Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-27T14:46:11.039Z Has data issue: false hasContentIssue false

16 - Thermochemistry of High-Pressure Phases

Published online by Cambridge University Press:  03 August 2023

Yingwei Fei
Affiliation:
Carnegie Institution of Washington, Washington DC
Michael J. Walter
Affiliation:
Carnegie Institution of Washington, Washington DC
Get access

Summary

In honor of H. K. (David) Mao and our interactions over half a century, this chapter focuses on the techniques and application of calorimetry to high-pressure research. The chapter reviews thermodynamic concepts and calorimetric methodology. It summarizes a large body of work over many years, with emphasis on mantle mineralogy, and also discusses recent developments in a broader context, including calorimetric studies of hydrous phases, nonoxides, and nanophase materials.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaogi, M., Ito, E., Navrotsky, A. (1989). Olivine-modified spinel–spinel transitions in the system Mg2SiO4–Fe2SiO4: calorimetric measurements, thermochemical calculations, and geophysical application. Journal of Geophysical Research, 94(B11), 1567115685.Google Scholar
Akaogi, M., Navrotsky, A. (1984). The quartz–coesite–stishovite transformations: new calorimetric measurements and calculation of phase diagrams. Physics of the Earth and Planetary Interiors, 36(2), 124134.CrossRefGoogle Scholar
Akaogi, M., Oohata, M., Kojitani, H., Kawaji, H. (2011). Thermodynamic properties of stishovite by low-temperature heat capacity measurements and the coesite–stishovite transition boundary. American Mineralogist, 96(8–9), 13251330.Google Scholar
Akaogi, M., Ross, N. L., McMillan, P., Navrotsky, A. (1984). The Mg2SiO4 polymorphs (olivine, modified spinel, and spinel) – thermodynamic properties from oxide melt calorimetry, phase relations, and models of lattice vibrations. American Mineralogist, 69(5–6), 499512.Google Scholar
Birkner, N., Navrotsky, A. (2012). Thermodynamics of manganese oxides: effects of particle size and hydration on oxidation-reduction equilibria among hausmannite, bixbyite, and pyrolusite. American Mineralogist, 97(8), 12911298.CrossRefGoogle Scholar
Chen, S., Navrotsky, A. (2010). Calorimetric study of the surface energy of forsterite. American Mineralogist, 95(1), 112117.Google Scholar
Costa, G. C. C., Harder, B. J., Weisner, V. L., et al. (2019). Thermodynamics of reaction between gas-turbine ceramic coatings and ingested CMAS corrodents. Journal of the American Ceramic Society, 102(5), 29482964.Google Scholar
Davies, P. K., Navrotsky, A. (1983). Quantitative correlations of deviations from ideality in binary and pseudo-binary solid solutions. Journal of Solid State Chemistry, 46(1), 122.Google Scholar
Deore, S., Navrotsky, A. (2006). Oxide melt solution calorimetry of sulfides: enthalpy of formation of sphalerite, galena, greenockite and hawleyite. American Mineralogist, 91(2), 400403.CrossRefGoogle Scholar
Deore, S., Xu, F., Navrotsky, A. (2008). Oxide-melt solution calorimetry of selenides: enthalpy of formation of zinc, cadmium and lead selenide. American Mineralogist, 93(5), 779783.Google Scholar
Guo, X., Boukhalfa, H., Mitchell, J., et al. (2019). Sample seal-and-drop device and methodology for high temperature oxide melt solution calorimetric measurements of PuO2. Review of Scientific Instruments, 90(4), 044101044107.Google Scholar
Hong, Q.-J., Ushakov, S. V., Kapush, D., et al. (2018). Combined computational and experimental investigation of high temperature thermodynamics and structure of cubic ZrO2 and HfO2. Scientific Reports, 8(1), 14962.CrossRefGoogle ScholarPubMed
Ishii, T., Sakai, T., Kojitani, H., et al. (2018). High-pressure phase relations and crystal structures of postspinel phases in MgV2O4, FeV2O4, and MnCr2O4: crystal chemistry of AB2O4 postspinel compounds. Inorganic Chemistry, 57(11), 66486657.Google Scholar
Ito, E., Akaogi, M., Topor, L., Navrotsky, A. (1990). Negative pressure-temperature slopes for reactions forming MgSiO3 perovskite from calorimetry. Science, 249(4974), 12751278.CrossRefGoogle Scholar
Ito, E., Navrotsky, A. (1985). MgSiO3 Ilmenite: calorimetry, phase equilibria, and decomposition at atmospheric pressure. American Mineralogist, 70(9–10), 10201026.Google Scholar
Kapush, D. Ushakov, S. V., Navrotsky, A., et al. (2017). A combined experimental and theoretical study of enthalpy of phase transition and fusion of yttria above 2000°C using “drop-n-catch” calorimetry and first-principles calculations. Acta Materialia, 124, 204209.Google Scholar
Kojitani, H., Furukawa, A., Akaogi, M. (2007). Thermochemistry and high-pressure equilibria of the post-perovskite phase transition in CaIrO3. American Mineralogist, 92(1), 229232.CrossRefGoogle Scholar
Kojitani, H., Inoue, T., Akaogi, M. (2016). Precise measurements of enthalpy of postspinel transition in Mg2SiO4 and application to the phase boundary calculation. Journal of Geophysical Research: Solid Earth, 121 (2), 729742.Google Scholar
Kojitani, H., Oohata, M., Inoue, T., Akaogi, M. (2012). Redetermination of high-temperature heat capacity of Mg2SiO4 ringwoodite: measurement and lattice vibrational model calculation. American Mineralogist, 97(8), 13141319.Google Scholar
Koryttseva, A., Navrotsky, A. (2016). High temperature calorimetric study of oxide component dissolution in a CaO–MgO–Al2O3–SiO2 slag at 1450°C. Journal of the American Ceramic Society, 100(3), 11721177.Google Scholar
Levchenko, A. A., Kolesnikov, A., Trofymluk, O., Navrotsky, A. (2010). Energetics of single-wall carbon nanotubes as revealed by calorimetry and neutron scattering. Carbon, 49(3), 949954.Google Scholar
Liang, J.-J., Topor, L., Navrotsky, A., Mitomo, M. (1999). Silicon nitride: enthalpy of formation of the α- and β- polymorphs and the effect of C and O impurities. Journal of Materials Research, 14(5), 19591968.Google Scholar
Lilova, K. I., DeAngelis, M., Anovitz, L. M., Navrotsky, A. (2018). Surface energy of fayalite and its effect on Fe–Si–O oxygen buffers and the olivine–spinel transition. American Mineralogist, 103(10), 15991603.Google Scholar
Lilova, K. I., Pearce, C. I., Rosso, K. M., Navrotsky, A. (2014). Energetics of spinels in the Fe–Ti–O system at the nanoscale. ChemPhysChem, 15(16), 36553662.CrossRefGoogle ScholarPubMed
Lilova, K. I., Xu, F., Rosso, K. M., et al. (2012). Oxide melt solution calorimetry of Fe(II)–bearing oxides and application to the magnetite – maghemite (Fe3O4–Fe8/3O4) system. American Mineralogist, 97(1), 164175.Google Scholar
Linard, Y., Wilding, M. C., Navrotsky, A. (2008). High temperature calorimetric studies of heat of solution of NiO, CuO, La2O3, TiO2, HfO2 in sodium silicate liquids. Geochimica et Cosmochimica Acta, 72(2), 590601.Google Scholar
Liu, J., Topor, L., Zhang, J., Navrotsky, A., Liebermann, R. (1996). Calorimetric study of the coesite–stishovite transformation and calculation of the phase boundary. Physics and Chemistry of Minerals, 23, 1116.CrossRefGoogle Scholar
Majzlan, J., Navrotsky, A., Stevens, R., et al. (2005). Thermodynamics of monoclinic Fe2(SO4)3. Journal of Chemical Thermodynamics, 37(8), 802809.Google Scholar
Mera, G., Navrotsky, A., Sen, S., Kleebe, H.-J., Riedel, R. (2013). Polymer-derived SiCN and SiOC ceramics – structure and energetics at the nanoscale. Journal of Materials Chemistry A, 1(12), 38263836.Google Scholar
Morcos, R. M., Navrotsky, A., Varga, T., et al. (2008). Thermodynamically stable SiwCxNyOz polymer–like, amorphous ceramics made from organic precursors. Journal of the American Chemical Society, 91(7), 23912393.Google Scholar
Navrotsky, A. (1977). Progress and new directions in high temperature calorimetry. Physics and Chemistry of Minerals, 2, 89104.Google Scholar
Navrotsky, A. (1980). Lower mantle phase transitions may generally have negative pressure – temperature slopes. Geophysics Research Letters, 7(9), 709711.CrossRefGoogle Scholar
Navrotsky, A. (1981). Energetics of phase transitions in AX, ABO3, and AB2O4 compounds, in O’Keeffe, M., Navrotsky, A., eds., Structure and Bonding in Crystals, Vol. II. Academic Press, pp. 7193.Google Scholar
Navrotsky, A. (1987). Silicate and germanate garnets, ilmenites, and perovskites: thermochemistry, lattice vibrations, and spectroscopy, in Manghnani, M., Syono, Y., eds., High Pressure Research in Mineral Physics. Terra Publications, pp. 261268.Google Scholar
Navrotsky, A. (1997). Progress and new directions in high temperature calorimetry revisited. Physics and Chemistry of Minerals, 24(3), 222241.Google Scholar
Navrotsky, A. (1998). Thermodynamics of high pressure phases, in Hemley, R. J., ed., Ultrahigh-Pressure Mineralogy: Physics and Chemistry of the Earth’s Deep Interior, Reviews in Mineralogy. Mineralogical Society of America, 37, pp. 319341.CrossRefGoogle Scholar
Navrotsky, A. (2001). Thermochemical studies of nitrides and oxynitrides by oxidative oxide melt calorimetry. Journal of Alloys and Compounds, 321(2), 300306.Google Scholar
Navrotsky, A. (2011). Nanoscale effects on thermodynamics and phase equilibria in oxide systems. ChemPhysChem, 12(12), 22072215.Google Scholar
Navrotsky, A. (2014). Progress and new directions in calorimetry: a 2014 perspective. Journal of the American Ceramic Society, 97(11), 33493359.CrossRefGoogle Scholar
Navrotsky, A. (2016). Energetics at the nanoscale: impacts for geochemistry, the environment, and materials. MRS Bulletin, 41(2), 139145.Google Scholar
Navrotsky, A., Akaogi, M. (1984). The α, β, γ phase relations in Fe2SiO4–Mg2SiO4 and Co2SiO4–Mg2SiO4: calculation from thermochemical data and geophysical applications. Journal of Geophysical Research, 89(B12), 1013510140.Google Scholar
Navrotsky, A., Davies, P. K. (1981). Cesium chloride versus nickel arsenide as possible structures for (Me,Fe)O in the lower mantle. Journal of Geophysical Research, 86(B5), 36893694.Google Scholar
Navrotsky, A., Dorogova, M., Hellman, , et al. (2007). Application of calorimetry on a chip to high pressure materials. Proceedings of the National Academy of Sciences, 104(22), 91879191.CrossRefGoogle ScholarPubMed
Navrotsky, A., Forray, F. L. Drouet, C. (2005). Jarosite stability on Mars. Icarus, 176(1), 250253.CrossRefGoogle Scholar
Navrotsky, A., Ma, C., Lilova, K., Birkner, N. (2010). Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation-reduction equilibria. Science, 330(6001), 199201.Google Scholar
Navrotsky, A., Mazeina, L., Majzlan, J. (2008). Size-driven structural and thermodynamic complexity in iron oxides. Science, 319(5870), 16351638.CrossRefGoogle ScholarPubMed
Navrotsky, A., Percival, J., Dobrzhinetskaya, L., et al. (2020). A geologic Si–O–C pathway to incorporate carbon in silicates, in Manning, C. E., ed., Carbon in Planetary Interiors, American Geophysical Union Monograph, pp. 4754.Google Scholar
Navrotsky, A., Schoenitz, M., Kojitani, H., et al. (2002). Aluminum in magnesium silicate perovskite: synthesis and energetics of defect solid solutions. Materials Research Society Symposium Proceedings, 718(D2.2), 103108.Google Scholar
Navrotsky, A., Schoenitz, M., Kojitani, H., et al. (2003). Aluminum in magnesium silicate perovskite: formation, structure, and energetics of magnesium-rich defect solid solutions. Journal of Geophysical Research B, 108(B7), 2330.Google Scholar
Navrotsky, A., Ushakov, S. V. (2017). Hot matters – experimental methods for high-temperature property measurement. American Ceramic Society Bulletin, 96(2), 2228.Google Scholar
Navrotsky, A., Xu, F. (2010 ). Enthalpies of formation of pyrrhotite Fe1–0.125x S (0 ≤ x ≤1) solid solutions. American Mineralogist, 95(5), 717723.Google Scholar
Niu, M., Wang, H., Chen, J., et al. (2017). Structure and energetics of SiOC and SiOC-modified carbon-bonded carbon fiber composites. Journal of the American Ceramic Society, 100(8), 36933702.Google Scholar
Rosen, P. F., Dickson, M. S., Calvin, J. J., et al. (2020). Thermodynamic evidence of structural transformations in CO2-loaded metal-organic framework Zn(MeIm)2 from heat capacity measurements. Journal of the American Chemical Society, 142(10), 48334841.Google Scholar
Rosen, P. F., Woodfield, B. F. (2020). Standard methods for heat capacity measurements on a quantum design physical property measurement system. Journal of Chemical Thermodynamics, 141(C), 105974.Google Scholar
Sahu, S. K., Huang, B., Lilova, K. I., Woodfield, B. F., Navrotsky, A. (2015). Thermodynamics of Fe3O4–Co3O4 and Fe3O4–Mn3O4 spinel solid solutions at bulk and nanoscale. Physical Chemistry Chemical Physics, 17(34), 2228622295.CrossRefGoogle ScholarPubMed
Schoenitz, M., Navrotsky, A. (1999). Enthalpy of formation of katoite Ca3Al2[(OH)4]3: energetics of the hydrogarnet substitution. American Mineralogist, 84(3), 389391.Google Scholar
Schoenitz, M., Navrotsky, A., Leinenweber, K. (2000). The enthalpy of transformation of Ca(OH)2-I (portlandite) to Ca(OH)2-II (EuI2 structure) by low-temperature DSC. Physics and Chemistry of Minerals, 27(9), 604–9.Google Scholar
Sen, S., Widgeon, S. J., Navrotsky, A., et al. (2013). Carbon substitution for oxygen in silicates in planetary interiors. Proceedings of the National Academy of Sciences, 110(40), 1590415977.Google Scholar
Sharma, G., Naguib, M., Feng, D., Gogotsi, Y., Navrotsky, A. (2016). Calorimetric determination of thermodynamic stability of MAX and MXene phases. Journal of Physical Chemistry C, 120(49), 2813128137.Google Scholar
Sharma, G., Ushakov, S., Navrotsky, A. (2018). Size-driven thermodynamic crossovers in phase stability in zirconia and hafnia. Journal of the American Ceramic Society, 101(1), 3135.Google Scholar
Spektor, K., Nylen, J., Mathew, R., et al. (2016). Formation of hydrous stishovite from coesite in high-pressure hydrothermal environments. American Mineralogist, 101(11), 25142524.Google Scholar
Spektor, K., Nylen, J., Stoyanov, E., et al. (2011). Ultrahydrous stishovite from high-pressure hydrothermal treatment of SiO2. Proceedings of the National Academy of Sciences, 108(52), 2091820922.CrossRefGoogle ScholarPubMed
Stebbins, J. F., Kojitani, H., Akaogi, M., Navrotsky, A. (2003). Aluminum substitution in MgSiO3 perovskite: investigation of multiple mechanisms by 27Al NMR. American Mineralogist, 88(7), 11611164.Google Scholar
Subramani, T., Lilova, K., Abramchuk, M., Leinenweber, K., Navrotsky, A. (2020). Greigite (Fe3S4) is thermodynamically stable: implications for its terrestrial and planetary occurrence. Proceedings of the National Academy of Sciences, 117(46), 2864528648.CrossRefGoogle ScholarPubMed
Takayama-Muromachi, E., Navrotsky, A. (1988). Energetics of compounds (A3+B4+O3) with the perovskite structure. Journal of Solid State Chemistry, 72(2), 244256.Google Scholar
Tavakoli, A. H., Navrotsky, A. (2013). Enthalpies of formation of Fe–Ni monosulfide solid solutions. American Mineralogist, 98(8), 15081515.Google Scholar
Tessier, F., Le Gendre, L., Cheviré, F., Marchand, R., Navrotsky, A. (2005). Thermochemistry of a new class of materials containing dinitrogen pairs in an oxide matrix. Chemistry of Materials, 17(13), 35703574.CrossRefGoogle Scholar
Tessier, F., Navrotsky, A., Niewa, R., et al. (2000). Energetics of binary iron nitrides. Solid State Sciences, 2(4), 457462.CrossRefGoogle Scholar
Trofymluk, O., Levchenko, A. A., Navrotsky, A. (2012). Mesoporous silica synthesis: energetics of interaction between framework and structure directing agent. Microporous and Mesoporous Materials, 149(1), 119125.Google Scholar
Ushakov, S. V., Maram, P. S., Kapush, D., et al. (2018). Phase transformations in oxides above 2000 °C: experimental technique development. Advanced Applied Ceramics, 117(sup1), s82s89.Google Scholar
Widgeon, S., Mera, G., Gao, Y., et al. (2012). Nanostructure and energetics of carbon-rich SiCN ceramics derived from polysilylcarbodiimides: role of the nanodomain interfaces. Chemistry of Materials, 24(6), 11811191.Google Scholar
Wu, D., Navrotsky, A. (2015). Thermodynamics of metal-organic frameworks. Journal of Solid State Chemistry, 223(C), 5358.Google Scholar
Wu, L., Li, L., Evans, S. F., et al. (2019). Lithium aluminum layered double hydroxide chlorides (LDH): formation enthalpies and energetics of lithium ion capture. Journal of the American Ceramic Society, 102(5), 23982404.Google Scholar
Zhang, Y., Navrotsky, A., Sekine, T. (2006). Energetics of cubic Si3N4. Journal of Materials Research, 21(1), 4144.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×