Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T21:53:47.559Z Has data issue: false hasContentIssue false

Chapter 9 - Antioxidants to Improve Sperm Quality

Published online by Cambridge University Press:  24 May 2020

R. John Aitken
Affiliation:
University of Newcastle, New South Wales
David Mortimer
Affiliation:
Oozoa Biomedical Inc, Vancouver
Gabor Kovacs
Affiliation:
Epworth Healthcare Melbourne
Get access

Summary

Infertility is defined as a failure of spontaneous conception after one year of regular sexual intercourse in the absence of contraceptive measures [1]. This entity represents a rising medical complaint since one out of eight couples find it difficult to conceive a child for the first time, and up to one in six find it difficult to conceive twice. Currently, 70 million couples of reproductive age suffer from infertility worldwide, accounting for an estimated overall prevalence of 15% [2].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jungwirth, A., Diemer, T., Kopa, Z., Krausz, C. and Tournaye, H. (2017) EAU Guidelines on Male Infertility. www.uroweb.org 20.06.2018.Google Scholar
Ahmadi, S., Bashiri, R., Ghadiri-Anari, A., et al. (2016) Antioxidant supplements and semen parameters: an evidence based review. Int J Reprod BioMed 14(12):729736.Google ScholarPubMed
Nekonka, P. (2017) Role of trace elements for oxidative status and quality of human sperm. Balkan Med J 34:343348.Google Scholar
Gosalvez, J., Tvrda, E. and Agarwal, A. (2017) Free radical and superoxide reactivity detection in semen qualit assessment: past, present, and future. J Assist Reprod Genet 34:697707.CrossRefGoogle Scholar
Bejarano, I., Monllor, F., Marchena, A. M., et al. (2014) Exogenous melatonin supplementation prevents oxidative stress-evoked DNA damage in human spermatozoa. J Pineal Res 57:333339.CrossRefGoogle ScholarPubMed
Showell, M. G., Mackenzie-Proctor, R., Brown, J., Yazdani, A., Stankiewicz, M. T. and Hart, R. J. (2014) Antioxidants for male subfertility. Cochrane Database Syst Rev 12:CD007411.Google Scholar
Balercia, G., Buldreghini, E., Vignini, A., Tiano, L., Paggi, F., Amoroso, S., et al. (2009) Coenzyme Q10 treatment in infertile men with idiopathic asthenozoospermia: a placebo-controlled, double-blind randomized trial. Fertil Steril 91:17851792.Google Scholar
Plante, M., de Lamirande, E. and Gagnon, C. (1994) Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril 62:387393.Google Scholar
Calogero, A. E., Condorelli, R. A., Russo, G. I. and La Vignera, S. (2017) Conservative nonhormonal options for the treatment of male infertility: antibiotics, anti-inflammatory drugs, and antioxidants. Biomed Res Int 4650182.CrossRefGoogle Scholar
Wagner, H., Cheng, J. W. and Ko, E. Y. (2017) Role of reactive oxygen species in male infertility: an updated review of literature. Arab J Urol 16:3543.CrossRefGoogle ScholarPubMed
Hosen, M. B., Islam, M. R., et al. (2015) Oxidative stress induced sperm DNA damage, a possible reason for male infertility. Iranian J of Reprod Med 13:525532.Google ScholarPubMed
Agarwal, A., Sharma, R. K., Desai, N. R., Prabakaran, S., Tavares, A. and Sabanegh, E. (2009) Role of oxidative stress in pathogenesis of varicocele and infertility. Urology 73:461469.Google Scholar
Aziz, N., Saleh, R. A., Sharma, R. K., et al. (2004) Novel association between sperm reactive oxygen species production, sperm morphological defects, and the sperm deformity index. Fertil Steril 81:349354.Google Scholar
Harshit, G. and Rajeev, K. (2016) An update on the role of medical treatment including antioxidant therapy in varicocele. Asian J Androl 18:222228.Google Scholar
Linhartova, P., Gazo, I., Shaliutina-Kolesova, A., Hulak, M. and Kaspar, V. (2014) Effects of tetrabrombisphenol A on DNA integrity, oxidative stress, and sterlet (Acipenser ruthenus) spermatozoa quality variables. Environ Toxicol 1:111.Google Scholar
Tiseo, B. C., Gaskins, A. J., Hauser, R., et al. (2017) Coenzyme Q10 intake from foods and semen parameters in a subfertile population. Urology 102:100105.CrossRefGoogle Scholar
Suleiman, S. A., Ali, M. E., Zaki, Z. M., el-Malik, E. M. and Nasr, M. A. (1996) Lipid peroxidation and human sperm motility: protective role of vitamin E. J Androl 17:530537.Google Scholar
Moretti, E., Collodel, G., Fiaschi, A. I., et al. (2017) Nitric oxide, malondialdheyde and non-enzymatic antioxidants assessed in viable spermatozoa from selected infertile men. Reprod Biol 17:370375.Google Scholar
Walczak-Jedrzejowska, R., Wolski, J. K. and Slowikowska-Hilczer, J. (2013) The role of oxidative stress and antioxidants in male fertility. Cent European J Urol 66:6067.CrossRefGoogle ScholarPubMed
Pasqualotto, F. F., Sharma, R. K. and Kobayashi, H. (2001) Oxidative stress in normospermic men undergoing infertility evaluation. J Androl 22:316322.Google Scholar
Lamirande, E., Tsai, C., Harakata, A. and Gagnon, C. (1998) Involvement of reactive oxygen species in human sperm arcosome reaction induced by A23187, lysophosphatidylcholine, and biological fluid ultrafiltrates. J Androl 19:585594.CrossRefGoogle ScholarPubMed
Peeker, R. Abramsson, L. and Marklund, S. L. (1997) Superoxide dismutase isoenzymes in human seminal plasma and spermatozoa. Mol Hum Reprod 3: 10611066.CrossRefGoogle ScholarPubMed
Marzec-Wróblewska, U., Kamiński, P., et al. (2018) Human sperm characteristics with regard to cobalt, chromium, and lead in semen and activity of catalase in seminal plasma. Biol Trace Elem Res Jun 29.Google Scholar
Opuwari, C. S. and Henkel, R. R. (2016) An update on oxidative damage to spermatozoa and oocytes. Biomed Res Int 2016:9540142.CrossRefGoogle ScholarPubMed
Balercia, G., Regoli, F., Armeni, T., et al. (2005) Placebo-controlled double-blind randomized trial on the use of L-carnitine, L-acetylcarnitine, or combined L-carnitine and L-acetylcarnitine in men with idiopathic asthenozoospermia. Fertil Steril 84:662671.CrossRefGoogle ScholarPubMed
Safarinejad, M. R., Safarinejad, S., Shafiei, N. and Safarinejad, S. (2012) Effects of the reduced form of coenzyme Q10 (ubiquinol) on semen parameters in men with idiopathic infertility: a double-blind, placebo controlled, randomized study. J Urol 188:526531.Google Scholar
Nadjarzadeh, A., Shidfar, F., Amirjannati, N., Vafa, M., Motevalian, S., Gohari, M., et al. (2014) Effect of Coenzyme Q10 supplementation on antioxidant enzymes activity and oxidative stress of seminal plasma: a double-blind randomised clinical trial. Andrologia 46:177183.Google Scholar
Thakur, A. S., Littarru, G. P., Funahashi, I., Painkara, U. S., Dange, N. S. and Chauhan, P. (2015) Effect of ubiquinol therapy on sperm parameters and serum testosterone levels in oligoasthenozoospermic infertile men. J Clin Diagn Res 9:BC01BC03.Google Scholar
Amidi, F., Pazhohan, A., Shabani Nashtaei, M., et al. (2016) The role of antioxidants in sperm freezing: a review. Cell Tissue Bank 17:745756.Google Scholar
Greco, E., Iacobelli, M., Rienzi, L., et al. (2005) Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl 26:349356.CrossRefGoogle ScholarPubMed
Colagar, A. H. and Marzony, E. T. (2009) Ascorbic acid in human seminal plasma: determination and its relationship to sperm quality. J Clin Biochem Nutr 45:144149.Google Scholar
Geva, E., Bartoov, B., Zabludovsky, N., et al. (1996) The effect of antioxidant treatment on human spermatozoa and fertilization rate in an in vitro fertilization program. Fertil Steril 66:430434.CrossRefGoogle Scholar
Kessopoulou, E., Powers, H. J., Sharma, K. K., Pearson, M. J., Russel, J. M., Cooke, I. D., et al. (1995) A double–blind randomized placebo cross–over controlled trial using the an oxidant vitamin E to treat reac ve oxygen species associated male inferlity. Fertil Steril 64:825831.Google Scholar
Keskes–Ammar, L., Feki-Chakroun, N., Rebai, T., et al. (2003) Sperm oxidative stress and the effect of an oral vitamin E and selenium supplement on semen quality in infer le men. Arch Androl 49: 8394.CrossRefGoogle Scholar
Al-Azemi, M. K., Omu, A. E. M, Fatinikun, T. M., et al. (2009) Factors contributing to gender differences in serum retinol and alpha-tocopherol in infertile couples. Reprod Biomed Online 19:583590.Google Scholar
Galatioto, G. P., Gravina, G. L., Angelozzi, G., et al. (2008) May antioxidant therapy improve sperm parameters of men with persistent oligospermia after retrograde embolization for varicocele? World J Urol 26:97102.CrossRefGoogle Scholar
Lenzi, A., Sgrò, P., Salacone, P., et al. (2004) Placebo controlled double blind randomized trial on the use of L- carnitine and L-acetyl-carnitine combined treatment in asthenozoospermia. Fertil Steril 81:15781584.CrossRefGoogle ScholarPubMed
Garolla, A., Maiorino, M., Roverato, A., Roveri, A., Ursini, F. and Foresta, C. (2005) Oral carnitine supplementation increases sperm motility in asthenozoospermic men with normal sperm phospholipid hydroperoxide glutathione peroxidase levels. Fertil Steril 83:355361.CrossRefGoogle ScholarPubMed
Sigman, M., Glass, S., Campagnone, J. and Pryor, J. L. (2006) Carnitine for the treatment of idiopathic asthenospermia: a randomized, double-blind, placebo-controlled trial. Fertil Steril 85:14091414.CrossRefGoogle ScholarPubMed
Cavallini, G., Ferraretti, A. P., Gianaroli, L., et al. (2004) Cinnoxicam and L-carnitine/acetyl-L-carnitine treatment for idiopathic and varicocele-associated oligoasthenospermia. J Androl 25:761770.Google Scholar
Khan, M. S., Zaman, S., Sajjad, M., Shoaib, M. and Gilani, G. (2011) Assessment of the level of trace element zinc in seminal plasma of males and evaluation of its role in male infertility. Int J Appl Bas Med Res 1:9396.CrossRefGoogle ScholarPubMed
Wu, J., Wu, S., Xie, Y., et al. (2015) Zinc protects sperm from being damaged by reactive oxygen species in assisted reproduction techniques. Reprod Biomed Online 30:334339.CrossRefGoogle ScholarPubMed
Ebisch, I., Pierik, F., De Jong, F., Thomas, C. and Steegers-Theunissen, R. (2006) Does folic acid and zinc sulphate intervention affect endocrine parameters and sperm characteristics in men? Int J Androl 29:339345.Google Scholar
Hadwan, M. H., Almashhedy, L. A. and Alsalman, A. R. S. (2012) (Oral zinc supplementation restore high molecular weight seminal zinc binding protein to normal value in Iraqi infertile men. BMC Urol 12:32.CrossRefGoogle ScholarPubMed
Moslemi, M. K. and Tavanbakhsh, S. (2011) Selenium-vitamin E supplementation in infertile men: effects on semen parameters and pregnancy rate. Int J Gen Med 4:99104.CrossRefGoogle ScholarPubMed
Camejo, M. I., Abdala, L., Vivas-Acevedo, G., et al. (2011) Selenium, copper and zinc in seminal plasma of men with varicocele, relationship with seminal parameters. Biol Trace Elem Res 143:12471254.CrossRefGoogle ScholarPubMed
Zhang, J., Robinson, D. and Salmon, P. (2006) A novel function for selenium in biological system: selenite as a highly effective iron carrier for Chinese hamster ovary cell growth and monoclonal antibody production. Biotechnol Bioeng 20(95):11881197.CrossRefGoogle Scholar
Safarinejad, M. R. and Safarinejad, S. (2009) Efficacy of selenium and/or N-acetyl-cysteine for improving semen parameters in infertile men: a double-blind, placebo controlled, randomized study. J Urol 181:741751.CrossRefGoogle ScholarPubMed
Tremellen, K., Miari, G., Froiland, D. and Thompson, J. (2007) A randomised control trial examining the effect of an antioxidant (Menevit) on pregnancy outcome during IVF-ICSI treatment. Aust N Z J Obstet Gynecol 47:216221.Google Scholar
Scott, R., MacPherson, A., Yates, R. W., et al. (1998) The effect of oral selenium supplementation on human sperm motility. Br J Urol 82:7680.CrossRefGoogle ScholarPubMed
Safarinejad, M. R. and Safarinejad, S. (2009) Efficacy of selenium and/or N-acetyl-cysteine for improving semen parameters in infertile men: a double-blind, placebo controlled, randomized study. J Urol 181:741751.Google Scholar
Espino, J., Bejarano, I., Ortiz, A., et al. (2010) Melatonin as a potential tool against oxidative damage and apoptosis in ejaculated human spermatozoa. Fertil Steril 94:19151917.CrossRefGoogle ScholarPubMed
Ortiz, A., Espino, J., Bejarano, I., et al. (2011) High endogenous melatonin concentrations enhance sperm quality and short-term in vitro exposure to melatonin improves aspects of sperm motility. J Pineal Res 50:132139.CrossRefGoogle ScholarPubMed
Haghighian, H. K., Haidari, F., Mohammadi-Asl, J. and Dadfar, M. (2015) Randomized, triple-blind, placebo-controlled clinical trial examining the effects of alpha-lipoic acid supplement on the spermatogram and seminal oxidative stress in infertile men. Fertil Steril 104:318324.CrossRefGoogle ScholarPubMed
Azza, M. G. (2010) The protective role of alpha lipoic acid against pesticides induced testicular toxicity – histopathological and histochemical studies. J Aquacult Res Dev 1:17.Google Scholar
Ibrahim, S. F., Osman, K., Das, S., Othman, A. M., Majid, N. A. and Rahman, M. P. (2008) A study of the antioxidant effect of alpha lipoic acids on sperm quality. Clinics 63:545550.Google Scholar
Kuhla, A., Derbenev, M., Shih, H. Y. and Vollmar, B. (2016) Prophylactic and abundant intake of α-lipoic acid causes hepatic steatosis and should be reconsidered in usage as an anti-aging drug. Biofactors 42:179189.CrossRefGoogle ScholarPubMed
Abad, C., Amengual, M., Gozálvez, J., et al. (2013) Effects of oral antioxidant treatment upon the dynamics of human sperm DNA fragmentation and subpopulations of sperm with highly degraded DNA. Andrologia 45:211216.Google Scholar
Gopinath, P., Kalra, B., Saxena, A., et al. (2013) Fixed dose combination therapy of antioxidants in treatment of idiopathic oligoasthenozoospermia: results of a randomized, double-blind, placebo-controlled clinical trial. Int J Infertil Fetal Med 4:613.Google Scholar
Arhin, S. K., Zhao, Y., Lu, X., Chetry, M. and Lu, J. (2017) Effect of micronutrient supplementation on IVF outcomes: a systematic review of the literature. Reprod Biomed Online 35:715722.CrossRefGoogle ScholarPubMed
Buhling, K. J. and Laakmann, E. (2014) The effect of micronutrient supplements on male fertility. Curr Opin Obstet Gynecol 26:199209.CrossRefGoogle ScholarPubMed
Ross, A. C., Taylor, C. L., Yaktine, A. L. et al. (2011) Dietary Reference Intakes for Calcium and Vitamin D. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Washington, DC: National Academies Press (US).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×