Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-11T18:19:56.763Z Has data issue: false hasContentIssue false

Chapter 11 - Neuromyelitis Optica Spectrum Disorders and Glial Fibrillary Acidic Protein Autoimmunity

from Section 3 - Specific Syndromes and Diseases

Published online by Cambridge University Press:  27 January 2022

Josep Dalmau
Affiliation:
Universitat de Barcelona
Francesc Graus
Affiliation:
Universitat de Barcelona
Get access

Summary

In this chapter, two autoimmune disorders against astrocytes are reviewed: neuromyelitis optica (NMO), recently renamed NMO spectrum disorders (NMOSD) which frequently associates with antibodies against AQP4; and a meningoencephalitis without specific clinical or brain MRI features, which occurs in association with antibodies against glial fibrillary acidic protein (GFAP) that are mainly detected in CSF. NMOSD should be considered a syndrome rather than a disease because it associates with different antibodies and pathogenic mechanisms. In epidemiological studies, 73% of patients with NMOSD have aquaporin 4 (AQP4) antibodies whereas 12% harbour myelin oligodendrocyte glycoprotein (MOG) antibodies and 15% are seronegative. The diagnosis of NMOSD is based on clinical and laboratory criteria that require the presence of one or two core clinical syndromes, depending on the positivity of AQP4 antibodies. Relapses in NMOSD are common and several treatments with monoclonal antibodies have shown efficacy, including the following targets: the C5 complement protein (eculizumab), the interleukin 6 receptor (satralizumab), and the CD19 B cell receptor (inebilizumab). The pathogenic role of AQP4 antibodies is supported by the neuropathological findings in patients with NMOSD, and by in-vitro studies and passive transfer of antibodies to experimental animals.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Parpura, V, Basarsky, TA, Liu, F, et al. Glutamate-mediated astrocyte-neuron signalling. Nature 1994;369:744747.Google Scholar
Bowman, CL, Kimelberg, HK. Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature 1984;311:656659.CrossRefGoogle ScholarPubMed
Haydon, PG. Astrocytes and the modulation of sleep. Curr Opin Neurobiol 2017;44:2833.CrossRefGoogle ScholarPubMed
Araque, A, Parpura, V, Sanzgiri, RP, Haydon, PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 1999;22:208215.CrossRefGoogle ScholarPubMed
Hasan, U, Singh, SK. The astrocyte–neuron interface: an overview on molecular and cellular dynamics controlling formation and maintenance of the tripartite synapse. Method Molec Biol (Clifton, NJ) 2019;1938:318.Google Scholar
Perea, G, Navarrete, M, Araque, A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 2009;32:421431.Google Scholar
Simard, M, Arcuino, G, Takano, T, Liu, QS, Nedergaard, M. Signaling at the gliovascular interface. J Neurosci 2003;23:92549262.CrossRefGoogle ScholarPubMed
Pfrieger, FW. Role of glial cells in the formation and maintenance of synapses. Brain Res Revs 2010;63:3946.Google Scholar
Iliff, JJ, Wang, M, Liao, Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 2012;4:147ra111.Google Scholar
Papouin, T, Dunphy, J, Tolman, M, Foley, JC, Haydon, PG. Astrocytic control of synaptic function. Philos Trans Roy Soc Lond B Biol Sci 2017;372:20160154.Google Scholar
Yao, X, Hrabetova, S, Nicholson, C, Manley, GT. Aquaporin-4-deficient mice have increased extracellular space without tortuosity change. J Neurosci 2008;28:54605464.Google Scholar
Ransohoff, RM, Engelhardt, B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 2012;12:623635.Google Scholar
Farina, C, Aloisi, F, Meinl, E. Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007;28:138145.Google Scholar
Colombo, E, Farina, C. Astrocytes: key regulators of neuroinflammation. Trends Immunol 2016;37:608620.CrossRefGoogle ScholarPubMed
Lennon, VA, Kryzer, TJ, Pittock, SJ, Verkman, AS, Hinson, SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005;202:473477.Google Scholar
Wingerchuk, DM, Banwell, B, Bennett, JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015;85:177189.Google Scholar
Jarius, S, Wildemann, B. The history of neuromyelitis optica. J Neuroinflammation 2013;10:8.Google Scholar
Flanagan, EP, Hinson, SR, Lennon, VA, et al. Glial fibrillary acidic protein immunoglobulin G as biomarker of autoimmune astrocytopathy: analysis of 102 patients. Ann Neurol 2017;81:298309.CrossRefGoogle ScholarPubMed
Saida, T. [Treatment of NMO]. Rinsho Shinkeigaku 2009;49:902905.CrossRefGoogle ScholarPubMed
Lucchinetti, CF, Guo, Y, Popescu, BF, et al. The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol 2014;24:8397.Google Scholar
Fang, B, McKeon, A, Hinson, SR, et al. Autoimmune glial fibrillary acidic protein astrocytopathy: a novel meningoencephalomyelitis. JAMA Neurol 2016;73:12971307.Google Scholar
Bradl, M, Lassmann, H. Experimental models of neuromyelitis optica. Brain Pathol 2014;24:7482.CrossRefGoogle ScholarPubMed
Shu, Y, Long, Y, Chang, Y, et al. Brain immunohistopathology in a patient with autoimmune glial fibrillary acidic protein astrocytopathy. Neuroimmunomodulation 2018;25:16.CrossRefGoogle Scholar
Long, Y, Liang, J, Xu, H, et al. Autoimmune glial fibrillary acidic protein astrocytopathy in Chinese patients: a retrospective study. Eur J Neurol 2018;25:477483.Google Scholar
Kuroiwa, Y, Shibasaki, H. Epidemiologic and clinical studies of multiple sclerosis in Japan. Neurology 1976;26:810.CrossRefGoogle ScholarPubMed
O’Riordan, JI, Gallagher, HL, Thompson, AJ, et al. Clinical, CSF, and MRI findings in Devic’s neuromyelitis optica. J Neurol Neurosurg Psychiatry 1996;60:382387.CrossRefGoogle ScholarPubMed
Wingerchuk, DM, Hogancamp, WF, O’Brien, PC, Weinshenker, BG. The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 1999;53:11071114.Google Scholar
Lennon, VA, Wingerchuk, DM, Kryzer, TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004;364:21062112.Google Scholar
Wingerchuk, DM, Lennon, VA, Pittock, SJ, Lucchinetti, CF, Weinshenker, BG. Revised diagnostic criteria for neuromyelitis optica. Neurology 2006;66:14851489.Google Scholar
Sepulveda, M, Aldea, M, Escudero, D, et al. Epidemiology of NMOSD in Catalonia: influence of the new 2015 criteria in incidence and prevalence estimates. Mult Scler 2018;24:18431851.Google Scholar
Bukhari, W, Prain, KM, Waters, P, et al. Incidence and prevalence of NMOSD in Australia and New Zealand. J Neurol Neurosurg Psychiatry 2017;88:632638.CrossRefGoogle ScholarPubMed
Papp, V, Illes, Z, Magyari, M, et al. Nationwide prevalence and incidence study of neuromyelitis optica spectrum disorder in Denmark. Neurology 2018;91:e2265e2275.CrossRefGoogle ScholarPubMed
Papp, V, Iljicsov, A, Rajda, C, et al. A population-based epidemiological study of neuromyelitis optica spectrum disorder in Hungary. Eur J Neurol 2020;27:308317.Google Scholar
Kim, SH, Kim, W, Li, XF, Jung, IJ, Kim, HJ. Clinical spectrum of CNS aquaporin-4 autoimmunity. Neurology 2012;78:11791185.Google Scholar
Sepulveda, M, Armangue, T, Sola-Valls, N, et al. Neuromyelitis optica spectrum disorders: comparison according to the phenotype and serostatus. Neurol Neuroimmunol Neuroinflamm 2016;3:e225.Google Scholar
Wingerchuk, DM, Lennon, VA, Lucchinetti, CF, Pittock, SJ, Weinshenker, BG. The spectrum of neuromyelitis optica. Lancet Neurol 2007;6:805815.Google Scholar
Kim, SH, Mealy, MA, Levy, M, et al. Racial differences in neuromyelitis optica spectrum disorder. Neurology 2018;91:e2089e2099.Google Scholar
Flanagan, EP, Cabre, P, Weinshenker, BG, et al. Epidemiology of aquaporin-4 autoimmunity and neuromyelitis optica spectrum. Ann Neurol 2016;79:775783.Google Scholar
Hor, JY, Asgari, N, Nakashima, I, et al. Epidemiology of neuromyelitis optica spectrum disorder and its prevalence and incidence worldwide. Front Neurol 2020;11:501.Google Scholar
O’Connell, K, Hamilton-Shield, A, Woodhall, M, et al. Prevalence and incidence of neuromyelitis optica spectrum disorder, aquaporin-4 antibody-positive NMOSD and MOG antibody-positive disease in Oxfordshire, UK. J Neurol Neurosurg Psychiatry 2020;91:11261128.CrossRefGoogle ScholarPubMed
Banwell, B, Tenembaum, S, Lennon, VA, et al. Neuromyelitis optica-IgG in childhood inflammatory demyelinating CNS disorders. Neurology 2008;70:344352.Google Scholar
McKeon, A, Lennon, VA, Lotze, T, et al. CNS aquaporin-4 autoimmunity in children. Neurology 2008;71:93100.Google Scholar
Collongues, N, Marignier, R, Zephir, H, et al. Long-term follow-up of neuromyelitis optica with a pediatric onset. Neurology 2010;75:10841088.Google Scholar
Shahmohammadi, S, Doosti, R, Shahmohammadi, A, et al. Autoimmune diseases associated with neuromyelitis optica spectrum disorders: a literature review. Mult Scler Relat Disord 2019;27:350363.Google Scholar
Iyer, A, Elsone, L, Appleton, R, Jacob, A. A review of the current literature and a guide to the early diagnosis of autoimmune disorders associated with neuromyelitis optica. Autoimmunity 2014;47:154161.Google Scholar
Sepulveda, M, Sola-Valls, N, Escudero, D, et al. Clinical profile of patients with paraneoplastic neuromyelitis optica spectrum disorder and aquaporin-4 antibodies. Mult Scler 2017;24:17531759.CrossRefGoogle ScholarPubMed
Titulaer, MJ, Hoftberger, R, Iizuka, T, et al. Overlapping demyelinating syndromes and anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 2014;75:411428.Google Scholar
Martinez-Hernandez, E, Guasp, M, Garcia-Serra, A, et al. Clinical significance of anti-NMDAR concurrent with glial or neuronal surface antibodies. Neurology 2020;94:e2302e2310.Google Scholar
Asgari, N, Jarius, S, Laustrup, H, et al. Aquaporin-4-autoimmunity in patients with systemic lupus erythematosus: a predominantly population-based study. Mult Scler 2018;24:331339.Google Scholar
Katsumata, Y, Kawachi, I, Kawaguchi, Y, et al. Semiquantitative measurement of aquaporin-4 antibodies as a possible surrogate marker of neuromyelitis optica spectrum disorders with systemic autoimmune diseases. Mod Rheumatol 2012;22:676684.Google Scholar
Qiao, L, Wang, Q, Fei, Y, et al. The clinical characteristics of primary Sjogren’s syndrome with neuromyelitis optica spectrum disorder in China: a STROBE-compliant article. Medicine (Baltimore) 2015;94:e1145.CrossRefGoogle Scholar
Piga, M, Chessa, E, Peltz, MT, et al. Demyelinating syndrome in SLE encompasses different subtypes: do we need new classification criteria? Pooled results from systematic literature review and monocentric cohort analysis. Autoimmunity Rev 2017;16:244252.Google Scholar
Chourkani, N, El Moutawakil, B, Sibai, M, et al. [Primary Sjogren’s syndrome and neuromyelitis optica]. La Revue de medecine interne 2010;31:e13e15.Google Scholar
Spillane, J, Christofi, G, Sidle, KC, Kullmann, DM, Howard, RS. Myasthenia gravis and neuromyelitis opica: a causal link. Mult Scler Relat Disord 2013;2:233237.Google Scholar
Jarius, S, Paul, F, Franciotta, D, et al. Neuromyelitis optica spectrum disorders in patients with myasthenia gravis: ten new aquaporin-4 antibody positive cases and a review of the literature. Mult Scler 2012;18:11351143.Google Scholar
McKeon, A, Lennon, VA, Jacob, A, et al. Coexistence of myasthenia gravis and serological markers of neurological autoimmunity in neuromyelitis optica. Muscle Nerve 2009;39:8790.Google Scholar
Leite, MI, Coutinho, E, Lana-Peixoto, M, et al. Myasthenia gravis and neuromyelitis optica spectrum disorder: a multicenter study of 16 patients. Neurology 2012;78:16011607.Google Scholar
Vaknin-Dembinsky, A, Abramsky, O, Petrou, P, et al. Myasthenia gravis-associated neuromyelitis optica-like disease: an immunological link between the central nervous system and muscle? Arch Neurol 2011;68:15571561.Google Scholar
Pittock, SJ, Lennon, VA. Aquaporin-4 autoantibodies in a paraneoplastic context. Arch Neurol 2008;65:629632.Google Scholar
Verschuur, CV, Kooi, AJ, Troost, D. Anti-aquaporin 4 related paraneoplastic neuromyelitis optica in the presence of adenocarcinoma of the lung. Clin Neuropathol 2015;34:232236.Google Scholar
Figueroa, M, Guo, Y, Tselis, A, et al. Paraneoplastic neuromyelitis optica spectrum disorder associated with metastatic carcinoid expressing aquaporin-4. JAMA Neurol 2014;71:495498.Google Scholar
Iorio, R, Rindi, G, Erra, C, et al. Neuromyelitis optica spectrum disorder as a paraneoplastic manifestation of lung adenocarcinoma expressing aquaporin-4. Mult Scler 2015;21:791794.Google Scholar
Ontaneda, D, Fox, RJ. Is neuromyelitis optica with advanced age of onset a paraneoplastic disorder? Int J Neurosci 2014;124:509511.Google Scholar
Flanagan, EP, McKeon, A, Lennon, VA, et al. Paraneoplastic isolated myelopathy: clinical course and neuroimaging clues. Neurology 2011;76:20892095.Google Scholar
Jarius, S, Wandinger, KP, Borowski, K, Stoecker, W, Wildemann, B. Antibodies to CV2/CRMP5 in neuromyelitis optica-like disease: case report and review of the literature. Clin Neurol Neurosurg 2012;114:331335.Google Scholar
Cai, G, He, D, Chu, L, et al. Paraneoplastic neuromyelitis optica spectrum disorders: three new cases and a review of the literature. Int J Neurosci 2016;126:660668.Google Scholar
Al-Harbi, T, Al-Sarawi, A, Binfalah, M, Dermime, S. Paraneoplastic neuromyelitis optica spectrum disorder associated with stomach carcinoid tumor. Hematol Oncol Stem Cell Ther 2014;7:116119.Google Scholar
Nakayama-Ichiyama, S, Yokote, T, Hiraoka, N, et al. A paraneoplastic neuromyelitis optica spectrum disorder associated with a mature B-cell neoplasm. Leukemia Res 2011;35:e111113.Google Scholar
Armagan, H, Tuzun, E, Icoz, S, et al. Long extensive transverse myelitis associated with aquaporin-4 antibody and breast cancer: favorable response to cancer treatment. J Spinal Cord Med 2012;35:267269.Google Scholar
Moussawi, K, Lin, DJ, Matiello, M, et al. Brainstem and limbic encephalitis with paraneoplastic neuromyelitis optica. J Clin Neurosci 2016;23:159161.Google Scholar
Mueller, S, Dubal, DB, Josephson, SA. A case of paraneoplastic myelopathy associated with the neuromyelitis optica antibody. Nat Clin Pract Neurol 2008;4:284288.Google Scholar
Kitazawa, Y, Warabi, Y, Bandoh, M, Takahashi, T, Matsubara, S. Elderly-onset neuromyelitis optica which developed after the diagnosis of prostate adenocarcinoma and relapsed after a 23-valent pneumococcal polysaccharide vaccination. Intern Med (Tokyo, Japan) 2012;51:103107.Google Scholar
Kon, T, Ueno, T, Suzuki, C, et al. Aquaporin-4 antibody positive neuromyelitis optica spectrum disorder associated with esophageal cancer. J Neuroimmunol 2017;309:3840.Google Scholar
Annus, A, Bencsik, K, Obal, I, et al. Paraneoplastic neuromyelitis optica spectrum disorder: a case report and review of the literature. J Clin Neurosci 2018;48:710.Google Scholar
Beauchemin, P, Iorio, R, Traboulsee, AL, et al. Paraneoplastic neuromyelitis optica spectrum disorder: a single center cohort description with two cases of histological validation. Mult Scler Relat Disord 2018;20:3742.CrossRefGoogle ScholarPubMed
Deuel, LM, Bunch, ME. A case of paraneoplastic neuromyelitis optica associated with small cell lung carcinoma. J Neuroimmunol 2018;316:130132.Google Scholar
Wiener, DC, Kaplan, TB, Bravo-Iniguez, CE, et al. Paraneoplastic neuromyelitis optica spectrum disorder as presentation of esophageal adenocarcinoma. Ann Thoracic Surg 2018;105:e133e135.Google Scholar
Baik, KW, Kim, SH, Shin, HY. Paraneoplastic neuromyelitis optica associated with lung adenocarcinoma in a young woman. J Clin Neurol (Seoul, Korea) 2018;14:246247.Google Scholar
Liao, W, Li, C, Tang, Y, et al. Aquaporin-4 antibody positive short transverse myelitis associated with breast cancer. Mult Scler Relat Disord 2019;30:119122.Google Scholar
Bernard-Valnet, R, Cobo-Calvo, A, Siegfried, A, et al. Paraneoplastic neuromyelitis optica and ovarian teratoma: a case series. Mult Scler Relat Disord 2019;31:97100.Google Scholar
Sachdeva, J, Bansal, R, Takkar, A, Singh, R. Neuromyelitis optica spectrum disorder and adenocarcinoma of ovary: a novel association. BMJ Case Rep 2019;12:e227435.Google Scholar
Sudo, A, Chihara, N, Takenaka, Y, et al. Paraneoplastic NMOSD associated with EG junction adenocarcinoma expressing unprotected AQP4. Neurol Neuroimmunol Neuroinflamm 2018;5:e482.Google Scholar
Fang, W, Zheng, Y, Cai, MT, Zhang, YX. Neuromyelitis optica spectrum disorder with lung adenocarcinoma and intraductal papillary mucinous neoplasm. Mult Scler Relat Disord 2019;32:7780.Google Scholar
Blackburn, K, Wang, C, Greenberg, B. Two cases of aquaporin-4 positive neuromyelitis optica associated with T-cell lymphoma. J Neuroimmunol 2020;338:577092.Google Scholar
Dinoto, A, Bosco, A, Sartori, A, et al. Hiccups, severe vomiting and longitudinally extensive transverse myelitis in a patient with prostatic adenocarcinoma and aquaporin-4 antibodies. J Neuroimmunol 2021;352:577488.Google Scholar
Reindl, M, Waters, P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat Rev Neurol 2019;15:89102.Google Scholar
Jarius, S, Ruprecht, K, Wildemann, B, et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J Neuroinflammation 2012;9:14.Google Scholar
Collongues, N, Marignier, R, Zephir, H, et al. Neuromyelitis optica in France: a multicenter study of 125 patients. Neurology 2010;74:736742.Google Scholar
Petzold, A, Pittock, S, Lennon, V, et al. Neuromyelitis optica-IgG (aquaporin-4) autoantibodies in immune mediated optic neuritis. J Neurol Neurosurg Psychiatry 2010;81:109111.Google Scholar
Nakajima, H, Motomura, M, Tanaka, K, et al. Antibodies to myelin oligodendrocyte glycoprotein in idiopathic optic neuritis. BMJ Open 2015;5:e007766.Google Scholar
Rostasy, K, Mader, S, Schanda, K, et al. Anti-myelin oligodendrocyte glycoprotein antibodies in pediatric patients with optic neuritis. Arch Neurol 2012;69:752756.Google Scholar
Hoftberger, R, Sepulveda, M, Armangue, T, et al. Antibodies to MOG and AQP4 in adults with neuromyelitis optica and suspected limited forms of the disease. Mult Scler 2015;21:866874.Google Scholar
Martinez-Hernandez, E, Sepulveda, M, Rostasy, K, et al. Antibodies to aquaporin 4, myelin-oligodendrocyte glycoprotein, and the glycine receptor alpha1 subunit in patients with isolated optic neuritis. JAMA Neurol 2015;72:187193.Google Scholar
Petzold, A, Woodhall, M, Khaleeli, Z, et al. Aquaporin-4 and myelin oligodendrocyte glycoprotein antibodies in immune-mediated optic neuritis at long-term follow-up. J Neurol Neurosurg Psychiatry 2019;90:10211026.Google Scholar
Lotan, I, Hellmann, MA, Benninger, F, Stiebel-Kalish, H, Steiner, I. Recurrent optic neuritis: different patterns in multiple sclerosis, neuromyelitis optica spectrum disorders and MOG-antibody disease. J Neuroimmunol 2018;324:115118.Google Scholar
Chen, JJ, Flanagan, EP, Jitprapaikulsan, J, et al. Myelin oligodendrocyte glycoprotein antibody-positive optic neuritis: clinical characteristics, radiologic clues, and outcome. Am J Ophthalmol 2018;195:815.CrossRefGoogle ScholarPubMed
Kim, SM, Woodhall, MR, Kim, JS, et al. Antibodies to MOG in adults with inflammatory demyelinating disease of the CNS. Neurol Neuroimmunol Neuroinflamm 2015;2:e163.Google Scholar
Ramanathan, S, Prelog, K, Barnes, EH, et al. Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Mult Scler 2016;22:470482.CrossRefGoogle ScholarPubMed
Storoni, M, Davagnanam, I, Radon, M, Siddiqui, A, Plant, GT. Distinguishing optic neuritis in neuromyelitis optica spectrum disease from multiple sclerosis: a novel magnetic resonance imaging scoring system. J Neuroophthalmol 2013;33:123127.CrossRefGoogle ScholarPubMed
Costello, F, Coupland, S, Hodge, W, et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 2006;59:963969.Google Scholar
Gabilondo, I, Martínez-Lapiscina, EH, Fraga-Pumar, E, et al. Dynamics of retinal injury after acute optic neuritis. Ann Neurol 2015;77:517528.Google Scholar
Martinez-Lapiscina, EH, Arnow, S, Wilson, JA, et al. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurol 2016;15:574584.Google Scholar
Xu, SC, Kardon, RH, Leavitt, JA, et al. Optical coherence tomography is highly sensitive in detecting prior optic neuritis. Neurology 2019;92:e527e535.Google Scholar
Specovius, S, Zimmermann, HG, Oertel, FC, et al. Cohort profile: a collaborative multicentre study of retinal optical coherence tomography in 539 patients with neuromyelitis optica spectrum disorders (CROCTINO). BMJ Open 2020;10:e035397.Google Scholar
Martinez-Lapiscina, EH, Sepulveda, M, Torres-Torres, R, et al. Usefulness of optical coherence tomography to distinguish optic neuritis associated with AQP4 or MOG in neuromyelitis optica spectrum disorders. Therapeut Adv Neurol Disord 2016;9:436440.Google Scholar
Filippatou, AG, Mukharesh, L, Saidha, S, Calabresi, PA, Sotirchos, ES. AQP4-IgG and MOG-IgG related optic neuritis-prevalence, optical coherence tomography findings, and visual outcomes: a systematic review and meta-analysis. Front Neurol 2020;11:540156.Google Scholar
Huang, Y, Zhou, L, ZhangBao, J, et al. Peripapillary and parafoveal vascular network assessment by optical coherence tomography angiography in aquaporin-4 antibody-positive neuromyelitis optica spectrum disorders. Br J Ophthalmol 2018;103:789796.CrossRefGoogle ScholarPubMed
Weinshenker, BG, Wingerchuk, DM, Vukusic, S, et al. Neuromyelitis optica IgG predicts relapse after longitudinally extensive transverse myelitis. Ann Neurol 2006;59:566569.Google Scholar
Transverse Myelitis Consortium Working Group.Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology 2002;59:499505.Google Scholar
Iorio, R, Damato, V, Mirabella, M, et al. Distinctive clinical and neuroimaging characteristics of longitudinally extensive transverse myelitis associated with aquaporin-4 autoantibodies. J Neurol 2013;260:23962402.Google Scholar
Narayan, R, Simpson, A, Fritsche, K, et al. MOG antibody disease: a review of MOG antibody seropositive neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2018;25:6672.Google Scholar
Flanagan, EP, Weinshenker, BG, Krecke, KN, et al. Short myelitis lesions in aquaporin-4-IgG-positive neuromyelitis optica spectrum disorders. JAMA Neurol 2015;72:8187.Google Scholar
Cacciaguerra, L, Meani, A, Mesaros, S, et al. Brain and cord imaging features in neuromyelitis optica spectrum disorders. Ann Neurol 2019;85:371384.Google Scholar
Cheng, C, Jiang, Y, Lu, X, et al. The role of anti-aquaporin 4 antibody in the conversion of acute brainstem syndrome to neuromyelitis optica. BMC Neurology 2016;16:203.Google Scholar
Kremer, L, Mealy, M, Jacob, A, et al. Brainstem manifestations in neuromyelitis optica: a multicenter study of 258 patients. Mult Scler 2014;20:843847.Google Scholar
Shosha, E, Dubey, D, Palace, J, et al. Area postrema syndrome: frequency, criteria, and severity in AQP4-IgG-positive NMOSD. Neurology 2018;91:e1642e1651.Google Scholar
Takahashi, T, Miyazawa, I, Misu, T, et al. Intractable hiccup and nausea in neuromyelitis optica with anti-aquaporin-4 antibody: a herald of acute exacerbations. J Neurol Neurosurg Psychiatry 2008;79:10751078.Google Scholar
Apiwattanakul, M, Popescu, BF, Matiello, M, et al. Intractable vomiting as the initial presentation of neuromyelitis optica. Ann Neurol 2010;68:757761.Google Scholar
Misu, T, Fujihara, K, Nakashima, I, Sato, S, Itoyama, Y. Intractable hiccup and nausea with periaqueductal lesions in neuromyelitis optica. Neurology 2005;65:14791482.Google Scholar
Jarius, S, Kleiter, I, Ruprecht, K, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: brainstem involvement – frequency, presentation and outcome. J Neuroinflammation 2016;13:281.Google Scholar
Suzuki, K, Nakamura, T, Hashimoto, K, et al. Hypothermia, hypotension, hypersomnia, and obesity associated with hypothalamic lesions in a patient positive for the anti-aquaporin 4 antibody: a case report and literature review. Arch Neurol 2012;69:13551359.Google Scholar
Inoue, K, Nakayama, T, Kamisawa, A, Saito, J. Syndrome of inappropriate antidiuretic hormone accompanied by bilateral hypothalamic and anterior thalamic lesions with serum antiaquaporin 4 antibody. BMJ Case Rep 2017;2017:bcr2017219721.Google Scholar
Poppe, AY, Lapierre, Y, Melancon, D, et al. Neuromyelitis optica with hypothalamic involvement. Mult Scler 2005;11:617621.Google Scholar
Viegas, S, Weir, A, Esiri, M, et al. Symptomatic, radiological and pathological involvement of the hypothalamus in neuromyelitis optica. J Neurol Neurosurg Psychiatry 2009;80:679682.Google Scholar
Baba, T, Nakashima, I, Kanbayashi, T, et al. Narcolepsy as an initial manifestation of neuromyelitis optica with anti-aquaporin-4 antibody. J Neurol 2009;256:287288.Google Scholar
Zhang, L, Wu, A, Zhang, B, et al. Comparison of deep gray matter lesions on magnetic resonance imaging among adults with acute disseminated encephalomyelitis, multiple sclerosis, and neuromyelitis optica. Mult Scler 2014;20:418423.Google Scholar
Graus, F, Titulaer, MJ, Balu, R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391404.Google Scholar
Cheng, C, Jiang, Y, Chen, X, et al. Clinical, radiographic characteristics and immunomodulating changes in neuromyelitis optica with extensive brain lesions. BMC Neurology 2013;13:72.Google Scholar
Kim, W, Park, MS, Lee, SH, et al. Characteristic brain magnetic resonance imaging abnormalities in central nervous system aquaporin-4 autoimmunity. Mult Scler 2010;16:12291236.Google Scholar
Magana, SM, Matiello, M, Pittock, SJ, et al. Posterior reversible encephalopathy syndrome in neuromyelitis optica spectrum disorders. Neurology 2009;72:712717.Google Scholar
Kim, W, Kim, SH, Huh, SY, Kim, HJ. Brain abnormalities in neuromyelitis optica spectrum disorder. Mult Scler Int 2012;2012:735486.Google Scholar
Armangue, T, Olive-Cirera, G, Martinez-Hernandez, E, et al. Associations of paediatric demyelinating and encephalitic syndromes with myelin oligodendrocyte glycoprotein antibodies: a multicentre observational study. Lancet Neurol 2020;19:234246.Google Scholar
Kim, SM, Kim, SJ, Lee, HJ, et al. Differential diagnosis of neuromyelitis optica spectrum disorders. Therapeut Adv Neurol Disord 2017;10:265289.Google Scholar
Polman, CH, Reingold, SC, Banwell, B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011;69:292302.Google Scholar
Bergamaschi, R, Tonietti, S, Franciotta, D, et al. Oligoclonal bands in Devic’s neuromyelitis optica and multiple sclerosis: differences in repeated cerebrospinal fluid examinations. Mult Scler 2004;10:24.Google Scholar
Thompson, AJ, Baranzini, SE, Geurts, J, Hemmer, B, Ciccarelli, O. Multiple sclerosis. Lancet 2018;391:16221636.Google Scholar
Krupp, LB, Tardieu, M, Amato, MP, et al. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. Mult Scler 2013;19:12611267.Google Scholar
Berry, S, Lin, WV, Sadaka, A, Lee, AG. Nonarteritic anterior ischemic optic neuropathy: cause, effect, and management. Eye Brain 2017;9:2328.Google Scholar
Yu-Wai-Man, P, Turnbull, DM, Chinnery, PF. Leber hereditary optic neuropathy. J Med Genet 2002;39:162169.Google Scholar
Scott, AM, Yinh, J, McAlindon, T, Kalish, R. Two cases of sarcoidosis presenting as longitudinally extensive transverse myelitis. Clin Rheumatol 2018;37:28992905.Google Scholar
Lee, HS, Kim do, Y, Shin, HY, et al. Spinal cord involvement in Behcet’s disease. Mult Scler 2016;22:960963.Google Scholar
Uygunoglu, U, Zeydan, B, Ozguler, Y, et al. Myelopathy in Behçet’s disease: the bagel sign. Ann Neurol 2017;82:288298.Google Scholar
Isobe, N, Kanamori, Y, Yonekawa, T, et al. First diagnostic criteria for atopic myelitis with special reference to discrimination from myelitis-onset multiple sclerosis. J Neurol Sci 2012;316:3035.Google Scholar
Flanagan, EP, Krecke, KN, Marsh, RW, et al. Specific pattern of gadolinium enhancement in spondylotic myelopathy. Ann Neurol 2014;76:5465.Google Scholar
Atkinson, JL, Miller, GM, Krauss, WE, et al. Clinical and radiographic features of dural arteriovenous fistula, a treatable cause of myelopathy. Mayo Clin Proc 2001;76:11201130.Google Scholar
Cabrera, M, Paradas, C, Marquez, C, Gonzalez, A. Acute paraparesis following intravenous steroid therapy in a case of dural spinal arteriovenous fistula. J Neurol 2008;255:14321433.Google Scholar
Zalewski, NL, Rabinstein, AA, Krecke, KN, et al. Characteristics of spontaneous spinal cord infarction and proposed diagnostic criteria. JAMA Neurol 2019;76:5663.Google Scholar
Fatemi, Y, Chakraborty, R. Acute flaccid myelitis: a clinical overview for 2019. Mayo Clin Proc 2019;94:875881.Google Scholar
Mihai, C, Jubelt, B. Infectious myelitis. Curr Neurol Neurosci Rep 2012;12:633641.Google Scholar
Tobin, WO, Guo, Y, Krecke, KN, et al. Diagnostic criteria for chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain 2017;140:24152425.Google Scholar
Dalmau, J, Graus, F, Villarejo, A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004;127:18311844.Google Scholar
Schwartz, MA, Selhorst, JB, Ochs, AL, et al. Oculomasticatory myorhythmia: a unique movement disorder occurring in Whipple’s disease. Ann Neurol 1986;20:677683.Google Scholar
Spatola, M, Petit-Pedrol, M, Simabukuro, MM, et al. Investigations in GABAa receptor antibody-associated encephalitis. Neurology 2017;88:1012–1020.Google Scholar
Izquierdo, C, Velasco, R, Vidal, N, et al. Lymphomatosis cerebri: a rare form of primary central nervous system lymphoma: analysis of 7 cases and systematic review of the literature. Neuro-oncology 2016;18:707715.Google Scholar
Koelman, DL, Chahin, S, Mar, SS, et al. Acute disseminated encephalomyelitis in 228 patients: a retrospective, multicenter US study. Neurology 2016;86:20852093.Google Scholar
Tobin, WO, Weinshenker, BG, Lucchinetti, CF. Longitudinally extensive transverse myelitis. Curr Opin Neurol 2014;27:279289.Google Scholar
Nardone, R, Versace, V, Brigo, F, et al. Herpes simplex virus type 2 myelitis: case report and review of the literature. Front Neurol 2017;8:199.Google Scholar
Steiner, I, Kennedy, PG, Pachner, AR. The neurotropic herpes viruses: herpes simplex and varicella-zoster. Lancet Neurol 2007;6:10151028.Google Scholar
Greninger, AL, Naccache, SN, Messacar, K, et al. A novel outbreak enterovirus D68 strain associated with acute flaccid myelitis cases in the USA (2012–14): a retrospective cohort study. Lancet Infect Dis 2015;15:671682.Google Scholar
Heerlein, K, Jarius, S, Jacobi, C, et al. Aquaporin-4 antibody positive longitudinally extensive transverse myelitis following varicella zoster infection. J Neurol Sci 2009;276:184186.Google Scholar
Sejvar, JJ, Lopez, AS, Cortese, MM, et al. Acute flaccid myelitis in the United States, August–December 2014: results of nationwide surveillance. Clin Infect Dis 2016;63:737745.Google Scholar
McMinn, P, Stratov, I, Nagarajan, L, Davis, S. Neurological manifestations of enterovirus 71 infection in children during an outbreak of hand, foot, and mouth disease in Western Australia. Clin Infect Dis 2001;32:236242.Google Scholar
Chow, CCN, Magnussen, J, Ip, J, Su, Y. Acute transverse myelitis in COVID-19 infection. BMJ Case Rep 2020;13:236720.Google Scholar
Kaur, H, Mason, JA, Bajracharya, M, et al. Transverse myelitis in a child with COVID-19. Pediatr Neurol 2020;112:56.Google Scholar
Sotoca, J, Rodríguez-Álvarez, Y. COVID-19-associated acute necrotizing myelitis. Neurol Neuroimmunol Neuroinflamm 2020;7:e803.Google Scholar
Valiuddin, H, Skwirsk, B, Paz-Arabo, P. Acute transverse myelitis associated with SARS-CoV-2: a case-report. Brain Behav Immun Health 2020;5:100091.Google Scholar
Liu, Z, Jiao, L, Qiu, Z, et al. Clinical characteristics of patients with paraneoplastic myelopathy. J Neuroimmunol 2019;330:136142.Google Scholar
Keegan, BM, Pittock, SJ, Lennon, VA. Autoimmune myelopathy associated with collapsin response-mediator protein-5 immunoglobulin G. Ann Neurol 2008;63:531534.Google Scholar
Zalewski, NL, Flanagan, EP. Autoimmune and paraneoplastic myelopathies. Semin Neurol 2018;38:278289.Google Scholar
Mancall, EL, Rosales, RK. Necrotizing myelopathy associated with visceral carcinoma. Brain 1964;87:639656.Google Scholar
Flanagan, EP, Kaufmann, TJ, Krecke, KN, et al. Discriminating long myelitis of neuromyelitis optica from sarcoidosis. Ann Neurol 2016;79:437447.Google Scholar
Zalewski, NL, Rabinstein, AA, Brinjikji, W, et al. Unique gadolinium enhancement pattern in spinal dural arteriovenous fistulas. JAMA Neurol 2018;75:15421545.Google Scholar
O’Keeffe, DT, Mikhail, MA, Lanzino, G, Kallmes, DF, Weinshenker, BG. Corticosteroid-induced paraplegia: a diagnostic clue for spinal dural arterial venous fistula. JAMA Neurol 2015;72:833834.Google Scholar
Zhang, S, Liu, H, Li, J. Cervical myelopathy caused by intracranial dural arteriovenous fistula with acute worsening after steroid administration. World Neurosurg 2018;120:328330.CrossRefGoogle ScholarPubMed
Akman-Demir, G, Serdaroglu, P, Tasci, B. Clinical patterns of neurological involvement in Behcet’s disease: evaluation of 200 patients. The Neuro-Behcet Study Group. Brain 1999;122:21712182.Google Scholar
Serdaroglu, P, Yazici, H, Ozdemir, C, et al. Neurologic involvement in Behcet’s syndrome. A prospective study. Arch Neurol 1989;46:265269.Google Scholar
Tan, IL, Mowry, EM, Steele, SU, et al. Brainstem encephalitis: etiologies, treatment, and predictors of outcome. J Neurol 2013;260:23122319.Google Scholar
Moragas, M, Martinez-Yelamos, S, Majos, C, et al. Rhombencephalitis: a series of 97 patients. Medicine (Baltimore) 2011;90:256261.Google Scholar
Al Sawaf, A, Berger, JR. Longitudinally extensive transverse myelitis suspected for isolated Neuro-Behcet: a diagnostic conundrum. Mult Scler Relat Disord 2015;4:395399.Google Scholar
Compain, C, Sacre, K, Puechal, X, et al. Central nervous system involvement in Whipple disease: clinical study of 18 patients and long-term follow-up. Medicine (Baltimore) 2013;92:324330.Google Scholar
Black, DF, Aksamit, AJ, Morris, JM. MR imaging of central nervous system Whipple disease: a 15-year review. AM J Neuroradiol 2010;31:14931497.Google Scholar
Compta, Y, Iranzo, A, Santamaria, J, Casamitjana, R, Graus, F. REM sleep behavior disorder and narcoleptic features in anti-Ma2-associated encephalitis. Sleep 2007;30:767769.Google Scholar
Rojas-Marcos, I, Graus, F, Sanz, G, Robledo, A, Diaz-Espejo, C. Hypersomnia as presenting symptom of anti-Ma2-associated encephalitis: case study. Neuro-oncol 2007;9:7577.Google Scholar
Hoffmann, LA, Jarius, S, Pellkofer, HL, et al. Anti-Ma and anti-Ta associated paraneoplastic neurological syndromes: twenty-two newly diagnosed patients and review of previous cases. J Neurol Neurosurg Psychiatry 2008;79:767773.Google Scholar
Nielsen, S, Nagelhus, EA, Amiry-Moghaddam, M, et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 1997;17:171180.Google Scholar
Papadopoulos, MC, Saadoun, S. Key roles of aquaporins in tumor biology. Biochim Biophys Acta 2015;1848:25762583.Google Scholar
Roemer, SF, Parisi, JE, Lennon, VA, et al. Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 2007;130:11941205.Google Scholar
Lucchinetti, CF, Mandler, RN, McGavern, D, et al. A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 2002;125:14501461.Google Scholar
Misu, T, Hoftberger, R, Fujihara, K, et al. Presence of six different lesion types suggests diverse mechanisms of tissue injury in neuromyelitis optica. Acta Neuropathol 2013;125:815827.Google Scholar
Hinson, SR, Roemer, SF, Lucchinetti, CF, et al. Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J Exp Med 2008;205:24732481.Google Scholar
Richard, C, Ruiz, A, Cavagna, S, et al. Connexins in neuromyelitis optica: a link between astrocytopathy and demyelination. Brain 2020;143:27212732.CrossRefGoogle ScholarPubMed
Jacob, A, Saadoun, S, Kitley, J, et al. Detrimental role of granulocyte-colony stimulating factor in neuromyelitis optica: clinical case and histological evidence. Mult Scler 2012;18:18011803.Google Scholar
Palace, J, Leite, MI, Nairne, A, Vincent, A. Interferon beta treatment in neuromyelitis optica: increase in relapses and aquaporin 4 antibody titers. Arch Neurol 2010;67:10161017.CrossRefGoogle ScholarPubMed
Pohl, M, Fischer, MT, Mader, S, et al. Pathogenic T cell responses against aquaporin 4. Acta Neuropathol 2011;122:2134.Google Scholar
Hillebrand, S, Schanda, K, Nigritinou, M, et al. Circulating AQP4-specific auto-antibodies alone can induce neuromyelitis optica spectrum disorder in the rat. Acta Neuropathol 2019;137:467485.Google Scholar
Ketelslegers, IA, Modderman, PW, Vennegoor, A, et al. Antibodies against aquaporin-4 in neuromyelitis optica: distinction between recurrent and monophasic patients. Mult Scler 2011;17:15271530.CrossRefGoogle ScholarPubMed
Palace, J, Lin, DY, Zeng, D, et al. Outcome prediction models in AQP4-IgG positive neuromyelitis optica spectrum disorders. Brain 2019;142:13101323.Google Scholar
Marignier, R, Cobo Calvo, A, Vukusic, S. Neuromyelitis optica and neuromyelitis optica spectrum disorders. Curr Opin Neurol 2017;30:208215.Google Scholar
Abboud, H, Petrak, A, Mealy, M, et al. Treatment of acute relapses in neuromyelitis optica: steroids alone versus steroids plus plasma exchange. Mult Scler 2016;22:185192.Google Scholar
Kleiter, I, Gahlen, A, Borisow, N, et al. Neuromyelitis optica: evaluation of 871 attacks and 1,153 treatment courses. Ann Neurol 2016;79:206216.Google Scholar
Kleiter, I, Gahlen, A, Borisow, N, et al. Apheresis therapies for NMOSD attacks: a retrospective study of 207 therapeutic interventions. Neurol Neuroimmunol Neuroinflamm 2018;5:e504.Google Scholar
Elsone, L, Panicker, J, Mutch, K, et al. Role of intravenous immunoglobulin in the treatment of acute relapses of neuromyelitis optica: experience in 10 patients. Mult Scler 2014;20:501504.Google Scholar
Magraner, MJ, Coret, F, Casanova, B. The effect of intravenous immunoglobulin on neuromyelitis optica. Neurologia 2013;28:6572.Google Scholar
Absoud, M, Brex, P, Ciccarelli, O, et al. A multicentre randomiSed controlled TRial of IntraVEnous immunoglobulin compared with standard therapy for the treatment of transverse myelitis in adults and children (STRIVE). Health Technol Assess (Winchester, England) 2017;21:150.Google Scholar
Stellmann, JP, Krumbholz, M, Friede, T, et al. Immunotherapies in neuromyelitis optica spectrum disorder: efficacy and predictors of response. J Neurol Neurosurg Psychiatry 2017;88:639647.Google Scholar
Nikoo, Z, Badihian, S, Shaygannejad, V, Asgari, N, Ashtari, F. Comparison of the efficacy of azathioprine and rituximab in neuromyelitis optica spectrum disorder: a randomized clinical trial. J Neurol 2017;264:20032009.Google Scholar
Mealy, MA, Wingerchuk, DM, Palace, J, Greenberg, BM, Levy, M. Comparison of relapse and treatment failure rates among patients with neuromyelitis optica: multicenter study of treatment efficacy. JAMA Neurol 2014;71:324330.Google Scholar
Jeong, IH, Park, B, Kim, SH, et al. Comparative analysis of treatment outcomes in patients with neuromyelitis optica spectrum disorder using multifaceted endpoints. Mult Scler 2016;22:329339.Google Scholar
Damato, V, Evoli, A, Iorio, R. Efficacy and safety of rituximab therapy in neuromyelitis optica spectrum disorders: a systematic review and meta-analysis. JAMA Neurol 2016;73:13421348.Google Scholar
Montcuquet, A, Collongues, N, Papeix, C, et al. Effectiveness of mycophenolate mofetil as first-line therapy in AQP4-IgG, MOG-IgG, and seronegative neuromyelitis optica spectrum disorders. Mult Scler 2017;23:13771384.Google Scholar
Kojima, M, Oji, S, Tanaka, S, et al. Tacrolimus is effective for neuromyelitis optica spectrum disorders with or without anti-AQP4 antibody. Mult Scler Relat Disord 2019;39:101907.CrossRefGoogle ScholarPubMed
Zhang, C, Tian, DC, Yang, CS, et al. Safety and efficacy of bortezomib in patients with highly relapsing neuromyelitis optica spectrum disorder. JAMA Neurol 2017;74:10101012.Google Scholar
Ringelstein, M, Ayzenberg, I, Harmel, J, et al. Long-term therapy with interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder. JAMA Neurol 2015;72:756763.Google Scholar
Carreon Guarnizo, E, Hernandez Clares, R, Castillo Trivino, T, et al. Experience with tocilizumab in patients with neuromyelitis optica spectrum disorders. Neurologia 2019;S0213-4853(19)30033-7.Google Scholar
Zhang, C, Zhang, M, Qiu, W, et al. Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial. Lancet Neurol 2020;19:391401.Google Scholar
Snowden, JA, Pearce, RM, Lee, J, et al. Haematopoietic stem cell transplantation (HSCT) in severe autoimmune diseases: analysis of UK outcomes from the British Society of Blood and Marrow Transplantation (BSBMT) data registry 1997–2009. Br J Haematol 2012;157:742746.Google Scholar
Sharrack, B, Saccardi, R, Alexander, T, et al. Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: updated guidelines and recommendations from the EBMT Autoimmune Diseases Working Party (ADWP) and the Joint Accreditation Committee of EBMT and ISCT (JACIE). Bone Marrow Transplant 2020;55:283306.Google Scholar
Greco, R, Bondanza, A, Oliveira, MC, et al. Autologous hematopoietic stem cell transplantation in neuromyelitis optica: a registry study of the EBMT Autoimmune Diseases Working Party. Mult Scler 2015;21:189197.Google Scholar
Burt, RK, Balabanov, R, Han, X, et al. Autologous nonmyeloablative hematopoietic stem cell transplantation for neuromyelitis optica. Neurology 2019;93:e1732e1741.Google Scholar
Pittock, SJ, Berthele, A, Fujihara, K, et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N Engl J Med 2019;381:614625.Google Scholar
Traboulsee, A, Greenberg, BM, Bennett, JL, et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol 2020;19:402412.Google Scholar
Yamamura, T, Kleiter, I, Fujihara, K, et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N Engl J Med 2019;381:21142124.Google Scholar
Cree, BAC, Bennett, JL, Kim, HJ, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 2019;394:13521363.Google Scholar
Tahara, M, Oeda, T, Okada, K, et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2020;19:298306.Google Scholar
Xue, T, Yang, Y, Lu, Q, et al. Efficacy and safety of monoclonal antibody therapy in neuromyelitis optica spectrum disorders: evidence from randomized controlled trials. Mult Scler Relat Disord 2020;43:102166.Google Scholar
Maillart, E, Durand-Dubief, F, Louapre, C, et al. Outcome and risk of recurrence in a large cohort of idiopathic longitudinally extensive transverse myelitis without AQP4/MOG antibodies. J Neuroinflammation 2020;17:128.Google Scholar
Levy, M, Fujihara, K, Palace, J. New therapies for neuromyelitis optica spectrum disorder. Lancet Neurol 2021;20:6067.Google Scholar
Singh, VK, Warren, R, Averett, R, Ghaziuddin, M. Circulating autoantibodies to neuronal and glial filament proteins in autism. Pediatr Neurol 1997;17:8890.Google Scholar
Wang, KK, Yang, Z, Yue, JK, et al. Plasma anti-glial fibrillary acidic protein autoantibody levels during the acute and chronic phases of traumatic brain injury: a transforming research and clinical knowledge in traumatic brain injury pilot study. J Neurotrauma 2016;33:12701277.Google Scholar
Poletaev, AB, Morozov, SG, Gnedenko, BB, Zlunikin, VM, Korzhenevskey, DA. Serum anti-S100b, anti-GFAP and anti-NGF autoantibodies of IgG class in healthy persons and patients with mental and neurological disorders. Autoimmunity 2000;32:3338.Google Scholar
El Rahman, HAA, Salama, M, Gad El-Hak, SA, et al. A panel of autoantibodies against neural proteins as peripheral biomarker for pesticide-induced neurotoxicity. Neurotox Res 2018;33:316336.Google Scholar
Dubey, D, Hinson, SR, Jolliffe, EA, et al. Autoimmune GFAP astrocytopathy: prospective evaluation of 90 patients in 1 year. J Neuroimmunol 2018;321:157163.Google Scholar
Kunchok, A, Zekeridou, A, McKeon, A. Autoimmune glial fibrillary acidic protein astrocytopathy. Curr Opin Neurol 2019;32:452458.Google Scholar
Issa, N, Martin, C, Dulau, C, Camou, F. Severe anti-GFAP meningo-encephalomyelitis following viral infection. Mult Scler Relat Disord 2020;45:102448.Google Scholar
Sechi, E, Markovic, SN, McKeon, A, et al. Neurologic autoimmunity and immune checkpoint inhibitors: autoantibody profiles and outcomes. Neurology 2020;95:e2442e2452.Google Scholar
Kapadia, RK, Ney, DE, Hannan, M, et al. Glial fibrillary acidic protein (GFAP) associated autoimmune meningoencephalitis in a patient receiving nivolumab. J Neuroimmunol 2020;344:577259.Google Scholar
Iorio, R, Damato, V, Evoli, A, et al. Clinical and immunological characteristics of the spectrum of GFAP autoimmunity: a case series of 22 patients. J Neurol Neurosurg Psychiatry 2018;89:138146.Google Scholar
Kimura, A, Takekoshi, A, Yoshikura, N, Hayashi, Y, Shimohata, T. Clinical characteristics of autoimmune GFAP astrocytopathy. J Neuroimmunol 2019;332:9198.Google Scholar
Wickel, J, Chung, HY, Kirchhof, K, et al. Encephalitis with radial perivascular emphasis: not necessarily associated with GFAP antibodies. Neurol Neuroimmunol Neuroinflamm 2020;7:e670.Google Scholar
Sechi, E, Morris, PP, McKeon, A, et al. Glial fibrillary acidic protein IgG related myelitis: characterisation and comparison with aquaporin-4-IgG myelitis. J Neurol Neurosurg Psychiatry 2019;90:488490.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×