Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-08T22:11:09.596Z Has data issue: false hasContentIssue false

Chapter 15 - Fetal Haemolysis

from Section 3 - Fetal Medicine

Published online by Cambridge University Press:  20 November 2021

Tahir Mahmood
Affiliation:
Victoria Hospital, Kirkcaldy
Charles Savona Ventura
Affiliation:
University of Malta, Malta
Ioannis Messinis
Affiliation:
University of Thessaly, Greece
Sambit Mukhopadhyay
Affiliation:
Norfolk & Norwich University Hospital, UK
Get access

Summary

Fetal haemolysis results from the breakdown of red blood cells secondary to immunoglobulin G (IgG) antibodies that pass from the mother through to the fetus resulting in anaemia and fetal hydrops which may result in intrauterine fetal death [1]. Fetal haemolysis is also known as haemolytic disease of the fetus and newborn (HDFN) and erythroblastosis fetalis. Historically, fetal haemolysis was almost synonymous with rhesus D (RhD) alloimmunization and was common until the late 1960s. Since crossmatching red blood cell transfusions for RhD and introduction of routine anti-D immunoglobin (anti-D Ig) prophylaxis in the 1970s, the spectrum of haemolytic disease of the fetus and newborn has changed dramatically [2].

Type
Chapter
Information
The EBCOG Postgraduate Textbook of Obstetrics & Gynaecology
Obstetrics & Maternal-Fetal Medicine
, pp. 122 - 129
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chatziantoniou, V, Heeney, N, Maggs, T, et al. A descriptive single‐centre experience of the management and outcome of maternal alloantibodies in pregnancy. Transfusion Med. 2017;27:275–85. doi: 10.1111/tme.12430CrossRefGoogle ScholarPubMed
Koelewijn, JM, Vrijkotte, TG, de Haas, M, van der Schoot, CE, Bonsel, GJ. Risk factors for the presence of non-rhesus D red blood cell antibodies in pregnancy. BJOG. 2009;116(5):655–64. doi: 10.1111/j.1471-0528.2008.01984.xGoogle Scholar
Royal College of Obstetrics and Gynaecologists (RCOG). The Management of Women with Red Cell Antibodies during Pregnancy. Green-top Guideline No 65, May 2014.Google Scholar
Chilcott, J, Lloyd Jones, M, Wight, J, et al. A review of the clinical effectiveness and cost-effectiveness of routine anti-D prophylaxis for pregnant women who are rhesus-negative. 2003. In NIHR Health Technology Assessment Programme: Executive Summaries. Southampton: NIHR Journals Library; 2003–. www.ncbi.nlm.nih.gov/books/NBK62211/Google Scholar
Zipursky, A, Paul, VK. The global burden of Rh disease. Arch Dis Child Fetal Neonatal Ed. 2011;96:F84–5.Google Scholar
Qureshi, H, Massey, E, Kirwan, D, et al. BCSH guideline for the use of anti‐D immunoglobulin for the prevention of haemolytic disease of the fetus and newborn. Transfusion Med. 2014; 24:820. doi: 10.1111/tme.12091Google Scholar
Hackney, DN, Fau, KE, Fau, RK, et al. Management of pregnancies complicated by anti-c isoimmunization. Obstet Gynecol. 2004;103(1):2430.Google Scholar
Goldman, M, Lane, D, Webert, K, Fallis, R. The prevalence of anti‐K in Canadian prenatal patients. Transfusion. 2015;55:1486–91. doi: 10.1111/trf.13151Google Scholar
Smart, E, Armstrong, B, Blood group systems. ISBT Science Series. 2009;3:6892. doi: 10.1111/j.1751-2824.2008.00188.xCrossRefGoogle Scholar
American College of Obstetricians and Gynecologists. Prevention of RhD Alloimmunization. ACOG Practice Bulletin 181. ACOG 2017.Google Scholar
de Haas, M, Thurik, F, Koelewijn, J, Schoot, C, Haemolytic disease of the fetus and newborn. Vox Sang. 2015;109:99113. doi: 10.1111/vox.12265CrossRefGoogle ScholarPubMed
Daniels, G, Hadley, A, Green, CA. Causes of fetalanemia in hemolytic disease due to anti‐K. Transfusion. 2003;43:115–16. doi: 10.1046/j.1537-2995.2003.00327.xCrossRefGoogle ScholarPubMed
Evers, D, Middelburg, RA, de Haas, M, et al. Red-blood-cell alloimmunisation in relation to antigens’ exposure and their immunogenicity: a cohort study. Lancet Haematol. 2016;3(6):e284–92. https://doi.org/10.1016/S2352-3026(16)30019–9.Google Scholar
American College of Obstetricians and Gynecologists. Management of Alloimmunization during Pregnancy. ACOG Practice Bulletin 192. ACOG 2018.Google Scholar
Scheffer, P, van der Schoot, C, Page‐Christiaens, G, de Haas, M. Noninvasive fetal blood group genotyping of rhesus D, c, E and of K in alloimmunised pregnant women: evaluation of a 7‐year clinical experience. BJOG. 2011;118:1340–8. doi: 10.1111/j.1471-0528.2011.03028.xGoogle Scholar
Kent, J, Farrell, A, Soothill, P. Routine administration of anti-D: the ethical case for offering pregnant women fetal RHD genotyping and a review of policy and practice. BMC Pregnancy Childbirth. 2014;14:87. doi: 10.1186/1471-2393-14-87Google Scholar
Soothill, PW, Finning, K, Latham, T, et al. Use of cffDNA to avoid administration of anti‐D to pregnant women when the fetus is RhD‐negative: implementation in the NHS. BJOG. 2015;122:1682–6.https://doi.org/10.1111/1471–0528.13055Google Scholar
White J, , Qureshi, H, Massey, E, et al. Guideline for blood grouping and red cell antibody testing in pregnancy. Transfusion Med. 2016;26:246–63. doi: 10.1111/tme.12299CrossRefGoogle ScholarPubMed
Nicolaides, KH, Rodeck, CH. Maternal serum anti-D antibody concentration and assessment of rhesus isoimmunisation. BMJ. 1992, 304:1155–6.CrossRefGoogle ScholarPubMed
Kozlowski, CL, Lee, D, Shwe, KH, Love, EM. Quantification of anti-c in haemolytic disease of the newborn. Transfusion Med. 1995;5:3742.CrossRefGoogle ScholarPubMed
Oepkes, D, Seaward, G, Vandenbussche, FP, et al. Doppler ultrasonography versus amniocentesis to predict anaemia. N Engl J Med. 2006;355:156–4. doi: 10.1056/NEJMoa052855Google Scholar
Pretlove, S, Fox, C, Khan, K, Kilby, M. Noninvasive methods of detecting fetal anaemia: a systematic review and meta-analysis. BJOG. 2009;116:1558–67. doi: 10.1111/j.1471-0528.2009.02255.xCrossRefGoogle ScholarPubMed
Zwier, C, van Kamp, I, Oepkes, D, Lopriore, E. Intrauterine transfusion and non-invasive treatment options for hemolytic disease of the fetus and newborn – review on current management and outcome. Expert Review of Hematol. 2017;10(4):337–44. doi: 10.1080/17474086.2017.1305265.Google Scholar
Rodeck, CH, Nicolaides, KH, Warsof, SL, et al. The management of severe rhesus isoimmunization by fetoscopic intravascular transfusions. Am J Obstet Gyanecol. 1984;150(6):769–74. https://doi.org/10.1016/0002–9378Google Scholar
Dodd, JM, Windrim, RC, van Kamp, IL. Techniques of intrauterine fetal transfusion for women with red-cell isoimmunisation for improving health outcomes. Cochrane Database Syst Rev. 2012 Sep 12(9):CD007096. doi: 10.1002/14651858.CD007096.pub3Google ScholarPubMed
Lindenburg, IT, Klink, JM, Smits‐Wintjens, VE, et al. Long‐term neurodevelopmental and cardiovascular outcome after intrauterine transfusions for fetal anaemia: a review. Prenat Diagn. 2013;33:815–22. doi:10.1002/pd.4152Google Scholar
Wallace, AH, Dalziel, SR, Cowan, BR, et al. Long-term cardiovascular outcome following fetal anaemia and intrauterine transfusion: a cohort study. Arch Dis Child. 2017;102:4045.CrossRefGoogle ScholarPubMed
Wong, KS, Connan, K, Rowlands, S, Kornman, LH, Savoia, HF. Antenatal immunoglobulin for fetal red blood cell alloimmunization. Cochrane Database Syst Rev. 2013 May 31(5):CD008267. doi: 10.1002/14651858.CD008267.pub2Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×