Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-13T22:09:09.388Z Has data issue: false hasContentIssue false

10 - Non-equilibrium and irreversible processes

Published online by Cambridge University Press:  24 November 2021

David Landau
Affiliation:
University of Georgia
Kurt Binder
Affiliation:
Johannes Gutenberg Universität Mainz, Germany
Get access

Summary

In the preceding chapters we have dealt extensively with equilibrium properties of a wide variety of models and materials. We have emphasized the importance of insuring that equilibrium has been reached, and we have discussed the manner in which the system may approach the correct distribution of states, i.e. behavior before it comes to equilibrium. This latter topic has been treated from the perspective of helping us understand the difficulties of achieving equilibrium. The theory of equilibrium behavior is well developed and in many cases there is extensive, reliable experimental information available.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberts, B. (1994), Molecular Biology of the Cell (Garland, New York).Google Scholar
Amaro, R. and Luthey-Schulten, Z. (2004), Chem. Phys. 307, 147.Google Scholar
Baity-Jesi, M. et al. (Janus collaboration) (2014), Comput. Phys. Commun. 185, 550.Google Scholar
Baity-Jesi, M. et al. (Janus collaboration) (2017), Phys. Rev. Lett. 118, 157202.Google Scholar
Baity-Jesi, M. et al. (Janus collaboration) (2018), Phys. Rev. Lett. 120, 267203.Google Scholar
Barabási, A.-L. and Stanley, H. E. (1995), Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Binder, K. and Stauffer, D. (1974), Phys. Rev. Lett. 33, 1006.CrossRefGoogle Scholar
Binder, K. and Stauffer, D. (1976), Adv. Phys. 25, 343.Google Scholar
Binder, K. and Wang, J. S. (1989), J. Stat. Phys. 55, 87.Google Scholar
Bolhuis, P. G., Dellago, C., Chandler, D., and Geissler, P. L. (2002), Ann. Rev. Phys. Chem. 59, 291.CrossRefGoogle Scholar
Bray, A. (1994), Adv. Phys. 43, 357.Google Scholar
Caracciolo, S., Gambassi, A., Gubinelli, M., and Pelissetto, A. (2004), J. Stat. Phys. 115, 281.Google Scholar
Chhabra, A., Matthews-Morgan, D., and Landau, D. P. (1986), Phys. Rev. B 34, 4796.CrossRefGoogle Scholar
Cirillo, E. N. M., Gonnella, G., and Saracco, G. P. (2005), Phys. Rev. E 72, 026139.Google Scholar
Crooks, G. E. (1998), J. Stat. Phys. 90, 1481.Google Scholar
Crooks, G. E. (1999), Phys. Rev. E 60, 2721.Google Scholar
Dellago, C., Bolhuis, P. G., and Geissler, P. L. (2001), Advances in Chemical Physics (Wiley, New York).Google Scholar
Derks, D., Aarts, D. G. A. L., Bonn, D., Lekkerkerker, H. N. W., and Imhof, A. (2006). Phys. Rev. Lett. 97, 038301.Google Scholar
Dubbeldam, J. L. A., Milchev, A., Rostashvili, V. G., and Vilgis, T. A., (2007), Europhys. Lett. 79, 18002.Google Scholar
Eden, M. (1961), in Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. IV, ed. Neyman, J. (University of California, Berkeley) p. 223.Google Scholar
Edwards, S. F. and Wilkinson, D. R. (1982), Proc. R. Soc. A 381, 17.Google Scholar
Evans, J. W. (1993), Rev. Mod. Phys. 65, 1281.Google Scholar
Family, F. and Landau, D. P. (1984), Kinetics of Aggregation and Gelation (North Holland, Amsterdam).CrossRefGoogle Scholar
Family, F. and Vicsek, T. (1985), J. Phys. A 18, L75.Google Scholar
Farkas, Z., Derenyi, I., and Vicsek, T. (2003), J. Phys.: Cond. Matter 15, S 1767.Google Scholar
Feder, J. (1988), Fractals (Plenum Press, New York).CrossRefGoogle Scholar
Gilmer, G. H. and Broughton, J. Q. (1983), J. Vac. Sci. Technol. B 1, 298.Google Scholar
Gilmer, G. H., Leamy, H. J., and Jackson, K. A. (1974), J. Cryst. Growth 24/25, 495.CrossRefGoogle Scholar
Grest, G. S. and Srolovitz, D. J. (1985), Phys. Rev. B 32, 3014.Google Scholar
Guchhait, S. and Orbach, R. (2017) Phys. Rev. Lett. 118, 157203.Google Scholar
Gunton, J. D., Gawlinski, E., and Kaski, K. (1988), in Dynamics of Ordering Processes in Condensed Matter, eds. Komura, S. and Furukawa, H. (Plenum, New York), p. 101.CrossRefGoogle Scholar
Han, J., Turner, S. W., and Craigherd, H. G. (1999), Phys. Rev. Lett. 83, 1688.CrossRefGoogle Scholar
Hanss, B., Leal-Pinto, E., Bruggeman, I. A., Copland, T. D., and Klotman, P. E. (1998), Proc. Natl Acad. Sci. USA 95, 1921.Google Scholar
Harris, N. C., Song, Y., and Kiang, C. H. (2007), Phys. Rev. Lett. 99, 068101.Google Scholar
Herrmann, H. J. (1986a), Physics Reports 136, 153.Google Scholar
Herrmann, H. J. (1986b), J. Stat. Phys. 45, 145.CrossRefGoogle Scholar
Herrmann, H. J. (1992), in The Monte Carlo Method in Condensed Matter Physics, ed. Binder, K. (Springer, Berlin), p. 93.Google Scholar
Herrmann, H. J., Stauffer, D., and Landau, D. P. (1983), J. Phys. A 16, 1221.Google Scholar
Janssen, H. K. and Schmittmann, B. (1986), Z. Phys. B 64, 503.Google Scholar
Jarzynski, C. (1997a), Phys. Rev. Lett. 78, 2690Google Scholar
Jarzynski, C. (1997b), Phys. Rev. E 56, 5018.Google Scholar
Jarzynski, C. (2006), Phys. Rev. E 73, 046105.Google Scholar
Jarzynski, C. (2008), Eur. Phys. J. B 64, 331.Google Scholar
Joh, Y. G., Orbach, R., Wood, G. G., Hammann, J., and Vincent, E. (1999), Phys. Rev. Lett. 82, 438.Google Scholar
Jullien, R., Kolb, M., and Botet, R. (1984), in Kinetics of Aggregation and Gelation, eds. Family, F. and Landau, D. P. (North Holland, Amsterdam), p. 102.Google Scholar
Kantor, Y. and Kardar, M. (2004), Phys. Rev. E 69, 021806.CrossRefGoogle Scholar
Kardar, M., Parisi, G., and Zhang, Y.-C. (1986), Phys. Rev. Lett. 56, 889.Google Scholar
Kashchiev, D., van der Eerden, J. P., and van Leeuwen, C. (1997), J. Cryst. Growth 40, 47.Google Scholar
Katz, S., Lebowitz, J. L., and Spohn, H. (1984), Phys. Rev. B 28, 1655.CrossRefGoogle Scholar
Komura, S. and Furukawa, H. (1988), Dynamics of Ordering Processes in Condensed Matter Theory (Plenum, New York).Google Scholar
Kremer, K. and Binder, K. (1984), J. Chem. Phys. 81, 6381.CrossRefGoogle Scholar
Kwak, W., Landau, D. P., and Schmittmann, B. (2004), Phys. Rev. E 69, 066134.Google Scholar
Landau, D. P. and Pal, S. (1996), Thin Solid Films 272, 184.Google Scholar
Leung, K.-T. (1991), Phys. Rev. Lett. 66, 453.Google Scholar
Leung, K.-T. and Cardy, J. L. (1986), J. Stat. Phys. 44, 567; erratum (1986), J. Stat. Phys. 45, 1087.Google Scholar
Måløy, K. J., Feder, J., and Jøssang, T. (1985), Phys. Rev. Lett. 55, 2688.Google Scholar
Manneville, P. and de Seze, L. (1981), in Numerical Methods in the Study of Critical Phenomena, eds. Della Dora, I., Demongeot, J., and Lacolle, B. (Springer, Berlin), p. 116.Google Scholar
Marro, J. (2008), Comp. Phys. Commun. 179, 144.Google Scholar
Meller, A. (2003), J. Phys.: Condens. Matter 15, R581.Google Scholar
Meller, A., Nivon, L., and Branton, D. (2001), Phys. Rev. Lett. 86, 3435.Google Scholar
Milchev, A., Binder, K., and Bhattacharya, A. (2004), J. Chem. Phys. 121, 6042.Google Scholar
Milchev, A., Binder, K., and Heermann, D. W. (1986), Z. Phys. B 63, 521.Google Scholar
Mitchell, S. J. and Landau, D. P. (2006), Phys. Rev. Lett. 97, 025701.CrossRefGoogle Scholar
Moritz, C., Tröster, A., and Dellago, C. (2017), J. Chem. Phys. 147, 152714.Google Scholar
Mouritsen, O. G. (1990), in Kinetics of Ordering and Growth at Surfaces, ed. Lagally, M. G. (Plenum Press, New York), p. 1.Google Scholar
Muthukumar, M. (1999), J. Chem. Phys. 111, 10379.Google Scholar
Onuki, A. (2002), Phase Transition Dynamics (Cambridge University Press, Cambridge).Google Scholar
Pal, S. and Landau, D. P. (1994), Phys. Rev. B 49, 597.Google Scholar
Pal, S. and Landau, D. P. (1999), Physica A 267, 406.Google Scholar
Pal, S., Landau, D. P., and Binder, K. (2003), Phys. Rev. E 68, 021601.Google Scholar
Panja, D., Barkema, G. T., and Kolomeisky, A. B. (2013), J.Phys.: Condens. Matter 25, 413101.Google Scholar
Park, P. J. and Sung, W. (1998), J. Chem. Phys. 108, 3013.CrossRefGoogle Scholar
Praestgaard, E. L., Schmittmann, B., and Zia, R. K. P. (2000), Eur. Phys. J. B 18, 675.Google Scholar
Puri, S., and Wadhavan, V. (2009), Kinetics of Phase Transitions (CRC Press, Boca Raton).Google Scholar
Sadiq, A. and Binder, K. (1984), J. Stat. Phys. 35, 517.CrossRefGoogle Scholar
Sandomirski, K., Allahyarov, E., Loewen, H., and Egelhaaf, S. U. (2011), Soft Matter 7 , 8050.CrossRefGoogle Scholar
Schadschneider, A., Poeschel, T., Kuehne, R.,  Schreckenberg, M., and Wolf, D. (2007), Traffic and Granular Flow 05 (Springer, Berlin).Google Scholar
Schmittmann, B. and Zia, R. K. P. (1995), in Phase Transitions and Critical Phenomena, vol. 17 (Academic Press, London), p. 1.Google Scholar
Smith, T. H., Vasilyev, O., Abraham, D. B., Maciolek, A., and Schmitt, M. (2008), Phys. Rev. Lett. 101, 067203.CrossRefGoogle Scholar
Stauffer, D. (1987), Phil. Mag. B 56, 901.Google Scholar
Stauffer, D. (1997), Int. J. Mod. Phys. C 8, 1263.Google Scholar
Sung, W. and Park, P. J. (1996), Phys. Rev. Lett. 77, 783.Google Scholar
Swendsen, R. H., Kortman, P. J., Landau, D. P., and Müller-Krumbhaar, H. (1976), J. Cryst. Growth 35, 73.Google Scholar
Toxvaerd, S. (1995), in 25 Years of Nonequilibrium Statistical Mechanics, eds. Brey, J. J., Marro, J., Rubi, J. M., and Miguel, M. San (Springer, Berlin), p. 338.Google Scholar
Tringides, M. C., Wu, P. K., and Lagally, M. G. (1987), Phys. Rev. Lett. 59, 315.Google Scholar
Uebing, C. and Gomer, R. (1991), J. Chem. Phys. 95, 7626, 7636, 7641, 7648.Google Scholar
Uebing, C. and Gomer, R. (1994), Surf. Sci. 306, 419.Google Scholar
Van den Eijnden, E. (2006), in Computer Simulations in Condensed Matter: From Materials to Chemical Biology, eds. Ferrario, M., Ciccotti, G., and Binder, K. (Springer, Heidelberg), vol. 1, p. 453.Google Scholar
Vocks, H., Panja, D., Barkema, G. T., and Ball, R. C. (2008), J. Phys.: Condens. Matter 20, 095224.Google Scholar
Wang, J.-S. (1996), J. Stat. Phys. 82, 1409.Google Scholar
Witten, T. A. and Sander, L. M. (1981), Phys. Rev. Lett. 47, 1400.Google Scholar
Wolf, D. E. and Villain, J. (1990), Europhys. Lett. 13, 389.Google Scholar
Wolfram, S. (1986), Theory and Applications of Cellular Automata (World Scientific, Singapore).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×