Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-04T00:03:09.956Z Has data issue: false hasContentIssue false

6 - The Role of the Temporal Lobe in Human Social Cognition

from Part II - Neural Mechanisms

Published online by Cambridge University Press:  08 February 2021

Walter Wilczynski
Affiliation:
Georgia State University
Sarah F. Brosnan
Affiliation:
Georgia State University
Get access

Summary

Humans exhibit an impressive array of social behaviors. We engage in complex cooperative behavior, employ flexibility in social responses, and navigate large social groups effectively. These behaviors are made possible by more fundamental cognitive abilities including facial recognition, communication, storing and accessing concepts about social entities, and processing emotions. All of these abilities have at least part of their neural basis in the temporal lobe (e.g., Deen et al., 2015), one of the major divisions of the cerebral cortex (see Box 6.1). The remarkable human facility for cooperation – and indeed, great conflict – suggests there may be equally remarkable features of the human brain.

Type
Chapter
Information
Cooperation and Conflict
The Interaction of Opposites in Shaping Social Behavior
, pp. 104 - 133
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R. (2003) Is the human amygdala specialized for processing social information? Annals of the New York Academy of Science, 985: 326340.Google Scholar
Adolphs, R. (2010) What does the amygdala contribute to social cognition? Annals of the New York Academy of Science, 1191: 4261.CrossRefGoogle ScholarPubMed
Adolphs, R., Tranel, D., Damasio, H., and Damasio, A. (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372: 669672.CrossRefGoogle Scholar
Adolphs, R., Tranel, D., Damasio, H., and Damasio, A. R. (1995) Fear and the human amygdala. Journal of Neuroscience, 15: 58795891.Google Scholar
Allman, J. (1982) Reconstructing the evolution of the brain in primates through the use of comparative neurophysiological and neuroanatomical data. In Armstrong, E., and Falk, D., eds., Primate Brain Evolution: Methods and Concepts. Boston, MA: Springer US, pp. 1328.Google Scholar
Andrews-Hanna, J. R. (2012) The brain’s default network and its adaptive role in internal mentation. Neuroscientist, 18: 251270.Google Scholar
Baleydier, C., and Mauguiere, F. (1980) The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis. Brain, 103: 525554.CrossRefGoogle ScholarPubMed
Barger, N., Stefanacci, L., Schumann, C. M. et al. (2012) Neuronal populations in the basolateral nuclei of the amygdala are differentially increased in humans compared with apes: A stereological study. Journal of Comparative Neurology, 520: 30353054.Google Scholar
Barton, R. A. (1998) Visual specialization and brain evolution in primates. Proceedings of the Royal Society B Biological Sciences, 265: 19331937.Google Scholar
Beevor, C. E. (1891) On the course of the fibres of the cingulum and the posterior parts of the corpus callosum and fornix in the marmoset monkey. Proceedings of the Royal Society B Biological Sciences, 182: 135199.Google Scholar
Belin, P. (2006) Voice processing in human and non-human primates. Proceedings of the Royal Society B Biological Sciences, 361: 20912107.Google Scholar
Belin, P, Zatorre, R. J., Lafaille, P., Ahad, P., and Pike, B. (2000) Voice-selective areas in human auditory cortex. Nature, 403: 309312.Google Scholar
Bernal, B., and Ardila, A. (2009) The role of the arcuate fasciculus in conduction aphasia. Brain, 132: 23092316.Google Scholar
Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C., and Barrett, L. F. (2011) Amygdala volume and social network size in humans. Nature Neuroscience, 14: 163164.Google Scholar
Bijanki, K. R., Kovach, C. K., McCormick, L. M. et al. (2014) Case report: Stimulation of the right amygdala induces transient changes in affective bias. Brain Stimulation, 7: 690693.Google Scholar
Binder, J. R., and Desai, R. H. (2011) The neurobiology of semantic memory. Trends in Cognitive Science, 15: 527536.Google Scholar
Breiter, H. C., Etcoff, N. L., Whalen, P. J. et al. (1996) Response and habituation of the human amygdala during visual processing of facial expression. Neuron, 17: 875887.CrossRefGoogle ScholarPubMed
Bryant, K. L., Glasser, M. F., Li, L. et al. (2019) Organization of extrastriate and temporal cortex in chimpanzees compared to humans and macaques. Cortex, 118: 223243.Google Scholar
Bryant, K. L., Li, L., and Mars, R. B. (2018) White matter projection maps in chimpanzees in comparison with humans and macaques. Cortical Evolution Conference 2018.Google Scholar
Bryant, K. L., and Preuss, T. M. (2018) A comparative perspective on the human temporal lobe. In Bruner, E., Ogihara, N., and Tanabe, H. C., eds., Digital Endocasts: From Skulls to Brains. Tokyo: Springer Japan, pp. 239258.Google Scholar
Bubb, E. J., Metzler-Baddeley, C., and Aggleton, J. P. (2018) The cingulum bundle: Anatomy, function, and dysfunction. Neuroscience and Biobehavioral Reviews, 92: 104127.Google Scholar
Buckner, R. L., and Carroll, D. C. (2007) Self-projection and the brain. Trends in Cognitive Science, 11: 4957.Google Scholar
Buxhoeveden, D. P., Switala, A. E., Litaker, M., Roy, E., and Casanova, M. F. (2001) Lateralization of minicolumns in human planum temporale is absent in nonhuman primate cortex. Brain Behavior and Evolution, 57: 349358.Google Scholar
Bzdok, D., Schilbach, L., Vogeley, K., Schneider, K., Laird, A. R., Langner, R., and Eickhoff, S. B. (2012) Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Structure and Function, 217: 783796.Google Scholar
Calder, A. J. (1996) Facial emotion recognition after bilateral amygdala damage: Differentially severe impairment of fear. Cognitive Neuropsychology, 13: 699745.CrossRefGoogle Scholar
Call, J., and Tomasello, M. (2008) Does the chimpanzee have a theory of mind? Thirty years later. Trends in Cognitive Science, 12: 187192.CrossRefGoogle Scholar
Cancelliere, A. E., and Kertesz, A. (1990) Lesion localization in acquired deficits of emotional expression and comprehension. Brain and Cognition, 13: 133147.CrossRefGoogle ScholarPubMed
Cantalupo, C., Oliver, J., Smith, J., Nir, T., Taglialatela, J. P., and Hopkins, W. D. (2009) The chimpanzee brain shows human-like perisylvian asymmetries in white matter. European Journal of Neuroscience, 30: 431438.Google Scholar
Catani, M. (2006) Diffusion tensor magnetic resonance imaging tractography in cognitive disorders. Current Opinion in Neurology, 19: 599606.Google Scholar
Catani, M., and ffytche, D. H. (2005) The rises and falls of disconnection syndromes. Brain, 128: 22242239.Google Scholar
Catani, M., Jones, D. K., Donato, R., and ffytche, D. H. (2003) Occipito‐temporal connections in the human brain. Brain, 126: 20932107.Google Scholar
Catani, M., and Mesulam, M. (2008) The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state. Cortex, 44: 953961.Google Scholar
Catani, M., and Thiebaut de Schotten, M. A (2008) diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex, 44: 11051132.Google Scholar
Chance, S. A., Sawyer, E. K., Clover, L. M., Wicinski, B., Hof, P. R., and Crow, T. J. (2013) Hemispheric asymmetry in the fusiform gyrus distinguishes Homo sapiens from chimpanzees. Brain Structure and Function, 218: 13911405.Google Scholar
Coccia, M., Bartolini, M., Luzzi, S. Provinciali, L., and Ralph, M. A. L. (2004) Semantic memory is an amodal, dynamic system: Evidence from the interaction of naming and object use in semantic dementia. Cognitive Neuropsychology, 21: 513527.Google Scholar
Curran, E. J. (1909) A new association fiber tract in the cerebrum with remarks on the fiber tract dissection method of studying the brain. Journal of Comparative Neurology and Psychology, 19: 645656.Google Scholar
Dahl, C. D., Rasch, M. J., Tomonaga, M., and Adachi, I. (2013) Laterality effect for faces in chimpanzees (Pan troglodytes). Journal of Neuroscience, 33: 1334413349.Google Scholar
Damasio, H., and Damasio, A. R. (1980) The anatomical basis of conduction aphasia. Brain, 103: 337350.Google Scholar
Damasio, H., Tranel, D., Grabowski, T., Adolphs, R., and Damasio, A. (2004) Neural systems behind word and concept retrieval. Cognition, 92: 179229.Google Scholar
Davis, L. E. (1921) An anatomic study of the inferior longitudinal fasciculus. Archives of Neurology and Psychology, 5: 370381.Google Scholar
DeCramer, T., Swinnen, S., Van Loon, J., Janssen, P., & Theys, T. (2018) White matter tract anatomy in the rhesus monkey: a fiber dissection study. Brain Structure and Function, 223(8) 36813688.Google Scholar
Deen, B., Koldewyn, K., Kanwisher, N., and Saxe, R. (2015) Functional organization of social perception and cognition in the superior temporal sulcus. Cerebral Cortex, 25: 45964609.Google Scholar
Deen, B., Richardson, H., Dilks, D. D. et al. (2017) Organization of high-level visual cortex in human infants. Nature Communications, 8: 13995.Google Scholar
Desimone, R., Albright, T. D., Gross, C. G., and Bruce, C. (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. Journal of Neuroscience, 4: 20512062.Google Scholar
De Witt Hamer, P. C., Moritz-Gasser, S., Gatignol, P., and Duffau, H. (2011) Is the human left middle longitudinal fascicle essential for language? A brain electrostimulation study. Human Brain Mapping, 32: 962973.Google Scholar
Dolan, R. J., Lane, R., Chua, P., and Fletcher, P. (2000) Dissociable temporal lobe activations during emotional episodic memory retrieval. Neuroimage, 11: 203209.Google Scholar
Duffau, H., Gatignol, P., Mandonnet, E., Capelle, L., and Taillandier, L. (2008) Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. Journal of Neurosurgury, 109(3): 461471.Google Scholar
Engell, A. D., and Haxby, J. V. (2007) Facial expression and gaze-direction in human superior temporal sulcus. Neuropsychologia, 45: 32343241.CrossRefGoogle ScholarPubMed
Epelbaum, S., Pinel, P., Gaillard, R. et al. (2008) Pure alexia as a disconnection syndrome: New diffusion imaging evidence for an old concept. Cortex, 44: 962974.CrossRefGoogle ScholarPubMed
Eskenazi, B., Cain, W. S., Novelly, R. A., and Mattson, R. (1986) Odor perception in temporal lobe epilepsy patients with and without temporal lobectomy. Neuropsychologia, 24: 553562.CrossRefGoogle ScholarPubMed
ffytche, D. H., Blom, J. D., and Catani, M. (2010) Disorders of visual perception. Journal of Neurology, Neurosurgery, and Psychiatry, 81: 12801287.Google Scholar
Fischl, B. (2012) FreeSurfer. Neuroimage, 62: 774781.Google Scholar
Fitch, W. T. (2005) The evolution of language: A comparative review. Biology and Philosophy, 20: 193203.Google Scholar
Forkel, S. J., Thiebaut de Schotten, M., Kawadler, J. M., Dell’Acqua, F., Danek, A., and Catani, M. (2014) The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex, 56: 7384.Google Scholar
Fouts, R. S. (1973) Acquisition and testing of gestural signs in four young chimpanzees. Science, 180: 978980.Google Scholar
Fox, C. J., Iaria, G., and Barton, J. J. S. (2008) Disconnection in prosopagnosia and face processing. Cortex, 44: 9961009.Google Scholar
Freese, J. L., and Amaral, D. G. (2009) Neuroanatomy of the primate amygdala. In Whalen, P. J., and Phelps, E. A., eds., The Human Amygdala. New York: Guilford Press, pp. 342.Google Scholar
Freeman, H. D., Cantalupo, C., and Hopkins, W. D. (2004). Asymmetries in the hippocampus and amygdala of chimpanzees (Pan troglodytes). Behavioral Neuroscience, 118(6): 1460.Google Scholar
Freiwald, W. A., and Tsao, D. Y. (2010) Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science, 330: 845851.Google Scholar
Frey, S., Campbell, J. S. W., Pike, G. B., and Petrides, M. (2008) Dissociating the human language pathways with high angular resolution diffusion fiber tractography. Journal of Neuroscience, 28: 1143511444.CrossRefGoogle ScholarPubMed
Fried, I., MacDonald, K. A., and Wilson, C. L. (1997) Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron, 18: 753765.CrossRefGoogle ScholarPubMed
Frith, C. D. (2007) The social brain? Proceedings of the Royal Society B Biological Science, 362: 671678.Google Scholar
Frith, U., and Frith, C. D. (2003) Development and neurophysiology of mentalizing. Proceedings of the Royal Society B Biological Sciences, 358: 459473.Google ScholarPubMed
Gallagher, H. L., and Frith, C. D. (2003) Functional imaging of “theory of mind”. Trends in Cognitive Science, 7: 7783.Google Scholar
Gallup, G. G. Jr. (1977) Absence of self-recognition in a monkey (Macaca fascicularis) following prolonged exposure to a mirror. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 10: 281284.Google Scholar
Gallup, G. G., McClure, M. K., Hill, S. D., and Bundy, R. A. (1971) Capacity for self-recognition in differentially reared chimpanzees. Psychology Record, 21: 6974.Google Scholar
Gamer, M., and Büchel, C. (2009) Amygdala activation predicts gaze toward fearful eyes. Journal of Neuroscience, 29: 91239126.Google Scholar
Gannon, P. J., Holloway, R. L., Broadfield, D. C., and Braun, A. R. (1998) Asymmetry of chimpanzee planum temporale: Humanlike pattern of Wernicke’s brain language area homolog. Science, 279: 220222.CrossRefGoogle ScholarPubMed
Gardner, B. T., and Gardner, R. A. (1975) Evidence for sentence constitutents in the early utterances of child and chimpanzee. Journal of Experimental Psychology: General, 104: 244.Google Scholar
Gardner, R. A., and Gardner, B. T. (1969) Teaching sign language to a chimpanzee. Science, 165: 664672.Google Scholar
Geschwind, N. (1965) Disconnexion syndromes in animals and man. II. Brain, 88: 585644.Google Scholar
Geschwind, N. (1970) The organization of language and the brain. Science, 170: 940944.Google Scholar
Glasser, M. F., Goyal, M. S., Preuss, T. M., Raichle, M. E., and Van Essen, D. C. (2014) Trends and properties of human cerebral cortex: Correlations with cortical myelin content. Neuroimage, 93(Pt 2): 165175.CrossRefGoogle ScholarPubMed
Glasser, M. F., and Rilling, J. K. (2008) DTI tractography of the human brain’s language pathways. Cerebral Cortex, 18: 24712482.Google Scholar
Glasser, M. F., and Van Essen, D. C. (2011) Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. Journal of Neuroscience, 31: 1159711616.Google Scholar
Gobbini, M. I., Koralek, A. C., Bryan, R. E., Montgomery, K. J., and Haxby, J. V. (2007) Two takes on the social brain: A comparison of theory of mind tasks. Journal of Cognitive Neuroscience, 19: 18031814.Google Scholar
Goldman-Rakic, P. S., Selemon, L. D., and Schwartz, M. L. (1984) Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience, 12: 719743.Google Scholar
Grill-Spector, K., Knouf, N., and Kanwisher, N. (2004) The fusiform face area subserves face perception, not generic within-category identification. Nature Neuroscience, 7: 555562.Google Scholar
Hackett, T. A., Preuss, T. M., and Kaas, J. H. (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. Journal of Comparative Neurology, 441: 197222.Google Scholar
Halwani, G. F., Loui, P., Rüber, T., and Schlaug, G. (2011) Effects of practice and experience on the arcuate fasciculus: Comparing singers, instrumentalists, and non-musicians. Frontiers in Psychology, 2: 156.Google Scholar
Harasty, J., Seldon, H. L., Chan, P., Halliday, G., and Harding, A. (2003) The left human speech-processing cortex is thinner but longer than the right. Laterality, 8: 247260.Google Scholar
Hare, B., Call, J., and Tomasello, M. (2001) Do chimpanzees know what conspecifics know? Animal Behaviour, 61: 139151.CrossRefGoogle ScholarPubMed
Hare, B., Call, J., and Tomasello, M. (2006) Chimpanzees deceive a human competitor by hiding. Cognition, 101: 495514.Google Scholar
Hau, J., Sarubbo, S., Houde, J. C. et al. (2017) Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation. Brain Structure and Function, 222: 16451662.CrossRefGoogle ScholarPubMed
Hecht, E. E., Gutman, D. A., Dunn, W., Keifer, O. P. Jr., Sakai, S., Kent, M., and Preuss, T. (2016) Neuroanatomical variation in domestic dog breeds. Program No. 834.13/III15.Google Scholar
Heekeren, H. R., Wartenburger, I., Schmidt, H., Schwintowski, H.-P., and Villringer, A. (2003) An fMRI study of simple ethical decision-making. Neuroreport, 14: 12151219.Google Scholar
Hickok, G., and Poeppel, D. (2007) The cortical organization of speech processing. Nature Reviews Neuroscience, 8: 393402.Google Scholar
Hoffman, E. A., and Haxby, J. V. (2000) Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nature Neuroscience, 3: 8084.CrossRefGoogle ScholarPubMed
Hof, P. R., and Van der Gucht, E. (2007) Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anatomical Record, 290: 131.Google Scholar
Hopkins, W. D., Taglialatela, J. P., Nir, T., Schenker, N. M., and Sherwood, C. C. (2010) A voxel-based morphometry analysis of white matter asymmetries in chimpanzees (Pan troglodytes). Brain Behavior and Evolution, 76: 93100.Google Scholar
Hung, C.-C., Yen, C. C., Ciuchta, J. L., Papoti, D., Bock, N. A., Leopold, D. A., and Silva, A. C. (2015) Functional mapping of face-selective regions in the extrastriate visual cortex of the marmoset. Journal of Neuroscience, 35: 11601172.Google Scholar
Insausti, R., Marcos, P., Arroyo-Jiménez, M. M., Blaizot, X., and Martínez-Marcos, A. (2002) Comparative aspects of the olfactory portion of the entorhinal cortex and its projection to the hippocampus in rodents, nonhuman primates, and the human brain. Brain Research Bulletin, 57: 557560.Google Scholar
Issa, H. A., Staes, N., Diggs-Galligan, S. et al. (2018) Comparison of bonobo and chimpanzee brain microstructure reveals differences in socio-emotional circuits. Brain Structure and Function, 224(1): 239251.Google Scholar
Jaeggi, A. V., Boose, K. J., White, F. J., and Gurven, M. (2016) Obstacles and catalysts of cooperation in humans, bonobos, and chimpanzees: Behavioural reaction norms can help explain variation in sex roles, inequality, war and peace. Behaviour, 153: 10151051.Google Scholar
Jaeggi, A. V., De Groot, E., Stevens, J. M. G., and Van Schaik, C. P. (2013) Mechanisms of reciprocity in primates: Testing for short-term contingency of grooming and food sharing in bonobos and chimpanzees. Evolution and Human Behavior, 34: 6977.CrossRefGoogle Scholar
Jaeggi, A. V., Stevens, J. M. G., and Van Schaik, C. P. (2010) Tolerant food sharing and reciprocity is precluded by despotism among bonobos but not chimpanzees. American Journal of Physical Anthropology, 143: 4151.Google Scholar
Jastorff, J., Popivanov, I. D., Vogels, R., Vanduffel, W., and Orban, G. A. (2012) Integration of shape and motion cues in biological motion processing in the monkey STS. Neuroimage, 60: 911921.Google Scholar
Kaas, J. H. (2006) Evolution of the neocortex. Current Biology, 16: R910R914.Google Scholar
Kaas, J. H. (2013) The evolution of brains from early mammals to humans. Interdisciplinary Reviews of Cognitive Science, 4: 3345.Google Scholar
Kaas, J. H., Hackett, T. A., and Tramo, M. J. (1999) Auditory processing in primate cerebral cortex. Current Opinion in Neurobiology, 9: 164170.Google Scholar
Kanwisher, N., McDermott, J., and Chun, M. M. (1997) The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17: 43024311.Google Scholar
Kanwisher, N., and Yovel, G. (2006) The fusiform face area: A cortical region specialized for the perception of faces. Proceedings of the Royal Society B Biological Sciences, 361: 21092128.Google Scholar
Karg, K., Schmelz, M., Call, J., and Tomasello, M. (2016) Differing views: Can chimpanzees do Level 2 perspective-taking? Animal Cognition, 19: 555564.Google Scholar
Kiefer, M., and Pulvermüller, F. (2012) Conceptual representations in mind and brain: Theoretical developments, current evidence and future directionsCortex48(7): 805825.Google Scholar
Klüver, H., and Bucy, P. C. (1937) “Psychic blindness” and other symptoms following bilateral temporal lobectomy in Rhesus monkeys. American Journal of Physiology, 119: 352353.Google Scholar
Klüver, H., and Bucy, P. C. (1939) Preliminary analysis of functions of the temporal lobes in monkeys. Archives of Neurology and Psychiatry, 42: 9791000.Google Scholar
Krachun, C., Carpenter, C. M., Call, J., and Tomasello, M. (2010) A new change-of-contents false belief test: Children and chimpanzees compared. International Journal of Comparative Psychology, 23: 145165.Google Scholar
Kriegeskorte, N., Formisano, E., Sorger, B., and Goebel, R. (2007) Individual faces elicit distinct response patterns in human anterior temporal cortex. Proceedings of the National Academy of Science USA, 104: 2060020605.Google Scholar
Lambon Ralph, M. A., and Patterson, K. (2008) Generalization and differentiation in semantic memory: Insights from semantic dementia. Annals of the New York Academy of Science, 1124: 6176.CrossRefGoogle ScholarPubMed
Lambon Ralph, M. A., Sage, K., Jones, R. W., and Mayberry, E. J. (2010) Coherent concepts are computed in the anterior temporal lobes. Proceedings of the National Academy of Science USA, 107: 27172722.Google Scholar
LeDoux, J. (2007) The amygdala. Current Biology, 17: R868R874.Google Scholar
Leslie, A. M. (1987) Pretense and representation: The origins of “theory of mind.” Psychology Review, 94: 412.Google Scholar
Levine, B., Svoboda, E., Turner, G. R, Mandic, M., and Mackey, A. (2009) Behavioral and functional neuroanatomical correlates of anterograde autobiographical memory in isolated retrograde amnesic patient M.L. Neuropsychologia, 47: 21882196.Google Scholar
Lieberman, M. D. (2007) Social cognitive neuroscience: A review of core processes. Annual Review of Psychology, 58: 259289.Google Scholar
Livingstone, M., and Hubel, D. (1988) Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240: 740749.Google Scholar
Livingstone, M. S., Vincent, J. L., Arcaro, M. J., Srihasam, K., Schade, P. F., and Savage, T. (2017) Development of the macaque face-patch system. Nature Communications, 8: 14897.Google Scholar
Lyras, G. A. (2009) The evolution of the brain in Canidae (Mammalia: Carnivora). Scripta Geologica, 139: 193.Google Scholar
Machado, C. J., Kazama, A. M., and Bachevalier, J. (2009) Impact of amygdala, orbital frontal, or hippocampal lesions on threat avoidance and emotional reactivity in nonhuman primates. Emotion, 9: 147163.Google Scholar
Makris, N., Papadimitriou, G. M., Kaiser, J. R., Sorg, S., Kennedy, D. N., and Pandya, D. N. (2009) Delineation of the middle longitudinal fascicle in humans: A quantitative, in vivo, DT-MRI study. Cerebral Cortex, 19: 777785.Google Scholar
Marchina, S., Zhu, L. L., Norton, A., Zipse, L., Wan, C. Y., and Schlaug, G. (2011) Impairment of speech production predicted by lesion load of the left arcuate fasciculus. Stroke, 42: 22512256.Google Scholar
Mars, R. B., Neubert, F.-X., Verhagen, L., Sallet, J., Miller, K. L., Dunbar, R. I. M., and Barton, M. A. (2014) Primate comparative neuroscience using magnetic resonance imaging: Promises and challenges. Frontiers in Neuroscience, 8: 298.Google Scholar
Mason, W. A., Capitanio, J. P., Machado, C. J., Mendoza, S. P., and Amaral, D. G. (2006) Amygdalectomy and responsiveness to novelty in rhesus monkeys (Macaca mulatta): Generality and individual consistency of effects. Emotion, 6: 7381.Google Scholar
Menjot de Champfleur, N., Lima Maldonado, I., Moritz-Gasser, S., Machi, P., Le Bars, E., Bonafé, A., and Duffau, H. (2013) Middle longitudinal fasciculus delineation within language pathways: A diffusion tensor imaging study in human. European Journal of Radiology, 82: 151157.Google Scholar
Mishkin, M., Ungerleider, L. G., and Macko, K. A. (1983) Object vision and spatial vision: Two cortical pathways. Trends in Neuroscience, 6: 414417.Google Scholar
Moll, J., Eslinger, P. J., and Oliveira-Souza, R. (2001) Frontopolar and anterior temporal cortex activation in a moral judgment task: Preliminary functional MRI results in normal subjects. Arquivos de Neuro-Psiquiatria, 59: 657664.Google Scholar
Moll, J., de Oliveira-Souza, R., Bramati, I. E., and Grafman, J. (2002) Functional networks in emotional moral and nonmoral social judgments. Neuroimage, 16: 696703.Google Scholar
Morris, J. S., Frith, C. D., Perrett, D. I., Rowland, D., Young, A. W., Calder, A. J., and Doland, R. J. (1996) A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383: 812815.Google Scholar
Nasr, S., Liu, N., Devaney, K. J., Yue, X., Rajimehr, R., Ungerleider, L. G., and Tooteli, R. B. H. (2011) Scene-selective cortical regions in human and nonhuman primates. Journal of Neuroscience, 31: 1377113785.Google Scholar
Nucifora, P. G. P., Verma, R., Melhem, E. R., Gur, R. E., and Gur, R. C. (2005) Leftward asymmetry in relative fiber density of the arcuate fasciculus. Neuroreport, 16: 791794.CrossRefGoogle ScholarPubMed
Olson, I. R., McCoy, D., Klobusicky, E., and Ross, L. A. (2013) Social cognition and the anterior temporal lobes: A review and theoretical framework. Social Cognitive and Affective Neuroscience, 8: 123133.Google Scholar
Orban, G. A., Van Essen, D., and Vanduffel, W. (2004) Comparative mapping of higher visual areas in monkeys and humans. Trends in Cognitive Science, 8: 315324.Google Scholar
Pabba, M. (2013) Evolutionary development of the amygdaloid complex. Frontiers in Neuroanatomy, 7: 27.Google Scholar
Parker, G. J. M., Luzzi, S., Alexander, D. C., Wheeler-Kingshott, C. A. M., Ciccarelli, O., and Lambon Ralph, M. A. (2005) Lateralization of ventral and dorsal auditory-language pathways in the human brain. Neuroimage, 24: 656666.Google Scholar
Parr, L. A., Hecht, E., Barks, S. .K, Preuss, T. M., and Votaw, J. R. (2009) Face processing in the chimpanzee brain. Current Biology, 19: 5053.Google Scholar
Parr, L. A., Siebert, E., and Taubert, J. (2011) Effect of familiarity and viewpoint on face recognition in chimpanzees. Perception, 40: 863872.Google Scholar
Parr, L. A., and Taubert, J. (2011) The importance of surface-based cues for face discrimination in non-human primates. Proceedings of the Royal Society B Biological Science, 278: 19641972.CrossRefGoogle ScholarPubMed
Parvizi, J., Jacques, C., Foster, B. L., Witthoft, N., Rangarajan, V., Weiner, K. S., and Grill-Spector, K. (2012) Electrical stimulation of human fusiform face-selective regions distorts face perception. Journal of Neuroscience, 32: 1491514920.Google Scholar
Passingham, R. E., and Wise, S. P. (2012) The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight. Oxford: Oxford University Press.Google Scholar
Perrett, D. I., Smith, P. A., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. D., and Jeeves, M. A. (1984) Neurones responsive to faces in the temporal cortex: Studies of functional organization, sensitivity to identity and relation to perception. Human Neurobiology, 3: 197208.Google Scholar
Pessoa, L., McKenna, M., Gutierrez, E., and Ungerleider, L. G. (2002) Neural processing of emotional faces requires attention. Proceedings of the National Academy of Science USA, 99: 1145811463.Google Scholar
Petrides, M., and Pandya, D. N. (2007) Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. Journal of Neuroscience, 27: 1157311586.Google Scholar
Pitcher, D., Duchaine, B., Walsh, V., Yovel, G., and Kanwisher, N. (2011) The role of lateral occipital face and object areas in the face inversion effect. Neuropsychologia, 49: 34483453.Google Scholar
Pobric, G., Jefferies, E., and Ralph, M. A. L. (2007) Anterior temporal lobes mediate semantic representation: Mimicking semantic dementia by using rTMS in normal participants. Proceedings of the National Academy of Science USA, 104: 2013720141.Google Scholar
Pobric, G., Jefferies, E., and Ralph, M. A. L. (2010) Amodal semantic representations depend on both anterior temporal lobes: Evidence from repetitive transcranial magnetic stimulation. Neuropsychologia, 48: 13361342.Google Scholar
Povinelli, D. J., and Eddy, T. J. (1996) Chimpanzees: Joint visual attention. Psychological Science, 7: 129135.Google Scholar
Povinelli, D. J., Nelson, K. E., and Boysen, S. T. (1992a) Comprehension of role reversal in chimpanzees: Evidence of empathy? Animal Behaviour, 43(4): 633640.Google Scholar
Povinelli, D. J., Parks, K. A., and Novak, M. A. (1992b) Role reversal by rhesus monkeys, but no evidence of empathy. Animal Behaviour, 44: 269281.Google Scholar
Powell, H. W. R., Parker, G. J. M., Alexander, D. C. et al. (2006) Hemispheric asymmetries in language-related pathways: A combined functional MRI and tractography study. Neuroimage, 32: 388399.Google Scholar
Premack, D., and Woodruff, G. (1978) Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1: 515526.Google Scholar
Preuss, T. M. (2011) The human brain: Rewired and running hot. Annals of the New York Academy of Science, 1225 (Suppl. 1): E182E191.Google Scholar
Rausch, R., Serafetinides, E. A., and Crandall, P. H. (1977) Olfactory memory in patients with anterior temporal lobectomy. Cortex, 13: 445452.Google Scholar
Reiman, E. M., Lane, R. D., Ahern, G. L. et al. (1997) Neuroanatomical correlates of externally and internally generated human emotion. American Journal of Psychiatry, 154: 918925.Google Scholar
Rilling, J. K. (2006) Human and nonhuman primate brains: Are they allometrically scaled versions of the same design? Evolutionary Anthropology, 15: 6577.Google Scholar
Rilling, J. K., Glasser, M. F., Jbabdi, S., Andersson, J., and Preuss, T. M. (2011) Continuity, divergence, and the evolution of brain language pathways. Frontiers in Evolutionary Neuroscience, 3: 11.Google Scholar
Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., and Behrens, T. E. (2008). The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11: 426.Google Scholar
Rilling, J. K., Scholz, J., Preuss, T. M., Glasser, M. F., Errangi, B. K., and Behrens, T. E. (2012) Differences between chimpanzees and bonobos in neural systems supporting social cognition. Social Cognitive and Affective Neuroscience, 7: 369379.Google Scholar
Rilling, J. K., and Seligman, R. A. (2002) A quantitative morphometric comparative analysis of the primate temporal lobe. Journal of Human Evolution, 42: 505533.Google Scholar
Rivas, E. (2005) Recent use of signs by chimpanzees (Pan troglodytes) in interactions with humans. Journal of Comparative Psychology, 119: 404417.Google Scholar
Rogers Flattery, C. N., Rosen, R. F., Farberg, A. S. et al. (2020). Quantification of neurons in the hippocampal formation of chimpanzees: Comparison to rhesus monkeys and humans. Brain Structure and Function, 1–11.Google Scholar
Rogers, T. T., Lambon Ralph, M. A., Garrard, P., Bozeat, S., McClelland, J. L., Hodges, J. R., and Patterson, K. (2004) Structure and deterioration of semantic memory: A neuropsychological and computational investigation. Psychological Review, 111: 205235.Google Scholar
Romanski, L. M., Bates, J. F., and Goldman-Rakic, P. S. (1999) Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 403: 141157.Google Scholar
Ross, L. A., and Olson, I. R. (2010) Social cognition and the anterior temporal lobes. Neuroimage, 49: 34523462.Google Scholar
Rossion, B., Dricot, L., Devolder, A. et al. (2000). Hemispheric asymmetries for whole-based and part-based face processing in the human fusiform gyrus. Journal of Cognitive Neuroscience, 12(5): 793802.Google Scholar
Rudrauf, D., Mehta, S. and Grabowski, T. J. (2008) Disconnection’s renaissance takes shape: Formal incorporation in group-level lesion studies. Cortex, 44: 10841096.Google Scholar
Rutishauser, U., Mamelak, A. N., and Adolphs, R. (2015) The primate amygdala in social perception – Insights from electrophysiological recordings and stimulation. Trends in Neuroscience, 38: 295306.Google Scholar
Rutishauser, U., Tudusciuc, O., Neumann, D. et al. (2011) Single-unit responses selective for whole faces in the human amygdala. Current Biology, 21: 16541660.Google Scholar
Sallet, J., Mars, R. B., Noonan, M. P. et al. (2011) Social network size affects neural circuits in macaques. Science, 334: 697700.Google Scholar
Samson, D., Apperly, I. A., Chiavarino, C., and Humphreys, G. W. (2004) Left temporoparietal junction is necessary for representing someone else’s belief. Nature Neuroscience, 7: 499500.Google Scholar
Saur, D., Kreher, B. W., Schnell, S. et al. (2008) Ventral and dorsal pathways for language. Proceedings of the National Academy of Science USA, 105: 1803518040.Google Scholar
Savage-Rumbaugh, S., McDonald, K., Sevcik, R. A., Hopkins, W. D., and Rubert, E. (1986) Spontaneous symbol acquisition and communicative use by pygmy chimpanzees (Pan paniscus). Journal of Experimental Psychology: General, 115: 211235.Google Scholar
Saxe, R., and Kanwisher, N. (2003) People thinking about thinking people: The role of the temporo-parietal junction in “theory of mind.” Neuroimage, 19: 18351842.Google Scholar
Saxe, R., and Powell, L. J. (2006) It’s the thought that counts: Specific brain regions for one component of theory of mind. Psychological Science, 17: 692699.Google Scholar
Schalk, G., Kapeller, C., Guger, C. et al. (2017) Facephenes and rainbows: Causal evidence for functional and anatomical specificity of face and color processing in the human brain. Proceedings of the National Academy of Science USA, 114: 1228512290.Google Scholar
Schmahmann, J. D., Pandya, D. N., Wang, R., Dai, G., D’Arceuil, H. E., de Crespigny, A. J., and Wedeen, V. J. (2007) Association fibre pathways of the brain: Parallel observations from diffusion spectrum imaging and autoradiography. Brain, 130: 630653.Google Scholar
Schmahmann, J., and Pandya, D. (2009) Fiber Pathways of the Brain. Oxford: Oxford University Press.Google Scholar
Schmolck, H., and Squire, L. R. (2001) Impaired perception of facial emotions following bilateral damage to the anterior temporal lobe. Neuropsychology, 15: 3038.Google Scholar
Schoenemann, P. T. (1997) An MRI study of the relationship between human neuroanatomy and behavioral ability. PhD Dissertation, University of California, Berkeley.Google Scholar
Schurz, M., Radua, J., Aichhorn, M., Richlan, F., and Perner, J. (2014) Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience and Biobehavioral Reviews, 42: 934.Google Scholar
Seltzer, B., and Pandya, D. N. (1984) Further observations on parieto-temporal connections in the rhesus monkey. Experimental Brain Research, 55: 301312.Google Scholar
Semendeferi, K., and Damasio, H. (2000) The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. Journal of Human Evolution, 38: 317332.Google Scholar
Shapleske, J., Rossell, S. L., Woodruff, P. W., and David, A. S. (1999) The planum temporale: A systematic, quantitative review of its structural, functional and clinical significance. Brain Research Brain Research Reviews, 29: 2649.Google Scholar
Simmons, W. K., and Martin, A. (2009) The anterior temporal lobes and the functional architecture of semantic memory. Journal of the International Neuropsychology Society, 15: 645649.Google Scholar
Simmons, W. K., Reddish, M., Bellgowan, P. S. F., and Martin, A. (2010) The selectivity and functional connectivity of the anterior temporal lobes. Cerebral Cortex, 20: 813825.Google Scholar
Skeide, M. A., and Friederici, A. D. (2016) The ontogeny of the cortical language network. Nature Reviews Neuroscience, 17: 323332.Google Scholar
Small, D. M., Jones-Gotman, M., Zatorre, R. J., Petrides, M., and Evans, A. C. (1997) A role for the right anterior temporal lobe in taste quality recognition. Journal of Neuroscience, 17: 51365142.Google Scholar
Sobolewski, M. E., Brown, J. L., and Mitani, J. C. (2012) Territoriality, tolerance and testosterone in wild chimpanzees. Animal Behaviour, 84: 14691474.Google Scholar
Spocter, M. A., Hopkins, W.D., Barks, S. K. et al. (2012) Neuropil distribution in the cerebral cortex differs between humans and chimpanzees. Journal of Comparative Neurology, 520: 29172929.Google Scholar
Spocter, M. A., Hopkins, W. D., Garrison, A. R., Bauernfeind, A. L., Stimpson, C. D., Hof, P. R., and Sherwood, C. C. (2010) Wernicke’s area homologue in chimpanzees (Pan troglodytes) and its relation to the appearance of modern human language. Proceedings of the Royal Society of London B: Biological Sciences, rspb20100011.Google Scholar
Stefanacci, L., and Amaral, D. G. (2002) Some observations on cortical inputs to the macaque monkey amygdala: An anterograde tracing study. Journal of Comparative Neurology, 451: 301323.Google Scholar
Steiper, M. E., and Seiffert, E. R. (2012) Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution. Proceedings of the National Academy of Science USA, 109: 60066011.Google Scholar
Stimpson, C. D., Barger, N., Taglialatela, J. P., Gendron-Fitzpatrick, A., Hof, P. R., Hopkins, W. D., and Sherwood, C. C. (2016) Differential serotonergic innervation of the amygdala in bonobos and chimpanzees. Social Cognitive and Affective Neuroscience, 11: 413422.Google Scholar
Sugiura, M., Sassa, Y., Watanabe, J. et al. (2006) Cortical mechanisms of person representation: Recognition of famous and personally familiar names. Neuroimage, 31: 853860.Google Scholar
Surbeck, M., Girard-Buttoz, C., Boesch, C. et al. (2017) Sex-specific association patterns in bonobos and chimpanzees reflect species differences in cooperation. Royal Society Open Science, 4: 161081.Google Scholar
Tan, J., Ariely, D., and Hare, B. (2017) Bonobos respond prosocially toward members of other groups. Scientific Reports, 7: 14733.Google Scholar
Tan, J., and Hare, B. (2013) Bonobos share with strangers. PLoS ONE, 8: e51922.Google Scholar
Taubert, J., Wardle, S., Flessert, M., Leopold, D., and Ungerleider, L. (2017) Evidence for face pareidolia in rhesus monkeys. Journal of Vision, 17: 845845.Google Scholar
Terrace, H. S. (1979) Nim. New York: Alfred A. Knoff.Google Scholar
Thiebaut de Schotten, M., Dell’Acqua, F., Valabregue, R., and Catani, M. (2012) Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex, 48: 8296.Google Scholar
Thomas Schoenemann, P. (1999) Syntax as an emergent characteristic of the evolution of semantic complexity. Minds Mach, 9: 309346.Google Scholar
Thompson, J. C., Clarke, M., Stewart, T., and Puce, A. (2005) Configural processing of biological motion in human superior temporal sulcus. Journal of Neuroscience, 25: 90599066.Google Scholar
Tomonaga, M., Tanaka, M., Matsuzawa, T. et al. (2004) Development of social cognition in infant chimpanzees (Pan troglodytes): Face recognition, smiling, gaze, and the lack of triadic interactions 1. Japanese Psychological Research, 46: 227235.Google Scholar
Tsao, D. Y., Moeller, S., and Freiwald, W. A. (2008) Comparing face patch systems in macaques and humans. Proceedings of the National Academy of Science USA, 105: 1951419519.Google Scholar
Tsukiura, T., Mano, Y., Sekiguchi, A. et al. (2010) Dissociable roles of the anterior temporal regions in successful encoding of memory for person identity information. Journal of Cognitive Neuroscience, 22: 22262237.Google Scholar
Turken, A. U., and Dronkers, N. F. (2011) The neural architecture of the language comprehension network: Converging evidence from lesion and connectivity analyses. Frontiers in Systems Neuroscience, 5: 1.Google Scholar
Ueno, T., Saito, S., Rogers, T. T., and Lambon Ralph, M. A (2011) Lichtheim 2: Synthesizing aphasia and the neural basis of language in a neurocomputational model of the dual dorsal-ventral language pathways. Neuron, 72: 385396.Google Scholar
Ungerleider, L. G., and Desimone, R. (1986) Cortical connections of visual area MT in the macaque. Journal of Comparative Neurology, 248: 190222.Google Scholar
Visser, M., Jefferies, E., Embleton, K. V., and Ralph, M. A. L. (2012) Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: Distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. Journal of Cognitive Neuroscience, 24: 17661778.Google Scholar
Watson, J. D., Myers, R., Frackowiak, R. S. et al. (1993) Area V5 of the human brain: Evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cerebral Cortex, 3: 7994.Google Scholar
Weiller, C., Bormann, T., Saur, D., Musso, M., and Rijntjes, M. (2011) How the ventral pathway got lost – And what its recovery might mean. Brain and Language, 118: 2939.Google Scholar
Whiten, A. (1998) Imitation of the sequential structure of actions by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 112: 270281.Google Scholar
Wong, F. C. K., Chandrasekaran, B., Garibaldi, K., and Wong, P. C. M. (2011) White matter anisotropy in the ventral language pathway predicts sound-to-word learning success. Journal of Neuroscience, 31: 87808785.Google Scholar
Yeatman, J. D., Dougherty, R. F., Rykhlevskaia, E., Sherbondy, A. J., Deutsch, G. K., Wandell, B. A., and Ben-Shacharet, M. (2011) Anatomical properties of the arcuate fasciculus predict phonological and reading skills in children. Journal of Cognitive Neuroscience, 23: 33043317.Google Scholar
Yeo, B. T. T., Krienen, F. M., Sepulcre, J. et al. (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106: 11251165.Google Scholar
Young, L., Dodell-Feder, D., and Saxe, R. (2010) What gets the attention of the temporo-parietal junction? An fMRI investigation of attention and theory of mind. Neuropsychologia, 48: 26582664.Google Scholar
Zahn, R., Moll, J., Iyengar, V., Huey, E. D., Tierney, M., Krueger, F., and Grafman, J. (2009) Social conceptual impairments in frontotemporal lobar degeneration with right anterior temporal hypometabolism. Brain, 132: 604616.Google Scholar
Zahn, R., Moll, J., Krueger, F., Huey, E. D., Garrido, G., and Grafman, J. (2007) Social concepts are represented in the superior anterior temporal cortex. Proceedings of the National Academy of Science USA, 104: 64306435.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×