Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-28T13:38:35.842Z Has data issue: false hasContentIssue false

Chapter 1 - Neuropathology and Pathophysiology of Stroke

from Section 1 - Etiology, Pathophysiology, and Imaging

Published online by Cambridge University Press:  16 May 2019

Michael Brainin
Affiliation:
Donau-Universität Krems, Austria
Wolf-Dieter Heiss
Affiliation:
Universität zu Köln
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shakir, R, Norrving, B. Stroke in ICD-11: the end of a long exile. Lancet 2017; 389(10087): 2373.Google Scholar
Sanz, J, Moreno, PR, Fuster, V. The year in atherothrombosis. J Am Coll Cardiol 2012; 60(10): 932–42.CrossRefGoogle ScholarPubMed
Rajamani, K, Fisher, M, Fisher, M. Atherosclerosis – pathogenesis and pathophysiology. In: Ginsberg, MD, Bogousslavsky, J, eds. Cerebrovascular Disease: Pathophysiology, Diagnosis and Management. II. London: Blackwell Science; 1998: 308–18.Google Scholar
Willeit, J, Kiechl, S. Biology of arterial atheroma. Cerebrovasc Dis 2000; 10(Suppl 5): 18.Google Scholar
Ross, R. Atherosclerosis – an inflammatory disease. N Engl J Med 1999; 340(2): 115–26.CrossRefGoogle ScholarPubMed
Faxon, DP, Fuster, V, Libby, P, et al. Atherosclerotic Vascular Disease Conference: Writing Group III: Pathophysiology. Circulation 2004; 109(21): 2617–25.CrossRefGoogle ScholarPubMed
Aikawa, M, Libby, P. The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc Pathol 2004; 13(3): 125–38.Google Scholar
Koga, J, Aikawa, M. Crosstalk between macrophages and smooth muscle cells in atherosclerotic vascular diseases. Vascular Pharmacology 2012; 57(1): 24–8.CrossRefGoogle ScholarPubMed
Dzau, VJ, Braun-Dullaeus, RC, Sedding, DG. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 2002; 8(11): 1249–56.Google Scholar
Madden, JA. Role of the vascular endothelium and plaque in acute ischemic stroke. Neurology 2012; 79(13 Suppl 1): S58–62.Google Scholar
Glagov, S, Weisenberg, E, Zarins, CK, Stankunavicius, R, Kolettis, GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987; 316(22): 1371–5.CrossRefGoogle ScholarPubMed
Rauch, U, Osende, JI, Fuster, V, Badimon, JJ, Fayad, Z, Chesebro, JH. Thrombus formation on atherosclerotic plaques: pathogenesis and clinical consequences. Ann Intern Med 2001; 134(3): 224–38.CrossRefGoogle ScholarPubMed
Lubos, E, Handy, DE, Loscalzo, J. Role of oxidative stress and nitric oxide in atherothrombosis. Front Biosci 2008; 13: 5323–44.Google Scholar
Fisher, CM. Cerebral miliary aneurysms in hypertension. Am J Pathol 1972; 66(2): 313–30.Google ScholarPubMed
Zülch, K-J. The Cerebral Infarct. Pathology, Pathogenesis, and Computed Tomography. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag; 1985.CrossRefGoogle Scholar
Russell, RWR. Observations on intracerebral aneurysms. Brain 1963; 86: 425–42.CrossRefGoogle Scholar
Zülch, K-J. Über die Entstehung und Lokalisation der Hirninfarkte Zbl für. Neurochirurgie 1961; 21: 158–78.Google Scholar
Dichgans, M. Genetics of ischaemic stroke. Lancet Neurol 2007; 6(2): 149–61.CrossRefGoogle ScholarPubMed
Mohr, JP, Choi, DW, Grotta, JC, Weir, B, Wolf, PA, eds. Stroke – Pathophysiology, Diagnosis, and Management. 4th edn. Philadelphia: Churchill Livingstone; 2004.Google Scholar
Pantoni, L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9(7): 689701.Google Scholar
Ringelstein, EB, Nabavi, DG. Cerebral small vessel diseases: cerebral microangiopathies. Curr Opin Neurol 2005; 18(2): 179–88.Google Scholar
Wolf, PA. Epidemiology of stroke. In: Mohr, JP, Choi, DW, Grotta, JC, Weir, B, Wolf, PA, eds. Stroke – Pathophysiology, Diagnosis, and Management. Philadelphia: Churchill Livingstone; 2004: 1334.Google Scholar
Benjamin, EJ, Blaha, MJ, Chiuve, SE, et al. Heart Disease and Stroke Statistics – 2017 Update: A Report From the American Heart Association. Circulation 2017; 135(10): e146–603.Google Scholar
Stochdorph, O. Der Mythos der letzten Wiese. Zbl allg Pathol path Anat 1977; 121: 554.Google Scholar
Ringelstein, EB, Zunker, P. Low-flow infarction. In: Ginsberg, MD, Bogousslavsky, J, eds. Cerebrovascular Disease: Pathophysiology, Diagnosis, and Management. II. London: Blackwell Science; 1998: 1075–89.Google Scholar
Fisher, CM. Lacunes: small, deep cerebral infarcts. Neurology 1965; 15: 774–84.Google Scholar
Amarenco, P, Bogousslavsky, J, Caplan, LR, Donnan, GA, Hennerici, MG. New approach to stroke subtyping: the A-S-C-O (phenotypic) classification of stroke. Cerebrovasc Dis 2009; 27(5): 502–8.Google Scholar
Beghi, E, Bogliun, G, Cavaletti, G, et al. Hemorrhagic infarction: risk factors, clinical and tomographic features, and outcome. A case-control study. Acta Neurol Scand 1989; 80(3): 226–31.Google Scholar
Lodder, J, Krijne-Kubat, B, Broekman, J. Cerebral hemorrhagic infarction at autopsy: cardiac embolic cause and the relationship to the cause of death. Stroke 1986; 17(4): 626–9.CrossRefGoogle ScholarPubMed
Fisher, M, Adams, RD. Observations on brain embolism with special reference to the mechanism of hemorrhagic infarction. J Neuropathol Exp Neurol 1951; 10(1): 92–4.Google Scholar
Mohr, JP, Caplan, LR, Melski, JW, et al. The Harvard Cooperative Stroke Registry: a prospective registry. Neurology 1978; 28: 754–62.Google Scholar
Sacco, RL, Wolf, PA, Bharucha, NE, et al. Subarachnoid and intracerebral hemorrhage: natural history, prognosis, and precursive factors in the Framingham Study. Neurology 1984; 34: 847–54.CrossRefGoogle ScholarPubMed
Feldman, E. Intracerebral Hemorrhage. Armonk, NY: Futura; 1994.Google Scholar
Schütz, H. Spontane intrazerebrale Hämatome. Pathophysiologie, Klinik und Therapie. Berlin, Heidelberg, New York: Springer-Verlag; 1988.Google Scholar
Qureshi, AI, Tuhrim, S, Broderick, JP, Batjer, HH, Hondo, H, Hanley, DF. Spontaneous intracerebral hemorrhage. N Engl J Med 2001; 344(19): 1450–60.Google Scholar
Kase, CS, Mohr, JP, Caplan, LR. Intracerebral hemorrhage. In: Mohr, JP, Choi, DW, Grotta, JC, Weir, B, Wolf, PA, eds. Stroke – Pathophysiology, Diagnosis, and Management. Philadelphia: Churchill Livingstone; 2004: 327–76.Google Scholar
Fisher, CM. Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol 1971; 30(3): 536–50.Google Scholar
Brott, T, Broderick, J, Kothari, R, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke 1997; 28(1): 15.CrossRefGoogle ScholarPubMed
Gonzalez-Duarte, A, Cantu, C, Ruiz-Sandoval, JL, Barinagarrementeria, F. Recurrent primary cerebral hemorrhage: frequency, mechanisms, and prognosis. Stroke 1998; 29(9): 1802–5.CrossRefGoogle ScholarPubMed
Bousser, MG, Barnett, HJM. Cerebral venous thrombosis. In: Mohr, JP, Choi, DW, Grotta, JC, Weir, B, Wolf, PA, eds. Stroke – Pathophysiology, Diagnosis, and Management. 4th edn. Philadelphia: Churchill Livingstone; 2004: 301–25.Google Scholar
Petito, CK. The Neuropathology of Focal Brain Ischemia. Basel: ISN Neuropath; 2005.Google Scholar
Sakadzic, S, Lee, J, Boas, DA, Ayata, C. High-resolution in vivo optical imaging of stroke injury and repair. Brain Res 2015; 1623: 174–92.Google Scholar
Zille, M, Farr, TD, Przesdzing, I, et al. Visualizing cell death in experimental focal cerebral ischemia: promises, problems, and perspectives. J Cereb Blood Flow Metab 2012; 32(2): 213–31.Google Scholar
Brown, AW, Brierley, JB. Anoxic-ischaemic cell change in rat brain light microscopic and fine-structural observations. J Neurol Sci 1972; 16(1): 5984.Google Scholar
Jortner, BS. The return of the dark neuron. A histological artifact complicating contemporary neurotoxicologic evaluation. Neurotoxicology 2006; 27(4): 628–34.Google Scholar
Kirino, T, Sano, K. Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol 1984; 62: 201–8.Google Scholar
Martin, LJ. Neuronal cell death in nervous system development, disease, and injury (Review). Int J Mol Med 2001; 7(5): 455–78.Google Scholar
Dixon, SJ, Lemberg, KM, Lamprecht, MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060–72.Google Scholar
Charriaut-Marlangue, C, Ben-Ari, Y. A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport 1995; 7(1): 61–4.Google Scholar
Hossmann, KA. Disturbances of cerebral protein synthesis and ischemic cell death. ProgBrain Res 1993; 96: 161–77.Google ScholarPubMed
DeGracia, DJ, Jamison, JT, Szymanski, JJ, Lewis, MK. Translation arrest and ribonomics in post-ischemic brain: layers and layers of players. J Neurochem 2008; 106(6): 2288–301.Google Scholar
Stanimirovic, DB, Friedman, A. Pathophysiology of the neurovascular unit: disease cause or consequence? J Cereb Blood Flow Metab 2012; 32(7): 1207–21.CrossRefGoogle ScholarPubMed
Dalkara, T, Alarcon-Martinez, L. Cerebral microvascular pericytes and neurogliovascular signaling in health and disease. Brain Res 2015; 1623: 317.Google Scholar
Wiltrout, C, Lang, B, Yan, Y, Dempsey, RJ, Vemuganti, R. Repairing brain after stroke: a review on post-ischemic neurogenesis. Neurochem Int 2007; 50(7–8): 1028–41.Google Scholar
Kamouchi, M, Ago, T, Kuroda, J, Kitazono, T. The possible roles of brain pericytes in brain ischemia and stroke. Cell Mol Neurobiol 2012; 32(2): 159–65.Google Scholar
Huo, W, Liu, X, Tan, C, et al. Stem cell transplantation for treating stroke: status, trends and development. Neural Regen Res 2014; 9(17): 1643–8.Google Scholar
Unsworth, DJ, Mathias, JL. Traumatic brain injury and alcohol/substance abuse: a Bayesian meta-analysis comparing the outcomes of people with and without a history of abuse. J Clin Exp Neuropsychol 2017; 39(6): 547–62.Google Scholar
Kumar, A, Aakriti, Gupta V. A review on animal models of stroke: an update. Brain Res Bull 2016; 122: 3544.Google Scholar
Hudgins, WR, Garcia, JH. Transorbital approach to the middle cerebral artery of the squirrel monkey: a technique for experimental cerebral infarction applicable to ultrastructural studies. Stroke 1970; 1: 107–11.Google Scholar
Tamura, A, Graham, DI, McCulloch, J, Teasdale, GM. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1981; 1: 5360.Google Scholar
Knapp, L, Gellert, L, Heredi, J, et al. A simple novel technique to induce short-lasting local brain ischaemia in the rat. Neuropathol Appl Neurobiol 2014; 40(5): 603–9.Google Scholar
Koizumi, J, Yoshida, Y, Nakazawa, T, Ooneda, G. Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Japanese Journal of Stroke 1986; 8: 18.Google Scholar
Rogers, DC, Campbell, CA, Stretton, JL, Mackay, KB. Correlation between motor impairment and infarct volume after permanent and transient middle cerebral artery occlusion in the rat. Stroke 1997; 28(10): 2060–5.Google Scholar
Sommer, CJ. Ischemic stroke: experimental models and reality. Acta Neuropathol 2017; 133(2): 245–61.Google Scholar
Dinapoli, VA, Rosen, CL, Nagamine, T, Crocco, T. Selective MCA occlusion: a precise embolic stroke model. J Neurosci Methods 2006; 154(1–2): 233–8.Google Scholar
Chen, Y, Zhu, W, Zhang, W, et al. A novel mouse model of thromboembolic stroke. J Neurosci Methods 2015; 256: 203–11.Google Scholar
Chen, F, Suzuki, Y, Nagai, N, et al. Rodent stroke induced by photochemical occlusion of proximal middle cerebral artery: evolution monitored with MR imaging and histopathology. Eur J Radiol 2007; 63(1): 6875.CrossRefGoogle ScholarPubMed
Lees, KR, Bluhmki, E, von Kummer, R, et al. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 2010; 375(9727): 1695–703.Google Scholar
Goyal, M, Menon, BK, van Zwam, WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 2016; 387(10029): 1723–31.CrossRefGoogle ScholarPubMed
Vidale, S, Agostoni, E. Endovascular treatment of ischemic stroke: an updated meta-analysis of efficacy and safety. Vasc Endovascular Surg 2017; 51(4): 215–19.Google Scholar
Mordasini, P, Frabetti, N, Gralla, J, et al. In vivo evaluation of the first dedicated combined flow-restoration and mechanical thrombectomy device in a swine model of acute vessel occlusion. AJNR Am J Neuroradiol 2011; 32(2): 294300.CrossRefGoogle Scholar
Sutherland, BA, Neuhaus, AA, Couch, Y, et al. The transient intraluminal filament middle cerebral artery occlusion model as a model of endovascular thrombectomy in stroke. J Cereb Blood Flow Metab 2016; 36(2): 363–9.Google Scholar
Sharma, P, Yadav, S, Meschia, JF. Genetics of ischaemic stroke. J Neurol Neurosurg Psychiatry 2013; 84(12): 1302–8.Google Scholar
Traylor, M, Farrall, M, Holliday, EG, et al. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol 2012; 11(11): 951–62.Google Scholar
Biffi, A, Sonni, A, Anderson, CD, et al. Variants at APOE influence risk of deep and lobar intracerebral hemorrhage. Ann Neurol 2010; 68(6): 934–43.Google Scholar
Lindgren, A. Stroke genetics: a review and update. J Stroke 2014; 16(3): 114–23.Google Scholar
Koller, A, Toth, P. Contribution of flow-dependent vasomotor mechanisms to the autoregulation of cerebral blood flow. Journal of Vascular Research 2012; 49(5): 375–89.Google Scholar
Feuerstein, D, Takagaki, M, Gramer, M, et al. Detecting tissue deterioration after brain injury: regional blood flow level versus capacity to raise blood flow. J Cereb Blood Flow Metab 2014; 34(7): 1117–27.CrossRefGoogle ScholarPubMed
Hata, R, Maeda, K, Hermann, D, Mies, G, Hossmann, KA. Evolution of brain infarction after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2000; 20(6): 937–46.Google Scholar
del Zoppo, GJ. The neurovascular unit in the setting of stroke. J Intern Med 2010; 267(2): 156–71.Google Scholar
Fernandez-Klett, F, Priller, J. Diverse functions of pericytes in cerebral blood flow regulation and ischemia. J Cereb Blood Flow Metab 2015; 35(6): 883–7.CrossRefGoogle ScholarPubMed
Ito, U, Hakamata, Y, Kawakami, E, Oyanagi, K. Temporary cerebral ischemia results in swollen astrocytic end-feet that compress microvessels and lead to delayed focal cortical infarction. J Cereb Blood Flow Metab 2011; 31(1): 328–38.Google Scholar
Gursoy-Ozdemir, Y, Yemisci, M, Dalkara, T. Microvascular protection is essential for successful neuroprotection in stroke. J Neurochem 2012; 123(Suppl 2): 211.Google Scholar
Liebeskind, DS. Collateral circulation. Stroke 2003; 34(9): 2279–84.Google Scholar
Nishijima, Y, Akamatsu, Y, Weinstein, PR, Liu, J. Collaterals: implications in cerebral ischemic diseases and therapeutic interventions. Brain Res 2015; 1623: 1829.Google Scholar
Toole, JF, McGraw, CP. The steal syndromes. Annual Review of Medicine 1975; 26: 321–9.Google Scholar
Opitz, E, Schneider, M. Über die Sauerstoffversorgung des Gehirns und den Mechanismus der Mangelwirkungen. Ergebn Physiol 1950; 46: 126260.Google Scholar
Symon, L, Branston, NM, Strong, AJ, Hope, TD. The concepts of thresholds of ischaemia in relation to brain structure and function. J Clin Pathol Suppl (R Coll Pathol) 1977; 11: 149–54.Google Scholar
Astrup, J, Siesjo, BK, Symon, L. Thresholds in cerebral ischemia – the ischemic penumbra. Stroke 1981; 12(6): 723–5.Google Scholar
Pakkenberg, B, Gundersen, HJ. Neocortical neuron number in humans: effect of sex and age. Journal of Comparative Neurology 1997; 384(2): 312–20.Google Scholar
Clarke, DD, Sokoloff, L. Circulation and energy metabolism of the brain. In: Siegel, G, Agranoff, B, Albers, RW, Fisher, S, eds. Basic Neurochemistry: Molecular, Cellular, and Medical Aspects. 6th edn. Philadelphia: Lippincott-Raven; 1999: 637–69.Google Scholar
Sokoloff, L. Energetics of functional activation in neural tissues. Neurochem Res 1999; 24(2): 321–9.Google Scholar
Magistretti, PJ, Pellerin, L. Astrocytes couple synaptic activity to glucose utilization in the brain. News Physiol Sci 1999; 14: 177–82.Google Scholar
Laughlin, SB, Attwell, D. The metabolic cost of neural information: from fly eye to mammalian cortex. In: Frackowiak, RSJ, Magistretti, PJ, Shulman, RG, Altman, JS, Adams, M, eds. Neuroenergetics: Relevance for Functional Brain Imaging. Strasbourg: HFSP Workshop XI; 2001: 5464.Google Scholar
Frackowiak, RSJ, Magistretti, PJ, Shulman, RG, Altman, JS, Adams, M. Neuroenergetics: Relevance for Functional Brain Imaging. Strasbourg: HFSP Workshop XI; 2001.Google Scholar
Heiss, WD, Hayakawa, T, Waltz, AG. Cortical neuronal function during ischemia. Effects of occlusion of one middle cerebral artery on single-unit activity in cats. ArchNeurol 1976; 33(12): 813–20.Google Scholar
Hossmann, KA. Cerebral ischemia: models, methods and outcomes. Neuropharmacology 2008; 55(3): 257–70.Google Scholar
Hata, R, Maeda, K, Hermann, D, Mies, G, Hossmann, KA. Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 2000; 20(2): 306–15.Google Scholar
Dani, KA, Warach, S. Metabolic imaging of ischemic stroke: the present and future. AJNR Am J Neuroradiol 2014; 35(6 Suppl): S37–43.Google Scholar
Heiss, WD. Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab 2000; 20(9): 1276–93.Google Scholar
Takasawa, M, Beech, JS, Fryer, TD, et al. Imaging of brain hypoxia in permanent and temporary middle cerebral artery occlusion in the rat using 18F-fluoromisonidazole and positron emission tomography: a pilot study. J Cereb Blood Flow Metab 2007; 27(4): 679–89.Google Scholar
Kane, I, Sandercock, P, Wardlaw, J. Magnetic resonance perfusion diffusion mismatch and thrombolysis in acute ischaemic stroke: a systematic review of the evidence to date. J Neurol Neurosurg Psychiatry 2007; 78(5): 485–91.Google Scholar
Hoehn-Berlage, M, Norris, DG, Kohno, K, et al. Evolution of regional changes in apparent diffusion-coefficient during focal ischemia of rat brain: the relationship of quantitative diffusion NMR imaging to reduction in cerebral blood flow and metabolic disturbances. J CerebBlood Flow Metab 1995; 15(6): 1002–11.Google Scholar
Sun, PZ, Zhou, J, Sun, W, Huang, J, van Zijl, PC. Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab 2007; 27(6): 1129–36.Google Scholar
Weber, RA, Hui, ES, Jensen, JH, et al. Diffusional kurtosis and diffusion tensor imaging reveal different time-sensitive stroke-induced microstructural changes. Stroke 2015; 46(2): 545–50.Google Scholar
Vaas, M, Klohs, J. Noninvasive optical imaging in rodent models of stroke. In: Dirnagl, U, ed. Rodent Models of Stroke. 2nd edn. New York: Humana Press; 2016: 187–98.Google Scholar
Baskerville, TA, Macrae, IM, Holmes, WM, McCabe, C. The influence of gender on “tissue at risk” in acute stroke: a diffusion-weighted magnetic resonance imaging study in a rat model of focal cerebral ischaemia. J Cereb Blood Flow Metab 2016; 36(2): 381–6.Google Scholar
del Zoppo, GJ, Sharp, FR, Heiss, WD, Albers, GW. Heterogeneity in the penumbra. J Cereb Blood Flow Metab 2011; 31(9): 1836–51.Google Scholar
Dreier, JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 2011; 17(4): 439–47.Google Scholar
Feuerstein, D, Backes, H, Gramer, M, et al. Regulation of cerebral metabolism during cortical spreading depression. J Cereb Blood Flow Metab 2016; 36(11): 1965–77.Google Scholar
Strong, AJ, Anderson, PJ, Watts, HR, et al. Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex. Brain 2007; 130(4): 9951008.CrossRefGoogle ScholarPubMed
Mies, G, Iijima, T, Hossmann, K-A. Correlation between periinfarct DC shifts and ischemic neuronal damage in rat. NeuroReport 1993; 4(6): 709–11.Google Scholar
Moskowitz, MA, Lo, EH, Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron 2010; 67(2): 181–98.Google Scholar
Karsy, M, Brock, A, Guan, J, Taussky, P, Kalani, MY, Park, MS. Neuroprotective strategies and the underlying molecular basis of cerebrovascular stroke. Neurosurg Focus 2017; 42(4): E3.Google Scholar
Simon, R, Xiong, Z. Acidotoxicity in brain ischaemia. Biochem Soc Trans 2006; 34(6): 1356–61.Google Scholar
Choi, DW. Excitotoxicity, apoptosis and ischemic stroke. Journal of Biochemistry and Molecular Biology 2001; 34: 814.Google Scholar
Szydlowska, K, Tymianski, M. Calcium, ischemia and excitotoxicity. Cell Calcium 2010; 47(2): 122–9.Google Scholar
MacDonald, JF, Xiong, ZG, Jackson, MF. Paradox of Ca2+ signaling, cell death and stroke. Trends in Neurosciences 2006; 29(2): 7581.Google Scholar
Chan, PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 2001; 21(1): 214.Google Scholar
Granger, DN, Kvietys, PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol 2015; 6: 524–51.Google Scholar
Dalkara, T, Moskowitz, MA. The complex role of nitric oxide in the pathophysiology of focal cerebral ischemia. Brain Pathol 1994; 4: 4957.Google Scholar
Shuttleworth, CW, Weiss, JH. Zinc: new clues to diverse roles in brain ischemia. Trends Pharmacol Sci 2011; 32(8): 480–6.Google Scholar
Sensi, SL, Jeng, JM. Rethinking the excitotoxic ionic milieu: the emerging role of Zn(2+) in ischemic neuronal injury. Current Molecular Medicine 2004; 4(2): 87111.Google Scholar
Yang, W, Paschen, W. Unfolded protein response in brain ischemia: a timely update. J Cereb Blood Flow Metab 2016; 36(12): 2044–50.CrossRefGoogle ScholarPubMed
Youle, RJ, van der Bliek, AM. Mitochondrial fission, fusion, and stress. Science 2012; 337(6098): 1062–5.Google Scholar
Gouriou, Y, Demaurex, N, Bijlenga, P, De Marchi, U. Mitochondrial calcium handling during ischemia-induced cell death in neurons. Biochimie 2011; 93(12): 2060–7.Google Scholar
Norenberg, MD, Rao, KV. The mitochondrial permeability transition in neurologic disease. Neurochem Int 2007; 50(7–8): 983–97.Google Scholar
Kerr, JF, Wyllie, AH, Currie, AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26(4): 239–57.Google Scholar
Niizuma, K, Yoshioka, H, Chen, H, et al. Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 2010; 1802(1): 92–9.Google Scholar
Ferrer, I, Planas, AM. Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol 2003; 62(4): 329–39.Google Scholar
MacManus, JP, Buchan, AM. Apoptosis after experimental stroke: fact or fashion? J Neurotrauma 2000; 17(10): 899914.Google Scholar
Thushara Vijayakumar, N, Sangwan, A, Sharma, B, Majid, A, Rajanikant, GK. Cerebral ischemic preconditioning: the road so far. Mol Neurobiol 2016; 53(4): 2579–93.Google Scholar
Dirnagl, U, Simon, RP, Hallenbeck, JM. Ischemic tolerance and endogenous neuroprotection. Trends in Neurosciences 2003; 26(5): 248–54.Google Scholar
Zhao, H, Sapolsky, RM, Steinberg, GK. Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab 2006; 26(9): 1114–21.Google Scholar
Wang, CX, Shuaib, A. Critical role of microvasculature basal lamina in ischemic brain injury. Prog Neurobiol 2007; 83(3): 140–8.Google Scholar
Walz, B, Zimmermann, C, Bottger, S, Haberl, RL. Prognosis of patients after hemicraniectomy in malignant middle cerebral artery infarction. J Neurol 2002; 249(9): 1183–90.Google Scholar
Neumann-Haefelin, C, Brinker, G, Uhlenkuken, U, Pillekamp, F, Hossmann, KA, Hoehn, M. Prediction of hemorrhagic transformation after thrombolytic therapy of clot embolism: an MRI investigation in rat brain. Stroke 2002; 33(5): 1392–8.Google Scholar
Lansberg, MG, Thijs, VN, O'Brien, MW, et al. Evolution of apparent diffusion coefficient, diffusion-weighted, and T2-weighted signal intensity of acute stroke. AJNR Am J Neuroradiol 2001; 22(4): 637–44.Google Scholar
Badaut, J, Lasbennes, F, Magistretti, PJ, Regli, L. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 2002; 22(4): 367–78.Google Scholar
Rothwell, NJ, Luheshi, GN. Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends in Neurosciences 2000; 23(12): 618–25.Google Scholar
Planas, AM, Gorina, R, Chamorro, A. Signalling pathways mediating inflammatory responses in brain ischaemia. Biochem Soc Trans 2006; 34(6): 1267–70.Google Scholar
Chamorro, A, Dirnagl, U, Urra, X, Planas, AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 2016; 15(8): 869–81.Google Scholar
Saver, JL, Smith, EE, Fonarow, GC, et al. The “golden hour” and acute brain ischemia: presenting features and lytic therapy in >30,000 patients arriving within 60 minutes of stroke onset. Stroke 2010; 41(7): 1431–9.Google Scholar
Hossmann, KA. The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J Cereb Blood Flow Metab 2012; 32(7): 1310–16.Google Scholar
Kuhl, DE, Phelps, ME, Kowell, AP, et al. Effects of stroke on local cerebral metabolism and perfusion: mapping by emission computed tomography of 18 FDG and 13 NH 3. Ann Neurol 1980; 8: 4760.Google Scholar
Baron, JC, Frackowiak, RS, Herholz, K, et al. Use of PET methods for measurement of cerebral energy metabolism and hemodynamics in cerebrovascular disease. J Cereb Blood Flow Metab 1989; 9(6): 723–42.Google Scholar
Ackerman, RH, Correia, JA, Alpert, NM, et al. Positron imaging in ischemic stroke disease using compounds labeled with oxygen 15. Initial results of clinicophysiologic correlations. Arch Neurol 1981; 38(9): 537–43.Google Scholar
Baron, JC, Bousser, MG, Comar, D, Soussaline, F, Castaigne, P. Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Potentials, limitations, and clinical applications in cerebral ischemic disorders. Eur Neurol 1981; 20(3): 273–84.Google Scholar
Lenzi, GL, Frackowiak, RSJ, Jones, T. Cerebral oxygen metabolism and blood flow in human cerebral ischemic infarction. J Cereb Blood Flow Metab 1982; 2: 321–35.Google Scholar
Powers, WJ, Grubb, RL, Jr., Darriet, D, Raichle, ME. Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J Cereb Blood Flow Metab 1985; 5: 600–8.Google Scholar
Baron, JC, Bousser, MG, Rey, A, Guillard, A, Comar, D, Castaigne, P. Reversal of focal “misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 15O positron emission tomography. Stroke 1981; 12(4): 454–9.Google Scholar
Heiss, W-D, Graf, R, Löttgen, J, et al. 11C-flumazenil PET predicts extent of cortical infarction in reversible middle cerebral artery occlusion of cats. J Cereb Blood Flow Metab 1997; 17(Suppl 1): S4.Google Scholar
Heiss, WD. Experimental evidence of ischemic thresholds and functional recovery. Stroke 1992; 23(11): 1668–72.Google Scholar
Heiss, WD, Grond, M, Thiel, A, et al. Permanent cortical damage detected by flumazenil positron emission tomography in acute stroke. Stroke 1998; 29(2): 454–61.Google Scholar
Baird, AE, Benfield, A, Schlaug, G, et al. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol 1997; 41(5): 581–9.Google Scholar
Kidwell, CS, Alger, JR, Saver, JL. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 2003; 34(11): 2729–35.Google Scholar
Calamante, F, Gadian, DG, Connelly, A. Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 2002; 33(4): 1146–51.Google Scholar
Heiss, WD, Zaro Weber, O. Validation of MRI determination of the penumbra by PET measurements in ischemic stroke. J Nucl Med 2017; 58(2): 187–93.Google Scholar
Heiss, WD, Sobesky, J, Smekal, U, et al. Probability of cortical infarction predicted by flumazenil binding and diffusion-weighted imaging signal intensity: a comparative positron emission tomography/magnetic resonance imaging study in early ischemic stroke. Stroke 2004; 35(8): 1892–8.Google Scholar
Kane, I, Carpenter, T, Chappell, F, et al. Comparison of 10 different magnetic resonance perfusion imaging processing methods in acute ischemic stroke: effect on lesion size, proportion of patients with diffusion/perfusion mismatch, clinical scores, and radiologic outcomes. Stroke 2007; 38(12): 3158–64.Google Scholar
Sobesky, J, Weber, OZ, Lehnhardt, FG, et al. Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke 2005; 36(5): 980–5.Google Scholar
Olivot, JM, Albers, GW. Diffusion-perfusion MRI for triaging transient ischemic attack and acute cerebrovascular syndromes. Curr Opin Neurol 2011; 24(1): 44–9.Google Scholar
Heiss, WD, Thiel, A, Grond, M, Graf, R. Which targets are relevant for therapy of acute ischemic stroke? Stroke 1999; 30(7): 1486–9.Google Scholar
Donnan, GA, Baron, JC, Ma, H, Davis, SM. Penumbral selection of patients for trials of acute stroke therapy. Lancet Neurol 2009; 8(3): 261–9.Google Scholar
Marks, MP, Tong, DC, Beaulieu, C, et al. Evaluation of early reperfusion and IV tPA therapy using diffusion- and perfusion-weighted MRI. Neurology 1999; 52(9): 1792–8.Google Scholar
Campbell, BC, Christensen, S, Foster, SJ, et al. Visual assessment of perfusion-diffusion mismatch is inadequate to select patients for thrombolysis. Cerebrovasc Dis 2010; 29(6): 592–6.Google Scholar
Mishra, NK, Albers, GW, Davis, SM, et al. Mismatch-based delayed thrombolysis: a meta-analysis. Stroke 2010; 41(1): e25–33.Google Scholar
Garcia, JH, Liu, KF, Ho, KL. Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex. Stroke 1995; 26: 636–42.Google Scholar
Magistretti, PJ. Coupling synaptic activity to glucose metabolism. In: Frackowiak, RSJ, Magistretti, PJ, Shulman, RG, Altman, JS, Adams, M, eds. Neuroenergetics: Relevance for Functional Brain Imaging. Strasbourg: HFSP Workshop XI; 2001: 133–42.Google Scholar
Heiss, WD, Rosner, G. Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol 1983; 14(3): 294301.Google Scholar
Hossmann, K-A, Mies, G. Multimodal mapping of the ischemic penumbra in animal models. In: Donnan, G, Baron, JC, Sharp, FR, eds. The Ischaemic Penumbra. New York: Marcel Dekker; 2007: 7792.Google Scholar
Jacobs, AH, Tavitian, B, consortium, IN. Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab 2012; 32(7): 1393–415.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×