical treatment of single and multiple brain metastases. Clin Neurol Neurosurg 123: 117–26.Google Scholar
Auslands, K, Apškalne, D, Bicāns, K, Ozols, R, Ozoliņš, H (2012) Postoperative survival in patients with multiple brain metastases. Medicina 48: 281–5.Google Scholar
Bindal, RK, Sawaya, R, Leavens, ME, Lee, JJ (2009) Surgical treatment of multiple brain metastases. J Neurosurg 79: 210–16.Google Scholar
Stark, AM, Tscheslog, H, Buhl, R, Held-Feindt, J, Mehdorn, HM (2005) Surgical treatment for brain metastases: prognostic factors and survival in 177 patients. Neurosurg Rev 28: 115–19.Google Scholar
Pollock, BE, Brown, PD, Foote, RL, Stafford, SL, Schomberg, PJ (2003) Properly selected patients with multiple brain metastases may benefit from aggressive treatment of their intracranial disease. J Neurooncol 61: 7380.Google Scholar
Agboola, O, Benoit, B, Cross, P, Da Silva, V, Esche, B, Lesiuk, H, Gonsalves, C (1998) Prognostic factors derived from recursive partition analysis (RPA) of Radiation Therapy Oncology Group (RTOG) brain metastases trials applied to surgically resected and irradiated brain metastatic cases. Int J Radiat Oncol Biol Phys 42: 155–9.Google Scholar
Lacroix, M, AbiSaid, D, Fourney, DR, Gokaslan, ZL, Shi, W, DeMonte, F, et al. (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95: 190–8.Google Scholar
Buckner, JC (2003) Factors influencing survival in high-grade gliomas. Semin Oncol 30 (6 Suppl 19): 1014.Google Scholar
Laws, ER, Parney, IF, Huang, W, Anderson, F, Morris, AM, Asher, A, et al. (2003) Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. J Neurosurg 99: 467–73.Google Scholar
Bonney, PA, Conner, AK, Boettcher, LB, Cheema, AA, Glenn, CA, Smitherman, AD, Pittman, NA, Sughrue, ME (2017) A simplified method of accurate postprocessing of diffusion tensor imaging for use in brain tumor resection. Oper Neurosurg 13: 4758.Google Scholar
Burks, JD, Conner, AK, Bonney, PA, Glenn, CA, Smitherman, AD, Ghafil, CA, Briggs, RG, Baker, CM, Kirch, NI, Sughrue, ME (2018) Frontal keyhole craniotomy for resection of low- and high-grade gliomas. Clin Neurosurg 82: 388–96.Google Scholar
McGirt, MJ, Chaichana, KL, Gathinji, M, Attenello, FJ, Than, K, Olivi, A, et al (2009) Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 110: 156–62.Google Scholar
Walker, MD, Green, SB, Byar, DP, Jr, Alexander E, Batzdorf, U, Brooks, WH, et al. (1980) Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 303: 1323–9.Google Scholar
Laperriere N, Zuraw L (2002) Cairncross G: radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother Oncol 64: 259–73.Google Scholar
Arvold, ND, Lee, EQ, Mehta, MP, Margolin, K, Alexander, BM, Lin, NU, Anders, CK, Soffietti, R, Camidge, DR, Vogelbaum, MA, Dunn, IF, Wen, PY (2016) Updates in the management of brain metastases. Neuro Oncol 18: 1043–65.Google Scholar
Tsao, MN, Lloyd, NS, Wong, RK, Rakovitch, E, Chow, E, Laperriere, N (2005) Supportive Care Guidelines Group of Cancer Care Ontario’s program in evidence-based care. Radiotherapeutic management of brain metastases: a systematic review and meta-analysis. Cancer Treat Rev 31: 256–73.Google Scholar
Salvati, M, Oppido, PA, Artizzu, S, Fiorenza, F, Puzzilli, F (1991) Orlando ER: Multicentric gliomas. Report of seven cases. Tumori 77: 518–22.Google Scholar
Synowitz, M, von Eckardstein, K, Brauer, C, Hoch, HH, Kiwit, JC (2002) Case history: multicentric glioma with involvement of the optic chiasm. Clin Neurol Neurosurg 105: 6668.Google Scholar
Chadduck, WM, Roycroft, D, Brown, MW (1983) Multicentric glioma as a cause of multiple cerebral lesions. Neurosurgery 13: 170–5.Google Scholar
Ampil, F, Burton, GV, Gonzalez Toledo, E, Nanda, A (2007) Do we need whole-brain irradiation in multifocal or multicentric high-grade cerebral gliomas? Review of cases and the literature. J Neurooncol 85: 353–5.Google Scholar
Showalter, TN, Andrel, J, Andrews, DW, Curran, WJ Jr, Daskalakis, C, Werner Wasik, M (2007) Multifocal glioblastoma multiforme: prognostic factors and patterns of progression. Int J Radiat Oncol Biol Phys 69: 820–4.Google Scholar
Patchell, RA (1991) Brain metastases. Neurol Clin 9: 817–24.Google Scholar
Galicich, JH, Arbit, E (1990) Metastatic brain tumors, in Youmans, JR, ed., Neurological Surgery, 3rd ed. Philadelphia, WB Saunders, pp. 3204–22.Google Scholar

References

Uluc, K, Kujoth, GC, Baskaya, MK. Operating microscopes: past, present, and future. Neurosurg Focus. 2009;27(3):E4.Google Scholar
Lawton, MT, Quinones-Hinojosa, A, Sanai, N, Malek, JY, Dowd, CF. Combined microsurgical and endovascular management of complex intracranial aneurysms. Neurosurgery. 2003;52(2):263–74; discussion 74–5.Google Scholar
Mack, WJ. Casting a wide net: the unique diversity of neuroendovascular surgery. J Neurointerv Surg. 2015;7(8):549–50.Google Scholar
Patel, PD, Chalouhi, N, Atallah, E, Tjoumakaris, S, Hasan, D, Zarzour, H, et al. Off-label uses of the Pipeline embolization device: a review of the literature. Neurosurg Focus. 2017;42(6):E4.Google Scholar
Zammar, SG, Buell, TJ, Chen, CJ, Crowley, RW, Ding, D, Griessenauer, CJ, et al. Outcomes after off-label use of the pipeline embolization device for intracranial aneurysms: a multicenter cohort study. World Neurosurg. 2018;115:e200e205.Google Scholar
Hacein-Bey, L, Connolly, ES Jr., Mayer, SA, Young, WL, Pile-Spellman, J, Solomon, RA. Complex intracranial aneurysms: combined operative and endovascular approaches. Neurosurgery. 1998;43(6):1304–12; discussion 1213.Google Scholar
Barnett, DW, Barrow, DL, Joseph, GJ. Combined extracranial-intracranial bypass and intraoperative balloon occlusion for the treatment of intracavernous and proximal carotid artery aneurysms. Neurosurgery. 1994;35(1):92–7; discussion 7–8.Google Scholar
Barakate, MS, Fisher, CM, Appleberg, M, Farrar, MA, Tse, RV, Harrington, TJ, et al. Combined endovascular and open surgery for four-vessel cerebrovascular occlusive disease. J Endovasc Ther. 2001;8(1):62–6.Google Scholar
Matsumoto, K, Masaki, H, Hirai, M, Tsujino, H, Hashimoto, N, Mineura, K. Combined surgical and intraoperative endovascular approach for a giant internal carotid artery aneurysm in the high cervical region. Minim Invasive Neurosurg. 2002;45(2):112–13.Google Scholar
Wallace, AN, Kamran, M, Madaelil, TP, Kayan, Y, Osbun, JW, Roy, AK, et al. Endovascular treatment of posterior inferior cerebellar artery aneurysms with flow diversion. World Neurosurg. 2018;114:e581e587.Google Scholar
Wallace, AN, Madaelil, TP, Kamran, M, Miller, TR, Delgado Almandoz, JE, Grossberg, JA, et al. Pipeline embolization of vertebrobasilar aneurysms – a multicenter case series. World Neurosurg. 2019;S1878-8750(18):32939-5.Google Scholar
Becske, T, Kallmes, DF, Saatci, I, McDougall, CG, Szikora, I, Lanzino, G, et al. Pipeline for uncoilable or failed aneurysms: results from a multicenter clinical trial. Radiology. 2013;267(3):858–68.Google Scholar
Becske, T, Potts, MB, Shapiro, M, Kallmes, DF, Brinjikji, W, Saatci, I, et al. Pipeline for uncoilable or failed aneurysms: 3-year follow-up results. J Neurosurg. 2017;127(1):81–8.Google Scholar
Mokin, M, Chinea, A, Primiani, CT, Ren, Z, Kan, P, Srinivasan, VM, et al. Treatment of blood blister aneurysms of the internal carotid artery with flow diversion. J Neurointerv Surg. 2018;10(11):1074–8.Google Scholar
Sato, K, Endo, H, Fujimura, M, Endo, T, Matsumoto, Y, Shimizu, H, et al. Endovascular treatments in combination with extracranial-intracranial bypass for complex intracranial aneurysms. World Neurosurg. 2018;113:e747–60.Google Scholar
Natarajan, SK, Ghodke, B, Britz, GW, Born, DE, Sekhar, LN. Multimodality treatment of brain arteriovenous malformations with microsurgery after embolization with onyx: single-center experience and technical nuances. Neurosurgery. 2008;62(6):1213–25; discussion 25–6.Google Scholar
Loh, Y, Duckwiler, GR, Onyx Trial, I. A prospective, multicenter, randomized trial of the Onyx liquid embolic system and N-butyl cyanoacrylate embolization of cerebral arteriovenous malformations. Clinical article. J Neurosurg. 2010;113(4):733–41.Google Scholar
Rangel-Castilla, L, Shallwani, H, Siddiqui, AH. Transvenous embolization of thalamic arteriovenous malformation under transient cardiac standstill. Neurosurg Focus. 2019;46(Suppl 1):V10.Google Scholar
Del Maestro, M, Luzzi, S, Gallieni, M, Trovarelli, D, Giordano, AV, Gallucci, M, et al. Surgical treatment of arteriovenous malformations: role of preoperative staged embolization. Acta Neurochir Suppl. 2018;129:109–13.Google Scholar
Luzzi, S, Del Maestro, M, Bongetta, D, Zoia, C, Giordano, AV, Trovarelli, D, et al. Onyx embolization before the surgical treatment of grade iii spetzler-martin brain arteriovenous malformations: single-center experience and technical nuances. World Neurosurg. 2018;116:e340–e53.Google Scholar
Borden, JA, Wu, JK, Shucart, WA. A proposed classification for spinal and cranial dural arteriovenous fistulous malformations and implications for treatment. J Neurosurg. 1995;82(2):166–79.Google Scholar
Cognard, C, Gobin, YP, Pierot, L, Bailly, AL, Houdart, E, Casasco, A, et al. Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology. 1995;194(3):671–80.Google Scholar
Natarajan, SK, Ghodke, B, Kim, LJ, Hallam, DK, Britz, GW, Sekhar, LN. Multimodality treatment of intracranial dural arteriovenous fistulas in the Onyx era: a single center experience. World Neurosurg. 2010;73(4):365–79.Google Scholar
van Dijk, JM, terBrugge, KG, Willinsky, RA, Wallace, MC. Clinical course of cranial dural arteriovenous fistulas with long-term persistent cortical venous reflux. Stroke. 2002;33(5):1233–6.Google Scholar
Howard, BM, Grossberg, JA, Prater, A, Cawley, CM, Dion, JE, Tong, FC. Incompletely obliterated cranial arteriovenous fistulae are safely and effectively treated with adjuvant epsilon-aminocaproic acid. J Neurointerv Surg. 2018;10(7):698703.Google Scholar
Piazza, P, Di Lella, F, Bacciu, A, Di Trapani, G, Ait Mimoune, H, Sanna, M. Preoperative protective stenting of the internal carotid artery in the management of complex head and neck paragangliomas: long-term results. Audiol Neurootol. 2013;18(6):345–52.Google Scholar
Markiewicz, MR, Pirgousis, P, Bryant, C, Cunningham, JC, Dagan, R, Sandhu, SJ, et al. Preoperative protective endovascular covered stent placement followed by surgery for management of the cervical common and internal carotid arteries with tumor encasement. J Neurol Surg B Skull Base. 2017;78(1):52–8.Google Scholar
Bacciu, A, Prasad, SC, Sist, N, Rossi, G, Piazza, P, Sanna, M. Management of the cervico-petrous internal carotid artery in class C tympanojugular paragangliomas. Head Neck. 2016;38(6):899905.Google Scholar

References

Morgagni, J. De sedibus et causis morborum per antomen indagatis libri quinque. 1779.Google Scholar
Höök, O, Norlén, G, Guzmán, J. Saccular aneurysms of the vertebral-basilar arterial system: a report of 28 cases. Acta Neurol Scand. 1963;39(4):271304.Google Scholar
Drake, CG. Bleeding aneurysms of the basilar artery: direct surgical management in four cases. Can J Neurol Sci. 1999 Nov 2;26(4):335–40.Google Scholar
Jamieson, KG. Aneurysms of the vertebrobasilar system: surgical intervention in 19 cases. J Neurosurg. 1964;21(9):781–97.Google Scholar
Drake, CG. Further experience with surgical treatment of aneurysms of the basilar artery. J Neurosurg. 1968;29(4):372–92.Google Scholar
Drake, CG, Peerless, SJ, Hernesniemi, JA. Surgery of Vertebrobasilar Aneurysms: London, Ontario Experience on 1767 Patients. Vienna: Springer-Verlag; 1996.Google Scholar
Guglielmi, G, Viñuela, F, Dion, J, Duckwiler, G. Electrothrombosis of saccular aneurysms via endovascular approach. Part 2: preliminary clinical experience. J Neurosurg. 1991;75(1):814.Google Scholar
Kawase, T, Toya, S, Shiobara, R, Mine, T. Transpetrosal approach for aneurysms of the lower basilar artery. J Neurosurg. 1985;63(6):857–61.Google Scholar
Molyneux, AJ, Kerr, RSC, Yu, L-M, Clarke, M, Sneade, M, Yarnold, JA, et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet. 366(9488):809–17.Google Scholar
Wiebers, DO et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362(9378):103–10.Google Scholar
Klein, GE, Szolar, DH, Leber, KA, Karaic, R, Hausegger, KA. Basilar tip aneurysm: endovascular treatment with Guglielmi detachable coils–midterm results. Radiology. 1997;205(1):191–6.Google Scholar
Eskridge, JM, Song, JK. Endovascular embolization of 150 basilar tip aneurysms with guglielmi detachable coils: results of the food and drug administration multicenter clinical trial. J Vasc Interv Radiol. 1999;10(1):112.Google Scholar
Peluso, JPP, van Rooij, WJ, Sluzewski, M, Beute, GN. Coiling of basilar tip aneurysms: results in 154 consecutive patients with emphasis on recurrent haemorrhage and re-treatment during mid-and long-term follow-up. J Neurol Neurosurg Psychiatry. 2008;79(6):706–11.Google Scholar
Tumialán, LM, Zhang, YJ, Cawley, CM, Dion, JE, Tong, FC, Barrow, DL. Intracranial hemorrhage associated with stent-assisted coil embolization of cerebral aneurysms: a cautionary report. J Neurosurg. 2008 Jun;108(6):1122–9.Google Scholar
Samson, DS, Hodosh, RM, Clark, KW. Microsurgical evaluation of the pterional approach to aneurysms of the distal basilar circulation. Neurosurgery. 1978;3(2):135–41.Google Scholar
Yasargil, MG. Microsurgical pterional approach to the aneurysms of the basilar bifurcation. Surg Neurol. 1976;6:8391.Google Scholar
Spetzler, RF, Hadley, MN, Rigamonti, D, Carter, LP, Raudzens, PA, Shedd, SA, et al. Aneurysms of the basilar artery treated with circulatory arrest, hypothermia, and barbiturate cerebral protection. J Neurosurg. 1988;68(6):868–79.Google Scholar
Paine, JT, Batjer, HH, Samson, D. Intraoperative ventricular puncture. Neurosurgery. 1988;22(6P1–P2):1107–9.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×