Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-05T07:31:16.454Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 August 2023

V. Chandrasekar
Affiliation:
Colorado State University
Renzo Bechini
Affiliation:
Arpa Piemonte, Turin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Introduction to Dual Polarization Weather Radar
Fundamentals, Applications, and Networks
, pp. 467 - 490
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Petersen, J. K., Handbook of Surveillance Technologies, 3rd ed. New York: Routledge, 2012.Google Scholar
Bluestein, H., Severe Convective Storms and Tornadoes: Observations and Dynamics, ser. Springer Praxis Books. Berlin: Springer, 2013.CrossRefGoogle Scholar
Mclaughlin, D., Pepyne, D., Chandrasekar, V., Philips, B., Kurose, J., Zink, M., Droegemeier, K., Cruz-Pol, S., Junyent, F., Brotzge, J., Westbrook, D., Bharadwaj, N., Wang, Y., Lyons, E., Hondl, K., Liu, Y., Knapp, E., Xue, M., Hopf, A., Kloesel, K., Defonzo, A., Kollias, P., Brewster, K., Contreras, R., Dolan, B., Djaferis, T., Insanic, E., Frasier, S., and Carr, F., “Short-wavelength technology and the potential for distributed networks of small radar systems,” Bulletin of the American Meteorological Society, vol. 90, no. 12, pp. 17971817, 2009.CrossRefGoogle Scholar
International Telecommunication Union, “Radio Regulations,” https://www.itu.int/en/myitu/Publications/2020/09/02/14/23/Radio-Regulations-2020, 2020.Google Scholar
IEEE standard letter designations for radar-frequency bands,” IEEE Std. 521-2002 (Revision of IEEE Std. 521-1984), 2003.Google Scholar
Liu, Y., Geerts, B., Miller, M., Daum, P., and McGraw, R., “Threshold radar reflectivity for drizzling clouds,” Geophysical Research Letters, vol. 35, no. 3, pp. 15, 2008.Google Scholar
Probert-Jones, J. R., “The radar equation in meteorology,” Quarterly Journal of the Royal Meteorological Society, vol. 88, no. 378, pp. 485495, 1962.Google Scholar
Smith, E. K. and Weintraub, S., “The constants in the equation for atmospheric refractive index at radio frequencies,” Proceedings of the IRE, vol. 41, no. 8, pp. 10351037, 1953.Google Scholar
Doviak, R. J., Bringi, V., Ryzhkov, A., Zahrai, A., and Zrnić, D., “Considerations for polarimetric upgrades to operational WSR-88D radars,” Journal of Atmospheric and Oceanic Technology, vol. 17, no. 3, pp. 257278, 2000. [Online]. Available: https://doi.org/10.1175/1520-0426(2000)017<0257:CFPUTO>2.0.CO;2Google Scholar
Carter, R. G., Microwave and RF Vacuum Electronic Power Sources, ser. Cambridge RF and Microwave Engineering Series. Cambridge, UK: Cambridge University Press, 2018.CrossRefGoogle Scholar
Navy, U. S., Navy Electricity and Electronics Training Series (NEETS): Module 18— Radar Principles. Pensacola, FL: Naval Education and Training Professional Development and Technology Center, 1998.Google Scholar
Loomis, F., “Bell System Plans for Broadband Network Facilities,” Tele-Tech, vol. 12, no. 4, p. 80, 1953.Google Scholar
Cook, C., “Pulse Compression—Key to More Efficient Radar Transmission,” Proceedings of the IRE, vol. 48, no. 3, pp. 310316, 1960.Google Scholar
Sadowy, G. A., Berkun, A. C., Chun, W., Im, E., and Durden, S. L., “Development of an advanced airborne precipitation radar,” Microwave Journal, vol. 46, pp. 8493, 2003.Google Scholar
Vega, M., Chandrasekar, V., Carswell, J., Beauchamp, R., Schwaller, M., and Nguyen, C., “Salient features of the dual-frequency, dual-polarized, Doppler radar for remote sensing of precipitation,” Radio Science, vol. 49, no. 11, pp. 10871105, 2014.Google Scholar
Dai, H., Wang, X., Xie, H., Xiao, S., and Luo, J., Spatial Polarization Characteristics of Radar Antenna: Analysis, Measurement and Anti-jamming Application. New York: Springer, 2018.Google Scholar
Kraus, J. D. and Marhefka, R. J., Antennas for All Applications, 3rd ed., ser. Electrical Engineering Series. New York: McGraw-Hill, 2002.Google Scholar
Stutzman, W. L. and Thiele, G. A., Antenna Theory and Design, 3rd ed. Hoboken, NJ: John Wiley & Sons, 2012.Google Scholar
Chandrasekar, V. and Keeler, R. J., “Antenna pattern analysis and measurements for multiparameter radars,” Journal of Atmospheric and Oceanic Technology, vol. 10, no. 5, pp. 674683, 1993. [Online]. Available: https://doi.org/10.1175/1520-0426(1993)010<0674:APAAMF>2.0.CO;2Google Scholar
Wang, Y. and Chandrasekar, V., “Polarization isolation requirements for linear dual-polarization weather radar in simultaneous transmission mode of operation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 8, pp. 20192028, 2006.Google Scholar
Bringi, V. N. and Chandrasekar, V., Polarimetric Doppler Weather Radar: Principles and applications, 1st ed. Cambridge, UK: Cambridge University Press, 2001.Google Scholar
Junyent, F., Chandrasekar, V., Mclaughlin, D., Insanic, E., and Bharadwaj, N., “The CASA integrated project 1 networked radar system,” Journal of Atmospheric and Oceanic Technology, vol. 27, no. 1, pp. 6178, 2010.Google Scholar
Marshall, J. and Palmer, W. M., “The distribution of raindrops with size,” Journal of Meteorology, vol. 5, pp. 165166, 1948.Google Scholar
Lo, K. K. and Passarelli, R. E. Jr., “The growth of snow in winter storms: An airborne observational study,” Journal of the Atmospheric Sciences, vol. 39, no. 4, pp. 697706, 1982.Google Scholar
Field, P. R., “Aircraft observations of ice crystal evolution in an altostratus cloud,” Journal of the Atmospheric Sciences, vol. 56, no. 12, pp. 19251941, 1999.Google Scholar
Field, P. R. and Heymsfield, A. J., “Aggregation and scaling of ice crystal size distributions,” Journal of the Atmospheric Sciences, vol. 60, no. 3, pp. 544560, 2003.2.0.CO;2>CrossRefGoogle Scholar
Auer, A. H., “Distribution of graupel and hail with size,” Monthly Weather Review, vol. 100, no. 5, pp. 325328, 1972.Google Scholar
Schönhuber, M., Lammer, G., and Randeu, W., “The 2D-video-distrometer,” in Precipitation: Advances in Measurement, Estimation and Prediction, Michaelides, S., ed. Berlin: Springer, 2008, ch. 1, pp. 331.Google Scholar
Park, S.-G., Kim, H.-L., Ham, Y.-W., and Jung, S.-H., “Comparative evaluation of the OTT PARSIVEL2 using a collocated two-dimensional video disdrometer,” Journal of Atmospheric and Oceanic Technology, vol. 34, no. 9, pp. 20592082, 2017.Google Scholar
Smith, P. L., “Sampling issues in estimating radar variables from disdrometer data,” Journal of Atmospheric and Oceanic Technology, vol. 33, no. 11, pp. 23052313, 2016.Google Scholar
Ulbrich, C. W., “Natural variations in the analytical form of the raindrop size distribution,” Journal of Climate and Applied Meteorology, vol. 22, no. 10, pp. 17641775, 1983. [Online]. Available: https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Sekhon, R. S. and Srivastava, R. C., “Doppler radar observations of drop-size distributions in a thunderstorm,” Journal of the Atmospheric Sciences, vol. 28, no. 6, pp. 983994, 1971. [Online]. Available: https://doi.org/10.1175/1520-0469(1971)028<0983:DROODS>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Willis, P. T., “Functional fits to some observed drop size distributions and para-meterization of rain,” Journal of the Atmospheric Sciences, vol. 41, no. 9, pp. 16481661, 1984. [Online]. Available: https://doi.org/10.1175/1520-0469(1984)041<1648:FFTSOD>2.0.CO;2Google Scholar
Testud, J., Oury, S., Black, R. A., Amayenc, P., and Dou, X., “The concept of ‘normalized’ distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing,” Journal of Applied Meteorology, vol. 40, no. 6, pp. 11181140, 2001.2.0.CO;2>CrossRefGoogle Scholar
Green, A. W., “An approximation for the shapes of large raindrops,” Journal of Applied Meteorology, vol. 14, no. 8, pp. 15781583, 1975.Google Scholar
Chandrasekar, V., Cooper, W. A., and Bringi, V. N., “Axis ratios and oscillations of raindrops,” Journal of the Atmospheric Sciences, vol. 45, no. 8, pp. 13231333, 1988.Google Scholar
Pruppacher, H. R. and Beard, K. V., “A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air,” Quarterly Journal of the Royal Meteorological Society, vol. 96, no. 408, pp. 247256, 1970.Google Scholar
Beard, K. V. and Chuang, C., “A New Model for the Equilibrium Shape of Raindrops,” Journal of the Atmospheric Sciences, vol. 44, no. 11, pp. 15091524, 1987.Google Scholar
Kubesh, R. J. and Beard, K. V., “Laboratory measurements of spontaneous oscillations for moderate-size raindrops,” Journal of the Atmospheric Sciences, vol. 50, no. 8, pp. 10891098, 1993.Google Scholar
Beard, K. V., Bringi, V., and Thurai, M., “A new understanding of raindrop shape,” Atmospheric Research, vol. 97, no. 4, pp. 396415, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0169809510000268Google Scholar
Szakáll, M., Mitra, S. K., Diehl, K., and Borrmann, S., “Shapes and oscillations of falling raindrops—a review,” Atmospheric Research, vol. 97, no. 4, pp. 416425, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0169809510000736Google Scholar
Andsager, K., Beard, K. V., and Laird, N. F., “Laboratory measurements of axis ratios for large raindrops,” Journal of the Atmospheric Sciences, vol. 56, no. 15, pp. 26732683, 1999.2.0.CO;2>CrossRefGoogle Scholar
Brandes, E. A., Zhang, G., and Vivekanandan, J., “Experiments in rainfall estimation with a polarimetric radar in a subtropical environment,” Journal of Applied Meteorology, vol. 41, no. 6, pp. 674685, 2002.Google Scholar
Pruppacher, H. R. and Pitter, R. L., “A semi-empirical determination of the shape of cloud and rain drops,” Journal of the Atmospheric Sciences, vol. 28, no. 1, pp. 8694, 1971.Google Scholar
Beard, K. V. and Kubesh, R. J., “Laboratory measurements of small raindrop distortion. Part 2: Oscillation frequencies and modes,” Journal of the Atmospheric Sciences, vol. 48, no. 20, pp. 22452264, 1991.Google Scholar
Gunn, R. and Kinzer, G. D., “The terminal velocity of fall for water droplets in stagnant air,” Journal of Meteorology, vol. 6, no. 4, pp. 243248, 1949.Google Scholar
Atlas, D. and Ulbrich, C. W., “Path- and area-integrated rainfall measurement by microwave attenuation in the 1–3 cm band,” Journal of Applied Meteorology, vol. 16, no. 12, pp. 13221331, 1977.2.0.CO;2>CrossRefGoogle Scholar
Sekhon, R. S. and Srivastava, R. C., “Doppler radar observations of drop-size distributions in a thunderstorm,” Journal of the Atmospheric Sciences, vol. 28, no. 6, pp. 983994, 1971.Google Scholar
Atlas, D., Srivastava, R. C., and Sekhon, R. S., “Doppler radar characteristics of precipitation at vertical incidence,” Reviews of Geophysics, vol. 11, no. 1, pp. 135, 1973.Google Scholar
McCormick, G. C., Hendry, A., and Barge, B. L., “The anisotropy of precipitation media,” Nature, vol. 238, pp. 214216, 1972.Google Scholar
Saunders, M., “Cross polarization at 18 and 30 GHz due to rain,” IEEE Transactions on Antennas and Propagation, vol. 19, no. 2, pp. 273277, March 1971.Google Scholar
Brussaard, G., “Rain-induced crosspolarisation and raindrop canting,” Electronics Letters, vol. 10, no. 20, pp. 411412, October 1974.Google Scholar
Brussaard, G., “A meteorological model for rain-induced cross polarization,” IEEE Transactions on Antennas and Propagation, vol. 24, no. 1, pp. 511, January 1976.Google Scholar
Beard, K. V., Ochs, H. T. III, and Kubesh, R. J., “Natural oscillations of small raindrops,” Nature, vol. 342, pp. 408410, 1989.Google Scholar
Testik, F. Y. and Barros, A. P., “Toward elucidating the microstructure of warm rainfall: A survey,” Reviews of Geophysics, vol. 45, no. 2, 2007. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005RG000182Google Scholar
Huang, G.-J., Bringi, V. N., and Thurai, M., “Orientation angle distributions of drops after an 80-m fall using a 2D video disdrometer,” Journal of Atmospheric and Oceanic Technology, vol. 25, no. 9, pp. 17171723, 2008.CrossRefGoogle Scholar
Thurai, M. and Bringi, V. N., “Drop axis ratios from a 2D video disdrometer,” Journal of Atmospheric and Oceanic Technology, vol. 22, no. 7, pp. 966978, 2005.Google Scholar
Bringi, V. N., Thurai, M., and Brunkow, D. A., “Measurements and inferences of raindrop canting angles,” Electronics Letters, vol. 44, no. 24, pp. 14251426, November 2008.Google Scholar
Rogers, R. R. and Yau, M. K., A Short Course in Cloud Physics, 3rd ed. Oxford: Pergamon Press Oxford, 1989.Google Scholar
Pruppacher, H. R. and Klett, J. D., Microphysics of Clouds and Precipitation. Dordrecht, Holland: D. Reidel, 1978.Google Scholar
Bowen, E. G., “The formation of rain by coalescence,” Australian Journal of Scientific Research. Series A: Physical Sciences, vol. 3, p. 193, Jun. 1950.Google Scholar
Telford, J. W., “A new aspect of coalescence theory,” Journal of Meteorology, vol. 12, no. 5, pp. 436444, 1955.Google Scholar
Prat, O. P. and Barros, A. P., “A robust numerical solution of the stochastic collection-breakup equation for warm rain,” Journal of Applied Meteorology and Climatology, vol. 46, no. 9, pp. 14801497, 2007. [Online]. Available: https://doi.org/10.1175/JAM2544.1Google Scholar
D’Adderio, L. P., Porcù, F., and Tokay, A., “Identification and analysis of collisional breakup in natural rain,” Journal of the Atmospheric Sciences, vol. 72, no. 9, pp. 34043416, 2015. [Online]. Available: https://doi.org/10.1175/JAS-D-14-0304.1Google Scholar
Low, T. B. and List, R., “Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup,” Journal of the Atmospheric Sciences, vol. 39, no. 7, pp. 15911606, 1982. [Online]. Available: https://doi.org/10.1175/1520-0469(1982)039<1591:CCABOR>2.0.CO;2Google Scholar
Low, T. B. and List, R., “Collision, coalescence and breakup of raindrops. Part II: Parameterization of fragment size distributions,” Journal of the Atmospheric Sciences, vol. 39, no. 7, pp. 16071619, 1982. [Online]. Available: https://doi.org/10.1175/1520-0469(1982)039<1607:CCABOR>2.0.CO;2Google Scholar
Barros, A. P., Prat, O. P., Shrestha, P., Testik, F. Y., and Bliven, L. F., “Revisiting Low and List (1982): Evaluation of raindrop collision parameterizations using laboratory observations and modeling,” Journal of the Atmospheric Sciences, vol. 65, no. 9, pp. 29832993, 2008. [Online]. Available: https://doi.org/10.1175/2008JAS2630.1Google Scholar
Houze, R. J., Cloud Dynamics, vol. 104. Cambridge, MA: Academic Press, 2014.Google Scholar
Kumjian, M. R. and Prat, O. P., “The impact of raindrop collisional processes on the polarimetric radar variables,” Journal of the Atmospheric Sciences, vol. 71, no. 8, pp. 30523067, 2014.Google Scholar
Li, X. and Srivastava, R. C., “An analytical solution for raindrop evaporation and its application to radar rainfall measurements,” Journal of Applied Meteorology, vol. 40, no. 9, pp. 16071616, 2001.Google Scholar
Kumjian, M. R. and Ryzhkov, A. V., “The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications,” Journal of Applied Meteorology and Climatology, vol. 49, no. 6, pp. 12471267, 2010.Google Scholar
Straka, J. M., Zrnić, D. S., and Ryzhkov, A. V., “Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations,” Journal of Applied Meteorology and Climatology, vol. 29, no. 8, pp. 13411372, 2000.Google Scholar
Chen, J.-P. and Lamb, D., “The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition,” Journal of the Atmospheric Sciences, vol. 51, no. 9, pp. 12061222, 1994.Google Scholar
Chiruta, M. and Wang, P. K., “The capacitance of rosette ice crystals,” Journal of the Atmospheric Sciences, vol. 60, no. 6, pp. 836846, 2003. [Online]. Available: https://doi.org/10.1175/1520-0469(2003)060<0836:TCORIC>2.0.CO;2Google Scholar
Westbrook, C. D., Hogan, R. J., and Illingworth, A. J., “The capacitance of pristine ice crystals and aggregate snowflakes,” Journal of the Atmospheric Sciences, vol. 65, no. 1, pp. 206219, 2008. [Online]. Available: https://doi.org/10.1175/2007JAS2315.1Google Scholar
Bailey, M. P. and Hallett, J., “A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies,” Journal of the Atmospheric Sciences, vol. 66, no. 9, pp. 28882899, 2009.Google Scholar
Magono, C. and Lee, C. W., “Meteorological classification of natural snow crystals,” Journal of the Faculty of Science, Hokkaido University, vol. 2, no. 4, pp. 321335, 1968.Google Scholar
Kennedy, P., Thurai, M., Praz, C., Bringi, V. N., Berne, A., and Notaroš, B. M., “Variations in snow crystal riming and ZDR: A case analysis,” Journal of Applied Meteorology and Climatology, vol. 57, no. 3, pp. 695707, 2018. [Online]. Available: https://doi.org/10.1175/JAMC-D-17-0068.1Google Scholar
Kikuchi, K., Kameda, T., Higuchi, K., and Yamashita, A., “A global classification of snow crystals, ice crystals, and solid precipitation based on observations from middle latitudes to polar regions,” Atmospheric Research, vol. 132–133, pp. 460472, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0169809513001841Google Scholar
Korolev, A. V. and Mazin, I. P., “Supersaturation of water vapor in clouds,” Journal of the Atmospheric Sciences, vol. 60, no. 24, pp. 29572974, 2003. [Online]. Available: https://doi.org/10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2Google Scholar
Korolev, A., “Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds,” Journal of the Atmospheric Sciences, vol. 64, no. 9, pp. 33723375, 2007.Google Scholar
Weiss, R. R. and Hobbs, P. V., “The use of a vertically pointing pulsed Doppler radar in cloud physics and weather modification studies,” Journal of Applied Meteorology, vol. 14, no. 2, pp. 222231, 1975.Google Scholar
Bechini, R., Baldini, L., and Chandrasekar, V., “Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies,” Journal of Applied Meteorology and Climatology, vol. 52, pp. 11471169, 2013.Google Scholar
Hallet, J. and Mossop, S. C., “Production of secondary ice particles during the riming process,” Nature, vol. 249, pp. 2628, 1974. [Online]. Available: http://dx.doi.org/10.1038/249026a0Google Scholar
Vogel, J. M. and Fabry, F., “Contrasting polarimetric observations of stratiform riming and nonriming events,” Journal of Applied Meteorology and Climatology, vol. 57, no. 2, pp. 457476, 2018. [Online]. Available: https://doi.org/10.1175/JAMC-D-16-0370.1Google Scholar
Sinclair, V. A., Moisseev, D., and Lerber, A., “How dual-polarization radar observations can be used to verify model representation of secondary ice,” Journal of Geophysical Research: Atmospheres, vol. 121, no. 18, pp. 1095410970, 2016. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JD025381Google Scholar
Field, P. R., Lawson, R. P., Brown, P. R. A., Lloyd, G., Westbrook, C., Moisseev, D., Miltenberger, A., Nenes, A., Blyth, A., Choularton, T., Connolly, P., Buehl, J., Crosier, J., Cui, Z., Dearden, C., DeMott, P., Flossmann, A., Heymsfield, A., Huang, Y., Kalesse, H., Kanji, Z. A., Korolev, A., Kirchgaessner, A., Lasher-Trapp, S., Leisner, T., McFarquhar, G., Phillips, V., Stith, J., and Sullivan, S., “Secondary ice production: Current state of the science and recommendations for the future,” Meteorological Monographs, vol. 58, pp. 7.17.20, 2017. [Online]. Available: https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1Google Scholar
Houze, R. A., McMurdie, L. A., Petersen, W. A., Schwaller, M. R., Baccus, W., Lundquist, J. D., Mass, C. F., Nijssen, B., Rutledge, S. A., Hudak, D. R., Tanelli, S., Mace, G. G., Poellot, M. R., Lettenmaier, D. P., Zagrodnik, J. P., Rowe, A. K., DeHart, J. C., Madaus, L. E., Barnes, H. C., and Chandrasekar, V., “The Olympic Mountains experiment (Olympex),” Bulletin of the American Meteorological Society, vol. 98, no. 10, pp. 21672188, 2017. [Online]. Available: https://doi.org/10.1175/BAMS-D-16-0182.1CrossRefGoogle ScholarPubMed
Leinonen, J. and von Lerber, A., “Snowflake melting simulation using smoothed particle hydrodynamics,” Journal of Geophysical Research: Atmospheres, vol. 123, no. 3, pp. 18111825, 2018. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JD027909CrossRefGoogle Scholar
Langleben, M. P., “The terminal velocity of snowflakes,” Quarterly Journal of the Royal Meteorological Society, vol. 80, no. 346, pp. 640642, 1954. [Online]. Available: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49708034619Google Scholar
Ishizaka, M., Motoyoshi, H., Nakai, S., Shiina, T., Kumakura, T., and Muramoto, K. ichiro, “A new method for identifying the main type of solid hydrometeors contributing to snowfall from measured size-fall speed relationship,” Journal of the Meteorological Society of Japan. Ser. II, vol. 91, no. 6, pp. 747762, 2013.Google Scholar
Heymsfield, A. J., Bansemer, A., Schmitt, C., Twohy, C., and Poellot, M. R., “Effective ice particle densities derived from aircraft data,” Journal of the Atmospheric Sciences, vol. 61, no. 9, pp. 9821003, 2004. [Online]. Available: https://doi.org/10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2Google Scholar
Fabry, F. and Szyrmer, W., “Modeling of the melting layer. Part II: Electromagnetic,” Journal of the Atmospheric Sciences, vol. 56, no. 20, pp. 35933600, 1999. [Online]. Available: https://doi.org/10.1175/1520-0469(1999)056<3593:MOTMLP>2.0.CO;2Google Scholar
Szyrmer, W. and Zawadzki, I., “Modeling of the melting layer. Part I: Dynamics and microphysics,” Journal of the Atmospheric Sciences, vol. 56, no. 20, pp. 35733592, 1999. [Online]. Available: https://doi.org/10.1175/1520-0469(1999)056<3573:MOTMLP>2.0.CO;2Google Scholar
Heymsfield, A. J., Bansemer, A., Poellot, M. R., and Wood, N., “Observations of ice micro-physics through the melting layer,” Journal of the Atmospheric Sciences, vol. 72, no. 8, pp. 29022928, 2015. [Online]. Available: https://doi.org/10.1175/JAS-D-14-0363.1Google Scholar
Barthazy, E., Henrich, W., and Waldvogel, A., “Size distribution of hydrometeors through the melting layer,” Atmospheric Research, vol. 47–48, pp. 193208, 1998. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0169809598000659CrossRefGoogle Scholar
Troemel, S., Ryzhkov, A. V., Zhang, P., and Simmer, C., “Investigations of backscatter differential phase in the melting layer,” Journal of Applied Meteorology and Climatology, vol. 53, no. 10, pp. 23442359, 2014. [Online]. Available: https://doi.org/10.1175/JAMC-D-14-0050.1Google Scholar
Illingworth, A. J., Goddard, J. W. F., and Cherry, S. M., “Polarization radar studies of precipitation development in convective storms,” Quarterly Journal of the Royal Meteorological Society, vol. 113, no. 476, pp. 469489, 1987. [Online]. Available: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49711347604Google Scholar
Bringi, V. N., Knupp, K., Detwiler, A., Liu, L., Caylor, I. J., and Black, R. A., “Evolution of a Florida thunderstorm during the convection and precipitation/electrification experiment: The case of 9 August 1991,” Monthly Weather Review, vol. 125, no. 9, pp. 21312160, 1997. [Online]. Available: https://doi.org/10.1175/1520-0493(1997)125<2131:EOAFTD>2.0.CO;2Google Scholar
Scharfenberg, K. A., Miller, D. J., Schuur, T. J., Schlatter, P. T., Giangrande, S. E., Melnikov, V. M., Burgess, D. W., Andra, D. L., Foster, M. P., and Krause, J. M., “The joint polarization experiment: Polarimetric radar in forecasting and warning decision making,” Weather and Forecasting, vol. 20, no. 5, pp. 775788, 2005. [Online]. Available: https://doi.org/10.1175/WAF881.1Google Scholar
Kumjian, M. R., Khain, A. P., Benmoshe, N., Ilotoviz, E., Ryzhkov, A. V., and Phillips, V. T. J., “The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model,” Journal of Applied Meteorology and Climatology, vol. 53, no. 7, pp. 18201843, 2014. [Online]. Available: https://doi.org/10.1175/JAMC-D-13-0354.1Google Scholar
Plummer, D. M., French, J. R., Leon, D. C., Blyth, A. M., Lasher-Trapp, S., Bennett, L. J., Dufton, D. R. L., Jackson, R. C., and Neely, R. R., “Radar-derived structural and precipitation characteristics of ZDR columns within warm-season convection over the United Kingdom,” Journal of Applied Meteorology and Climatology, vol. 57, no. 11, pp. 24852505, 2018. [Online]. Available: https://doi.org/10.1175/JAMC-D-17-0134.1Google Scholar
Hubbert, J., Bringi, V. N., Carey, L. D., and Bolen, S., “CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado,” Journal of Applied Meteorology, vol. 37, no. 8, pp. 749775, 1998. [Online]. Available: https://doi.org/10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2Google Scholar
Picca, M., Kumjian, R., and Ryzhkov, A. V., “ZDR columns as a predictive tool for hail growth and storm evolution,” presentation at the 25th Conference on Severe Local Storms, Denver, CO, American Meteorological Society, 2010.Google Scholar
Browning, K. A. and Foote, G. B., “Airflow and hail growth in supercell storms and some implications for hail suppression,” Quarterly Journal of the Royal Meteorological Society, vol. 102, no. 433, pp. 499533, 1976. [Online]. Available: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49710243303Google Scholar
Foote, G. B. and Wade, C. G., “Case study of a hailstorm in Colorado. Part I: Radar echo structure and evolution,” Journal of the Atmospheric Sciences, vol. 39, no. 12, pp. 28282846, 1982. [Online]. Available: https://doi.org/10.1175/1520-0469(1982)039<2828:CSOAHI>2.0.CO;2Google Scholar
Lemon, L. R. and Doswell, C. A., “Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis,” Monthly Weather Review, vol. 107, no. 9, pp. 11841197, 1979. [Online]. Available: https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2Google Scholar
Battan, L. J., “Doppler radar observations of a hailstorm,” Journal of Applied Meteorology, vol. 14, no. 1, pp. 98108, 1975. [Online]. Available: https://doi.org/10.1175/1520-0450(1975)014<0098:DROOAH>2.0.CO;2Google Scholar
Browning, K., Frankhauser, J., Chalon, J.-P., Eccles, P., Strauch, R., Merrem, F., Musil, D., May, E., and Sand, W., “Structure of an evolving hailstorm part v: Synthesis and implications for hail growth and hail suppression,” Monthly Weather Review, vol. 104, no. 5, pp. 603610, 1976. [Online]. Available: https://doi.org/10.1175/1520-0493(1976)104<0603:SOAEHP>2.0.CO;2Google Scholar
Kennedy, P. C. and Detwiler, A. G., “A case study of the origin of hail in a multicell thunderstorm using in situ aircraft and polarimetric radar data,” Journal of Applied Meteorology, vol. 42, no. 11, pp. 16791690, 2003. [Online]. Available: https://doi.org/10.1175/1520-0450(2003)042<1679:ACSOTO>2.0.CO;2Google Scholar
Foote, G. B., “A study of hail growth utilizing observed storm conditions,” Journal of Climate and Applied Meteorology, vol. 23, no. 1, pp. 84101, 1984. [Online]. Available: https://doi.org/10.1175/1520-0450(1984)023<0084:ASOHGU>2.0.CO;2Google Scholar
Wakimoto, R. M. and Bringi, V. N., “Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST Project,” Monthly Weather Review, vol. 116, no. 8, pp. 15211539, 1988. [Online]. Available: https://doi.org/10.1175/1520-0493(1988)116<1521:DPOOMA>2.0.CO;2Google Scholar
Aydin, K., Seliga, T. A., and Balaji, V., “Remote sensing of hail with a dual linear polarization radar,” Journal of Climate and Applied Meteorology, vol. 25, no. 10, pp. 14751484, 1986. [Online]. Available: https://doi.org/10.1175/1520-0450(1986)025<1475:RSOHWA>2.0.CO;2Google Scholar
Depue, T. K., Kennedy, P. C., and Rutledge, S. A., “Performance of the hail differential reflectivity (HDR) polarimetric radar hail indicator,” Journal of Applied Meteorology and Climatology, vol. 46, no. 8, pp. 12901301, 2007. [Online]. Available: https://doi.org/10.1175/JAM2529.1Google Scholar
Rinehart, R. E. and Tuttle, J. D., “Antenna beam patterns and dual-wavelength processing,” Journal of Applied Meteorology, vol. 21, no. 12, pp. 18651880, 1982. [Online]. Available: https://doi.org/10.1175/1520-0450(1982)021<1865:ABPADW>2.0.CO;2Google Scholar
Junyent, F., Chandrasekar, V., Bringi, V. N., Rutledge, S. A., Kennedy, P. C., Brunkow, D., George, J., and Bowie, R., “Transformation of the CSU-CHILL radar facility to a dual-frequency, dual-polarization Doppler system,” Bulletin of the American Meteorological Society, vol. 96, no. 6, pp. 975996, 2015. [Online]. Available: https://doi.org/10.1175/BAMS-D-13-00150.1Google Scholar
Junyent, F. and Chandrasekar, V., “An examination of precipitation using csu-chill dual-wavelength, dual-polarization radar observations,” Journal of Atmospheric and Oceanic Technology, vol. 33, no. 2, pp. 313329, 2016. [Online]. Available: https://doi.org/10.1175/JTECH-D-14-00229.1Google Scholar
Kumjian, M. R., Richardson, Y. P., Meyer, T., Kosiba, K. A., and Wurman, J., “Resonance scattering effects in wet hail observed with a dual-X-band-frequency, dual-polarization Doppler on wheels radar,” Journal of Applied Meteorology and Climatology, vol. 57, no. 12, pp. 27132731, 2018. [Online]. Available: https://doi.org/10.1175/JAMC-D-17-0362.1Google Scholar
Knight, N. C., “Hailstone shape factor and its relation to radar interpretation of hail,” Journal of Climate and Applied Meteorology, vol. 25, no. 12, pp. 19561958, 1986. [Online]. Available: https://doi.org/10.1175/1520-0450(1986)025<1956:HSFAIR>2.0.CO;2Google Scholar
Kry, P. R. and List, R., “Angular motions of freely falling spheroidal hailstone models,” The Physics of Fluids, vol. 17, no. 6, pp. 10931102, 1974. [Online]. Available: https://aip.scitation.org/doi/abs/10.1063/1.1694848Google Scholar
Bringi, V. N., Seliga, T. A., and Aydin, K., “Hail detection with a differential reflectivity radar,” Science, vol. 225, no. 4667, pp. 11451147, 1984. [Online]. Available: http://science.sciencemag.org/content/225/4667/1145Google Scholar
Rasmussen, R. M. and Heymsfield, A. J., “Melting and shedding of graupel and hail. Part I: Model physics,” Journal of the Atmospheric Sciences, vol. 44, no. 19, pp. 27542763, 1987. [Online]. Available: https://doi.org/10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2Google Scholar
Rasmussen, R. M., Levizzani, V., and Pruppacher, H. R., “A wind tunnel and theoretical study on the melting behavior of atmospheric ice particles: III. Experiment and theory for spherical ice particles of radius > 500 μm,” Journal of the Atmospheric Sciences, vol. 41, no. 3, pp. 381388, 1984. [Online]. Available: https://doi.org/10.1175/1520-0469(1984)041<0381:AWTATS>2.0.CO;2Google Scholar
Rasmussen, R. M. and Heymsfield, A. J., “Melting and shedding of graupel and hail. Part II: Sensitivity study,” Journal of the Atmospheric Sciences, vol. 44, no. 19, pp. 27642782, 1987. [Online]. Available: https://doi.org/10.1175/1520-0469(1987)044<2764:MASOGA>2.0.CO;2Google Scholar
Ryzhkov, A. V., Kumjian, M. R., Ganson, S. M., and Khain, A. P., “Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling,” Journal of Applied Meteorology and Climatology, vol. 52, no. 12, pp. 28492870, 2013. [Online]. Available: https://doi.org/10.1175/JAMC-D-13-073.1Google Scholar
Ryzhkov, A. V., Kumjian, M. R., Ganson, S. M., and Zhang, P., “Polarimetric radar characteristics of melting hail. Part II: Practical implications,” Journal of Applied Meteorology and Climatology, vol. 52, no. 12, pp. 28712886, 2013. [Online]. Available: https://doi.org/10.1175/JAMC-D-13-074.1Google Scholar
Balakrishnan, N. and Zrnić, D. S., “Use of polarization to characterize precipitation and discriminate large hail,” Journal of the Atmospheric Sciences, vol. 47, no. 13, pp. 15251540, 1990. [Online]. Available: https://doi.org/10.1175/1520-0469(1990)047<1525:UOPTCP>2.0.CO;2Google Scholar
Dolan, B., Fuchs, B., Rutledge, S. A., Barnes, E. A., and Thompson, E. J., “Primary modes of global drop size distributions,” Journal of the Atmospheric Sciences, vol. 75, no. 5, pp. 14531476, 2018. [Online]. Available: https://doi.org/10.1175/JAS-D-17-0242.1Google Scholar
Bringi, V. N., Chandrasekar, V., Hubbert, J., Gorgucci, E., Randeu, W. L., and Schoenhuber, M., “Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis,” Journal of the Atmospheric Sciences, vol. 60, no. 2, pp. 354365, 2003. [Online]. Available: https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2Google Scholar
Murray, F. W., “On the computation of saturation vapor pressure,” Journal of Applied Meteorology, vol. 6, no. 1, pp. 203204, 1967. [Online]. Available: https://doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2Google Scholar
Balanis, C. A., Advanced Engineering Electromagnetics, 2nd ed. Hoboken, NJ: John Wiley & Sons, 2012.Google Scholar
Tsang, L. and Kong, J. A., Scattering of Electromagnetic Waves: Advanced Topics, 1st ed. Hoboken, NJ: John Wiley & Sons, 2001.Google Scholar
Cloude, S., Polarisation: Applications in Remote Sensing, 1st ed. Oxford: Oxford University Press, 2009.Google Scholar
Mishchenko, M. I., Travis, L. D., and Mackowski, D. W., “T-matrix computations of light scattering by nonspherical particles: A review,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 55, no. 5, pp. 535575, 1996. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0022407396000027Google Scholar
Tyynelä, J. and Chandrasekar, V., “Characterizing falling snow using multifrequency dual-polarization measurements,” Journal of Geophysical Research: Atmospheres, vol. 119, no. 13, pp. 82688283, 2014.Google Scholar
Ellison, W., “Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100C,” Journal of Physical and Chemical Reference Data, vol. 36, no. 1, pp. 118, 2007.Google Scholar
Turner, D. D., Kneifel, S., and Cadeddu, M. P., “An improved liquid water absorption model at microwave frequencies for supercooled liquid water clouds,” Journal of Atmospheric and Oceanic Technology, vol. 33, no. 1, pp. 3344, 2016.CrossRefGoogle Scholar
Mäetzler, C., “Microwave dielectric properties of ice,” in Thermal Microwave Radiation: Applications for Remote Sensing, vol. 52, Mäetzler, C., ed. London: Institution of Engineering and Technology, 2006, ch. 5.CrossRefGoogle Scholar
Sihvola, A., “Dielectric Polarization and Particle Shape Effects,” Journal of Nanomaterials, vol. 2007, 2007.CrossRefGoogle Scholar
Chýlek, P., Kiehl, J. T., and Ko, M. K. W., “Narrow resonance structure in the Mie scattering characteristics,” Applied Optics, vol. 17, no. 19, pp. 30193021, Oct. 1978. [Online]. Available: http://ao.osa.org/abstract.cfm?URI=ao-17-19-3019Google Scholar
Sihvola, A., Electromagnetic Mixing Formulas and Applications, ser. Electromagnetic Waves. London: Institution of Engineering and Technology, 1999.CrossRefGoogle Scholar
Scott, R. D., Krehbiel, P. R., and Rison, W., “The use of simultaneous horizontal and vertical transmissions for dual-polarization radar meteorological observations,” Journal of Atmospheric and Oceanic Technology, vol. 18, no. 4, pp. 629648, 2001. [Online]. Available: https://doi.org/10.1175/1520-0426(2001)018<0629:TUOSHA>2.0.CO;2Google Scholar
Tang, C. and Aydin, K., “Scattering from ice crystals at 94 and 220 GHz millimeter wave frequencies,” IEEE Transactions on Geoscience and Remote Sensing, vol. 33, no. 1, pp. 9399, Jan. 1995.Google Scholar
Olsen, R. L., “A review of theories of coherent radio wave propagation through precipitation media of randomly oriented scatterers, and the role of multiple scattering,” Radio Science, vol. 17, no. 5, pp. 913928, 1982. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RS017i005p00913Google Scholar
Chandrasekar, V., Gorgucci, E., and Baldini, L., “Evaluation of polarimetric radar rainfall algorithms at X-band,” presentation at the Second European Conference on Radar in Meteorology and Hydrology, Delft, Netherlands, 2002.Google Scholar
Lim, S. and Chandrasekar, V., “A dual-polarization rain profiling algorithm,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 4, pp. 10111021, April 2006.Google Scholar
Otto, T. and Russchenberg, H. W. J., “Estimation of specific differential phase and differential backscatter phase from polarimetric weather radar measurements of rain,” IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 5, pp. 988992, Sep. 2011.Google Scholar
Sihvola, A., “Mixing rules with complex dielectric coefficient,” Subsurface Sensing Technologies and Applications, vol. 1, pp. 393415, 01 2000.Google Scholar
Garnett, J. C. M. and Larmor, J., “XII. Colours in metal glasses and in metallic films,” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 203, no. 359–371, pp. 385420, 1904. [Online]. Available: https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1904.0024Google Scholar
Markel, V. A., “Introduction to the Maxwell Garnett approximation: Tutorial,” Journal of the Optical Society of America A, vol. 33, no. 7, pp. 12441256, Jul. 2016. [Online]. Available: http://josaa.osa.org/abstract.cfm?URI=josaa-33-7-1244Google Scholar
Hogan, R. J., Field, P. R., Illingworth, A. J., Cotton, R. J., and Choularton, T. W., “Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar,” Quarterly Journal of the Royal Meteorological Society, vol. 128, no. 580, pp. 451476, 2002. [Online]. Available: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1256/003590002321042054Google Scholar
Ishizaka, M., “An accurate measurement of densities of snowflakes using 3-D microphotographs,” Annals of Glaciology, vol. 18, p. 9296, 1993.CrossRefGoogle Scholar
Meneghini, R. and Liao, L., “Comparisons of cross sections for melting hydrometeors as derived from dielectric mixing formulas and a numerical method,” Journal of Applied Meteorology, vol. 35, no. 10, pp. 16581670, 1996. [Online]. Available: https://doi.org/10.1175/1520-0450(1996)035<1658:COCSFM>2.0.CO;2Google Scholar
Liao, L. and Meneghini, R., “Examination of effective dielectric constants of nonspherical mixed-phase hydrometeors,” Journal of Applied Meteorology and Climatology, vol. 52, no. 1, pp. 197212, 2013. [Online]. Available: https://doi.org/10.1175/JAMC-D-11-0244.1Google Scholar
Pruppacher, H. and Klett, J., Microphysics of Clouds and Precipitation, vol. 18, ser. Atmospheric and Oceanographic Sciences Library. Dordrecht, Netherlands: Springer, 2010.Google Scholar
Ryzhkov, A. V., Giangrande, S. E., Melnikov, V. M., and Schuur, T. J., “Calibration issues of dual-polarization radar measurements,” Journal of Atmospheric and Oceanic Technology, vol. 22, no. 8, pp. 11381155, 2005. [Online]. Available: https://doi.org/10.1175/JTECH1772.1Google Scholar
Gorgucci, E., Scarchilli, G., and Chandrasekar, V., “A procedure to calibrate multiparameter weather radar using properties of the rain medium,” IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 1, pp. 269276, Jan. 1999.Google Scholar
Bechini, R., Baldini, L., Cremonini, R., and Gorgucci, E., “Differential reflectivity calibration for operational radars,” Journal of Atmospheric and Oceanic Technology, vol. 25, no. 9, pp. 15421555, 2008. [Online]. Available: https://doi.org/10.1175/2008JTECHA1037.1Google Scholar
Matrosov, S. Y., “Theoretical study of radar polarization parameters obtained from cirrus clouds,” Journal of the Atmospheric Sciences, vol. 48, no. 8, pp. 10621070, 1991. [Online]. Available: https://doi.org/10.1175/1520-0469(1991)048<1062:TSORPP>2.0.CO;2Google Scholar
Matrosov, S. Y., Reinking, R. F., Kropfli, R. A., Martner, B. E., and Bartram, B. W., “On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds,” Journal of Applied Meteorology, vol. 40, no. 3, pp. 479490, 2001. [Online]. Available: https://doi.org/10.1175/1520-0450(2001)040<0479:OTUORD>2.0.CO;2Google Scholar
Matrosov, S. Y., Mace, G. G., Marchand, R., Shupe, M. D., Hallar, A. G., and McCubbin, I. B., “Observations of ice crystal habits with a scanning polarimetric W-band radar at slant linear depolarization ratio mode,” Journal of Atmospheric and Oceanic Technology, vol. 29, no. 8, pp. 9891008, 2012. [Online]. Available: https://doi.org/10.1175/JTECH-D-11-00131.1Google Scholar
Myagkov, A., Seifert, P., Bauer-Pfundstein, M., and Wandinger, U., “Cloud radar with hybrid mode towards estimation of shape and orientation of ice crystals,” Atmospheric Measurement Techniques, vol. 9, no. 2, pp. 469489, 2016. [Online]. Available: https://www.atmos-meas-tech.net/9/469/2016/Google Scholar
Papoulis, A. and Pillai, S. U., Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill Higher Education, 2002.Google Scholar
Cooley, J. W. and Tukey, J. W., “An algorithm for the machine calculation of complex Fourier series,” Mathematics of Computation, vol. 19, pp. 297301, 1965.Google Scholar
Doviak, R. and Zrnić, D., Doppler Radar and Weather Observations. Cambridge, MA: Academic Press, 1993.Google Scholar
Brockwell, P. J. and Davis, R. A., Time Series: Theory and Methods. Berlin: Springer-Verlag, 1986.Google Scholar
Krehbiel, P. R. and Brook, M., “A broad-band noise technique for fast-scanning radar observations of clouds and clutter targets,” IEEE Transactions on Geoscience Electronics, vol. 17, no. 4, pp. 196204, 1979.CrossRefGoogle Scholar
Zahrai, A. and Zrnić, D., “The 10-cm-wavelength polarimetric weather radar at NOAA’s National Severe Storms Laboratory,” Journal of Atmospheric and Oceanic Technology, vol. 10, no. 5, pp. 649662, 1993.Google Scholar
Harris, F., “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proceedings of the IEEE, vol. 66, no. 1, pp. 5183, 1978.Google Scholar
Geckinli, N. and Yavuz, D., “Some novel windows and a concise tutorial comparison of window families,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 26, no. 6, pp. 501507, 1978.CrossRefGoogle Scholar
Mead, J. B., “Comparison of meteorological radar signal detectability with noncoherent and spectral-based processing,” Journal of Atmospheric and Oceanic Technology, vol. 33, no. 4, pp. 723739, 2016.CrossRefGoogle Scholar
Priestley, M. B., Spectral Analysis and Time Series, 1st ed. Cambridge, MA: Academic Press, 1982.Google Scholar
Moisseev, D. N. and Chandrasekar, V., “Polarimetric Spectral Filter for Adaptive Clutter and Noise Suppression,” Journal of Atmospheric and Oceanic Technology, vol. 26, no. 2, pp. 215228, Feb. 2009. [Online]. Available: http://journals.ametsoc.org/doi/abs/10.1175/2008JTECHA1119.1CrossRefGoogle Scholar
Hubbert, J. and Bringi, V. N., “An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements,” Journal of Atmospheric and Oceanic Technology, vol. 12, no. 3, pp. 643648, 1995. [Online]. Available: https://doi.org/10.1175/1520-0426(1995)012<0643:AIFTFT>2.0.CO;2Google Scholar
Wang, Y. and Chandrasekar, V., “Algorithm for estimation of the specific differential phase,” Journal of Atmospheric and Oceanic Technology, vol. 26, no. 12, pp. 25652578, 2009.Google Scholar
Maesaka, T., Iwanami, K., and Maki, M., “Non-negative KDP estimation by monotone increasing Φdp assumption below melting layer,” presentation at the Seventh European Conference on Radar in Meteorology and Hydrology, Toulouse, France, 2012.Google Scholar
Giangrande, S. E., McGraw, R., and Lei, L., “An application of linear programming to polarimetric radar differential phase processing,” Journal of Atmospheric and Oceanic Technology, vol. 30, no. 8, pp. 17161729, 2013.Google Scholar
Schneebeli, M. and Berne, A., “An extended Kalman filter framework for polarimetric X-band weather radar data processing,” Journal of Atmospheric and Oceanic Technology, vol. 29, no. 5, pp. 711730, 2012.Google Scholar
Lim, S. and Chandrasekar, V., “A robust attenuation correction system for reflectivity and differential reflectivity in weather radars,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 3, pp. 17271737, 2016.Google Scholar
Ruzanski, E., Hubbert, J. C., and Chandrasekar, V., “Evaluation of the simultaneous multiple pulse repetition frequency algorithm for weather radar,” Journal of Atmospheric and Oceanic Technology, vol. 25, no. 7, pp. 11661181, 2008.Google Scholar
Sachidananda, M. and Zrnić, D. S., “Systematic phase codes for resolving range overlaid signals in a Doppler weather radar,” Journal of Atmospheric and Oceanic Technology, vol. 16, no. 10, pp. 13511363, 1999.Google Scholar
Chandrasekar, V. and Bharadwaj, N., “Orthogonal channel coding for simultaneous co-and cross-polarization measurements,” Journal of Atmospheric and Oceanic Technology, vol. 26, no. 1, pp. 4556, 2009.Google Scholar
Mudukutore, A. S., Chandrasekar, V., and Jeffrey Keeler, R., “Pulse compression for weather radars,” IEEE Transactions on Geoscience and Remote Sensing, vol. 36, no. 1, pp. 125142, 1998.Google Scholar
Griffiths, H. D. and Vinagre, L., “Design of low-sidelobe pulse compression waveforms,” Electronics Letters, vol. 30, no. 12, pp. 10041005, 1994.Google Scholar
Bharadwaj, N. and Chandrasekar, V., “Wideband waveform design principles for solid-state weather radars,” Journal of Atmospheric and Oceanic Technology, vol. 29, no. 1, pp. 1431, Jan 2012. [Online]. Available: http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-11-00030.1Google Scholar
Kurdzo, J. M., Cheong, B. L., Palmer, R. D., Zhang, G., and Meier, J. B., “A pulse compression waveform for improved-sensitivity weather radar observations,” Journal of Atmospheric and Oceanic Technology, vol. 31, no. 12, pp. 27132731, 2014. [Online]. Available: http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-13-00021.1Google Scholar
Cilliers, J. E. and Smit, J. C., “Pulse compression sidelobe reduction by minimization of Lp-norms,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43, no. 3, pp. 12381247, 2007.Google Scholar
Beauchamp, R. M., Tanelli, S., Peral, E., and Chandrasekar, V., “Pulse compression waveform and filter optimization for spaceborne cloud and precipitation radar,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 2, pp. 915931, 2017.Google Scholar
Melnikov, V. M. and Zrnić, D. S., “Simultaneous transmission mode for the polarimetric WSR-88D: Statistical biases and standard deviations of polarimetric variables,” Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, OK 2004. [Online]. Available: https://www.nssl.noaa.gov/publications/wsr88d_reports/SHV_statistics.pdfGoogle Scholar
Gorgucci, E., Scarchilli, G., and Chandrasekar, V., “Specific differential phase estimation in the presence of nonuniform rainfall medium along the path,” Journal of Atmospheric and Oceanic Technology, vol. 16, no. 11, pp. 16901697, 1999.Google Scholar
Saltikoff, E., Cho, J. Y. N., Tristant, P., Huuskonen, A., Allmon, L., Cook, R., Becker, E., and Joe, P., “The threat to weather radars by wireless technology,” Bulletin of the American Meteorological Society, vol. 97, no. 7, pp. 11591167, 2016. [Online]. Available: https://doi.org/10.1175/BAMS-D-15-00048.1Google Scholar
Vaccarono, M., Chandrasekar, C. V., Bechini, R., and Cremonini, R., “Survey on electromagnetic interference in weather radars in northwestern Italy,” Environments, vol. 6, no. 12, 2019. [Online]. Available: https://www.mdpi.com/2076-3298/6/12/126Google Scholar
Cho, J. Y. N., “A new radio frequency interference filter for weather radars,” Journal of Atmospheric and Oceanic Technology, vol. 34, no. 7, pp. 13931406, 06 2017. [Online]. Available: https://doi.org/10.1175/JTECH-D-17-0028.1Google Scholar
Bringi, V. N., Hoferer, R., Brunkow, D. A., Schwerdtfeger, R., Chandrasekar, V., Rutledge, S. A., George, J., and Kennedy, P. C., “Design and performance characteristics of the new 8.5-m dual-offset Gregorian antenna for the CSU-CHILL radar,” Journal of Atmospheric and Oceanic Technology, vol. 28, no. 7, pp. 907920, 2011. [Online]. Available: https://doi.org/10.1175/2011JTECHA1493.1Google Scholar
Scarchilli, G., Gorgucci, E., and Chandrasekar, V., “Detection and estimation of reflectivity gradients in the radar resolution volume using multiparameter radar measurements,” IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 2, pp. 11221127, March 1999.Google Scholar
Ryzhkov, A. and Zrnić, D., “Beamwidth effects on the differential phase measurements of rain,” Journal of Atmospheric and Oceanic Technology, vol. 15, no. 3, pp. 624634, 1998. [Online]. Available: https://doi.org/10.1175/1520-0426(1998)015<0624:BEOTDP>2.0.CO;2Google Scholar
Gosset, M., “Effect of nonuniform beam filling on the propagation of radar signals at X-band frequencies. Part II: Examination of differential phase shift,” Journal of Atmospheric and Oceanic Technology, vol. 21, no. 2, pp. 358367, 2004. [Online]. Available: https://doi.org/10.1175/1520-0426(2004)021<0358:EONBFO>2.0.CO;2Google Scholar
Ryzhkov, A. V., “The impact of beam broadening on the quality of radar polarimetric data,” Journal of Atmospheric and Oceanic Technology, vol. 24, no. 5, pp. 729744, 2007. [Online]. Available: https://doi.org/10.1175/JTECH2003.1Google Scholar
Beauchamp, R. M. and Chandrasekar, V., “Real-Time Noise Estimation and Correction in Dual-Polarization Radar Systems,” IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 11, pp. 61836195, 2015.Google Scholar
Ivić, I. R., Curtis, C., and Torres, S. M., “Radial-Based Noise Power Estimation for Weather Radars,” Journal of Atmospheric and Oceanic Technology, vol. 30, no. 12, pp. 27372753, Dec. 2013.Google Scholar
Gauthreaux, S. A., Mizrahi, D. S., and Belser, C. G., “Bird migration and bias of WSR-88d wind estimates,” Weather and Forecasting, vol. 13, no. 2, pp. 465481, 1998. [Online]. Available: https://doi.org/10.1175/1520-0434(1998)013<0465:BMABOW>2.0.CO;2Google Scholar
Jatau, P. and Melnikov, V., “Classifying bird and insect radar echoes at S-band,” presentation at the 35th Conference on Environmental Information Processing Technologies, Phoenix, AZ, American Meteorological Society, 2018.Google Scholar
Zrnić, D. S. and Ryzhkov, A. V., “Observations of insects and birds with a polarimetric radar,” IEEE Transactions on Geoscience and Remote Sensing, vol. 36, no. 2, pp. 661668, 1998.Google Scholar
Hubbert, J. C., Dixon, M., and Ellis, S. M., “Weather radar ground clutter. Part II: Real-time identification and filtering,” Journal of Atmospheric and Oceanic Technology, vol. 26, no. 1973, pp. 11811197, 2009.Google Scholar
Siggia, A. D. and Passarelli, R. E., “Gaussian model adaptive processing (GMAP) for improved ground clutter cancellation and moment calculation,” in Proceedings of ERAD (2004). Göttingen, Germany: Copernicus Publications, 2004, pp. 6773.Google Scholar
Nguyen, C. M. and Chandrasekar, V., “Gaussian model adaptive processing in time domain (GMAP-TD) for weather radars,” Journal of Atmospheric and Oceanic Technology, vol. 30, no. 11, pp. 25712584, 2013. [Online]. Available: http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-12-00215.1Google Scholar
Battaglia, A., Tanelli, S., Kobayashi, S., Zrnić, D., Hogan, R. J., and Simmer, C., “Multiple-scattering in radar systems: A review,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 111, no. 6, pp. 917947, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0022407309003677Google Scholar
Aydin, K., Park, S. H., and Walsh, T. M., “Bistatic dual-polarization scattering from rain and hail at S- and C-band frequencies,” Journal of Atmospheric and Oceanic Technology, vol. 15, no. 5, pp. 11101121, 1998. [Online]. Available: https://doi.org/10.1175/1520-0426(1998)015<1110:BDPSFR>2.0.CO;2Google Scholar
Picca, J. and Ryzhkov, A., “A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm,” Monthly Weather Review, vol. 140, no. 4, pp. 13851403, 2012. [Online]. Available: https://doi.org/10.1175/MWR-D-11-00112.1Google Scholar
Hubbert, J. C. and Bringi, V. N., “The effects of three-body scattering on differential reflectivity signatures,” Journal of Atmospheric and Oceanic Technology, vol. 17, no. 1, pp. 5161, 2000. [Online]. Available: https://doi.org/10.1175/1520-0426(2000)017<0051:TEOTBS>2.0.CO;2Google Scholar
Chandrasekar, V., Baldini, L., Bharadwaj, N., and Smith, P. L., “Calibration procedures for global precipitation-measurement ground-validation radars,” URSI Radio Science Bulletin, vol. 2015, no. 355, pp. 4573, Dec. 2015.Google Scholar
Huuskonen, A. and Holleman, I., “Determining weather radar antenna pointing using signals detected from the sun at low antenna elevations,” Journal of Atmospheric and Oceanic Technology, vol. 24, no. 3, pp. 476483, 2007. [Online]. Available: https://doi.org/10.1175/JTECH1978.1Google Scholar
Altube, P., Bech, J., Argemí, O., and Rigo, T., “Quality control of antenna alignment and receiver calibration using the sun: Adaptation to midrange weather radar observations at low elevation angles,” Journal of Atmospheric and Oceanic Technology, vol. 32, no. 5, pp. 927942, 05 2015. [Online]. Available: https://doi.org/10.1175/JTECH-D-14-00116.1Google Scholar
Silberstein, D. S., Wolff, D. B., Marks, D. A., Atlas, D., and Pippitt, J. L., “Ground clutter as a monitor of radar stability at Kwajalein, RMI,” Journal of Atmospheric and Oceanic Technology, vol. 25, no. 11, pp. 20372045, 2008. [Online]. Available: https://doi.org/10.1175/2008JTECHA1063.1Google Scholar
Wolff, D. B., Marks, D. A., and Petersen, W. A., “General application of the relative calibration adjustment (RCA) technique for monitoring and correcting radar reflectivity calibration,” Journal of Atmospheric and Oceanic Technology, vol. 32, no. 3, pp. 496506, 2015. [Online]. Available: https://doi.org/10.1175/JTECH-D-13-00185.1Google Scholar
Kurri, M. and Huuskonen, A., “Measurements of the transmission loss of a radome at different rain intensities,” Journal of Atmospheric and Oceanic Technology, vol. 25, no. 9, pp. 15901599, 09 2008. [Online]. Available: https://doi.org/10.1175/2008JTECHA1056.1Google Scholar
Bechini, R., Chandrasekar, V., Cremonini, R., and Lim, S., “Radome attenuation at X-band radar operations,” presentation at the Sixth European Conference on Radar in Meteorology and Hydrology, Sibiu, Romania, 2010.Google Scholar
Gorgucci, E., Bechini, R., Baldini, L., Cremonini, R., and Chandrasekar, V., “The influence of antenna radome on weather radar calibration and its real-time assessment,” Journal of Atmospheric and Oceanic Technology, vol. 30, no. 4, pp. 676689, 04 2013. [Online]. Available: https://doi.org/10.1175/JTECH-D-12-00071.1Google Scholar
Frasier, S. J., Kabeche, F., Figueras i Ventura, J., Al-Sakka, H., Tabary, P., Beck, J., and Bousquet, O., “In-place estimation of wet radome attenuation at X band,” Journal of Atmospheric and Oceanic Technology, vol. 30, no. 5, pp. 917928, 2013. [Online]. Available: https://doi.org/10.1175/JTECH-D-12-00148.1Google Scholar
Figueras i Ventura, J., Boumahmoud, A.-A., Fradon, B., Dupuy, P., and Tabary, P., “Long-term monitoring of French polarimetric radar data quality and evaluation of several polarimetric quantitative precipitation estimators in ideal conditions for operational implementation at C-band,” Quarterly Journal of the Royal Meteorological Society, vol. 138, no. 669, pp. 22122228, 2012. [Online]. Available: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.1934Google Scholar
Brandes, E. A. and Ikeda, K., “Freezing-level estimation with polarimetric radar,” Journal of Applied Meteorology, vol. 43, no. 11, pp. 15411553, 2004. [Online]. Available: https://doi.org/10.1175/JAM2155.1Google Scholar
Giangrande, S. E., Krause, J. M., and Ryzhkov, A. V., “Automatic designation of the melting layer with a polarimetric prototype of the WSR-88d radar,” Journal of Applied Meteorology and Climatology, vol. 47, no. 5, pp. 13541364, 2008. [Online]. Available: https://doi.org/10.1175/2007JAMC1634.1Google Scholar
Boodoo, S., Hudak, D., Donaldson, N., and Leduc, M., “Application of dual-polarization radar melting-layer detection algorithm,” Journal of Applied Meteorology and Climatology, vol. 49, no. 8, pp. 17791793, 2010. [Online]. Available: https://doi.org/10.1175/2010JAMC2421.1Google Scholar
Kain, J. S., Goss, S. M., and Baldwin, M. E., “The melting effect as a factor in precipitation-type forecasting,” Weather and Forecasting, vol. 15, no. 6, pp. 700714, 2000. [Online]. Available: https://doi.org/10.1175/1520-0434(2000)015<0700:TMEAAF>2.0.CO;2Google Scholar
Baldini, L. and Gorgucci, E., “Identification of the melting layer through dual-polarization radar measurements at vertical incidence,” Journal of Atmospheric and Oceanic Technology, vol. 23, no. 6, pp. 829839, 2006. [Online]. Available: https://doi.org/10.1175/JTECH1884.1Google Scholar
Skolnik, M., Radar Handbook, 3rd ed., ser. Electronics electrical engineering. New York: McGraw-Hill Education, 2008.Google Scholar
Zagrodnik, J. P., McMurdie, L. A., and Houze, R. A., “Stratiform precipitation processes in cyclones passing over a coastal mountain range,” Journal of the Atmospheric Sciences, vol. 75, no. 3, pp. 9831004, 2018. [Online]. Available: https://doi.org/10.1175/JAS-D-17-0168.1Google Scholar
McMurdie, L. A., Rowe, A. K., Houze, R. A. Jr, Brodzik, S. R., Zagrodnik, J. P., and Schuldt, T. M., “Terrain-enhanced precipitation processes above the melting layer: Results from Olympex,” Journal of Geophysical Research: Atmospheres, vol. 123, no. 21, pp. 12,19412,209, 2018. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JD029161Google Scholar
Houze, R. A. and Medina, S., “Turbulence as a mechanism for orographic precipitation enhancement,” Journal of the Atmospheric Sciences, vol. 62, no. 10, pp. 35993623, 2005. [Online]. Available: https://doi.org/10.1175/JAS3555.1Google Scholar
Moisseev, D. N., Lautaportti, S., Tyynela, J., and Lim, S., “Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation,” Journal of Geophysical Research: Atmospheres, vol. 120, no. 24, pp. 12 64412 655, 2015. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JD023884Google Scholar
Grazioli, J., Lloyd, G., Panziera, L., Hoyle, C. R., Connolly, P. J., Henneberger, J., and Berne, A., “Polarimetric radar and in situ observations of riming and snowfall microphysics during CLACE 2014,” Atmospheric Chemistry and Physics, vol. 15, no. 23, pp. 13 78713 802, 2015. [Online]. Available: https://www.atmos-chem-phys.net/15/13787/2015/Google Scholar
Rosenfeld, D. and Ulbrich, C. W., “Cloud microphysical properties, processes, and rainfall estimation opportunities,” Meteorological Monographs, vol. 52, pp. 237258, 2003. [Online]. Available: https://doi.org/10.1175/0065-9401(2003)030<0237:CMPPAR>2.0.CO;2Google Scholar
Lemon, L. R. and Parker, S., “The Lahoma storm deep convergence zone: Its characteristics and role in storm dynamics and severity,” presentation at the 26th Conference on Radar Meteorology, Norman, OK, American Meteorological Society, 1996.Google Scholar
Snyder, J. C., Ryzhkov, A. V., Kumjian, M. R., Khain, A. P., and Picca, J., “A ZDR column detection algorithm to examine convective storm updrafts,” Weather and Forecasting, vol. 30, no. 6, pp. 18191844, 2015. [Online]. Available: https://doi.org/10.1175/WAF-D-15-0068.1Google Scholar
van Lier-Walqui, M., Fridlind, A. M., Ackerman, A. S., Collis, S., Helmus, J., MacGorman, D. R., North, K., Kollias, P., and Posselt, D. J., “On polarimetric radar signatures of deep convection for model evaluation: Columns of specific differential phase observed during MC3E,” Monthly Weather Review, vol. 144, no. 2, pp. 737758, 2016. [Online]. Available: https://doi.org/10.1175/MWR-D-15-0100.1Google Scholar
Hall, M. P. M., Goddard, J. W. F., and Cherry, S. M., “Identification of hydrometeors and other targets by dual-polarization radar,” Radio Science, vol. 19, no. 1, pp. 132140, 1984. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RS019i001p00132Google Scholar
Höller, H., Hagen, M., Meischner, P. F., Bringi, V. N., and Hubbert, J., “Life cycle and precipitation formation in a hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements,” Journal of the Atmospheric Sciences, vol. 51, no. 17, pp. 25002522, 1994. [Online]. Available: https://doi.org/10.1175/1520-0469(1994)051<2500:LCAPFI>2.0.CO;2Google Scholar
Liu, H. and Chandrasekar, V., “Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification,” Journal of Atmospheric and Oceanic Technologies, vol. 17, pp. 140164, 2000.Google Scholar
Zrnić, D. S., Ryzhkov, A., Straka, J., Liu, Y., and Vivekanandan, J., “Testing a procedure for automatic classification of hydrometeor types,” Journal of Atmospheric and Oceanic Technology, vol. 18, pp. 892913, 2001.Google Scholar
Liu, H. and Chandrasekar, V., “Classification of hydrometeor type based on multipa-rameter radar measurements,” in International Conference on Cloud Physics. Boston: American Meteorological Society, 1998, pp. 253256.Google Scholar
Lim, S., Chandrasekar, V., and Bringi, V. N., “Hydrometeor classification system using dual-polarization radar measurements: Model improvements and in situ verification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, pp. 792801, 2005.Google Scholar
Bechini, R. and Chandrasekar, V., “A semi-supervised robust hydrometeor classification method for dual-polarization radar applications,” Journal of Atmospheric and Oceanic Technology, vol. 32, pp. 2247, 2015.Google Scholar
Al-Sakka, H., Boumahmoud, A.-A., Fradon, B., Frasier, S. J., and Tabary, P., “A new fuzzy logic hydrometeor classification scheme applied to the French X-, C-, and S-band polarimetric radars,” Journal of Applied Meteorology and Climatology, vol. 52, pp. 23282344, 2013.Google Scholar
Roberto, N., Baldini, L., Adirosi, E., Facheris, L., Cuccoli, F., Lupidi, A., and Garzelli, A., “A support vector machine hydrometeor classification algorithm for dual-polarization radar,” Atmosphere, vol. 8, no. 8, 2017. [Online]. Available: https://www.mdpi.com/2073-4433/8/8/134Google Scholar
Wen, G., Protat, A., May, P. T., Moran, W., and Dixon, M., “A cluster-based method for hydrometeor classification using polarimetric variables. Part II: Classification,” Journal of Atmospheric and Oceanic Technology, vol. 33, no. 1, pp. 4560, 2016. [Online]. Available: https://doi.org/10.1175/JTECH-D-14-00084.1Google Scholar
Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A., “Hydrometeor classification through statistical clustering of polarimetric radar measurements: A semi-supervised approach,” Atmospheric Measurement Techniques, vol. 9, no. 9, pp. 44254445, 2016. [Online]. Available: https://www.atmos-meas-tech.net/9/4425/2016/Google Scholar
Grazioli, J., Tuia, D., and Berne, A., “Hydrometeor classification from polarimetric radar measurements: A clustering approach,” Atmospheric Measurement Techniques, vol. 8, no. 1, pp. 149170, 2015. [Online]. Available: https://www.atmos-meas-tech.net/8/149/2015/Google Scholar
Ribaud, J.-F., Machado, L. A. T., and Biscaro, T., “X-band dual-polarization radar-based hydrometeor classification for Brazilian tropical precipitation systems,” Atmospheric Measurement Techniques, vol. 12, no. 2, pp. 811837, 2019. [Online]. Available: https://www.atmos-meas-tech.net/12/811/2019/Google Scholar
Yurkin, M. and Hoekstra, A., “The discrete dipole approximation: An overview and recent developments,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 106, no. 1, pp. 558589, 2007. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0022407307000556Google Scholar
Auer, A. H. and Veal, D. L., “The dimension of ice crystals in natural clouds,” Journal of the Atmospheric Sciences, vol. 27, no. 6, pp. 919926, 1970. [Online]. Available: https://doi.org/10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2Google Scholar
Wolde, M. and Vali, G., “Polarimetric signatures from ice crystals observed at 95 GHz in winter clouds. Part I: Dependence on crystal form,” Journal of the Atmospheric Sciences, vol. 58, no. 8, pp. 828841, 2001. [Online]. Available: https://doi.org/10.1175/1520-0469(2001)058<0828:PSFICO>2.0.CO;2Google Scholar
Andric, J., Zrnić, D., and Melnikov, V., “Two-layer patterns of enhanced ZDR in clouds,” presentation at the 34th Conference on Radar Meteorology, Wiilliamsburg, VA, American Meteorological Society, 2009. [Online]. Available: https://ams.confex.com/ams/pdfpapers/155481.pdfGoogle Scholar
Keat, W. J. and Westbrook, C. D., “Revealing layers of pristine oriented crystals embedded within deep ice clouds using differential reflectivity and the copolar correlation coefficient,” Journal of Geophysical Research: Atmospheres, vol. 122, no. 21, pp. 1173711759, 2017. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JD026754Google Scholar
Kennedy, P. C. and Rutledge, S. A., “S-band dual-polarization radar observations of winter storms,” Journal of Applied Meteorology and Climatology, vol. 50, no. 4, pp. 844858, 2011. [Online]. Available: https://doi.org/10.1175/2010JAMC2558.1Google Scholar
Griffin, E. M., Schuur, T. J., and Ryzhkov, A. V., “A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles,” Journal of Applied Meteorology and Climatology, vol. 57, no. 1, pp. 3150, 2018. [Online]. Available: https://doi.org/10.1175/JAMC-D-17-0033.1Google Scholar
Hobbs, P. V., Chang, S., and Locatelli, J. D., “The dimensions and aggregation of ice crystals in natural clouds,” Journal of Geophysical Research, vol. 79, no. 15, pp. 21992206, 1974. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JC079i015p02199Google Scholar
Williams, E. R., Smalley, D. J., Donovan, M. F., Hallowell, R. G., Hood, K. T., Bennett, B. J., Evaristo, R., Stepanek, A., Bals-Elsholz, T., Cobb, J., Ritzman, J., Korolev, A., and Wolde, M., “Measurements of differential reflectivity in snowstorms and warm season stratiform systems,” Journal of Applied Meteorology and Climatology, vol. 54, no. 3, pp. 573595, 2015. [Online]. Available: https://doi.org/10.1175/JAMC-D-14-0020.1Google Scholar
Bukovčić, P., Ryzhkov, A., Zrnić, D., and Zhang, G., “Polarimetric radar relations for quantification of snow based on disdrometer data,” Journal of Applied Meteorology and Climatology, vol. 57, no. 1, pp. 103120, 2018. [Online]. Available: https://doi.org/10.1175/JAMC-D-17-0090.1Google Scholar
Vivekanandan, J., Bringi, V. N., Hagen, M., and Meischner, P., “Polarimetric radar studies of atmospheric ice particles,” IEEE Transactions on Geoscience and Remote Sensing, vol. 32, no. 1, pp. 110, Jan 1994.Google Scholar
Bukovčić, P., Ryzhkov, A., and Zrnić, D., “Polarimetric relations for snow estimation— radar verification,” Journal of Applied Meteorology and Climatology, vol. 59, no. 5, pp. 9911009, 05 2020. [Online]. Available: https://doi.org/10.1175/JAMC-D-19-0140.1Google Scholar
Vonnegut, B., “Orientation of ice crystals in the electric field of a thunderstorm,” Weather, vol. 20, no. 10, pp. 310312, 1965. [Online]. Available: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/j.1477-8696.1965.tb02740.xCrossRefGoogle Scholar
Weinheimer, A. J. and Few, A. A., “The electric field alignment of ice particles in thunderstorms,” Journal of Geophysical Research: Atmospheres, vol. 92, no. D12, pp. 14 83314 844, 1987. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JD092iD12p14833Google Scholar
Caylor, I. J. and Chandrasekar, V., “Time-varying ice crystal orientation in thunderstorms observed with multiparameter radar,” IEEE Transactions on Geoscience and Remote Sensing, vol. 34, no. 4, pp. 847858, July 1996.Google Scholar
Amburn, S. A. and Wolf, P. L., “VIL density as a hail indicator,” Weather and Forecasting, vol. 12, no. 3, pp. 473478, 1997. [Online]. Available: https://doi.org/10.1175/1520-0434(1997)012<0473:VDAAHI>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Greene, D. R. and Clark, R. A., “Vertically integrated liquid water-a new analysis tool,” Monthly Weather Review, vol. 100, no. 7, pp. 548552, 1972. [Online]. Available: https://doi.org/10.1175/1520-0493(1972)100<0548:VILWNA>2.3.CO;2Google Scholar
Höller, H., “Radar-derived mass-concentrations of hydrometeors for cloud model retrievals,” presentation at the 27th Conference on Radar Meteorology, Vail, CO, Oct. 9–13 1995. [Online]. Available: https://elib.dlr.de/32103/Google Scholar
Jameson, A. R., “Microphysical interpretation of multi-parameter radar measurements in rain. Part I: Interpretation of polarization measurements and estimation of raindrop shapes,” Journal of the Atmospheric Sciences, vol. 40, no. 7, pp. 17921802, 1983.Google Scholar
Ulbrich, C. W. and Atlas, D., “Rainfall microphysics and radar properties: Analysis methods for drop size spectra,” Journal of Applied Meteorology, vol. 37, no. 9, pp. 912923, 1998. [Online]. Available: https://doi.org/10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2Google Scholar
Scarchilli, G., Gorgucci, V., Chandrasekar, V., and Dobaie, A., “Self-consistency of polarization diversity measurement of rainfall,” IEEE Transactions on Geoscience and Remote Sensing, vol. 34, no. 1, pp. 2226, Jan. 1996.Google Scholar
Gorgucci, E., Baldini, L., and Chandrasekar, V., “What is the shape of a raindrop? An answer from radar measurements,” Journal of the Atmospheric Sciences, vol. 63, no. 11, pp. 30333044, 2006.Google Scholar
Gorgucci, E., Chandrasekar, V., Bringi, V. N., and Scarchilli, G., “Estimation of raindrop size distribution parameters from polarimetric radar measurements,” Journal of the Atmospheric Sciences, vol. 59, no. 15, pp. 23732384, 2002. [Online]. Available: https://doi.org/10.1175/1520-0469(2001)058<0828:PSFICO>2.0.CO;2 https://doi.org/10.1175/1520-0469(2002)059<2373:EORSDP>2.0.CO;2Google Scholar
Gorgucci, E., Scarchilli, G., Chandrasekar, V., and Bringi, V. N., “Measurement of mean raindrop shape from polarimetric radar observations,” Journal of the Atmospheric Sciences, vol. 57, no. 20, pp. 34063413, 2000. [Online]. Available: https://doi.org/10.1175/1520-0469(2000)057<3406:MOMRSF>2.0.CO;2Google Scholar
Pippitt, J., Wolff, D., Petersen, W., and Marks, D., “Data and operational processing for NASA’s GPM ground validation program,” presentation at the 37th International Conference on Radar Meteorology, Norman, OK, American Meteorological Society, 2015. [Online]. Available: https://ams.confex.com/ams/37RADAR/webprogram/Manuscript/Paper275627/37radarmanuscript.pdfGoogle Scholar
Carey, L. D. and Petersen, W. A., “Sensitivity of C-band polarimetric radar-based drop size estimates to maximum diameter,” Journal of Applied Meteorology and Climatology, vol. 54, no. 6, pp. 13521371, 2015.Google Scholar
Gorgucci, E. and Baldini, L., “Drop shape and DSD retrieval with an X-band dual polarization radar,” presentation at the 33rd Conference on Radar Meteorology, Cairns, Australia, American Meteorological Society, 2007.Google Scholar
Hitschfeld, W. and Bordan, J., “Errors inherent in the radar measurement of rainfall at attenuating wavelengths,” Journal of Meteorology, vol. 11, no. 1, pp. 5867, 1954.Google Scholar
Marzoug, M. and Amayenc, P., “A class of single- and dual-frequency algorithms for rain-rate profiling from a spaceborne radar. Pad I: Principle and tests from numerical simulations,” Journal of Atmospheric and Oceanic Technology, vol. 11, no. 6, pp. 14801506, 1994.Google Scholar
Smyth, T. J. and Illingworth, A. J., “Correction for attenuation of radar reflectivity using polarization data,” Quarterly Journal of the Royal Meteorological Society, vol. 124, no. 551, pp. 23932415, 1998. [Online]. Available: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49712455111Google Scholar
Testud, J., Bouar, E. L., Obligis, E., and Ali-Mehenni, M., “The rain profiling algorithm applied to polarimetric weather radar,” Journal of Atmospheric and Oceanic Technology, vol. 17, no. 3, pp. 332356, 2000.Google Scholar
Ryzhkov, A., Diederich, M., Zhang, P., and Simmer, C., “Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking,” Journal of Atmospheric and Oceanic Technology, vol. 31, no. 3, pp. 599619, 2014. [Online]. Available: https://doi.org/10.1175/JTECH-D-13-00038.1Google Scholar
Delrieu, G., Caoudal, S., and Creutin, J. D., “Feasibility of using mountain return for the correction of ground-based X-band weather radar data,” Journal of Atmospheric and Oceanic Technology, vol. 14, no. 3, pp. 368385, 1997.Google Scholar
Carey, L. D., Rutledge, S. A., Ahijevych, D. A., and Keenan, T. D., “Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase,” Journal of Applied Meteorology, vol. 39, no. 9, pp. 14051433, 2000. [Online]. Available: https://doi.org/10.1175/1520-0450(2000)039<1405:CPEICB>2.0.CO;2Google Scholar
Park, S.-G., Bringi, V. N., Chandrasekar, V., Maki, M., and Iwanami, K., “Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part I: Theoretical and empirical basis,” Journal of Atmospheric and Oceanic Technology, vol. 22, no. 11, pp. 16211632, 2005. [Online]. Available: https://doi.org/10.1175/JTECH1803.1Google Scholar
Bringi, V. N., Keenan, T. D., and Chandrasekar, V., “Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 9, pp. 19061915, Sep. 2001.Google Scholar
Marshall, J. S., Langille, R. C., and Palmer, W. M. K., “Measurement of rainfall by radar,” Journal of Meteorology, vol. 4, no. 6, pp. 186192, 1947.Google Scholar
Battan, L., Radar Observation of the Atmosphere. Chicago: University of Chicago Press, 1973.Google Scholar
Keränen, R. and Chandrasekar, V., “Detection and estimation of radar reflectivity from weak echo of precipitation in dual-polarized weather radars,” Journal of Atmospheric and Oceanic Technology, vol. 31, no. 8, pp. 16771693, 2014. [Online]. Available: https://doi.org/10.1175/JTECH-D-13-00155.1Google Scholar
Seliga, T. A. and Bringi, V. N., “Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation,” Journal of Applied Meteorology, vol. 15, no. 1, pp. 6976, 1976. [Online]. Available: https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2Google Scholar
Gorgucci, E., Chandrasekar, V., and Scarchilli, G., “Radar and surface measurement of rainfall during CaPE: 26 July 1991 case study,” Journal of Applied Meteorology, vol. 34, no. 7, pp. 15701577, 1995. [Online]. Available: https://doi.org/10.1175/1520-0450-34.7.1570Google Scholar
Cifelli, R., Chandrasekar, V., Lim, S., Kennedy, P. C., Wang, Y., and Rutledge, S. A., “A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events,” Journal of Atmospheric and Oceanic Technology, vol. 28, no. 3, pp. 352364, 2011. [Online]. Available: https://doi.org/10.1175/2010JTECHA1488.1Google Scholar
Giangrande, S. E. and Ryzhkov, A. V., “Estimation of rainfall based on the results of polarimetric echo classification,” Journal of Applied Meteorology and Climatology, vol. 47, no. 9, pp. 24452462, 2008. [Online]. Available: https://doi.org/10.1175/2008JAMC1753.1Google Scholar
Chen, H., Chandrasekar, V., and Bechini, R., “An improved dual-polarization radar rainfall algorithm (DROPS2.0): Application in NASA IFloodS field campaign,” Journal of Hydrometeorology, vol. 18, no. 4, pp. 917937, 2017.Google Scholar
Lee, R. R. and Steadham, R. M., “WSR-88D algorithm comparisons of VCP 11 and new VCP 12,” presentation at the 20th International Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, American Meteorological Society, 2004.Google Scholar
Philips, B. and Chandrasekar, V., “The Dallas Fort Worth urban remote sensing network,” in 2012 IEEE International Geoscience and Remote Sensing Symposium. Piscataway, NJ: Institute of Electrical and Electronics Engineers, 2012, pp. 69116913.Google Scholar
Philips, B., Pepyne, D., Westbrook, D., Bass, E., Brotzge, J., Diaz, W., Kloesel, K., Kurose, J., Mclaughlin, D., Rodriguez, H., and Zink, M., “Integrating end user needs into system design and operation: The Center for Collaborative Adaptive Sensing of the Atmosphere (CASA),” presentation at the 16th Conference on Applied Climatology, San Antonio, TX, American Meteorological Society, 2007.Google Scholar
Mclaughlin, D. J., Chandrasekar, V., Droegemeier, K., Frasier, S., Kurose, J., Junyent, F., Philips, B., Cruz-pol, S., and Colom, J., “Distributed collaborative adaptive sensing (DCAS) for improved detection, understanding, and predicting of atmospheric hazards,” presentation at the Ninth Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface, American Meteorological Society, 2005.Google Scholar
Pepyne, D., Westbrook, D., Philips, B., Lyons, E., Zink, M., and Kurose, J., “Distributed collaborative adaptive sensor networks for remote sensing applications,” in 2008 American Control Conference. Piscataway, NJ: Institute of Electrical and Electronics Engineers, pp. 41674172, 2008. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4587147Google Scholar
Junyent, F. and Chandrasekar, V., “Theory and characterization of weather radar networks,” Journal of Atmospheric and Oceanic Technology, vol. 26, no. 3, pp. 474491, 2009.Google Scholar
Chandrasekar, V., Chen, H., and Philips, B., “Principles of high-resolution radar network for hazard mitigation and disaster management in an urban environment,” Journal of the Meteorological Society of Japan. Series II, vol. 96A, pp. 119139, 2018.Google Scholar
Cressman, G. P., “An operational objective analysis system,” Monthly Weather Review, vol. 87, no. 10, pp. 367374, 1959. [Online]. Available: http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%281959%29087%3C0367%3AAOOAS%3E2.0.CO%3B2Google Scholar
Barnes, S. L., “A technique for maximizing details in numerical weather map analysis,” Journal of Applied Meteorology, vol. 3, no. 4, pp. 396409, 1964.Google Scholar
Askelson, M. A., Aubagnac, J.-P., and Straka, J. M., “An adaptation of the Barnes filter applied to the objective analysis of radar data,” Monthly Weather Review, vol. 128, no. 9, pp. 30503082, 2000.Google Scholar
Lakshmanan, V., Smith, T., Hondl, K., Stumpf, G. J., and Witt, A., “A real-time, three-dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity, and derived products,” Weather and Forecasting, vol. 21, no. 5, pp. 802823, 2006.Google Scholar
Augst, A. and Hagen, M., “Interpolation of operational radar data to a regular Cartesian grid exemplified by Munich’s airport radar configuration,” Journal of Atmospheric and Oceanic Technology, vol. 34, no. 3, pp. 495510, 2017.Google Scholar
Mohr, C. G. and Vaughan, R. L., “An economical procedure for Cartesian interpolation and display of reflectivity factor data in three-dimensional space,” Journal of Applied Meteorology, vol. 18, no. 5, pp. 661670, 1979. [Online]. Available: https://doi.org/10.1175/1520-0450(1979)018<0661:AEPFCI>2.0.CO;2Google Scholar
Jay Miller, L., Mohr, C. G., and Weinheimer, A. J., “The simple rectification to Cartesian space of folded radial velocities from Doppler radar sampling,” Journal of Atmospheric and Oceanic Technology, vol. 3, no. 1, pp. 162174, 1986. [Online]. Available: https://doi.org/10.1175/1520-0426(1986)003<0162:TSRTCS>2.0.CO;2Google Scholar
Weygandt, S. S., Shapiro, A., and Droegemeier, K. K., “Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part I: Single-Doppler velocity retrieval,” Monthly Weather Review, vol. 130, no. 3, pp. 433453, 2002. [Online]. Available: https://doi.org/10.1175/1520-0493(2002)130<0433:ROMIFF>2.0.CO;2Google Scholar
Shapiro, A., Robinson, P., Wurman, J., and Gao, J., “Single-Doppler velocity retrieval with rapid-scan radar data,” Journal of Atmospheric and Oceanic Technology, vol. 20, no. 12, pp. 17581775, 2003. [Online]. Available: https://doi.org/10.1175/1520-0426(2003)020<1758:SVRWRR>2.0.CO;2Google Scholar
Heymsfield, G. M., “Statistical objective analysis of dual-Doppler radar data from a tornadic storm,” Journal of Applied Meteorology, vol. 15, no. 1, pp. 5968, 1976. [Online]. Available: https://doi.org/10.1175/1520-0450(1976)015<0059:SOAODD>2.0.CO;2Google Scholar
Gao, J., Xue, M., Shapiro, A., and Droegemeier, K. K., “A variational method for the analysis of three-dimensional wind fields from two Doppler radars,” Monthly Weather Review, vol. 127, no. 9, pp. 21282142, 1999. [Online]. Available: https://doi.org/10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2Google Scholar
Zhang, J., Howard, K., and Gourley, J. J., “Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes,” Journal of Atmospheric and Oceanic Technology, vol. 22, no. 1, pp. 3042, 2005. [Online]. Available: https://doi.org/10.1175/JTECH-1689.1Google Scholar
Barnes, S. L., “Mesoscale objective map analysis using weighted time-series observations,” National Oceanic and Atmospheric Administration, Commerce Department, Technical Repport, 1973.Google Scholar
Srivastava, R. C. and Tian, L., “Measurement of attenuation by a dual-radar method: Concept and error analysis,” Journal of Atmospheric and Oceanic Technology, vol. 13, no. 5, pp. 937947, 1996. [Online]. Available: https://doi.org/10.1175/1520-0426(1996)013<0937:MOABAD>2.0.CO;2Google Scholar
Chandrasekar, V. and Lim, S., “Retrieval of reflectivity in a networked radar environment,” Journal of Atmospheric and Oceanic Technology, vol. 25, no. 10, pp. 17551767, 2008. [Online]. Available: https://doi.org/10.1175/2008JTECHA1008.1Google Scholar
Yoshikawa, E., Chandrasekar, V., Ushio, T., and Matsuda, T., “A Bayesian approach for integrated raindrop size distribution (DSD) retrieval on an X-band dual-polarization radar network,” Journal of Atmospheric and Oceanic Technology, vol. 33, no. 2, pp. 377389, 2016.Google Scholar
Wang, Y. and Chandrasekar, V., “Quantitative precipitation estimation in the CASA X-band dual-polarization radar network,” Journal of Atmospheric and Oceanic Technology, vol. 27, no. 10, pp. 16651676, 2010.Google Scholar
Davies-Jones, R. P., “Dual-Doppler radar coverage area as a function of measurement accuracy and spatial resolution,” Journal of Applied Meteorology, vol. 18, no. 9, pp. 12291233, 1979. [Online]. Available: https://doi.org/10.1175/1520-0450-18.9.1229Google Scholar
Wang, Y., Chandrasekar, V., and Dolan, B., “Development of scan strategy for dual Doppler retrieval in a networked radar system,” in International Geoscience and Remote Sensing Symposium (IGARSS), vol. 5. Piscataway, NJ: Institute of Electrical and Electronics Engineers, 2008, pp. 322325.Google Scholar
Chen, H. and Chandrasekar, V., “Real-time wind velocity retrieval in the precipitation system using high-resolution operational multi-radar network,” in Remote Sensing of Aerosols, Clouds, and Precipitation, Islam, T., Hu, Y., Kokhanovsky, A., and Wang, J., eds. Amsterdam:. Elsevier, 2017, pp. 315339. [Online]. Available: http://dx.doi.org/10.1016/B978-0-12-810437-8.00015-3Google Scholar
Dowell, D. C. and Shapiro, A., “Stability of an iterative dual-Doppler wind synthesis in Cartesian coordinates,” Journal of Atmospheric and Oceanic Technology, vol. 20, no. 11, pp. 15521559, 2003. [Online]. Available: https://doi.org/10.1175/1520-0426(2003)020<1552:SOAIDW>2.0.CO;2Google Scholar
Bousquet, O. and Chong, M., A multiple-Doppler synthesis and continuity adjustment technique (MUSCAT) to recover wind components from Doppler radar measurements,” Journal of Atmospheric and Oceanic Technology, vol. 15, no. 2, pp. 343359, 1998. [Online]. Available: https://doi.org/10.1175/1520-0426(1998)015<0343:AMDSAC>2.0.CO;2Google Scholar
Shapiro, A. and Mewes, J. J., “New formulations of dual-Doppler wind analysis,” Journal of Atmospheric and Oceanic Technology, vol. 16, no. 6, pp. 782792, 1999. [Online]. Available: https://doi.org/10.1175/1520-0426(1999)016<0782:NFODDW>2.0.CO;2Google Scholar
Sun, J. and Crook, N. A., “Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments,” Journal of the Atmospheric Sciences, vol. 54, no. 12, pp. 16421661, 1997. [Online]. Available: https://doi.org/10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2Google Scholar
Vaccarono, M., Bechini, R., Chandrasekar, C. V., Cremonini, R., and Cassardo, C., “An integrated approach to monitoring the calibration stability of operational dual-polarization radars,” Atmospheric Measurement Techniques, vol. 9, no. 11, pp. 53675383, 2016. [Online]. Available: https://www.atmos-meas-tech.net/9/5367/2016/Google Scholar
Lim, S., Chandrasekar, V., Lee, P., and Jayasumana, A. P., “Real-time implementation of a network-based attenuation correction in the CASA IP1 testbed,” Journal of Atmospheric and Oceanic Technology, vol. 28, no. 2, pp. 197209, 2011. [Online]. Available: https://doi.org/10.1175/2010JTECHA1441.1Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×