Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-16T14:37:11.449Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 November 2020

Concha Bielza
Affiliation:
Universidad Politécnica de Madrid
Pedro Larrañaga
Affiliation:
Universidad Politécnica de Madrid
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Data-Driven Computational Neuroscience
Machine Learning and Statistical Models
, pp. 613 - 678
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbe, E.. Über die Gesetzmässigkeit der Verheiling der Fehler bei Beobachtungrsreihen. Habilitationsschrift Jena, 1836. [140]Google Scholar
Abbeel, P., Koller, D., and Ng, A. Y.. Learning factor graphs in polynomial time and sample complexity. Journal of Machine Learning Research, 7:17431788, 2006. [545]Google Scholar
Abdullah, A., Hirayama, A., Yatsushiro, S., Matsumae, M., and Kuroda, K.. Cerebrospinal fluid image segmentation using spatial fuzzy clustering method with improved evolutionary expectation maximization. In 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 3359–3362, 2013. [448]CrossRefGoogle Scholar
Abellán, J., Cano, A., Masegosa, A. R., and Moral, S.. A semi-naive Bayes classifier with grouping of cases. In Proceedings of the 9th European Conference in Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Lecture Notes in Artificial Intelligence, volume 4724, pages 477– 488. Springer, 2007. [356]Google Scholar
Abellán, J., Gomez-Olmedo, M., and Moral, S.. Some variations on the PC algorithm. In Proceedings of the 3rd European Workshop on Probabilistic Graphical Models, pages 1–8, 2006. [526]Google Scholar
Abramowitz, M. and Stegun, I. A.. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, chapter Modified Bessel functions I and K, pages 374–377. Dover, 1972. [113]Google Scholar
Abuzaid, A. H., Mohamed, I. B., and Hussin, A. G.. Boxplot for circular variables. Computational Statistics, 27(3):381392, 2012. [66]CrossRefGoogle Scholar
Acharya, U. R., Sree, S. V., Chattopadhyay, S., Yu, W., and Ang, P. C. A.. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. International Journal of Neural Systems, 21(3):199211, 2011. [263]Google Scholar
Ackley, D. H., Hinton, G. E., and Sejnowski, T. J.. A learning algorithm for Boltzmann machines. Cognitive Science, 9(1):147169, 1985. [555]Google Scholar
Aggarwal, C. C. and Yu, P. S.. Finding generalized projected clusters in high dimensional space. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 70–81, 2000. [460]CrossRefGoogle Scholar
Aggarwal, C. C., Procopiuc, C. M., Wolf, J. L., Yu, P. S., and Park, J. S.. Fast algorithms for projected clustering. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 61–72, 1999. [459]CrossRefGoogle Scholar
Agresti, A.. Categorical Data Analysis. Wiley, 3rd edition, 2013. [341, 384]Google Scholar
Aha, D. W., Kibler, D., and Albert, M. K.. Instance-based learning algorithms. Machine Learning, 6 (1):3766, 1991. [29, 227, 269]CrossRefGoogle Scholar
Aizerman, M. A., Braverman, E. M., and Rozoner, L. I.. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25:821837, 1964. [319]Google Scholar
Akaike, H.. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6):716723, 1974. [532]CrossRefGoogle Scholar
Akil, H., Martone, M. E., and van Essen, D. C.. Challenges and opportunities in mining neuroscience data. Science, 331:708711, 2011. [18, 19]Google Scholar
Al-Am, A.. Ant colony optimization for feature subset selection. In Proceedings of World Academy of Science, Engineering and Technology, volume 4, pages 3538, 2005. [241, 246]Google Scholar
Albert, A. and Anderson, J. A.. On the existence of maximum likelihood estimates in logistic models. Biometrika, 71:110, 1984. [339]CrossRefGoogle Scholar
Aliferis, C. F., Tsamardinos, I., and Statnikov, M. S.. HITON: A novel Markov blanket algorithm for optimal variable selection. In AMIA Annual Symposium Proceedings, pages 21–25, 2003. [364, 431]Google Scholar
Alikhanian, H., Crawford, J. D., Desouza, J. F., Cheyne, D. O., and Blohm, G.. Adaptive cluster analysis approach for functional localization using magnetoencephalography. Frontiers in Neuroscience, 7:Article 73, 2013. [460]CrossRefGoogle ScholarPubMed
Almuallim, H. and Dietterich, T. G.. Efficient algorithms for identifying relevant features. In Proceedings of the 9th Canadian Conference on Artificial Intelligence, pages 38–45. Morgan Kaufmann, 1992. [236]Google Scholar
Alonso-Barba, J. I., de la Ossa, L., Gámez, J. A., and Puerta, J. M.. Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes. International Journal of Approximate Reasoning, 54(4):429451, 2013. [531]Google Scholar
Alpaydın, E.. Combined 5x2cv F test for comparing supervised classification learning algorithms. Neural Computation, 11(8):18851892, 1999. [225]CrossRefGoogle ScholarPubMed
Ambert, K. H., Cohen, A. M., Burns, G. A., Boudreau, E., and Sonmez, K.. Virk: An active learning-based system for bootstrapping knowledge base development in the neurosciences. Frontiers in Neuroinformatics, 7:38, 2013. [314]CrossRefGoogle ScholarPubMed
Ambroise, C. and Govaert, G.. Convergence of an EM-type algorithm for spatial clustering. Pattern Recognition Letters, 19(10):919927, 1998. [486]CrossRefGoogle Scholar
Amunts, K., Ebell, C., Muller, J., Telefont, M., Knoll, A., and Lippert, T.. The Human Brain Project: Creating a European research infrastructure to decode the human brain. Neuron, 92:574581, 2016. [9]CrossRefGoogle ScholarPubMed
Anderson, T. W.. An Introduction to Multivariate Statistical Analysis. Wiley, 2nd edition, 1984. [499]Google Scholar
Andjelic, S., Gallopin, T., Cauli, B., Hill, E. L., Roux, L., Badr, S., Hu, E., Tamás, G., and Lambolez, B.. Glutamatergic nonpyramidal neurons from neocortical layer VI and their comparison with pyramidal and spiny stellate neurons. Journal of Neurophysiology, 101:641654, 2009. [34]Google Scholar
Ankerst, M., Breunig, M. M., Kriegel, H. P., and Sander, J.. OPTICS: Ordering points to identify the clustering structure. In Proceedings of the International Conference on Management of Data, pages 49–60. ACM Press, 1999. [467]Google Scholar
Anscombe, F. J. and Guttman, I.. Rejection of outliers. Technometrics, 2(2):123147, 1960. [224]CrossRefGoogle Scholar
Anton-Sanchez, L., Bielza, C., Merchán-Pérez, A., Rodríguez, J. R., DeFelipe, J., and Larrañaga, P.. Three-dimensional distribution of cortical synapses: A replicated point pattern-based analysis. Frontiers in Neuroanatomy, 8:Article 85, 2014. [607]CrossRefGoogle ScholarPubMed
Anton-Sanchez, L., Larrañaga, P., Benavides-Piccione, R., Fernaud-Espinosa, I., DeFelipe, J., and Bielza, C.. Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons. PLoS ONE, 12(6):e0180400, 2017. [611]CrossRefGoogle ScholarPubMed
Arellano, J., Benavides-Piccione, R., DeFelipe, J., and Yuste, R.. Ultrastructure of dendritic spines: Correlation between synaptic and spine morphologies. Frontiers in Neuroscience, 1:131143, 2007. [38, 41, 469]CrossRefGoogle ScholarPubMed
Armañanzas, R., Bielza, C., Chaudhuri, K. R., Martínez-Martín, P., and Larrañaga, P.. Unveiling relevant non-motor Parkinson’s disease severity symptoms using a machine learning approach. Artificial Intelligence in Medicine, 58(3):195202, 2013. [239, 282]CrossRefGoogle ScholarPubMed
Arnborg, S., Corneil, D. G., and Proskurowski, A.. Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277284, 1987. [510]CrossRefGoogle Scholar
Arrigo, A., Calamuneri, A., Mormina, E., Gaeta, M., Quartarone, A., Marino, S., Anastasi, G. P., and Aragona, P.. New insights in the optic radiations connectivity in the human brain. Investigate Ophthalmology and Visual Science, 57(1):15, 2016. [176]Google ScholarPubMed
Ascoli, G. A.. Successes and rewards in sharing digital reconstructions of neuronal morphology. Neuroinformatics, 5:154160, 2007. [44]Google Scholar
Ascoli, G. A.. Trees of the Brain, Roots of the Mind. The MIT Press, 2015. [3]Google Scholar
Ascoli, G. A. and Krichmar, J. L.. L-Neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing, 32-33:10031011, 2000. [540]CrossRefGoogle Scholar
Ascoli, G. A., Alonso-Nanclares, L., Anderson, S. A., Barrionuevo, G., Benavides-Piccione, R., Burkhalter, A., Buzsaki, G., Cauli, B., DeFelipe, J., Fairen, A., Feldmeyer, D., Fishell, G., Fregnac, Y., Freund, T. F., Gardner, D., Gardner, E. P., Goldberg, J. H., Helmstaedter, M., Hestrin, S., Karube, F., Kisvárday, Z. F., Lambolez, B., Lewis, D. A., Marin, O., Markram, H., Muoz, A., Packer, A., Petersen, C. C., Rockland, K. S., Rossier, J., Rudy, B., Somogyi, P., Staiger, J. F., Tamas, G., Thomson, A. M., Toledo-Rodriguez, M., Wang, Y., West, D. C., and Yuste, R.. Petilla terminology: Nomenclature of features of GABAergc interneurons of the cerebral cortex. Nature Reviews Neuroscience, 9:557–568, 2008. [34]Google Scholar
Ascoli, G. A., Maraver, P., Nanda, S., Polavaram, S., and Armañanzas, R.. Win-win data sharing in neuroscience. Nature Methods, 14(2):112116, 2017. [21, 417]CrossRefGoogle ScholarPubMed
Assis, Z. A., Saini, J., Ranjan, M., Gupta, A. K., Sabharwal, P., and Naidu, P. R.. Diffusion tensor imaging in evaluation of posterior fossa tumors in children on a 3T MRI scanner. Indian Journal of Radiology and Imaging, 25(4):445452, 2015. [186]Google ScholarPubMed
Azimi, P., Mohammadi, H. R., Benzel, E. C., Shahzadi, S., Azhari, S., and Montazeri, A.. Artificial neural networks in neurosurgery. Journal of Neurology, Neurosurgery and Psychiatry, 86(3):251– 256, 2015. [293]Google Scholar
Babai, L.. Monte-Carlo algorithms in graph isomorphism testing. Technical Report, Université de Montréal, 79-10, 1979. [244]Google Scholar
Bach, F. R. and Jordan, M. I.. Learning graphical models with Mercer kernels. In Advances in Neural Information Processing Systems 15, pages 1009–1016. The MIT Press, 2003. [502]Google Scholar
Bache, K. and Lichman, M.. UCI machine learning repository, 2013. URL archive.ics.uci.edu/ml. [366]Google Scholar
Baddeley, A. J. and Lieshout, M. N. M.. Area-interaction point processes. Annals of the Institute of Statistical Mathematics, 47(4):601619, 1995. [608]CrossRefGoogle Scholar
Baddeley, A. J. and Silverman, B. W.. A cautionary example on the use of second-order methods for analyzing point patterns. Biometrics, 40(4):10891093, 1984. [596]CrossRefGoogle Scholar
Baddeley, A. J. and Turner, R.. Practical maximum pseudolikelihood for spatial point patterns. Australian & New Zealand Journal of Statistics, 42(3):283322, 2000. [609]CrossRefGoogle Scholar
Baddeley, A. J. and Turner, R.. spatstat: An R package for analyzing spatial point patterns. Journal of Statistical Software, 12(1), 2005. [578]CrossRefGoogle Scholar
Baddeley, A. J., Moyeed, R. A., Howard, C. V., and Boyde, A.. Analysis of a three-dimensional point pattern with replication. Journal of the Royal Statistical Society, Series C, 42(4):641668, 1993. [592]Google Scholar
Baddeley, A. J., Møller, J., and Waagepetersen, R. P.. Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 54(3):329350, 2000. [597]CrossRefGoogle Scholar
Baddeley, A. J., Jammalamadaka, A., and Nair, G.. Multitype point process analysis of spines on the dendrite network of a neuron. Journal of the Royal Statistical Society, Series C, 63(5):673694, 2014. [611]CrossRefGoogle Scholar
Baddeley, A. J., Rubak, E., and Turner, R.. Spatial Point Patterns: Methodology and Applications with R. Chapman & Hall/CRC, 2015. [611]CrossRefGoogle Scholar
Badea, T. C. and Nathans, J.. Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. Journal of Comparative Neurology, 480(4): 331351, 2004. [445]Google Scholar
Bagheri, M., Maghsoudi, Z., Fayazi, S., Elahi, N., Tabesh, H., and Majdinasab, N.. Several food items and multiple sclerosis: A case-control study in Ahvaz (Iran). Iranian Journal of Nursing and Midwifery Research, 19(6):659665, 2014. [192]Google Scholar
Bakir, G. H., Hofmann, T., Schölkopf, B., Smola, A., and Taskar, B.. Predicting Structured Data. The MIT Press, 2007. [434]Google Scholar
Bako, L.. Real-time classification of datasets with hardware embedded neuromorphic neural networks. Briefings in Bioinformatics, 11(3):348363, 2010. [300]CrossRefGoogle ScholarPubMed
Banerjee, A., Dhillon, I. S., Ghosh, J., and Sra, S.. Clustering on the unit hypersphere using von Mises– Fisher distributions. Journal of Machine Learning Research, 6:13451382, 2005. [475]Google Scholar
Banerjee, O., El Ghaoui, L., and D’Aspremont, A.. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine Learning Research, 9:485516, 2008. [561]Google Scholar
Barahona, F.. On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General, 15(10):32413253, 1982. [562]CrossRefGoogle Scholar
Barash, Y. and Friedman, N.. Context-specific Bayesian clustering for gene expression data. Journal of Computational Biology, 9(2):169191, 2002. [481]CrossRefGoogle ScholarPubMed
Bartlett, M. S.. Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London, 160:268282, 1937. [197]Google Scholar
Barnes, J. and Hut, P.. A hierarchical O(NlogN) force-calculation algorithm. Nature, 73:7989, 1986. [84]Google Scholar
Barnett, V. and Lewis, T.. Outliers in Statistical Data. Wiley, 1994. [224]Google Scholar
Basaglia-Pappas, S., Laterza, M., Borg, C., Richard-Mornas, A., Favre, E., and Thomas-Antérion, C.. Exploration of verbal and non-verbal semantic knowledge and autobiographical memories starting from popular songs in Alzheimer’s disease. International Psychogeriatrics, 25(5):785795, 2013. [183]CrossRefGoogle ScholarPubMed
Baselice, F., Coppolino, L., D’Antonio, S., Ferraioli, G., and Sgaglione, L.. A DBSCAN based approach for jointly segment and classify brain MR images. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 2993–2996. IEEE Press, 2015. [456]Google Scholar
Bassett, D. S. and Gazzaniga, M. S.. Understanding complexity in the human brain. Trends in Cognitive Sciences, 15(5):200209, 2011. [3]Google Scholar
Battaglia, D., Karagiannis, A., Gallopin, T., Gutch, H. W., and Cauli, B.. Beyond the frontiers of neuronal types. Frontiers in Neural Circuits, 7(13), 2013. [34]CrossRefGoogle ScholarPubMed
Bauer, E. and Kohavi, R.. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1–2):105139, 1999. [389, 402]Google Scholar
Bayes, T.. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions, 53:370418, 1763. [140]Google Scholar
Beal, M. J.. Variational Algorithms for Approximate Bayesian Inference. PhD thesis, University of London, 2003. [544]Google Scholar
Beeri, C., Maier, D., and Yannakakis, M.. On the desirability of acyclic database schemes. Journal of the ACM, 30(3):479513, 1983. [551]CrossRefGoogle Scholar
Bellman, R. E.. Dynamic Programming. Princeton University Press, 1957. [28]Google ScholarPubMed
Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M., and Yakhini, Z.. Tissue classification with gene expression profiles. Journal of Computational Biology, 7(3–4):559584, 2000. [232, 235]Google Scholar
Ben-Hur, A. and Weston, J.. A user’s guide to support vector machines. In Data Mining Techniques for the Life Sciences, volume 609, pages 223–239. Humana Press, 2010. [314]Google Scholar
Ben-Hur, A., Horn, D., Siegelmann, H. T., and Vapnik, V.. Support vector clustering. Journal of Machine Learning Research, 2:125137, 2002. [319]Google Scholar
Benavides-Piccione, R., Hamzei-Sichani, F., Ballesteros-Yáñez, I., DeFelipe, J., and Yuste, R.. Dendritic size of pyramidal neurons differs among mouse cortical regions. Cerebral Cortex, 16(7):990–1001, 2006. [44, 82, 541]CrossRefGoogle ScholarPubMed
Benavides-Piccione, R., Fernaud-Espinosa, I., Robles, V., Yuste, R., and DeFelipe, J.. Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. Cerebral Cortex, 23(8):17981810, 2013. [14, 41]CrossRefGoogle ScholarPubMed
Benes, F. M. and Lange, N.. Two-dimensional versus three-dimensional cell counting: A practical perspective. Trends in Neurosciences, 24(1):1117, 2001. [601]Google Scholar
Bengio, Y. and Grandvalet, Y.. No unbiased estimator of the variance of k-fold cross-validation. Journal of Machine Learning Research, 5:10891105, 2004. [225]Google Scholar
Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A. R., Bussat, J.-M., Alvarez-Icaza, R., Arthur, J. V., Merolla, P. A., and Boahen, K.. Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations. Proceedings of the IEEE, 102:699716, 2014. [30]CrossRefGoogle Scholar
Benjamini, Y. and Yekutieli, D.. The control of false discovery rate in multiple testing under dependency. The Annals of Statistics, 29:11651188, 2001. [559, 560]Google Scholar
Benjumeda, M., Bielza, C., and Larrañaga, P.. Tractability of most probable explanations in multidimensional Bayesian network classifiers. International Journal of Approaximate Reasoning, 93: 7487, 2018. [430]Google Scholar
Benjumeda, M., Bielza, C., and Larrañaga, P.. Learning tractable Bayesian networks in the space of elimination orders. Artificial Intelligence, 274:6690, 2019. [546]Google Scholar
Benvenuto, J., Jin, Y., Casale, M., Lynch, G., and Granger, R.. Identification of diagnostic evoked response potential segments in Alzheimer’s disease. Experimental Neurology, 176(2):269276, 2002. [263]CrossRefGoogle ScholarPubMed
Berens, P.. CircStat: A MATLAB toolbox for circular statistics. Journal of Statistical Software, 31 (10):121, 2009. [151]CrossRefGoogle Scholar
Berger, J. O.. Statistical Decision Theory and Bayesian Analysis. Springer, New York, 1985. [196]CrossRefGoogle Scholar
Berkson, J.. Application of the logistic function to bio-assay. Journal of the American Statistical Association, 39(227):357365, 1944. [384]Google Scholar
Bermejo, P., Gámez, J. A., and Puerta, J. M.. A GRASP algorithm for fast hybrid (filter-wrapper) feature subset selection in high-dimensional datasets. Pattern Recognition Letters, 32:701711, 2011. [241, 244]Google Scholar
Bernardo, J. M.. Reference posterior distributions for Bayesian-inference. Journal of the Royal Statistical Society, Series B, 41(2):113147, 1979. [196]Google Scholar
Bernardo, J. M. and Smith, A. F. M.. Bayesian Theory. Wiley, 2nd edition, 2007. [196]Google Scholar
Bernoulli, J.. Ars Conjectandi, Opus Posthumum. Accedit Tractatus de Seriebus Infinitis, et Epistola Gallice Scripta de Ludo Pilae Recticularis. Impensis Thrurnisiorum, 1713a. [140]Google Scholar
Bernoulli, J.. Ars Conjectandi: Usum Applicationem Praecedentis Doctrinae in Civilibus, Moralibus, Oeconomicis. Springer, 1713b. [196]Google Scholar
Bertelè, U. and Brioschi, F.. Nonserial Dynamic Programming. Academic Press, 1972. [507]Google Scholar
Berzal, F., Cubero, J. C., Cuenca, F., and Martín-Bautista, M. J.. On the quest for easy-to-understand splitting rules. Data & Knowledge Engineering, 44(1):3148, 2003. [279]Google Scholar
Besag, J.. Statistical analysis of non-lattice data. The Statistician, 24:179196, 1975. [563]Google Scholar
Besag, J.. Discussion of “Modelling spatial patterns” by B. D. Ripley. Journal of the Royal Statistical Society, Series B, 39:193–195, 1977. [588]Google Scholar
Besag, J. E.. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B, 36:192236, 1974. [569]Google Scholar
Bezdek, J. C.. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, 1981. [447]CrossRefGoogle Scholar
Bidyuk, B. and Dechter, R.. Cutset sampling for Bayesian networks. Journal of Artificial Intelligence Research, 28:148, 2007. [545]CrossRefGoogle Scholar
Bielza, C. and Larrañaga, P.. Discrete Bayesian network classifiers: A survey. ACM Computing Surveys, 47(1):Article 5, 2014a. [348]Google Scholar
Bielza, C. and Larrañaga, P.. Bayesian networks in neuroscience: A survey. Frontiers in Computational Neuroscience, 8:Article 131, 2014b. [348, 489]Google Scholar
Bielza, C., Gómez, M., and Shenoy, P. P.. Modelling challenges with influence diagrams: Constructing probability and utility models. Decision Support Systems, 49:354364, 2010. [543]Google Scholar
Bielza, C., Gómez, M., and Shenoy, P. P.. A review of representation issues and modelling challenges with influence diagrams. Omega – The International Journal of Management Science, 39:227–241, 2011a. [543]Google Scholar
Bielza, C., Li, G., and Larrañaga, P.. Multi-dimensional classification with Bayesian networks. International Journal of Approximate Reasoning, 52:705727, 2011b. [428, 429, 430]CrossRefGoogle Scholar
Bielza, C., Robles, V., and Larrañaga, P.. Regularized logistic regression without a penalty term: An application to cancer classification with microarray data. Expert Systems with Applications, 38(5): 51105118, 2011c. [385]CrossRefGoogle Scholar
Bielza, C., Benavides-Piccione, R., López-Cruz, P. L., Larrañaga, P., and DeFelipe, J.. Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas. Scientific Reports, 4:5909, 2014. [113, 127, 169, 180]Google Scholar
Bishop, C. M.. Neural Networks for Pattern Recognition. Oxford University Press, 1995. [318]CrossRefGoogle Scholar
Bishop, C. M.. Pattern Recognition and Machine Learning. Springer, 2006. [77, 95]Google Scholar
Biswal, B. B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S. M., Beckmann, C. F., Adelstein, J. S., Buckner, R. L., Colcombe, S., Dogonowski, A.-M., Ernst, M., Fair, D., Hampson, M., Hoptman, M. J., Hyde, J. S., Kiviniemi, V. J., Kötter, R., Li, S.-J., Lin, C.-P., Lowe, M. J., Mackay, C., Madden, D. J., Madsen, K. H., Margulies, D. S., Mayberg, H. S., McMahon, K., Monk, C. S., Mostofsky, S. H., Nagel, B. J., Pekar, J. J., Peltier, S. J., Petersen, S. E., Riedl, V., Rombouts, S. A. R. B., Rypma, B., Schlaggar, B. L., Schmidt, S., Seidler, R. D., Siegle, G. J., Sorg, C., Teng, G.-J., Veijola, J., Villringer, A., Walter, M., Wang, L., Weng, X.-C., Whitfield-Gabrieli, S., Williamson, P., Windischberger, C., Zang, Y.-F., Zhang, H.-Y., Castellanos, F. X., and Milham, M. P.. Toward discovery science of human brain function. Proceedings of the National Academy of Sciences, 107(10):4734–4739, 2010. [18]Google Scholar
Blagus, R. and Lusa, L.. SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics, 14:106, 2013. [224]Google ScholarPubMed
Blanco, R., Inza, I., and Larrañaga, P.. Learning Bayesian networks in the space of structures by estimation of distribution algorithms. International Journal of Intelligent Systems, 18:205220, 2003. [536]CrossRefGoogle Scholar
Blanco, R., Inza, I., Merino, M., Quiroga, J., and Larrañaga, P.. Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS. Journal of Biomedical Informatics, 38(5):376388, 2005. [232, 233, 254, 355, 356, 357, 358, 361]Google Scholar
Bock, D. D., Lee, W.-C. A., Kerlin, A. M., Andermann, M. L., Hood, G., Wetzel, A. W., Yurgenson, S., Soucy, E. R., Kim, H. S., and Reid, R. C.. Network anatomy and in vivo physiology of visual cortical neurons. Nature, 471:177182, 2011. [48]Google Scholar
Bonner, R.. On some clustering techniques. IBM Journal of Research and Development, 8:2232, 1964. [463]Google Scholar
Boogaerts, T., Tranchevent, L., Pavlopoulos, G. A., Aerts, J., and Vandewalle, J.. Visualizing high dimensional datasets using parallel coordinates: Application to gene prioritization. In Proceedings of the 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering, pages 52–57, 2012. [74]Google Scholar
Borchani, H., Bielza, C., and Larrañaga, P.. Learning CB-decomposable multi-dimensional Bayesian network classifiers. In Proceedings of the 5th European Workshop on Probabilistic Graphical Models, pages 25–32, 2010. [430, 431]Google Scholar
Borchani, H., Bielza, C., Martínez-Martín, P., and Larrañaga, P.. Markov blanket-based approach for learning multi-dimensional Bayesian network classifiers: An application to predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson’s Disease Questionnaire (PDQ-39). Journal of Biomedical Informatics, 45:11751184, 2012. [38, 431, 432, 433]CrossRefGoogle ScholarPubMed
Borujeny, G. T., Yazdi, M., Keshavarz-Haddad, A., and Borujeny, A. R.. Detection of epileptic seizure using wireless sensor networks. Journal of Medical Signals and Sensors, 3(2):368, 2013. [263]Google Scholar
Boser, B. E., Guyon, I. M., and Vapnik, V. N.. A training algorithm for optimal margin classifiers. In Proceedings of the 5th Annual Workshop on Computational Learning Theory, pages 144–152, 1992. ACM. [319]Google Scholar
Bøttcher, S. G.. Learning Bayesian Networks with Mixed Variables. PhD thesis, Aalborg University, 2004. [503]Google Scholar
Bouchard, K. E., Aimone, J. B., Chun, M., Dean, T., Denker, M., Diesmann, M., Donofrio, D. D., Frank, L. M., Kasthuri, N., Koch, C., Ruebel, O., Simon, H. D., Sommer, F. T., and Prabhat. High-performance computing in neuroscience for data-driven discovery, integration, and dissemination. Neuron, 92(3):928–931, 2016. [20]CrossRefGoogle ScholarPubMed
Bouckaert, R. R.. Optimizing causal orderings for generating DAGs from data. In Proceedings of the 8th Conference on Uncertainty in Artificial Intelligence, pages 9–16. Morgan Kaufmann, 1992. [531]Google Scholar
Bouckaert, R. R.. Choosing between two learning algorithms based on calibrated tests. In Proceedings of the 20th International Conference on Machine Learning, pages 51–58. AAAI Press, 2003. [215]Google Scholar
Bouckaert, R. R. and Frank, E.. Evaluating the replicability of significance tests for comparing learning algorithms. In Proceedings of the 8th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, pages 3–12. Springer, 2004. [219]Google Scholar
Boutell, M. R., Luo, J., Shen, X., Brown, C. M.. Learning multi-label scene classification. Pattern Recognition, 37(9): 1757–1771, 2004. [424]Google Scholar
Boutilier, C., Friedman, N., Goldszmidt, M., and Koller, D.. Context-specific independence in Bayesian networks. In Proceedings of the 12th International Conference on Uncertainty in Artificial Intelligence, pages 115–123. Morgan Kaufmann, 1996. [543]Google Scholar
Bowles, C., Gunn, R., Hammers, A., and Rueckert, D.. Modelling the progression of Alzheimer’s disease in MRI using generative adversarial networks. In Proceedings of the SPIE Medical Imaging, 2018. [319]Google Scholar
Bowley, A. L.. Presidential address to the economic section of the British association. Journal of the Royal Statistical Society, 69:540558, 1906. [196]Google Scholar
Box, G. E. P.. Non-normality and test on variance. Biometrika, 40:318335, 1953. [196]Google Scholar
Boykin, E. R., Khargonekar, P. P., Carney, P. R., Ogle, W. O., and Talathi, S. S.. Detecting effective connectivity in networks of coupled neuronal oscillators. Journal of Computational Neuroscience, 32(3):521538, 2012. [283]CrossRefGoogle ScholarPubMed
Bradley, A. P.. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7):11451159, 1997. [224]CrossRefGoogle Scholar
Bradley, P. S. and Mangasarian, O. L.. Feature selection via concave minimization and support vector machines. In Proceedings of the 15th International Conference on Machine Learning, pages 82–90. Morgan Kaufmann, 1988. [261]Google Scholar
Bradley, P. S. and Mangasarian, O. L.. k-plane clustering. Journal of Global Optimization, 16:23–32, 2000. [454]Google Scholar
Braga-Neto, U. M. and Dougherty, E.. Bolstered error estimation. Pattern Recognition, 37(6):1267– 1281, 2004. [225]Google Scholar
Brazdil, P. B. and Soares, C.. A comparison of ranking methods for classification algorithm selection. In Proceedings of the 11th European Conference on Machine Learning, pages 63–74. Springer, 2000. [225]Google Scholar
Brazdil, P. B., Giraud-Carrier, C., Soares, C., and Vilalta, R.. Metalearning: Applications to Data Mining. Springer, 2009. [414]Google Scholar
Breiman, L.. Bagging predictors. Machine Learning, 24(2):123140, 1996a. [401]Google Scholar
Breiman, L.. Technical note: Some properties of splitting criteria. Machine Learning, 24(1):4147, 1996b. [277]CrossRefGoogle Scholar
Breiman, L.. Arcing classifiers. The Annals of Statistics, 26(3):801849, 1998. [407]Google Scholar
Breiman, L.. Random forests. Machine Learning, 45(1):532, 2001a. [403]Google Scholar
Breiman, L.. Statistical modeling: The two cultures. Statistical Science, 16(3):199231, 2001b. [25, 28]Google Scholar
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.. Classification and Regression Trees. Wadsworth Press, 1984. [29, 278, 282]Google Scholar
Bremmer, D., Demaine, E., Erickson, J., Iacono, J., Langerman, S., Morin, P., and Toussaint, G.. Output-sensitive algorithms for computing nearest-neighbor decision boundaries. Discrete and Computational Geometry, 33(4):593604, 2005. [265]Google Scholar
Brenner, E. and Sontag, D.. SparsityBoost: A new scoring function for learning Bayesian network structure. In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, pages 112–121. AUAI Press, 2013. [546]Google Scholar
Brier, G. W.. Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78: 13, 1950. [206]2.0.CO;2>CrossRefGoogle Scholar
Briggman, K. L. and Denk, W.. Towards neural circuit reconstruction with volume electron microscopy techniques. Current Opinion in Neurobiology, 16:562570, 2006. [48]Google Scholar
Bromberg, G. and Margaritis, D.. Improving the reliability of causal discovery from small data sets using argumentation. Journal of Machine Learning Research, 10:301340, 2009. [571]Google Scholar
Bromberg, G., Margaritis, D., and Honavar, V.. Efficient Markov network structure discovery using independence tests. Journal of Artificial Intelligence Research, 35:449485, 2009. [563, 571]CrossRefGoogle ScholarPubMed
Brooks, S., Gelman, A., Jones, G., and Meng, X. L.. Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC, 2011. [545]CrossRefGoogle Scholar
Broom, B. M., Do, K.-A., and Subramanian, D.. Model averaging strategies for structure learning in Bayesian networks with limited data. BMC Bioinformatics, 13:S10, 2012. [546]CrossRefGoogle ScholarPubMed
Brown, G., Wyattt, J. L., Harris, R., and Yao, X.. Diversity creation methods: A survey and categorisation. Information Fusion, 6(1):520, 2005. [413]Google Scholar
Buntine, W. and Niblett, T.. A further comparison of splitting rules for decision-tree induction. Machine Learning, 8(1):7585, 1992. [279]CrossRefGoogle Scholar
Buntine, W. L.. Theory refinement on Bayesian networks. In Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence, pages 52–60. Morgan Kaufmann, 1991. [534, 536]Google Scholar
Burge, J. and Lane, T.. Learning class-discriminative dynamic Bayesian networks. In Proceedings of the 22nd International Conference on Machine Learning, pages 97–104. ACM, 2005. [385]Google Scholar
Burge, J., Lane, T., Link, H., Qiu, S., and Clark, V. P.. Discrete dynamic Bayesian network analysis of fMRI data. Human Brain Mapping, 30:122137, 2009. [492]CrossRefGoogle ScholarPubMed
Burges, C. J. C.. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121167, 1998. [319]Google Scholar
Burle, B., Spieser, L., Roger, C., Casini, L., Hasbroucq, T., and Vidal, F.. Spatial and temporal resolutions of EEG: Is it really black and white? A scalp current density view. International Journal of Psychophysiology, 97(3):210220, 2015. [15]Google Scholar
Burr, E. J.. Small-sample distributions of the two-sample Cramer-von Mises’ W 2 and Watson’s U2. The Annals of Mathematical Statistics, 35(3):10911098, 1964. [180]Google Scholar
Butz, C. J., Oliveira, J. S., and Madsen, A. L.. Bayesian network inference using marginal trees. International Journal of Approximate Reasoning, 68:127152, 2016. [544]Google Scholar
Buzás, P., Kovács, K., Ferecskó, A. S., Budd, J. M., Eysel, U. T., and Kisvárday, Z. F.. Model-based analysis of excitatory lateral connections in the visual cortex. Journal of Comparative Neurology, 499(6):861881, 2006. [113]Google Scholar
Calinski, T. and Harabasz, J.. A dendrite method for cluster analysis. Communications in Statistics, 3 (1):127, 1974. [458]Google Scholar
Cameron, D. A., Middleton, F. A., Chenn, A., and Olson, E. C.. Hierarchical clustering of gene expression patterns in the Eomes + lineage of excitatory neurons during early neocortical development. BMC Neuroscience, 13:90, 2012. [440]CrossRefGoogle ScholarPubMed
Campello, R. J., Moulavi, D., Zimek, A., and Sander, J. Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Transactions on Knowledge Discovery from Data, 10(1):5, 2015. [456]CrossRefGoogle Scholar
Cannings, C., Thompson, E. A., and Skolnick, M. H.. Probability functions in complex pedigrees. Advances in Applied Probability, 10:2661, 1978. [569]Google Scholar
Cano, A., Gómez-Olmedo, M., and Moral, S.. Approximate inference in Bayesian networks using binary probability trees. International Journal of Approximate Reasoning, 52(1):4962, 2011. [543]CrossRefGoogle Scholar
Cano, J. E., Hernández, L. D., and Moral, S.. Importance sampling algorithms for the propagation of probabilities in belief networks. International Journal of Approximate Reasoning, 15(1):7792, 1996. [544]CrossRefGoogle Scholar
Cantuti-Castelvetri, I., Keller-McGandy, C., Bouzou, B., Asteris, G., Clark, T. W., Frosch, D. G., and Standaert, M. P.. Effects of gender on nigral gene expression and Parkinson disease. Neurobiology of Disease, 26(3):606614, 2007. [104]Google Scholar
Cao, H., Peyrodie, L., Boudet, S., Cavillon, F., Agnani, O., Hautecoeur, P., and Donzé, C.. Expanded disability status scale (EDSS) estimation in multiple sclerosis from posturographic data. Gait Posture, 37(2):242245, 2013. [136]CrossRefGoogle ScholarPubMed
Cappa, A., Ciccarelli, N., Baldonero, E., Martelli, M., and Silveri, M. C.. Posterior AD-type pathology: Cognitive subtypes emerging from a cluster analysis. Behavioural Neurology, 2014:Article ID 259358, 2014. [440]Google Scholar
Carvalho, A. M., Oliveira, A. L., and Sagot, M.-F.. Efficient learning of Bayesian network classifiers. In Proceedings of the 20th Australian Joint Conference on Artificial Intelligence, pages 16–25. Springer, 2007. [362]Google Scholar
Carvalho, A. M., Roos, T., Oliveira, A. L., and Myllymäki, P.. Discriminative learning of Bayesian networks via factorized conditional log-likelihood. Journal of Machine Learning Research, 12: 21812210, 2011. [385]Google Scholar
Casella, G.. An introduction to empirical Bayes data analysis. The American Statistician, 39(2):83– 87, 1985. [197]Google Scholar
Casella, G., Robert, C. P., and Wells, M. T.. Generalized accept-reject sampling schemes. In A Festschrift for Herman Rubin, volume 45, pages 342–347. Institute of Mathematical Statistics, 2004. [131]Google Scholar
Castelo, R. and Roverato, A.. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. Journal of Machine Learning Research, 7:26212650, 2006. [570]Google Scholar
Castillo, E., Gutierrez, J., and Hadi, A.. Expert Systems and Probabilistic Network Models. Springer, 1997. [493, 497, 543]Google Scholar
Castillo, G. and Gama, J.. Adaptive Bayesian network classifiers. Intelligent Data Analysis, 13(1): 3959, 2009. [386]CrossRefGoogle Scholar
Catlett, J.. On changing continuous attributes into ordered discrete attributes. In Proceedings of the European Working Session on Learning, pages 164–178, 1991. [91]Google Scholar
Cattell, R. B.. A note on correlation clusters and cluster search method. Psychometrika, 9:169184, 1944. [467]CrossRefGoogle Scholar
Cauli, B., Porter, J. T., Tsuzuki, K., Lambolez, B., Rossier, J., Quenet, B., and Audinat, E.. Classification of fusiform neocortical interneurons based on unsupervised clustering. Proceedings of the National Academy of Sciences, 97(11):61446149, 2000. [34]CrossRefGoogle ScholarPubMed
Celeux, G. and Diebolt, J.. The SEM algorithm: A probabilistic teacher derived from the EM algorithm for the mixture problem. Computational Statistics Quarterly, 2:7382, 1985. [474]Google Scholar
Celeux, G. and Govaert, G.. A classification EM algorithm for clustering and two stochastic versions. Computational Statistics & Data Analysis, 14:315332, 1992. [473]Google Scholar
Celeux, G. and Govaert, G.. Gaussian parsimonious clustering models. Pattern Recognition, 28:781– 793, 1995. [482]Google Scholar
Cha, S.-H.. Comprehensive survey on distance-similarity measures between probability density functions. International Journal of Mathematical Models and Methods in Applied Sciences, 14 (1):300307, 2007. [236]Google Scholar
Chan, H. L., Chu, J. H., Fung, H. C., Tsai, Y. T., Meng, L. F., Huang, C. C., Hsu, W. C., Chao, P. K., Wang, J. J., Lee, J. D., Wai, Y. Y., and Tsai, M. T.. Brain connectivity of patients with Alzheimer’s disease by coherence and cross mutual information of electroencephalograms during photic stimulation. Medical Engineering and Physics, 35(2):241252, 2013. [139]CrossRefGoogle ScholarPubMed
Chandola, V., Banerjee, A., and Kumar, V.. Anomaly detection: A survey. ACM Computing Surveys, 41(3):Article 15, 2009. [224]Google Scholar
Chandrashekar, G. and Sahin, F.. A survey on feature selection methods. Computers and Electrical Engineering, 40(1):1628, 2013. [259]Google Scholar
Chang, J., Leung, H., and Poiner, H.. Correlation among joint motions allows classification of Parkin-sonian versus normal 3D reaching. IEEE Transactions on Neural Systems and Rehabilitation, 18 (2):142149, 2010. [263]Google Scholar
Chaves, R., Ramírez, J., Górriz, J. M., López, M., Salas-González, D., Álvarez, I., and Segovia, F.. Interpreting single trial data using groupwise regularisation. NeuroImage, 46:293297, 2009. [234]Google Scholar
Chawla, N. V.. Data Mining and Knowledge Discovery Handbook, chapter Data Mining for Imbalanced Datasets: An Overview, pages 875–886. Springer, 2009. [223]Google Scholar
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P.. SMOTE: Synthetic minority oversampling technique. Journal of Artificial Intelligence Research, 16(1):321357, 2002. [223]Google Scholar
Cheeseman, P., Self, M., Kelly, J., Taylor, W. Freeman, D., and Stutz, J.. Bayesian classification. In Proceedings of the 6th National Conference on Artificial Intelligence, pages 607–611. AAAI Press, 1988. [481]Google Scholar
Chen, J. Y.. A simulation study investigating the impact of dendritic morphology and synaptic topology on neuronal firing patterns. Neural Computation, 22(4):10861111, 2009. [43]Google Scholar
Chen, T., Zhang, N. L., Liu, T., Poon, K. M., and Wang, Y.. Model-based multidimensional clustering of categorical data. Artificial Intelligence, 176(1):22462269, 2012. [486]Google Scholar
Cheng, J. and Greiner, R.. Comparing Bayesian network classifiers. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, pages 101–108. Morgan Kaufmann Publishers, 1999. [362, 366]Google Scholar
Cheng, J. and Greiner, R.. Learning Bayesian belief networks classifiers: Algorithms and system. In Proceedings of the 14th Biennial Conference of the Canadian Society for Computational Studies of Intelligence, pages 141–151. Springer, 2001. [366]Google Scholar
Chernick, M. R.. Bootstrap Methods: A Guide for Practitioners and Researchers. Wiley, 2007. [225]Google Scholar
Chernoff, H.. The use of faces to represent points in k-dimensional space graphically. Journal of the American Statistical Association, 68(342):361368, 1973. [73]Google Scholar
Chiang, M. T. and Mirkin, B.. Intelligent choice of the number of clusters in k-means clustering: An experimental study with different cluster spreads. Journal of Classification, 27(1):340, 2010. [458]Google Scholar
Chickering, D. M.. A transformational characterization of equivalent Bayesian network structures. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, pages 87–98. Morgan Kaufmann, 1995. [498]Google Scholar
Chickering, D. M.. Learning Bayesian networks is NP-complete. In Learning from Data: Artificial Intelligence and Statistics V, pages 121–130. Springer, 1996. [530]Google Scholar
Chickering, D. M.. Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research, 2:445498, 2002a. [531]Google Scholar
Chickering, D. M.. Optimal structure identification with greedy search. Journal of Machine Learning Research, 3:507554, 2002b. [531]Google Scholar
Chickering, D. M. and Meek, C.. Selective greedy equivalence search: Finding optimal Bayesian networks using a polynomial number of score evaluations. In Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, pages 211–219. AUAI Press, 2015. [531]Google Scholar
Chickering, D. M., Heckerman, D., and Meek, C.. A Bayesian approach to learning Bayesian networks with local structure. In Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence, pages 80–89. Morgan Kaufmann, 1997. [543]Google Scholar
Chickering, D. M., Heckerman, D., and Meek, C.. Large-sample learning of Bayesian networks is NP-hard. Journal of Machine Learning Research, 5:12871330, 2004. [364, 530]Google Scholar
Chow, C. K. and Liu, C. N.. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3):462467, 1968. [357, 365, 366, 429, 561]Google Scholar
Chu, Y. J. and Liu, T. H.. On the shortest arborescence of a directed graph. Scientia Sinica, 14:1396– 1400, 1965. [429]Google Scholar
Chubb, C., Inagaki, Y., Sheu, P., Cummings, B., Wasserman, A., Head, E., and Cotman, C.. BioVision: An application for the automated image analysis of histological sections. Neurobiology of Aging, 27(10):14621476, 2006. [374]CrossRefGoogle ScholarPubMed
Clare, A. and King, R. D.. Knowledge discovery in multi-label phenotype data. In Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery, pages 42–53. Springer, 2001. [427]Google Scholar
Clark, P. and Niblett, T.. The CN2 induction algorithm. Machine Learning, 3:261283, 1989. [287]Google Scholar
Clemmensen, L., Hastie, T., Witten, D., and Ersbøll, B.. Sparse discriminant analysis. Technometrics, 53(4):406413, 2011. [331]Google Scholar
Cobb, B. R. and Shenoy, P. P.. Inference in hybrid Bayesian networks with mixtures of truncated exponentials. International Journal of Approximate Reasoning, 41(3):257286, 2006. [515]Google Scholar
Cobb, B. R., Shenoy, P. P., and Rumí, R.. Approximating probability density functions in hybrid Bayesian networks with mixtures of truncated exponentials. Statistics and Computing, 16(3):293– 308, 2006. [515]CrossRefGoogle Scholar
Cochran, W. G.. Sampling Techniques. Wiley, 1963. [195]Google Scholar
Codecasa, D. and Stella, F.. Learning continuous time Bayesian network classifiers. International Journal of Approximate Reasoning, 55(8):17281746, 2014. [386]CrossRefGoogle Scholar
Codecasa, D. and Stella, F.. Classification and clustering with continuous time Bayesian network models. Journal of Intelligent Information Systems, 45(2):187220, 2015. [486]Google Scholar
Cohen, I., Cozman, F. G., Sebe, N., Cirelo, M. C., and Huang, T. S.. Semisupervised learning of classifiers: Theory, algorithms, and their application to human-computer interaction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(12):15531567, 2004. [386]Google Scholar
Cohen, J.. A coefficient of agreement for nominal scales. Educational and Psychological Measurements, 20:3746, 1960. [205]Google Scholar
Cohen, W. W.. Fast effective rule induction. In Proceedings of the 12th International Conference on Machine Learning, pages 115–123. Morgan Kaufmann, 1995. [288]Google Scholar
Coley, N., Gardette, V., Cantet, C., Gillette-Guyonnet, S., Nourhashemi, F., Vellas, B., and Andrieu, S.. How should we deal with missing data in clinical trials involving Alzheimer’s disease patients? Current Alzheimer Research, 8(4):421433, 2011. [88]CrossRefGoogle ScholarPubMed
Collins, M., Schapire, R. E., and Singer, Y.. Logistic regression, AdaBoost and Bregman distances. Machine Learning, 48(1-3):253285, 2002. [406]CrossRefGoogle Scholar
Colombo, D. and Maathuis, M. H.. Order-independent constraint-based causal structure learning. Journal of Machine Learning Research, 15:39213962, 2014. [529]Google Scholar
Colombo, D., Maathuis, M. H., Kalisch, M., and Richardson, T. S.. Learning high-dimensional directed acyclic graphs with latent and selection variables. The Annals of Statistics, 40(1):294321, 2012. [529]Google Scholar
Colombo, M. and Seriès, P.. Bayes in the brain. On Bayesian modelling in neuroscience. The British Journal for the Philosophy of Science, 63:697723, 2012. [159]Google Scholar
Conijn, M. M., Geerlings, M. I., Biessels, G. J., Takahara, T., Witkamp, T. D., Zwanenburg, J. J., Luijten, P. R., and Hendrikse, J.. Cerebral microbleeds on MR imaging: Comparison between 1.5 and 7T. American Journal of Neuroradiology, 32(6):1043–1049, 2011. [176]CrossRefGoogle ScholarPubMed
Coop, A. D., Cornelis, H., and Santamaria, F.. Dendritic excitability modulates dendritic information processing in a Purkinje cell model. Frontiers in Computational Neuroscience, 4:Article 6, 2010. [139]Google Scholar
Cooper, G. F.. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 42(2-3):393405, 1990. [505]Google Scholar
Cooper, G. F. and Herskovits, E.. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309347, 1992. [362, 533, 534, 536]Google Scholar
Córdoba, I., Bielza, C., and Larrañaga, P.. A review of Gaussian Markov models for conditional independence, Journal of Statistical Planning and Inference, 206:127144, 2020.CrossRefGoogle Scholar
Cortes, C. and Vapnik, V.. Support-vector networks. Machine Learning, 20(3):273297, 1995. [306]CrossRefGoogle Scholar
Cosottini, M., Giannelli, M., Siciliano, G., Lazzarotti, G., Michelassi, M. C., del Corona, A. C. Bartolozzi, , and Murri, L.. Diffusion-tensor MR imaging of corticospinal tract in amyotrophic lateral sclerosis and progressive muscular atrophy. Radiology, 237(1):258264, 2005. [179]Google Scholar
Costa, M. A. and Braga, A. P.. Optimization of neural networks with multi-objective LASSO algorithm. In International Joint Conference on Neural Networks, pages 3312–3318. Morgan Kaufmann, 2006. [261]Google Scholar
Cotter, D., Mackay, D., Chana, G., Beasley, C., Landau, S., and Everall, I. P.. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cerebral Cortex, 12(4):386394, 2002. [592]Google Scholar
Cover, T. M.. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Transactions on Electronic Computers, EC-14(3):326334, 1965. [308]Google Scholar
Covert, T. M. and Hart, P. E.. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13:2127, 1967. [265, 268]Google Scholar
Cover, T. M. and Thomas, J. A.. Elements of Information Theory. Wiley, 1991. [137]Google Scholar
Cowell, R. G.. Local propagation in conditional Gaussian Bayesian networks. Journal of Machine Learning Research, 6:15171550, 2005. [515]Google Scholar
Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J.. Probabilistic Networks and Expert Systems. Springer, 1999. [543]Google Scholar
Cox, D. R.. Some statistical methods connected with series of events. Journal of the Royal Statistical Society, Series B, 17(2):129164, 1955. [605]Google Scholar
Cox, T. F. and Cox, M. A. A.. Multidimensional Scaling. Chapman and Hall, 2nd edition, 2000. [95]Google Scholar
Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P., and Mayberg, H. S.. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Human Brain Mapping, 33(8):1914–1918, 2012. [452]Google Scholar
Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., and Bharath, A. A.. Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 35:5365, 2018. [319]Google Scholar
Cristianini, N. and Shawe-Taylor, J.. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, 2000. [319]Google Scholar
Cunningham, P.. A taxonomy of similarity mechanisms for case-based reasoning. IEEE Transactions on Knowledge and Data Engineering, 21(11):15321543, 2009. [317]Google Scholar
Cybenko, G.. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4):303314, 1989. [293]Google Scholar
Dagum, P. and Luby, M.. Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60(1):141153, 1993. [515]Google Scholar
Daly, R., Shen, Q., and Aitken, J. S.. Learning Bayesian networks: Approaches and issues. The Knowledge Engineering Review, 26(2):99157, 2011. [489]Google Scholar
Darroch, J. N., Lauritzen, S. L., and Speed, T. P.. Markov fields and log-linear interaction for contingency tables. The Annals of Statistics, 8:522539, 1980. [569]CrossRefGoogle Scholar
Darwiche, A.. A differential approach to inference in Bayesian networks. Journal of the ACM, 50(3): 280305, 2003. [544]CrossRefGoogle Scholar
Darwiche, A.. Modeling and Reasoning with Bayesian Networks. Cambridge University Press, 2009. [543, 569]Google Scholar
Darwin, C.. On the Origin of Species by Means of Natural Selection. John Murray, 1859. [247]Google Scholar
Dasarathy, B. V.. Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, 1991. [317]Google Scholar
Dash, D. and Cooper, G. F.. Model averaging for prediction with discrete Bayesian networks. Journal of Machine Learning Research, 5:11771203, 2004. [481, 546]Google Scholar
Dash, M. and Liu, H.. Feature selection for classification. Intelligent Data Analysis, 1(3):131156, 1997. [259]CrossRefGoogle Scholar
Dave, R. N.. Fuzzy shell-clustering and applications to circle detection in digital images. International Journal of General Systems, 16:343355, 1990. [454]CrossRefGoogle Scholar
Dave, R. N.. Generalized fuzzy c-shells clustering and detection of circular and elliptical boundaries. Pattern Recognition, 25:713721, 1992. [454]CrossRefGoogle Scholar
Davis, J. and Goadrich, M.. The relationship between precision-recall and ROC curves. In Proceedings of the 23rd International Workshop on Machine Learning, pages 233–240. ACM Press, 2006. [224]Google Scholar
Day, N. E.. Estimating the components of a mixture of normal distributions. Biometrika, 56(3):463– 474, 1969. [373, 384, 475]CrossRefGoogle Scholar
Day, W. H. E.. Foreword: Comparison and consensus of classifications. Journal of Classification, 3: 183185, 1986. [460]Google Scholar
de Boer, R., Vrooman, H. A., van der Lijn, F., Vernooij, M. W., Ikram, M. A., van der Lugt, A. M.M. Breteler, , and Niessen, W. J.. White matter lesion extension to automatic brain tissue segmentation on MRI. NeuroImage, 45(4):11511161, 2009. [263]Google Scholar
de Campos, C. P. and Ji, Q.. Efficient structure learning of Bayesian networks using constraints. Journal of Machine Learning Research, 12:663689, 2011. [536]Google Scholar
de Campos, L. M.. A scoring function for learning Bayesian networks based on mutual information and conditional independence tests. Journal of Machine Learning Research, 7:21492187, 2006. [546]Google Scholar
de Jongh, M.. Algorithms for Constraint-Based Learning of Bayesian Network Structures with Large Numbers of Variables. PhD thesis, University of Pittsburgh, 2014. [545]Google Scholar
de Moivre, A.. Approximatio ad summam terminorum binomii (a + b)n, in seriem expansi. Supple-mentum II to Miscellanae Analytica, pages 1–7, 1733. [140, 196]Google Scholar
Lorente de Nó, R.. La corteza cerebral del ratón. Trabajos Laboratorio Investigaciones Biológicas, 20:4178, 1922. [31]Google Scholar
de Tommaso, M., De Carlo, F., Difruscolo, O., Massafra, R., Sciruicchio, V., and Bellotti, R.. Detection of subclinical brain electrical activity changes in Huntington’s disease using artificial neural networks. Clinical Neurophysiology, 114(7):12371245, 2003. [293]CrossRefGoogle ScholarPubMed
Dean, T. and Kanazawa, K.. A model for reasoning about persistence and causation. Computational Intelligence, 5(3):142150, 1989. [537]Google Scholar
Dechter, R. and Rish, I.. Mini-buckets: A general scheme for bounded inference. Journal of the ACM, 50(2):107153, 2003. [544]Google Scholar
DeFelipe, J.. The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Frontiers in Neuroanatomy, 5:Article 29, 2011. [7, 8, 97, 98, 99]Google Scholar
DeFelipe, J., Elston, G. N., Fujita, I., Fuster, J., Harrison, K. H., Hof, P. R., Kawaguchi, Y., Martin, K. A. C., Rockland, K. S., Thomson, A. M., Wang, S. S. H., White, E. L., and Yuste, R.. Neocortical circuits: Evolutionary aspects and specificity versus non-specificity of synaptic connections. Remarks, main conclusions and general comments and discussion. Journal of Neurocytology, 31: 387–416, 2002. [48]Google Scholar
DeFelipe, J., López-Cruz, P. L., Benavides-Piccione, R., Bielza, C., Larrañaga, P., Anderson, S., Burkhalter, A., Cauli, B., Fairén, A., Feldmeyer, D., Fishell, G., Fitzpatrick, D., Freund, T. F., González-Burgos, G., Hestrin, S., Hill, S., Hof, P. R., Huang, J., Jones, E. G., Kawaguchi, Y., Kisvárday, Z., Kubota, Y., Lewis, D. A., Marín, O., Markram, H., McBain, C. J., Meyer, H. S., Monyer, H., Nelson, S. B., Rockland, K., Rossier, J., Rubenstein, J. L. R., Rudy, B., Scanziani, M., Shepherd, G. M., Sherwood, C. C., Staiger, J. F., Tamás, G., Thomson, A., Wang, Y., Yuste, R., and Ascoli, G. A.. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience, 14(3):202–216, 2013. [34, 75, 214, 222, 238, 290, 293, 372]Google Scholar
DellaPrieta, S., DellaPrieta, V., and Lafferty, J. D.. Inducing features of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380393, 1997. [564]Google Scholar
Dempster, A. P.. Covariance selection. Biometrics, 28:157175, 1972. [570]Google Scholar
Dempster, A. P., Laird, N. M., and Rubin, D. B.. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):138, 1977. [373, 470, 471, 472, 473, 485, 522]Google Scholar
Demšar, J.. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:130, 2006. [223, 225, 412]Google Scholar
Descombes, X., Kruggel, F., and Cramon, D. Y.. Spatio-temporal fMRI analysis using Markov random fields. IEEE Transactions on Medical Imaging, 17(6):10281039, 1998. [547]Google Scholar
Despotović, I., Segers, I., Platisa, L., Vansteenkiste, E., Pizurica, A., Deblaere, K., and Philips, W.. Automatic 3D graph cuts for brain cortex segmentation in patients with focal cortical dysplasia. In International Conference of the IEEE Engineering in Medicine and Biology Society, pages 7981–7984, 2011. [549]Google Scholar
Devijver, P. A. and Kittler, J.. Pattern Recognition. A Statistical Approach. Prentice Hall, 1982. [265, 269]Google Scholar
Dietterich, T. G.. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10:18951924, 1998. [215, 225]Google Scholar
Dietterich, T. G.. Ensemble methods in machine learning. In Proceedings of the 1st International Workshop on Multiple Classifier Systems, pages 1–15. Springer, 2000. [389]Google Scholar
Díez, F. J.. Local conditioning in Bayesian networks. Artificial Intelligence, 87(1-2):120, 1996. [544]CrossRefGoogle Scholar
Diggle, P. J.. Displaced amacrine cells in the retina of a rabbit: Analysis of a bivariate spatial point pattern. Journal of Neuroscience Methods, 18(1–2):115125, 1986. [577, 578]Google Scholar
Diggle, P. J.. Statistical Analysis of Spatial Point Patterns. Hodder Arnold, 2nd edition, 2003. [611]Google Scholar
Diggle, P. J., Lange, N., and Benes, F. M.. Analysis of variance for replicated spatial point patterns in clinical neuroanatomy. Journal of the American Statistical Association, 86(415):618625, 1991. [592]Google Scholar
Doak, J.. An evaluation of feature selection methods and their application to computer security. Technical Report, University of California at Davis, 1992. [241, 244]Google Scholar
d’Ocagne, M.. Coordonnées Parallèles et Axiales: Méthode de Transformation Géométrique et Procédé Nouveau de Calcul Graphique Déduits de la Considération des Coordonnées Parallèles. Gauthier-Villars, 1885. [74]Google Scholar
Domingos, P.. The Master Algorithm: How to Quest for the Ultimate Learning Machine Will Remake Our World. Basic Books, 2015. [24]Google Scholar
Domingos, P. and Pazzani, M.. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29:103130, 1997. [351]CrossRefGoogle Scholar
Donath, W. E. and Hoffman, A. J.. Lower bounds for the partitioning of graphs. IBM Journal of Research and Development, 17:420425, 1973. [450, 467]Google Scholar
Donders, A. R., van der Heijden, G. J., Stijnen, T., and Moons, K. G.. Review: A gentle introduction to imputation of missing values. Journal of Clinical Epidemiology, 59:10871091, 2006. [95]CrossRefGoogle ScholarPubMed
Donohue, D. E. and Ascoli, G. A.. A comparative computer simulation of dendritic morphology. PLoS Computational Biology, 4(6):e1000089, 2008. [540]Google Scholar
Dorigo, M., Maniezzo, V., and Colorni, A.. Ant colony: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 1(1):5366, 1996. [246]Google Scholar
Dougherty, J., Kohavi, R., and Sahami, M.. Supervised and unsupervised discretization of continuous features. In Proceedings of the 12th International Conference on Machine Learning, pages 194–202. Morgan Kaufmann, 1995. [374]Google Scholar
Doya, K., Ishii, S., Pouget, A., and Rao, R. P. N.. Bayesian Brain. The MIT Press, 2007. [159]Google Scholar
Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A. J., and Vapnik, V.. Support vector regression machines. In Advances in Neural Information Processing Systems 9, pages 155–161. The MIT Press, 1997. [319]Google Scholar
Druckmann, S., Hill, S., Schürmann, F., Markram, H., and Segev, I.. A hierarchical structure of cortical interneuron electrical diversity revealed by automatic statistical analysis. Cerebral Cortex, 23(12): 29943006, 2013. [215]Google Scholar
Drugan, M. M. and Wiering, M. A.. Feature selection for Bayesian network classifiers using the MDL-FS score. International Journal of Approximate Reasoning, 51:695717, 2010. [385]CrossRefGoogle Scholar
Dua, P., Bais, S., and Lukiw, W. J.. Analysis of network based co-expression modules for Alzheimer’s disease. Studies in Health Technology and Informatics, 192:1227, 2013. [139]Google Scholar
Dubey, R., Zhou, J., Wang, Y., Thompson, P. M., and Ye, J.. Analysis of sampling techniques for imbalanced data: An n=648 ADNI study. NeuroImage, 87:220241, 2014. [223]Google Scholar
Duda, R. and Hart, P.. Pattern Classification and Scene Analysis. Wiley, 1973. [457]Google Scholar
Duda, R., Hart, P., and Stork, D. G.. Pattern Classification. Wiley, 2nd edition, 2001. [167, 326, 351]Google Scholar
Dudoit, S., Fridlyand, J., and Speed, T.. Comparison of discriminant methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97(457): 7787, 2002. [232, 235]Google Scholar
Dufour, M. A., Woodhouse, A., Amendola, J., and Coaillard, J. M.. Non-linear developmental trajectory of electrical phenotype in rat substantia nigra pars compacta dopaminergic neurons. eLife, 3: e04059, 2014. [440]Google Scholar
Dumitriu, D., Cossart, R., Huang, J., and Yuste, R.. Correlation between axonal morphologies and synaptic input kinetics of interneurons from mouse visual cortex. Cerebral Cortex, 17(1):8191, 2007. [82]Google Scholar
Dunaevsky, A., Tashiro, A., Majewska, A., Mason, C., and Yuste, R.. Developmental regulation of spine motility in the mammalian central nervous system. Proceedings of the National Academy of Sciences, 96(23):1343813443, 1999. [41]Google Scholar
Dunn, J. C.. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3):3257, 1973. [447]Google Scholar
Dunn, O. J.. Multiple comparisons among means. Journal of the American Statistical Association, 56 (293):5264, 1961. [193]Google Scholar
Dunne, K., Cunningham, P., and Azuaje, F.. Solutions to instability problems with sequential wrapper-based approaches to feature selection. Technical Report, Trinity College, 2002. [255]Google Scholar
Edwards, A.. Note on the “correction for continuity” in testing the significance of the difference between correlated proportions. Psychometrika, 13:185187, 1948. [220]Google Scholar
Edwards, A. W. F. and Cavalli-Sforza, L. L.. A method for cluster analysis. Biometrics, 21:363375, 1965. [442]Google Scholar
Efron, B.. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7:126, 1979. [215]Google Scholar
Efron, B.. Estimating the error rate of a prediction rule: Improvements on cross-validation. Journal of the American Statistical Association, 78:316331, 1983. [225]CrossRefGoogle Scholar
Ekdahl, M. and Koski, T.. Bounds for the loss in probability of correct classification under model based approximation. Journal of Machine Learning Research, 7:24492480, 2006. [351]Google Scholar
Eklund, A., Nichols, T. E., and Knutsson, H.. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences, 113:7900–7905, 2016. [20]Google Scholar
Eliasova, I., Anderkova, L., Marecek, R., and Rektorova, I.. Non-invasive brain stimulation of the right inferior frontal gyrus may improve attention in early Alzheimer’s disease: A pilot study. Journal of Neurological Sciences, 346(1–2):318322, 2014. [177]Google Scholar
Elidan, G.. Copula Bayesian networks. In Advances in Neural Information Processing Systems 23, pages 559–567. Curran Associates, Inc., 2011. [502]Google Scholar
Elisseeff, A. and Weston, J.. A kernel method for multi-labelled classification. In Advances in Neural Information Processing Systems 14, pages 681687, 2002. [427]Google Scholar
Elkan, C.. The foundations of cost-sensitive learning. In Proceedings of the 17th International Joint Conference on Artificial Intelligence, pages 973–978, 2001. [224]Google Scholar
Ellis, B. and Wong, W. H.. Learning causal Bayesian network structures from experimental data. Journal of the American Statistical Association, 103(482):778789, 2008. [497]Google Scholar
Elston, G. N. and Rosa, M. G.. The occipitoparietal pathway of the macaque monkey: Comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cerebral Cortex, 7(5):432452, 1997. [44]Google Scholar
Engelborghs, S., de Vreese, K., van de Casteele, T., Vanderstichele, H., van Everbroeck, B., Cras, P., Martin, J.-J., Vanmechelen, E., and de Deyn, P. P.. Diagnostic performance of a CSF-biomarker panel in autopsy-confirmed dementia. Neurobiology of Aging, 29(8):11431159, 2008. [283]Google Scholar
Eriksson, S. H., Free, S. L., Thom, M., Martinian, L., Symms, M. R., Salmenpera, T. M., McEvoy, A. W., Harkness, W., Duncan, J. S., and Sisodiya, S. M.. Correlation of quantitative MRI and neuropathology in epilepsy surgical resection specimens–T2 correlates with neuronal tissue in gray matter. NeuroImage, 37(1):4855, 2007. [190]Google Scholar
Esposito, F., Malerba, D., and Semeraro, G.. A comparative analysis of methods for pruning decision trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5):476491, 1997. [280]Google Scholar
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd ACM International Conference on Knowledge Discovery and Data Mining, pages 226–231. AAAI Press, 1996. [455]Google Scholar
Evans, J. W.. Random and cooperative sequential adsorption. Reviews of Modern Physics, 65:1281– 1329, 1993. [607]Google Scholar
Everitt, B., Landau, S., and Leese, M.. Cluster Analysis. Arnold, 2001. [442]CrossRefGoogle Scholar
Ezawa, K. J. and Norton, S. W.. Constructing Bayesian networks to predict uncollectible telecommunications accounts. IEEE Expert, 11(5):4551, 1996. [362, 367]Google Scholar
Fan, J. and Lv, J.. A selective overview of variable selection in high dimensional feature space. Statistica Sinica, 220(1):101148, 2010. [261]Google Scholar
Farzan, A., Mashohor, S., Ramli, A. R., and Mahmud, R.. Boosting diagnosis accuracy of Alzheimer’s disease using high dimensional recognition of longitudinal brain atrophy patterns. Behavior Brain Research, 290:124130, 2015. [448]Google Scholar
Fawcett, T.. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861874, 2006. [209]Google Scholar
Fayyad, U. M. and Irani, K. B.. The attribute selection problem in decision tree generation. In Proceedings of the 10th National Conference on Artificial Intelligence, pages 104–110. AAAI Press, 1992. [278, 279]Google Scholar
Fayyad, U. M. and Irani, K. B.. Multi-interval discretization of continuous-valued attributes for classification learning. In Proceedings of the 13th International Joint Conference on Artificial Intelligence, pages 1022–1029, 1993. [92, 284]Google Scholar
Feelders, A. J. and Ivanovs, J.. Discriminative scoring of Bayesian network classifiers: A comparative study. In Proceedings of the 3rd European Workshop on Probabilistic Graphical Models, pages 75–82, 2006. [385]Google Scholar
Feo, T. A. and Resende, M. G. C.. Greedy randomized adaptive search procedures. Journal of Global Optimization, 6:109133, 1995. [244]Google Scholar
Ferguson, A. R., Nielson, J. L., Cragin, M. H., Bandrowski, A. E., and Martone, M. E.. Big data from small data: Data sharing in the “long tail” of neuroscience. Nature Neuroscience, 17(11):1442– 1448, 2014. [20]Google Scholar
Fernández, A., Gámez, J. A., Rumí, R., and Salmerón, A.. Data clustering using hidden variables in hybrid Bayesian networks. Progress in Artificial Intelligence, 2:141152, 2014. [486]Google Scholar
Fernández, A., García, S., Luengo, J., Bernadó-Mansilla, E., and Herrera, F.. Genetics-based machine learning for rule induction: State of the art, taxonomy, and comparative study. IEEE Transactions on Evolutionary Computation, 14(6):913941, 2010. [318]Google Scholar
Fernández, A., Rumí, R., and Salmerón, A.. Answering queries in hybrid Bayesian networks using importance sampling. Decision Support Systems, 53(3):580590, 2012. [544]Google Scholar
Fernández-González, P., Bielza, C., and Larrañaga, P.. Multidimensional classifiers for neuroanatomical data. In ICML Workshop on Statistics, Machine Learning and Neuroscience, volume 2837, 2015. [416]Google Scholar
Fernández-González, P., Benavides-Piccione, R., Leguey, I., Bielza, C., Larrañaga, P., and DeFelipe, J.. Dendritic branching angles of pyramidal neurons of the human cerebral cortex. Brain Structure and Function, 222(4):18471859, 2017. [127, 181]Google Scholar
Ferri, C., Flach, P. A., and Hernández-Orallo, J.. Learning decision trees using the area under the ROC curve. In Proceedings of the 19th International Conference on Machine Learning, pages 139–146. Morgan Kaufmann, 2002. [279]Google Scholar
Ferri, C., Hernández-Orallo, J., and Salido, M. A.. Volume under the ROC surface for multi-class problems. In Proceedings of the 14th European Conference on Machine Learning, volume 2837, pages 108–120. Springer, 2003. [211]Google Scholar
Ferri, C., Hernández-Orallo, J., and Modroiu, R.. An experimental comparison of performance measures for classification. Pattern Recognition Letters, 30(1):2738, 2008. [224]Google Scholar
Feys, P., D’hooghe, M. B., Nagels, G., and Helsen, W. F.. The effect of levetiracetam on tremor severity and functionality in patients with multiple sclerosis. Multiple Sclerosis, 15(3):371378, 2009. [183]Google Scholar
Fiedler, M.. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(98):298305, 1973. [467]Google Scholar
Fienberg, S. E.. When did Bayesian inference become “Bayesian”? Bayesian Analysis, 1(1):140, 2006. [196]Google Scholar
Figueiredo, M. A. and Jain, A. K.. Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3):381396, 2002. [473]Google Scholar
Firpi, H., Goodman, E., and Echauz, L.. On prediction of epileptic seizures by means of genetic programming artificial features. Annals of Biomedical Engineering, 34(3):515529, 2006. [263]Google Scholar
Fisher, D. H.. Knowledge acquisition via incremental clustering. Machine Learning, 2(2):139172, 1987. [468]Google Scholar
Fisher, D. H.. Iterative optimization and simplification of hierarchical clusterings. Journal of Artificial Intelligence Research, 4:147179, 1996. [467]Google Scholar
Fisher, N. I.. Statistical Analysis of Circular Data. Cambridge University Press, 1993. [65]Google Scholar
Fisher, R. A.. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7: 179188, 1936. [384]Google Scholar
Fisher, R. A.. Statistical Methods for Research Workers. Oliver and Boyd, 1925. [162, 197, 559]Google Scholar
Fisher, R. A.. The Design of Experiments. Oliver and Boyd, 1935. [197]Google Scholar
Fisher, R. A.. Dispersion on a sphere. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 217:295305, 1953. [124]Google Scholar
Fix, E. and Hodges, J. L.. Discriminatory analysis–Nonparametric discrimination: Consistency properties. Technical Report 4, USAF School of Aviation Medicine, 1951. [29, 262]Google Scholar
Fix, E. and Hodges, J. L.. Discriminatory analysis–Nonparametric discrimination: Small sample performance. Technical Report 11, USAF School of Aviation Medicine, 1952. [262]Google Scholar
Fletcher, R.. Practical Methods of Optimization. Wiley, 2nd edition, 2000. [305]Google Scholar
Fleuret, F.. Fast binary feature selection with conditional mutual information. Journal of Machine Learning Research, 5:15311555, 2004. [236, 238]Google Scholar
Florek, K., Lukaszewicz, J., Perkal, H., Steinhaus, H., and Zubrzycki, S.. Sur la liason et la division des points d’un ensemble fini. Colloquium Mathematicum, 2:282285, 1951. [440, 441, 467]Google Scholar
Flores, M. J. and Gámez, J. A.. Triangulation of Bayesian networks by retriangulation. International Journal of Intelligent Systems, 18(2):153164, 2003. [511]Google Scholar
Flores, M. J. and Gámez, J. A.. A review on distinct methods and approaches to perform triangulation for Bayesian networks. In Advances in Probabilistic Graphical Models, pages 127–152. Springer, 2007. [511]Google Scholar
Flores, M. J., Gámez, J. A., Martínez, A. M., and Puerta, J. M.. HODE: Hidden one-dependence estimator. In Proceedings of the 10th European Conference in Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pages 481–492. Springer, 2009. [360]Google Scholar
Flores, M. J., Gámez, J. A., Martínez, A. M., and Salmerón, A.. Mixture of truncated exponentials in supervised classification: Case study for the naive Bayes and averaged one-dependence estimators classifiers. In 11th International Conference on Intelligent Systems Design and Applications, pages 593–598. IEEE, 2011a. [377, 384]Google Scholar
Flores, M. J., Gámez, J. A., Martínez, A. M., and Puerta, J. M.. Handling numeric attributes when comparing Bayesian network classifiers: Does the discretization method matter? Applied Intelligence, 34(3):372385, 2011b. [374]Google Scholar
Foote, S. J., Rubio, J. P., Bahlo, M., Kilpatrick, T. J., Speed, T. P., Stankovich, J., Burfoot, R., Butzkueven, H., Johnson, L., Wilkinson, C., Taylor, B., Sale, M., van der Mei, I. A., Dickinson, J. L., and Groom, P.. Multiple sclerosis: A haplotype association study. Novartis Found Symposium, 267: 3139, 2005. [195]Google Scholar
Forgy, E. W.. Cluster analysis of multivariate data: Efficiency versus interpretability of classifications. Biometrics, 21:768769, 1965. [445]Google Scholar
Forman, G.. An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3:12891306, 2003. [232, 233, 234]Google Scholar
Fraley, C. and Raftery, A. E.. Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification, 24:155181, 2007. [474]Google Scholar
Fraley, C. and Raftery, A. E.. Model-based clustering, discriminant analysis and density estimation. Journal of the American Ststistical Association, 97:611631, 2002. [374]Google Scholar
Fraley, C. and Raftery, A. E.. MCLUST version 3 for R: Normal mixture modeling and model-based clustering. Technical Report 504, University of Washington, 2006. [475]Google Scholar
Frantzidis, C. A., Bratsas, C., Klados, M. A., Konstantinidis, E., Lithari, C. D., Vivas, A. B., Papadelis, C. L., Kaldoudi, E., Pappas, C., and Bamidis, P. D.. On the classification of emotional biosignals evoked while viewing affective pictures: An integrated data-mining-based approach for healthcare applications. IEEE Transactions on Information Technology in Biomedicine, 14(2):309318, 2010. [282]Google Scholar
Fredman, M. L. and Tarjan, R. E.. Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM, 34(3):596615, 1987. [358]Google Scholar
Freeman, C. M., Martinez, F. J., Han, M. K., Ames, T. M., Chensue, S. W., Todt, J. C., Arenberg, D. A., Meldrum, C. A., Getty, C., McCloskey, L., and Curtis, J. L.. Lung dendritic cell expression of maturation molecules increases with worsening chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 180(12):11791188, 2009. [190]Google Scholar
French, L. and Pavlidis, P.. Informatics in neuroscience. Briefings in Bioinformatics, 8(6):446456, 2007. [20]Google Scholar
French, L., Lane, S., Xu, L., and Pavlidis, P.. Automated recognition of brain region mentions in neuroscience literature. Frontiers in Neuroinformatics, 3, Article 29, 2009. [566]Google Scholar
Freund, Y. and Schapire, R. E.. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119139, 1997. [405, 406]Google Scholar
Frey, B. J. and Dueck, D.. Clustering by passing messages between data points. Science, 315:972976, 2007. [453]Google Scholar
Friedman, J.. Regularized discriminant analysis. Journal of the American Statistical Association, 84: 165175, 1989. [330]Google Scholar
Friedman, J., Hastie, T., and Tibshirani, R.. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9:432441, 2007. [560]Google Scholar
Friedman, J. H.. Multivariate adaptive regression splines. The Annals of Statistics, 19(1):167, 1991. [283]Google Scholar
Friedman, J. H.. Flexible metric nearest neighbor classification. Technical Report, Stanford University, 1994. [317]Google Scholar
Friedman, N.. The Bayesian structural EM algorithm. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pages 129–138. Morgan Kaufmann, 1998. [479, 522]Google Scholar
Friedman, N. and Goldszmidt, M.. Discretizing continuous attributes while learning Bayesian networks. In Proceedings of the 13th International Conference on Machine Learning, pages 157– 165. Morgan Kaufmann, 1996. [499]Google Scholar
Friedman, N. and Koller, D.. Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks. Machine Learning, 50(1–2):95125, 2003. [536]Google Scholar
Friedman, N. and Nachman, I.. Gaussian process networks. In Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pages 211–219. Morgan Kaufmann, 2000. [502]Google Scholar
Friedman, N. and Yakhini, Z.. On the sample complexity of learning Bayesian networks. In Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence, pages 274–282. Morgan Kaufmann, 1996. [545]Google Scholar
Friedman, N., Geiger, D., and Goldszmidt, M.. Bayesian network classifiers. Machine Learning, 29: 131163, 1997. [348, 356, 362, 366, 367, 372]Google Scholar
Friedman, N., Goldszmidt, M., and Lee, T.. Bayesian network classification with continuous attributes: Getting the best of both discretization and parametric fitting. In Proceedings of the 15th National Conference on Machine Learning, pages 179–187, 1998a. [371, 384]Google Scholar
Friedman, N., Murphy, K., and Russell, S.. Learning the structure of dynamic probabilistic networks. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pages 139–147. Morgan Kaufmann, 1998b. [538]Google Scholar
Friedman, N., Goldszmidt, M., and Wyner, A.. Data analysis with Bayesian networks: A bootstrap approach. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, pages 196–205. Morgan Kaufmann, 1999a. [364]Google Scholar
Friedman, N., Nachman, I., and Pe’er, D.. Learning Bayesian network structure from massive datasets: The “sparse candidate” algorithm. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, pages 206–215. Morgan Kaufmann, 1999b. [536]Google Scholar
Friston, K.. The history of the future of the Bayesian brain. NeuroImage, 62(2):12301233, 2012. [159]Google Scholar
Fry, N.. Random point distributions and strain measurement in rocks. Tectonophysics, 60:89105, 1979. [586]Google Scholar
Frydenberg, M.. The chain graph Markov property. Scandinavian Journal of Statistics, 17(4):333– 353, 1990. [498]Google Scholar
Fu, K. S.. Sequential Methods in Pattern Recognition and Machine Learning. Academic Press, 1968. [240, 241]Google Scholar
Fu, L. D.. A Comparison of State-of-the-Art Algorithms for Learning Bayesian Network Structure from Continuous Data. Master’s thesis, Vanderbilt University, 2005. [499]Google Scholar
Fujino, A., Ueda, N., and Saito, K.. A hybrid generative/discriminative approach to text classification with additional information. Information Processing and Management, 43(2):379392, 2007. [385]Google Scholar
Fung, R. M. and Chang, K.-C.. Weighing and integrating evidence for stochastic simulation in Bayesian networks. In Proceedings of the 6th Conference on Uncertainty in Artificial Intelligence, pages 209–220. Elsevier, 1990. [516]Google Scholar
Funke, J., Martel, J. N., Gerhard, S., Andres, B., Cireşan, D. C., Giusti, A., Gambardella, L. M., Schmidhuber, J., Pfister, H., Cardona, A., and Cook, M.. Candidate sampling for neuron reconstruction from anisotropic electron microscopy volumes. Medical Image Computing and Computer-Assisted Intervention, 17(1):1724, 2014. [566]Google Scholar
Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A.. The SpiNNaker project. Proceedings of the IEEE, 102:652665, 2014. [30]Google Scholar
Fürnkranz, J. and Widmer, G.. Incremental reduced error pruning. In Machine Learning: Proceedings of the 11th Annual Conference, pages 70–77. Morgan Kaufmann, 1994. [253, 288]Google Scholar
Fürnkranz, J., Hüllermeier, E., and Cheng, W.. Multi-label classification via calibrated label ranking. Machine Learning, 73(2):133153, 2008. [424]Google Scholar
Galaz, Z., Mekyska, J., Mzourek, Z., Smekal, Z., Rektorova, I., Eliasova, I., Kostalova, M., Mrackova, M., and Berankova, D.. Prosodic analysis of neutral, stress-modified and rhymed speech in patients with Parkinson’s disease. Computer Methods and Programs in Biomedicine, 27:301317, 2016. [195]Google Scholar
Galton, F.. The geometric mean in vital and social statistics. Proceedings of the Royal Society of London, 29:365367, 1879. [140]Google Scholar
Gámez, J. A. and Puerta, J. M.. Searching for the best elimination sequence in Bayesian networks by using ant colony optimization. Pattern Recognition Letters, 23(1-3):261277, 2002. [511]Google Scholar
Gámez, J. A., Mateo, J. L., Nielsen, T. D., and Puerta, J. M.. Robust classification using mixtures of dependency networks. In Proceedings of the 4th European Workshop on Probabilistic Graphical Models, pages 129–136, 2008. [386]Google Scholar
García, S. and Herrera, F.. An extension of “Statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. Journal of Machine Learning Research, 9:26772694, 2008. [225]Google Scholar
García, S., Derrac, J., Cano, J. R., and Herrera, F.. Prototype selection for nearest neighbor classification: Taxonomy and empirical study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(3):417435, 2012. [268]Google Scholar
García, S., Luengo, J., Saez, J. A., López, V., and Herrera, F.. A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning. IEEE Transactions on Knowledge and Data Engineering, 25(4):734750, 2013. [90]Google Scholar
García-López, F., García-Torres, M., Melián-Batista, B., Moreno-Pérez, J. A., and Moreno-Vega, J. M.. Solving feature subset selection problem by a parallel scatter search. European Journal of Operational Research, 169:477489, 2006. [241, 246]Google Scholar
Garcia-Martin, E., Pablo, L. E., Herrero, R., Ara, J. R., Martin, J., Larrosa, J. M., Polo, V., Garcia-Feijoo, J., and Fernandez, J.. Neural networks to identify multiple sclerosis with optical coherence tomography. Acta Ophthalmologica, 91(8):628634, 2013. [293]Google Scholar
García-Torres, M., Melián-Batista, B., Moreno-Pérez, J. A., and Moreno-Vega, J. M.. Variable neighborhood search for the feature subset selection problem. In The 6th Metaheuristics International Conference, pages 1–6, 2005. [241, 245]Google Scholar
Garg, S., Sharma, R., Mittal, S., and Thapar, S.. Alterations in brain-stem auditory evoked potentials among drug addicts. A cross-sectional study. Neurosciences, 20(3):253258, 2015. [178]Google Scholar
Gates, G. W.. The reduced nearest neighbor rule. IEEE Transactions on Information Theory, 18(3): 431433, 1972. [268]Google Scholar
Gauss, C. F.. Theoria Motus Corporum. Werke, 1809. [140]Google Scholar
Gauss, C. F.. Theoria Combinationis Observationum Erroribus Minimis Obnoxiae. Werke, 4:1108, 1821. [196]Google Scholar
Gazzaniga, M.. Human: The Science Behind What Makes Us Unique. Harper Collins, 2008. [7]Google Scholar
Ge, B., Guo, L., Lv, J., Han, J., Zhang, T., and Liu, T.. Resting state fMRI-guided fiber clustering: Methods and applications. Neuroinformatics, 11(1):119133, 2013. [454]Google Scholar
Geiger, D. and Heckerman, D.. Learning Gaussian networks. In Proceedings of the 10th International Conference on Uncertainty in Artificial Intelligence, pages 235–243. Morgan Kaufmann, 1994. [499, 500, 524, 535]Google Scholar
Geiger, D. and Heckerman, D.. Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence, 82:4574, 1996. [357, 365, 367]Google Scholar
Gelman, A.. Objections to Bayesian statistics. Bayesian Analysis, 3(3):445449, 2008. [196]Google Scholar
Gelman, A. and Rubin, D. B.. Inference from iterative simulation using multiple sequences. Statistical Science, 7(4):457472, 1992. [545]Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B.. Bayesian Data Analysis. Chapman & Hall, London, 1995. [196]Google Scholar
Geman, S. and Geman, D.. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721741, 1984. [545, 557]Google Scholar
Geman, S., Bienenstock, E., and Doursat, R.. Neural networks and the bias/variance dilemma. Neural Computation, 4(1):158, 1992. [392]Google Scholar
Gey, S. and Poggi, J.-M.. Boosting and instability for regression trees. Computational Statistics & Data Analysis, 50(2):533550, 2006. [414]Google Scholar
Ghahramani, Z.. An introduction to hidden Markov models and Bayesian networks. International Journal of Pattern Recognition and Artificial Intelligence, 15(1):942, 2001. [538]Google Scholar
Ghosh, A. K.. On optimum choice of k in nearest neighbor classification. Computational Statistics & Data Analysis, 50(11):31133123, 2006. [268]Google Scholar
Ghosh, J. and Achraya, A.. Cluster ensembles. WIREs Data Mining and Knowledge Discovery, 1: 305315, 2011. [460]Google Scholar
Gibaja, E. and Ventura, S.. A tutorial on multi-label learning. ACM Computing Surveys, 47(3):Article 52, 2015. [416]Google Scholar
Gibbs, J. W.. Elementary Principles in Statistical Mechanics. Charles Scribner’s Sons, 1902. [554]Google Scholar
Gifi, A.. Nonlinear Multivariate Analysis. Wiley, 1990. [95]Google Scholar
Giil, L. M., Kristoffersen, E. K., Vedeler, C. A., Aarsland, D., Nordrehaug, J. E., Winblad, B., Cedazo-Minguez, A., Lund, A., and Reksten, T. R.. Autoantibodies toward the angiotensin 2 type 1 receptor: A novel autoantibody in Alzheimer’s disease. Journal of Alzheimer’s Disease, 47(2):523529, 2015. [190]Google Scholar
Gil-Begue, S., Bielza, C., and Larrañaga, P.. Multi-dimensional Bayesian network classifier trees. In Proceedings of the 19th International Conference on Intelligent Data Engineering and Automatic Learning, pages 354–363, 2018. [432]Google Scholar
Gil-Begue, S., Bielza, C., and Larrañaga, P.. Multi-dimensional Bayesian network classifiers: A survey. Artificial Intelligence Review, 53, in press 2020. [432]Google Scholar
Gilks, W. R. and Wild, P.. Adaptive rejection sampling for Gibbs sampling. Journal of the Royal Statistical Society, Series C, 41(2):337–48, 1992. [131]Google Scholar
Gilks, W. R., Richardson, S., and Spiegelhalter, D.. Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC, 1995. [545]Google Scholar
Gillispie, S. B. and Perlman, M. D.. The size distribution for Markov equivalence classes of acyclic digraph models. Artificial Intelligence, 141(1/2):137155, 2002. [530]Google Scholar
Giudici, P.. Bayesian Statistics, volume 5, chapter Learning in graphical Gaussian models, pages 621–628. Oxford University Press, 1996. [570]Google Scholar
Giudici, P. and Castelo, R.. Improving Markov chain Monte Carlo model search for data mining. Machine Learning, 50(1):127158, 2003. [519]Google Scholar
Giudici, P. and Green, P. J.. Decomposable graphical Gaussian model determination. Biometrika, 86 (4):785801, 1999. [536]Google Scholar
Glaser, J. and Glaser, E.. Neuron imaging with Neurolucida – A PC-based system for image combining microscopy. Computerized Medical Imaging and Graphics, 14(5):307317, 1990. [31, 44, 417]Google Scholar
Glover, F.. Heuristics for integer programming using surrogate constraints. Decision Sciences, 8:156–166, 1977. [245]Google Scholar
Glover, F.. Future paths for integer programming and links to artificial intelligence. Computers & Operation Research, 13(5):533549, 1986. [228]Google Scholar
Glover, F.. Tabu search, Part I. ORSA Journal on Computing, 1(3):190206, 1989. [241]Google Scholar
Glover, G. H.. Overview of functional magnetic resonance imaging. Neurosurgery Clinics of North America, 22(2):133139, 2011. [16]Google Scholar
Godbole, S. and Sarawagi, S.. Discriminative methods for multi-labeled classification. In Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 22–30. Springer, 2004. [422]Google Scholar
Gokgoz, E. and Subasi, A.. Effect of multiscale PCA de-noising on EMG signal classification for diagnosis of neuromuscular disorders. Journal of Medical Systems, 38(4), 2014. [263]Google Scholar
Gold, J. I. and Shadlen, M. N.. Banburismus and the brain: Decoding the relationship between sensory stimuli, decisions, and reward. Neuron, 36(2):299308, 2002. [159]Google Scholar
Goldberg, D. E.. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, 1989. [247]Google Scholar
Golub, G. H. and van Loan, C. F.. Matrix Computations. Johns Hopkins University Press, 4th edition, 2012. [78]Google Scholar
Good, I. J.. Studies in the history of probability and statistics. XXXVII A. M. Turing’s statistical work in World War II. Biometrika, 66(2):393396, 1979. [159]Google Scholar
Goodfellow, I., Bengio, Y., and Courville, A.. Deep Learning. The MIT Press, 2016. [319]Google Scholar
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.. Generative adversarial nets. In Advances in Neural Information Processing Systems 27, pages 26722680, 2014. [319]Google Scholar
Gordon, A. D.. A review of hierarchical classification. Journal of the Royal Statistical Society, Series A, 150(2):119137, 1987. [439]Google Scholar
Gosset, S. W.. “Student”: The probable error of a mean. Biometrika, 6:125, 1908. [140]Google Scholar
Gould, R. L., Arroyo, B., Brown, R. G., Owen, A. M., Bullmore, E. T., and Howard, R. J.. Brain mechanisms of successful compensation during learning in Alzheimer disease. Neurology, 67(6): 10111017, 2006. [46]Google Scholar
Grady, C. L., Furey, M. L., Pietrini, P., Horwitz, B., and Rapoport, S. I.. Altered brain functional connectivity and impaired short-term memory in Alzheimer’s disease. Brain, 124(4):739756, 2001. [46]Google Scholar
Gray, E. G.. Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study. Journal of Anatomy, 93:420433, 1959. [48]Google Scholar
Green, D. M. and Swets, J. A.. Signal Detection Theory and Psychophysics. Wiley, 1966. [208]Google Scholar
Greig-Smith, P.. Quantitative Plant Ecology. Butterworths, 1964. [612]Google Scholar
Greiner, R., Su, X., Shen, B., and Zhou, W.. Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Machine Learning, 59(3):297322, 2005. [385]Google Scholar
Grossman, D. and Domingos, P.. Learning Bayesian network classifiers by maximizing conditional likelihood. In Proceedings of the 21st International Conference on Machine Learning, pages 361– 368, 2004. [385]Google Scholar
Grover, A., Bhartia, S., Yadav, A., and Seeja, K. R. Predicting severity of Parkinson’s disease using deep learning. Procedia Computer Science, 132:1788–1794, 2018. [299]Google Scholar
Grzegorczyk, M. and Husmeier, D.. Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move. Machine Learning, 71(2):265305, 2008. [536]Google Scholar
Gudbjartsson, H. and Patz, S.. The Rician distribution of noisy MRI data. Magnetic Resonance in Medicine, 34(6):910914, 1995. [535]Google Scholar
Guerra, L., McGarry, L., Robles, V., Bielza, C., Larrañaga, P., and Yuste, R.. Comparison between supervised and unsupervised classification of neuronal cell types: A case study. Developmental Neurobiology, 71(1):7182, 2011. [31, 32, 82, 214, 222, 239, 293, 345, 440]Google Scholar
Guerra, L., Robles, V., Bielza, C., and Larrañaga, P.. A comparison of clustering quality indices using outliers and noise. Intelligent Data Analysis, 16(4):703715, 2012. [468]Google Scholar
Guo, H. and Hsu, W.. A survey of algorithms for real-time Bayesian network inference. In Proceedings of the AAAI Workshop on Real-Time Decision Support and Diagnosis Systems, pages 1–12. AAAI Press, 2002. [545]Google Scholar
Guo, Y. and Greiner, R.. Discriminative model selection for belief net structures. In Proceedings of the 20th National Conference on Artificial Intelligence, pages 770–776. AAAI Press, 2005. [385]Google Scholar
Guo, Y., Wilkinson, D. F., and Schuurmans, D.. Maximum margin Bayesian networks. In Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, pages 233–242. AUAI Press, 2005. [385]Google Scholar
Gupta, A. R., Pirruccello, M., Cheng, F., Kang, H. J., Fernandez, T. V., Baskin, J. M., Choi, M., Liu, L., Ercan-Sencicek, A. G., Murdoch, J. D., Klei, L., Neale, B. M., Franjic, D., Daly, M. J., Lifton, R. P., de Camilli, P., Zhao, H., Sestan, N., and State, M. W.. Rare deleterious mutations of the gene EFR3A in autism spectrum disorders. Molecular Autism, 5:31, 2014. [195]Google Scholar
Gupta, M. R. and Chen, Y.. Theory and use of the EM algorithm. Foundations and Trends in Signal Processing, 4(3):223296, 2010. [486]Google Scholar
Gurney, K. N.. Information processing in dendrites. II. Information theoretic complexity. Neural Networks, 14(8):10051022, 2001. [138]Google Scholar
Gurwicz, Y. and Lerner, B.. Bayesian class-matched multinet classifier. In Proceedings of the 2006 Joint IAPR International Conference on Structural, Syntactic, and Statistical Pattern Recognition, pages 145–153. Springer, 2006. [365]Google Scholar
Guyon, I., Weston, J., Barnhill, S., and Vapnik, V.. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3):389422, 2002. [253]Google Scholar
Habbema, J. D. F. and Hermans, J.. Selection of variables in discriminant analysis by F-statistic and error rate. Technometrics, 19(4):487493, 1977. [261]Google Scholar
Hagen, L. and Kahng, A.. New spectral methods for ratio cut partitioning and clustering. IEEE Transactions on Computer-Aided Design, 11(9):10741085, 1992. [452]Google Scholar
Hall, M. A.. A decision tree-based attribute weighting filter for naive Bayes. Knowledge-Based Systems, 20(2):120126, 2007. [351]Google Scholar
Hall, M. A.. Correlation-Based Feature Selection for Machine Learning. PhD thesis, University of Waikato, 1999. [232, 233, 236, 237, 238]Google Scholar
Hall, M. A. and Smith, L. A.. Practical feature subset selection for machine learning. In Proceedings of the 21st Australian Computer Science Conference, pages 181–191, 1998. [232, 233]Google Scholar
Hall, M. A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.. The WEKA data mining software: An update. SIGKDD Explorations, 11(1):1018, 2009. [256, 269, 273, 284, 315, 345, 368, 410]Google Scholar
Hammersley, J. M. and Clifford, P.. Markov fields on finite graphs and lattices. Unpublished manuscript, 1971. [552]Google Scholar
Hand, D. J.. Statistics and computing: The genesis of data science. Statistics and Computing, 25: 705711, 2015. [22]Google Scholar
Hand, D. J. and Till, R. J.. A simple generalization of the area under the ROC curve for multiple class classification problems. Machine Learning, 45:171186, 2001. [211]Google Scholar
Hand, D. J. and Yu, K.. Idiot’s Bayes – not so stupid after all? International Statistical Review, 69(3): 385398, 2001. [351]Google Scholar
Handley, T. E., Hiles, S. A., Inder, K. J., Kay-Lambkin, F. J., Kelly, B. J., Lewin, T. J., McEvoy, M., Peel, R., and Attia, J. R.. Predictors of suicidal ideation in older people: A decision tree analysis. American Journal of Geriatric Psychiatry, 22(11):13251335, 2014. [283]Google Scholar
Hardin, D., Tsamardinos, I., and Aliferis, C. F.. A theoretical characterization of linear SVM-based feature selection. In Proceedings of the 21st International Conference on Machine Learning, pages 48–55. ACM, 2004. [319]Google Scholar
Harel, O. and Zhou, X.-H.. Multiple imputation: Review of theory, implementation and software. Statistics in Medicine, 26:30573077, 2007. [95]Google Scholar
Harirchian, M. H., Karimi, N., Nafisi, S., Akrami, S., Ghanbarian, D., and Gharibzadeh, S.. Vestibular evoked myogenic potential for diagnoses of multiple sclerosis: Is it beneficial? Medicinski Glasnik, 10(2):321326, 2013. [171]Google Scholar
Harmouche, R., Subbanna, N. K., Collins, D. L., Arnold, D. L., and Arbel, T.. Probabilistic multiple sclerosis lesion classification based on modelling regional intensity variability and local neigh-bourhood information. IEEE Transactions on Biomedical Engineering, 62(5):12811292, 2014. [549]Google Scholar
Harris, K. M. and Stevens, J. K.. Dendritic spines of CA1 pyramidal cells in the rat hippocampus: Serial electron microscopy with reference to their biophysical characteristics. Journal of Neuroscience, 9:29822997, 1989. [39]Google Scholar
Hart, P. E.. The condensed nearest neighbor rule. IEEE Transactions on Information Theory, 14(3): 515516, 1968. [268]Google Scholar
Hartigan, J. A.. Direct clustering of a data matrix. Journal of the American Statistical Association, 67:123129, 1972. [468]Google Scholar
Hartigan, J. A.. Clustering Algorithms. Wiley, 1975. [458, 467, 468]Google Scholar
Hartley, H. O.. Maximum likelihood estimation for incomplete data. Biometrics, 14(2):174194, 1958. [486]Google Scholar
Hastie, T. and Tibshirani, R.. Discriminant adaptive nearest-neighbor classification. IEEE Pattern Analysis and Machine Intelligence, 18:607616, 1996. [317]Google Scholar
Hastie, T., Tibshirani, R., and Buja, A.. Flexible discriminant analysis by optimal scoring. Journal of the American Statistical Association, 89(428):12551270, 1994. [330]Google Scholar
Hastie, T., Buja, A., and Tibshirani, R.. Penalized discriminant analysis. The Annals of Statistics, 23(1): 73102, 1995. [331]Google Scholar
Hastie, T., Tibshirani, R., and Friedman, J.. The Elements of Statistical Learning: Data Mining, Inference, and Predictions. Springer, 2nd edition, 2008. [384]Google Scholar
Haury, A.-C., Gestraud, P., and Vert, J.-P.. The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS ONE, 6(12):e28210, 2011. [255]Google Scholar
Hauser, A. and Bühlmann, P.. Jointly interventional and observational data: Estimation of interventional Markov equivalence classes of directed acyclic graphs. Journal of the Royal Statistical Society, Series B, 77(1):291318, 2015. [497]Google Scholar
Häusser, M. and Mel, B.. Dendrites: Bug or feature? Current Opinion in Neurobiology, 13(3):372– 383, 2003. [43]Google Scholar
Haynes, J.-D. and Rees, G.. Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7:523534, 2006. [226]Google Scholar
He, K., Wang, H., Lee, G.-H., and Tian, Y.. ProbGAN: Towards probabilistic GAN with theoretical guarantees. In Proceedings of the 7th International Conference on Learning Representations, 2019. [544]Google Scholar
Hebb, D. O.. The Organization of Behavior. Wiley, 1949. [318]Google Scholar
Heckerman, D.. A tutorial on learning with Bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, 1995. [536]Google Scholar
Heckerman, D., Geiger, D., and Chickering, D. M.. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20:197243, 1995. [533, 534, 535, 536, 546]Google Scholar
Helm, J., Akgul, G., and Wollmuth, L. P.. Subgroups of parvalbumin-expressing interneurons in layers 2/3 of the visual cortex. Journal of Neurophysiology, 109(6):16001613, 2013. [34, 445]Google Scholar
Helmstaedter, M., Sakmann, B., and Feldmeyer, D.. Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. Cerebral Cortex, 19(4):926937, 2009a. [34]Google Scholar
Helmstaedter, M., Sakmann, B., and Feldmeyer, D.. L2/3 interneuron groups defined by multiparameter analysis of axonal projection, dendritic geometry and electrical excitability. Cerebral Cortex, 19(4):951962, 2009b. [34]Google Scholar
Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., and Denk, W.. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 500:168174, 2013. [21]Google Scholar
Henrion, M.. Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In Uncertainty in Artificial Intelligence 2, pages 149–163. Elsevier Science, 1988. [516]Google Scholar
Herculano-Houzal, S.. The human brain in numbers: A linearly scaled-up primate brain. Frontiers in Human Neuroscience, 3:Article 31, 2009. [142]Google Scholar
Herculano-Houzel, S. and Lent, C.. Isotropic fractionator: A simple, rapid method for the quantification of total cell and neuron numbers in the brain. Journal of Neuroscience, 25:25182521, 2005. [6]Google Scholar
Hernández, I., Mauleón, A., Rosense-Roca, M., Alegret, M., Vinyes, G., Espinosa, A., Sotolongo-Grau, O., Becker, J. T., Valero, S., Tarraga, L., López, O. L., Ruiz, A., and Boada, M.. Identification of misdiagnosed fronto-temporal dementia using APOE genotype and phenotype-genotype correlation analyses. Current Alzheimer Research, 11(2):182191, 2014. [344]Google Scholar
Hernández, L. and Moral, S.. Mixing exact and importance sampling propagation algorithms in dependence graphs. International Journal of Intelligent Systems, 12:553576, 1997. [544]Google Scholar
Herrera, F., Charte, F., Rivera, A. J., and del Jesus, M. J.. Multilabel Classification: Problem Analysis, Metrics and Techniques. Springer, 2016. [416]Google Scholar
Hesterberg, T., Choi, N. M., Meier, L., and Fraley, C.. Least angle and l1 penalized regression: A review. Statistics Surveys, 2(1):6193, 2008. [385]Google Scholar
Hilden, J. and Bjerregaard, B.. Computer-aided diagnosis and the atypical case. In Decision Making and Medical Care. Can Information Science Help?, pages 365–378. Elsevier, 1976. [351]Google Scholar
Hinkley, D. V.. Bootstrap methods. Journal of the Royal Statistical Society, Series B, 50(3):321337, 1988. [225]Google Scholar
Hinton, G. E.. Machine learning for neuroscience. Neural Systems and Circuits, 1:1213, 2011. [23]Google Scholar
Ho, T. K.. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):832844, 1998. [403]Google Scholar
Ho, T. K.. Multiple classifier combination: Lessons and next steps. In Hybrid Methods in Pattern Recognition, volume 47, pages 171–198. World Scientific, 2002. [413]Google Scholar
Hoehn, M. and Yahr, M.. Parkinsonism: Onset, progression and mortality. Neurology, 17(5):427442, 1967. [174]Google Scholar
Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T.. Bayesian model averaging: A tutorial. Statistical Science, 14(4):382417, 1999. [546]Google Scholar
Hofmann, R. and Tresp, V.. Discovering structure in continuous variables using Bayesian networks. In Advances in Neural Information Processing Systems 8, pages 500–506. The MIT Press, 1996. [502]Google Scholar
Holland, J. H.. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975. [248]Google Scholar
Holland, J. H.. Progress in Theoretical Biology, volume 4, chapter Adaptation, pages 263–293. Academic Press, 1976. [318]Google Scholar
Höller, Y., Bergmann, J., Thomschewski, A., Höller, P., Crone, J. S., Schmid, E. V., Butz, K., Nardone, R., and Trinka, E.. Comparison of EEG-features and classification methods for motor imagery in patients with disorders of consciousness. PLoS ONE, 25(8):e80479, 2013. [263]Google Scholar
Holm, S.. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6:6570, 1979. [193]Google Scholar
Holmes, D. E. and Jain, L. C.. Innovations in Bayesian Networks. Theory and Applications. Springer, 2008. [543]Google Scholar
Holte, R. C.. Very simple classification rules perform well. Machine Learning, 11:6391, 1993. [286]Google Scholar
Hopfield, J. J.. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8):25542558, 1982. [319, 555]Google Scholar
Hornik, K., Stinchcombe, M., and White, H.. Multilayer feedforward networks are universal approximators. Neural Networks, 2:359366, 1989. [293]Google Scholar
Horváth, A., Perlaki, G., Tóth, A., Orsi, G., Nagy, S., Dóczi, T., Horváth, Z., and Bogner, P.. Increased diffusion in the normal appearing white matter of brain tumor patients: Is this just tumor infiltration? Journal of Neuro-Oncology, 127(1):83990, 2016. [179]Google Scholar
Horvitz, E., Suermondt, J., and Cooper, G. F.. Bounded conditioning: Flexible inference for decisions under scarce resources. In Proceedings of the 5th Conference on Uncertainty in Artificial Intelligence, pages 182–193. Elsevier, 1989. [544]Google Scholar
Horwitz, B.. The elusive concept of brain connectivity. NeuroImage, 19:466470, 2003. [46]Google Scholar
Hosmer, D. W. and Lemeshow, S.. Applied Logistic Regression. Wiley, 2nd edition, 2000. [253, 339, 384]Google Scholar
Hossen, A.. A neural network approach for feature extraction and discrimination between Parkinsonian tremor and essential tremor. Technology and Health Care, 21(4):345356, 2013. [293]Google Scholar
Hotelling, H.. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24:417441, 1933. [94]Google Scholar
Howard, R. and Matheson, J.. Readings on the Principles and Applications of Decision Analysis, chapter Influence diagrams, pages 719–762. Strategic Decisions Group, 1984. [543]Google Scholar
Hruschka, E. R. and Ebecken, N. F. F.. Towards efficient variables ordering for Bayesian network classifiers. Data and Knowledge Engineering, 63:258269, 2007. [365]Google Scholar
Hsu, C.-W. and Lin, C.-J.. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13(2):415425, 2002. [317]Google Scholar
Hsu, C.-N., Huang, H.-J., and Wong, T.-T.. Why discretization works for naive Bayesian classifiers. In Proceedings of the 17th International Conference on Machine Learning, pages 399–406. Morgan Kaufmann, 2000. [374]Google Scholar
Hsu, C.-N., Huang, H.-J., and Wong, T.-T.. Implications of the Dirichlet assumption for discretization of continuous variables in naive Bayesian classifiers. Machine Learning, 53(3):235263, 2003. [374]Google Scholar
Huang, J. J., Yen, C. T., Tsao, H. W., Tsai, M. L., and Huang, C.. Neuronal oscillations in Golgi cells and Purkinje cells are accompanied by decreases in Shannon information entropy. Cerebellum, 13 (1):97108, 2014. [136]Google Scholar
Huang, J. Z., Ng, M. K., Rong, H., and Li, Z.. Automated variable weighting in k-means type clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5):657668, 2005. [467]Google Scholar
Huang, K., King, I., and Lyu, M. R.. Discriminative training of Bayesian Chow-Liu multinet classifiers. In Proceedings of the International Joint Conference on Neural Networks, pages 484–488, 2003. [365]Google Scholar
Huang, S., Li, J., Sun, L., Ye, J., Fleisher, A., Wu, T., Chen, K., and Reiman, E.. Learning brain connectivity of Alzheimer’s disease by sparse inverse covariance estimation. NeuroImage, 50(3): 935949, 2010. [46, 547, 548, 566, 567, 568, 569]Google Scholar
Huang, Z.. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 2:283304, 1998. [446, 467]Google Scholar
Hubert, L.. Monotone invariant clustering procedures. Psychometrika, 38:4762, 1973. [442]Google Scholar
Hubert, L. and Arabie, P.. Comparing partitions. Journal of Classification, 2:193218, 1985. [461]Google Scholar
Hull, D. A.. Information Retrieval Using Statistical Classification. PhD thesis, Stanford University, 1994. [225]Google Scholar
Hull, T. E. and Dobell, A. R.. Random number generators. SIAM Review, 4(3):230254, 1962. [125]Google Scholar
Hüllermeier, E., Fürnkranz, J., and Cheng, W.. Label ranking by learning pairwise preferences. Artificial Intelligence, 172:18971916, 2008. [423]Google Scholar
Hussein, A. and Santos, E.. Exploring case-based Bayesian networks and Bayesian multi-nets for classification. In Proceedings of the 17th Conference of the Canadian Society for Computational Studies of Intelligence, pages 485–492. Springer, 2004. [366]Google Scholar
Huygens, C.. De Ratiociniis in Ludo Aleae. Elsevirii, 1657. [140, 195]Google Scholar
Hyafil, L. and Rivest, R. L.. Constructing optimal binary decision trees is NP-complete. Information Processing Letters, 5(1):1517, 1976. [273]Google Scholar
Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D.. Statistical Analysis and Modelling of Spatial Point Patterns. Wiley, 2008. [579, 580, 602, 611, 612]Google Scholar
Imoto, S., Kim, S., Goto, T., Aburatani, S., Tashiro, K., Kuhara, S., and Miyano, S.. Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. In Proceedings of the 1st IEEE Bioinformatics Conference of the Computer Society, pages 219–227. IEEE, 2002. [502]Google Scholar
Inglese, M., Madelin, G., Oesingmann, N., Babb, J. S., Wu, W., Stoeckel, B., Herbert, G., and Johnson, J.. Brain tissue sodium concentration in multiple sclerosis: A sodium imaging study at 3 tesla. Brain, 133:847857, 2010. [190]Google Scholar
Inoue, M. and Ueda, N.. Exploitation of unlabeled sequences in hidden Markov models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25:15701581, 2003. [486]Google Scholar
Inselberg, A.. The plane with parallel coordinates. Visual Computer, 1(4):6991, 1985. [74]Google Scholar
Inza, I., Larrañaga, P., Sierra, B., Etxeberria, R., Lozano, J. A., and Peña, J. M.. Representing the behaviour of supervised classification learning algorithms by Bayesian networks. Pattern Recognition Letters, 20(11–13):12011209, 1999. [413]Google Scholar
Inza, I., Larrañaga, P., Etxeberria, R., and Sierra, B.. Feature subset selection by Bayesian network-based optimization. Artificial Intelligence, 123(1–2):157184, 2000. [241, 249, 353]Google Scholar
Inza, I., Larrañaga, P., Blanco, R., and Cerrolaza, A. J.. Filter versus wrapper gene selection approaches in DNA microarray domains. Artificial Intelligence in Medicine, 31(2):91103, 2004. [232, 235, 353]Google Scholar
Ising, E.. Beitrag zur theorie des ferromagnetismus. Zeitschrift fur Physik, 31:253258, 1925. [554]Google Scholar
Jaakkola, T., Sontag, D., Globerson, A., and Meilă, M.. Learning Bayesian network structure using LP relaxations. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pages 358–365, 2010. [536]Google Scholar
Jabalpurwala, I.. Brain Canada: One brain one community. Neuron, 92:601606, 2016. [11]Google Scholar
Jaeger, M., Nielsen, J. D., and Silander, T.. Learning probabilistic decision graphs. International Journal of Approximate Reasoning, 42(1-2):84100, 2006. [543]Google Scholar
Jafari, P. and Azuaje, F.. An assessment of recently published gene expression data analyses: Reporting experimental design and statistical factors. BMC Medical Informatics and Decision Making, 6(1): 27, 2006. [232, 234]Google Scholar
Jafari-Mamaghani, M., Anderson, M., and Krieger, P.. Spatial point pattern analysis of neurons using Ripley’s K-function in 3D. Frontiers in Neuroscience, 4:Article 9, 2010. [591]Google Scholar
Jain, A. K.. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8):651666, 2010. [467]Google Scholar
Jain, A. K. and Dubes, R. C.. Algorithms for Clustering Data. Prentice-Hall, 1988. [446]Google Scholar
Jain, A. K., Dubes, R. C., and Chen, C.-C.. Bootstrap techniques for error estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(5):628633, 1987. [225]Google Scholar
Jammalamadaka, A., Banerjee, S., Manjunath, B. S., and Kosik, K. S.. Statistical analysis of dendritic spine distributions in rat hippocampal cultures. BMC Bioinformatics, 14:287, 2013. [343, 611]Google Scholar
Jammalamadaka, A., Suwannatat, P., Fisher, S. K., Manjunath, B. S., Hollerer, T., and Luna, G.. Characterizing spatial distributions of astrocytes in the mammalian retina. Bioinformatics, 31(12): 2024–2031, 2015. [582]Google Scholar
Jammalamadaka, S. R. and SenGupta, A.. Topics in Circular Statistics. World Scientific, 2001. [62]Google Scholar
Jansson, D., Medvedev, A., Axelson, H., and Nyholm, D.. Signal and Image Analysis for Biomedical and Life Sciences, chapter Stochastic anomaly detection in eye-tracking data for quantification of motor symptoms in Parkinson’s disease, pages 63–82. Springer, 2015. [224]Google Scholar
Japkowicz, N.. The class imbalance problem: Significance and strategies. Complexity, 1:111117, 2000. [223]Google Scholar
Japkowicz, N. and Mohak, S.. Evaluating Learning Algorithms. A Classification Perspective. Cambridge University Press, 2011. [211, 224]Google Scholar
(Sir) Jeffreys, H.. Theory of Probability. Oxford University Press, 3rd edition, 1961. [196]Google Scholar
Jensen, F. V. and Nielsen, T. D.. Bayesian Networks and Decision Graphs. Springer, 2nd edition, 2007. [498, 543]Google Scholar
Jeong, S.-J., Lee, H., Hur, E.-M., Choe, Y., Koo, J. W., Lee, K. J. Rah, J.-C., Lim, H.-H., Sun, W., Moon, C., and Kim, K.. Korea Brain Initiative: Integration and control of brain functions. Neuron, 92:607– 611, 2016. [11]Google Scholar
Jiang, L. and Zhang, H.. Lazy averaged one-dependence estimators. In Proceedings of the 19th Canadian Conference on Computational Studies of Intelligence, volume 4013, pages 515–525. Springer, 2006. [359]Google Scholar
Jin, B., Strasburger, A., Laken, S. J., Kozel, F. A., Johnson, K. A., George, M. S., and Lu, X.. Feature selection for fMRI-based deception detection. BMC Bioinformatics, 10:S15, 2009. [240]Google Scholar
Jinno, S., Fleischer, F., Eckel, S., Schmidt, V., and Kosaka, T.. Spatial arrangement of microglia in the mouse hippocampus: A stereological study in comparison with astrocytes. Glia, 55:13341347, 2007. [575]Google Scholar
John, G. H. and Langley, P.. Estimating continuous distributions in Bayesian classifiers. In Proceedings of the 11th Annual Conference on Uncertainty in Artificial Intelligence, pages 338–345. Morgan Kaufmann, 1995. [376, 384]Google Scholar
John, G. H., Kohavi, R., and Pfleger, P.. Irrelevant features and the subset selection problem. In Proceedings of the 11th International Conference in Machine Learning, pages 121–129. Morgan Kaufmann, 1994. [238, 240, 241, 261]Google Scholar
Jolliffe, J.. Principal Component Analysis. Springer, 1986. [75]Google Scholar
Jones, B., Carvalho, C., Dobra, A., Hans, C., Carter, C., and West, M.. Experiments in stochastic computation for high-dimensional graphical models. Statistical Science, 20(4):383400, 2005. [570]Google Scholar
Jones, E. and Peters, A.. Cerebral Cortex: Volume 1. Cellular Components of the Cerebral Cortex. Plenum Press, 1984. [35]Google Scholar
Jordan, M. I. and Mitchell, T. M.. Machine learning: Trends, perspectives, and prospects. Science, 349 (6245):255260, 2015. [24]Google Scholar
Jordan, M. I., Ghahramani, Z., Jaakola, T. S., and Saul, L. K.. Learning in Graphical Models, chapter An introduction to variational methods for graphical models, pages 105–162. The MIT Press, 1998. [570]Google Scholar
Jupp, P. E. and Mardia, K. V.. Maximum likelihood estimators for the matrix von Mises–Fisher and Bingham distributions. The Annals of Statistics, 7:599606, 1979. [124]Google Scholar
Kahneman, D., Slovic, P., and Tversky, A.. Judgment under Uncertainty: Heuristics and Biases. Cambridge University Press, 1982. [498]Google Scholar
Kalisch, M. and Bühlmann, P.. Estimating high-dimensional directed acyclic graphs with the PC algorithm. Journal of Machine Learning Research, 8:613636, 2007. [529, 545]Google Scholar
Kalman, R. E.. A new approach to linear filtering and prediction problems. Transactions of the ASME – Journal of Basic Engineering, 82:3545, 1960. [539]Google Scholar
Kalousis, A., Prados, J., and Hilario, M.. Stability of feature selection algorithms: A study on high dimensional spaces. Knowledge and Information Systems, 12(1):95116, 2007. [255]Google Scholar
Kang, C. and Tian, J.. A hybrid generative/discriminative Bayesian classifier. In Proceedings of the 19th International Florida Artificial Intelligence Research Society Conference, pages 562–567. AAAI Press, 2006. [385]Google Scholar
Karagiannis, A., Gallopin, T., Csaba, D., Battaglia, D., Geoffroy, H., Rossier, J., Hillman, E., Staiger, J., and Cauli, B.. Classification of NPY-expressing neocortical interneurons. The Journal of Neuroscience, 29(11):36423659, 2009. [34]Google Scholar
Karimaghaloo, Z., Rivaz, H., Arnold, D. L., Collins, D. L., and Arbel, T.. Adaptive voxel, texture and temporal conditional random fields for detection of Gad-enhancing multiple sclerosis lesions in brain MRI. Medical Image Computing and Computer-Assisted Intervention, 16(3):543550, 2013. [566]Google Scholar
Karush, W.. Minima of functions of several variables with inequalities as side constraints. Master’s thesis, University of Chicago, 1939. [319]Google Scholar
Kasai, H., Fukuda, M., Watanabe, S., Hayashi-Takagi, A., and Noguchi, J.. Structural dynamics of dendritic spines in memory and cognition. Trends in Neuroscience, 33:121129, 2010. [41]Google Scholar
Kass, G. V.. An exploratory technique for investigating large quantities of categorical data. Applied Statistics, 29(2):119127, 1980. [283]Google Scholar
Kaufman, L. and Rousseeuw, P. J.. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, 1990. [447, 453, 467]Google Scholar
Kaufman, L. and Rousseeuw, P. J.. Statistical Data Analysis Based on the l 1 Norm and Related Methods, chapter Clustering by means of medoids, pages 405–416. North-Holland, 1997. [452]Google Scholar
Kayaalp, M. and Cooper, G. F.. A Bayesian network scoring metric that is based on globally uniform parameter priors. In Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, pages 251–258. Morgan Kaufmann, 2002. [546]Google Scholar
Kaynak, C. and Alpaydın, E.. Multistage cascading of multiple classifiers: One man’s noise is another man’s data. In Proceedings of the 17th International Conference on Machine Learning, pages 455–462. Morgan Kaufmann, 2000. [400]Google Scholar
Keivani, O. and Peña, J. M.. Unsupervised Learning Algorithms, chapter Uni- and multi-dimensional clustering via Bayesian networks, pages 163–192. Springer, 2016. [486]Google Scholar
Kendall, M. G. and Smith, B. B.. Randomness and random sampling numbers. Journal of the Royal Statistical Society, 101(1):147166, 1938. [125]Google Scholar
Kennedy, J. and Eberhart, R. C.. Particle swarm optimization. In Proceedings of the International Conference on Neural Networks, volume 4, pages 19421948, 1995. [247]Google Scholar
Keogh, E. J. and Pazzani, M. J.. Learning the structure of augmented Bayesian classifiers. International Journal on Artificial Intelligence Tools, 11(4):587601, 2002. [358, 366, 367, 368, 373]Google Scholar
Kester, M. I., Teunissen, C. E., Sutphen, C., Herries, E. M., Ladenson, J. H., Xiong, C., Scheltens, P., van der Flier, W. M., Morris, J. C., Holtzman, D. M., and Fagan, A. M.. Cerebrospinal fluid VILIP-1 and YKL-40, candidate biomarkers to diagnose, predict and monitor Alzheimer’s disease in a memory clinic cohort. Alzheimer’s Research and Therapy, 7(1):59, 2015. [186]Google Scholar
Khan, A., Baig, A. R., and Zafar, K.. Comparative analysis of multi-objective feature subset selection using meta-heuristic techniques. Journal of Basic and Applied Scientific Research, 3(12):210217, 2013. [251]Google Scholar
Khan, T., Nyholm, D., Westin, J., and Dougherty, M.. A computer vision framework for finger-tapping evaluation in Parkinson’s disease. Artificial Intelligence in Medicine, 60(1):2740, 2014. [314]Google Scholar
Khoury, N., Attal, F., Amirat, Y., Oukhellou, L., and Mohammed, S.. Data-driven based approach to aid Parkinson’s disease diagnosis. Sensors, 19(2):242, 2019. [223]Google Scholar
Khushaba, R. N., Al-Ani, A., and Al-Jumaily, A.. Feature subset selection using differential evolution. In Proceedings of the 15th International Conference on Neural Information Processing, pages 103–110. Springer, 2009. [241, 250]Google Scholar
Kim, J. H.. Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Computational Statistics & Data Analysis, 53:37353745, 2009. [225]Google Scholar
Kim, J. H. and Pearl, J.. A computational model for combined causal and diagnostic reasoning in inference systems. In Proceedings of the 8th International Joint Conference on Artificial Intelligence, volume 1, pages 190–193, 1983. [509]Google Scholar
Kindermann, R. and Snell, J. L. Markov Random Fields and Their Applications. American Mathematical Society, 1980. [547]Google Scholar
Kipinski, L., König, R., Sieluzycki, C., and Kordecki, W.. Application of modern tests for stationarity to single-trial MEG data: Transferring powerful statistical tools from econometrics to neuroscience. Biological Cybernetics, 105(3–4):183195, 2011. [167]Google Scholar
Kira, K. and Rendell, L. A.. The feature selection problem: Traditional methods and a new algorithm. In Proceedings of the 10th National Conference on Artificial Intelligence, pages 129–134, 1992. [236]Google Scholar
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.. Optimization by simulated annealing. Science, 220 (4598):671680, 1983. [242]Google Scholar
Kirvell, S. L., Elliott, M. S., Kalaria, R. N., Hortobágyi, T., Ballard, C. G., and Francis, P. T.. Vesicular glutamate transporter and cognition in stroke: A case-control autopsy study. Neurology, 75(20): 1803–1809, 2010. [193]Google Scholar
Kjærulff, U.. Optimal decomposition of probabilistic networks by simulated annealing. Statistics and Computing, 2(1):717, 1992. [511]Google Scholar
Kjærulff, U.. HUGS: Combining exact inference and Gibbs sampling in junction trees. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, pages 368–375. Morgan Kaufmann, 1995. [544]Google Scholar
Kjaerulff, U. and Madsen, A. L.. Bayesian Networks and Influence Diagrams – A Guide to Construction and Analysis. Springer, 2008. [495]Google Scholar
Kjeldsen, T. H.. A contextualized historical analysis of the Kuhn–Tucker theorem in nonlinear programming: The impact of World War II. Historia Mathematica, 27(4):331361, 2000. [319]Google Scholar
Kleinbaum, D. G.. Logistic Regression. Springer, 1994. [342]Google Scholar
Kleinberg, E. M.. Stochastic discrimination. Annals of Mathematics and Artificial Intelligence, 1(1): 207239, 1990. [413]Google Scholar
Kłopotek, M. A.. Very large Bayesian multinets for text classification. Future Generation Computer Systems, 21(7):10681082, 2005. [365]Google Scholar
Kloppel, S., Chu, C., Tan, G. C., Draganski, B., Johnson, H., Paulsen, J. S., Kienzle, W., Tabrizi, S. J., Ashburner, J., and Frackowiak, R. S.. Automatic detection of preclinical neurodegeneration: Presymptomatic Huntington disease. Neurology, 72(5):426431, 2009. [306]Google Scholar
Knill, D. C. and Richards, W., editors. Perception as Bayesian Inference. Cambridge University Press, 1996. [159]Google Scholar
Koch, C.. Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, 1999. [7]Google Scholar
Koch, C. and Jones, A.. Big science, team science, and open science for neuroscience. Neuron, 92: 612616, 2016. [21]Google Scholar
Koch, C. and Segev, I.. The role of single neurons in information processing. Nature Neuroscience, 3: 11711177, 2000. [43]Google Scholar
Kohavi, R.. Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pages 202–207, 1996. [409]Google Scholar
Kohavi, R. and John, G. H.. Wrappers for feature subset selection. Artificial Intelligence, 97(1):273– 324, 1997. [242]Google Scholar
Kohonen, T.. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43:5969, 1982. [319, 448]Google Scholar
Kohonen, T.. Self-Organizing Maps. Springer, 1997. [448]Google Scholar
Koivisto, M. and Sood, K.. Exact Bayesian structure discovery in Bayesian networks. Journal of Machine Learning Research, 5:549573, 2004. [536, 546]Google Scholar
Koller, D. and Friedman, N.. Probabilistic Graphical Models: Principles and Techniques. The MIT Press, 2009. [29, 490, 515, 543, 544, 550, 562, 569]Google Scholar
Koller, D. and Pfeffer, A.. Object-oriented Bayesian networks. In Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence, pages 302–313. Morgan Kaufmann, 1997. [543]Google Scholar
Koller, D. and Sahami, M.. Toward optimal feature selection. In Proceedings of the 13th International Conference on Machine Learning, pages 284–292, 1996. [363, 367]Google Scholar
Kolmogorov, A. N.. Sulla determinazione empirica di una lege di distribuzione. Giornale dell’Instituto Italiano degli Attuari, 4:8391, 1933a. [197]Google Scholar
Kolmogorov, A. N.. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, 1933b. [140]Google Scholar
Kolodner, J.. Case-based Reasoning. Morgan Kaufmann, 1993. [29]Google Scholar
Kontkanen, P., Myllymäki, P., and Tirri, H.. Constructing Bayesian finite mixture models by the EM algorithm. Technical Report C-1996-9, University of Helsinki, 1996. [351, 352]Google Scholar
Körding, K.. Decision theory: What “should” the nervous system do? Science, 318:606610, 2007. [159]Google Scholar
Kosa, P., Komori, M., Waters, R., Wu, T., Cortese, I., Ohayon, J., Fenton, K., Cherup, J., Gedeon, T., and Bielekova, B.. Novel composite MRI scale correlates highly with disability in multiple sclerosis patients. Multiple Sclerosis and Related Disorders, 4(6):526535, 2015. [190]Google Scholar
Kotsiantis, S. B.. Decision trees: A recent overview. Artificial Intelligence Review, 39(4):261283, 2013. [318]Google Scholar
Koza, J. R.. Genetic Programming. The MIT Press, 1992. [250]Google Scholar
Kozloski, J., Hamzei-Sichani, F., and Yuste, R.. Stereotyped position of local synaptic targets in neocortex. Science, 293:868872, 2001. [34]Google Scholar
Kozlov, A. V. and Koller, D.. Nonuniform dynamic discretization in hybrid networks. In Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence, pages 314–325. Morgan Kaufmann, 1997. [499]Google Scholar
Kriegel, H.-P., Kröger, P., and Zimek, A.. Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery from Data, 3:158, 2009. [458]Google Scholar
Kriegel, H.-P., Kröger, P., Sander, J., and Zimek, A.. Density-based clustering. WIRES Data Mining and Knowledge Discovery, 1:231240, 2011. [454]Google Scholar
Krishnapuram, R. and Keller, J. M.. The possibilistic C-means algorithm. Insights and recommendations. IEEE Transactions on Fuzzy Systems, 4:385393, 1996. [467]Google Scholar
Krishnapuraxa, R., Nasraoui, O., and Frigui, H.. The fuzzy c spherical shells algorithm, a new approach. IEEE Transactions on Neural Networks, 16:663671, 1992. [454]Google Scholar
Kruskal, J. B.. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7(1):4850, 1956. [356, 562]Google Scholar
Kruskal, W. H. and Wallis, W. A.. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47:583621, 1952. [187]Google Scholar
Kschischang, F. R., Frey, B. J., and Loeliger, H. A.. Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 47(2):498519, 2001. [553]Google Scholar
Küffner, R., Zach, N., Norel, R., Hawe, J., Schoenfeld, D., Wang, L., Li, G., Fang, L., Mackey, L., Hardiman, O., Cudkowicz, M., Sherman, A., Ertaylan, G., Grosse-Wentrup, M., Hothorn, T., van Ligtenberg, J. J. H. Macke, T. Meyer, B. Schölkopf, L. Tran, R. Vaughan, G. Stolovitzky, , and Leitner, M. L.. Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression. Nature Biotechnology, 33:5157, 2015. [21]Google Scholar
Kuhn, H. W. and Tucker, A. W.. Nonlinear programming. In Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, pages 481–492. University of California Press, Berkeley and Los Angeles, 1951. [319]Google Scholar
Kuipers, J., Moffa, G., and Heckerman, D.. Addendum on the scoring of Gaussian directed acyclic graphical models. The Annals of Statistics, 42(4):16891691, 2014. [535]Google Scholar
Kullback, S. and Leibler, R. A.. On information and sufficiency. Annals of Mathematical Statistics, 22 (1):7986, 1951. [139]Google Scholar
Kuncheva, L. I.. Combining Pattern Classifiers: Methods and Algorithms. Wiley, 2004. [390, 394, 413]Google Scholar
Kuncheva, L. I.. A stability index for feature selection. In Proceedings of the 25th International Multi-Conference on Artificial Intelligence and Applications, pages 421–427. ACTA Press Anaheim, 2007. [256]Google Scholar
Kurgan, L. and Cios, K. J.. CAIM discretization algorithm. IEEE Transactions on Knowledge and Data Engineering, 16(2):145153, 2004. [92]Google Scholar
Kurtz, A. K.. A research test of Rorschach test. Personnel Psychology, 1:4153, 1948. [213]Google Scholar
Kwoh, C. K. and Gillies, D.. Using hidden nodes in Bayesian networks. Artificial Intelligence, 88: 138, 1996. [351, 352]Google Scholar
Lachenbruch, P. A. and Mickey, M. R.. Estimation of error rates in discriminant analysis. Technometrics, 10(1):111, 1968. [268]Google Scholar
Lafferty, J., McCallum, A., and Pereira, F.. Conditional random fields: Probabilistic models for segmenting and labelling sequence data. In Proceedings of the 19th International Conference on Machine Learning, pages 282–289. Morgan Kaufmann, 2001. [565]Google Scholar
Lam, W. and Bacchus, F.. Learning Bayesian belief networks: An approach based on the MDL principle. Computational Intelligence, 10:269293, 1994. [532]Google Scholar
Lan, L. and Vucetic, S.. Improving accuracy of microarray classification by a simple multi-task feature selection filter. International Journal of Data Mining and Bioinformatics, 5(2):189208, 2011. [232, 235]Google Scholar
Landwehr, N., Hall, M., and Frank, E.. Logistic model trees. Machine Learning, 59(1–2):161205, 2003. [410]Google Scholar
Langleben, D. D., Loughead, J. W., Bilker, W. B., Ruparel, K., Childress, A. R., Busch, S. I., and Gur, R. C.. Telling truth from lie in individual subjects with fast event-related fMRI. Human Brain Mapping, 26(4):262272, 2005. [332]Google Scholar
Langley, P. and Sage, S.. Computational Learning Theory and Natural Learning Systems, chapter Scaling to domains with irrelevant features, pages 51–63. The MIT Press, 1994a. [238, 261]Google Scholar
Langley, P. and Sage, S.. Induction of selective Bayesian classifiers. In Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence, pages 399–406. Morgan Kaufmann, 1994b. [227, 261, 351, 353, 367]Google Scholar
Langseth, H. and Nielsen, T. D.. Classification using hierarchical naïve Bayes models. Machine Learning, 63(2):135159, 2006. [351, 352]Google Scholar
Langseth, H., Nielsen, T. D., Rumí, R., and Salmerón, A.. Parameter estimation and model selection for mixtures of truncated exponentials. International Journal of Approximate Reasoning, 51:485498, 2010. [376, 537]Google Scholar
Langseth, H., Nielsen, T. D., Rumí, R., and Salmerón, A.. Mixtures of truncated basis functions. International Journal of Approximate Reasoning, 53(2):212227, 2012. [502, 503]Google Scholar
Laplace, P. S.. Mémorie sur la probabilité des causes par les événements. Mémoires de l’Académie Royale des Sciences de Paris, 6:621656, 1774. [140]Google Scholar
Laplace, P. S.. Théorie Analytique des Probabilités. Courcier, 1836. [140]Google Scholar
Larkman, A. U.. Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns. Journal of Comparative Neurology, 306:307319, 1991. [44]Google Scholar
Larrañaga, P. and Bielza, C.. Alan Turing and Bayesian statistics. Mathware & Soft Computing Magazine, 19(2):2324, 2012. [159]Google Scholar
Larrañaga, P. and Lozano, J. A., editors. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers, 2002. [249]Google Scholar
Larrañaga, P., Kuijpers, C. M. H., Murga, R. H., and Yurramendi, Y.. Learning Bayesian network structures by searching for the best ordering with genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics, Part A, 26(4):487493, 1996a. [531]Google Scholar
Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R. H., and Kuijpers, C. M. H.. Structure learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9):912926, 1996b. [536]Google Scholar
Larrañaga, P., Kuijpers, C. M. H., Poza, M., and Murga, R. H.. Decomposing Bayesian networks: Triangulation of the moral graph with genetic algorithms. Statistics and Computing, 7(1):1934, 1997. [511]Google Scholar
Larrañaga, P., Etxeberria, R., Lozano, J. A., and Peña, J. M.. Optimization in continuous domains by learning and simulation of Gaussian networks. In Proceedings of the 2000 Genetic and Evolutionary Computation Conference, pages 201–204. Morgan Kaufmann, 2000. [536]Google Scholar
Laubach, M.. Wavelet-based processing of neuronal spike trains prior to discriminant analysis. Journal of Neuroscience Methods, 134:159168, 2004. [326]Google Scholar
Laubach, M., Shuler, M., and Nicolelis, M. A. L.. Independent component analyses for quantifying neuronal ensemble interactions. Journal of Neuroscience Methods, 94(1):141154, 1999. [82]Google Scholar
Lauritzen, S. L.. Propagation of probabilities, means and variances in mixed graphical association models. Journal of the American Statistical Association, 87:10981108, 1992. [503, 515]Google Scholar
Lauritzen, S. L.. The EM algorithm for graphical association models with missing data. Computational Statistics & Data Analysis, 19:191201, 1995. [479, 522]Google Scholar
Lauritzen, S. L.. Graphical Models. Oxford University Press, 1996. [529, 543]Google Scholar
Lauritzen, S. L. and Jensen, F. V.. Stable local computation with conditional Gaussian distributions. Statistics and Computing, 11(2):191203, 2001. [503, 515]Google Scholar
Lauritzen, S. L. and Spiegelhalter, D. J.. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B, 50(2): 157224, 1988. [479, 509]Google Scholar
Lauritzen, S. L. and Wermuth, N.. Graphical models for associations between variables, some of which are qualitative and some quantitative. The Annals of Statistics, 17(1):3157, 1989. [502, 570]Google Scholar
Lauritzen, S. L., Dawid, A. P., Larsen, B. N., and Leimer, H.-G.. Independence properties of directed Markov fields. Networks, 20(5):491505, 1990. [494]Google Scholar
Lawler, E. L. and Wood, D. E.. Branch-and-bound methods. A survey. Operations Research, 149(4), 1966. [242]Google Scholar
Lawton, M., Baig, F., Rolinski, M., Ruffman, C., Nithi, K., May, M. T., Ben-Shlomo, Y., and Hu, M. T.. Parkinson’s disease subtypes in the Oxford Parkinson disease center (OPDC) discovery cohort. Journal of Parkinson’s Disease, 5(2):269279, 2015. [88]Google Scholar
Lazar, C., Taminau, J., Meganck, S., Steenhoff, D., Coletta, A., Molter, C., de Schaetzen, V., Duque, R., Bersini, H., and Nowé, A.. A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9 (4):11061119, 2012. [261]Google Scholar
Lazarsfeld, P. F. and Henry, N. W.. Latent Structure Analysis. Houghton Mifflin, 1968. [478]Google Scholar
Le Cam, L.. The central limit theorem around 1935. Statistical Science, 1(1):7891, 1986. [196]Google Scholar
Le Mouel, C., Harris, K. D., and Yger, P.. Supervised learning with decision margins in pools of spiking neurons. Journal of Computational Neuroscience, 37(2):333344, 2014. [302]Google Scholar
Lee, G., Nho, K., Kang, B., Sohn, K.-A., and Kim, D.. Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Scientific Reports, 9:1952, 2019. [300]Google Scholar
Lee, J. and Kim, D.-W.. Feature selection for multi-label classification using multivariate mutual information. Pattern Recognition Letters, 34(3):349357, 2013. [434]Google Scholar
Lee, K. and Koval, J. J.. Determination of the best significance level in forward stepwise logistic regression. Communications in Statistics – Simulation and Computation, 26:559575, 1997. [261]Google Scholar
Lee, P. W., Wang, Z., Palmer, S. J., and McKeown, M. J.. Spectral clustering of fMRI data within regions of interest: Clarification of L-dopa effects in Parkinson’s disease. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 5235–5238. IEEE Press, 2007a. [452]Google Scholar
Lee, S.-I., Ganapathi, V., and Koller, D.. Efficient structure learning of Markov networks using l 1 -regularization. In Advances in Neural Information Processing Systems 19, pages 817–824, 2007b. [564]Google Scholar
Lees, A. J., Hardy, J., and Revesz, T.. Parkinson’s disease. Lancet, 373:20552066, 2009. [433]Google Scholar
Leguey, I., Bielza, C., Larrañaga, P., Kastanauskaite, A., Rojo, C., Benavides-Piccione, R., and DeFelipe, J.. Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex. Journal of Comparative Neurology, 524(13):25672576, 2016. [63, 66, 67, 113, 127, 169, 181]Google Scholar
Leguey, I., Bielza, C., and Larrañaga, P.. Circular Bayesian classifiers using wrapped Cauchy distributions. Data and Knowledge Engineering, 122, 101115, 2019. [148]Google Scholar
Leitner, F., Bielza, C., Hill, S. L., and Larrañaga, P.. Data publications correlate with citation impact. Frontiers in Neuroscience, 10:Article 419, 2016. [21]Google Scholar
Lenne, B., Blanc, J. L., Nandrino, J. L., Gallois, P., Hautecur, P., and Pezard, L.. Decrease of mutual information in brain electrical activity of patients with relapsing-remitting multiple sclerosis. Behavioural Neurology, 27(2):201212, 2013. [139]Google Scholar
Léon, C., Pin, S., Kreft-Jaïs, C., and Arwidson, P.. Perceptions of Alzheimer’s disease in the French population: Evolutions between 2008 and 2013 and associated factors in 2013. Journal of Alzheimer’s Disease, 47(2):467478, 2015. [192]Google Scholar
Lerner, U. and Parr, R.. Inference in hybrid networks: Theoretical limits and practical algorithms. In Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pages 310–318. Morgan Kaufmann, 2001. [515]Google Scholar
Lerner, U., Segal, E., and Koller, D.. Exact inference in networks with discrete children of continuous parents. In Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pages 319–328. Morgan Kaufmann, 2001. [503]Google Scholar
Lewis, P. M.. The characteristic selection problem in recognition systems. IRE Transactions on Information Theory, 8:171178, 1962. [227]Google Scholar
Li, C. and Ueno, M.. An extended depth-first search algorithm for optimal triangulation of Bayesian networks. International Journal of Approximate Reasoning, 80:294312, 2017. [511]Google Scholar
Li, C., Welling, M., Zhu, J., and Zhang, B.. Graphical generative adversarial networks. In Proceedings of the 32nd Conference on Neural Information Processing Systems, pages 6072–6083, 2018. [544]Google Scholar
Li, J. and Wang, Z. J.. Controlling the false discovery rate of the association/causality structure learned with the PC algorithm. Journal of Machine Learning Research, 10:475514, 2009. [529]Google Scholar
Li, J., Ray, S., and Lindsay, B.. A nonparametric statistical approach to clustering via mode identification. Journal of Machine Learning Research, 8:16871723, 2007. [486]Google Scholar
Li, R.-H. and Belford, G. G.. Instability of decision tree classification algorithms. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 570–575. ACM, 2002. [318]Google Scholar
Liang, F., Liu, C., and Carroll, R.. Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples. Wiley, 2010. [545]Google Scholar
Liao, X. X., Zhan, Z. X., Luo, Y. Y., Li, K., Wang, J. L., Guo, J. F., Yan, X. X., Xia, K., Tang, B. S., and Shen, L.. Association study between SNP rs150689919 in the DNA demethylation gene, TET1, and Parkinson’s disease in Chinese Han population. BMC Neurology, 13(196), 2013. [192]Google Scholar
Lichtman, J. W., Pfister, H., and Shavit, N.. The big data challenges of connectomics. Nature Neuroscience, 17:14481454, 2014. [19]Google Scholar
Lim, T.-S., Loh, W.-Y., and Shih, Y.-S.. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learning, 40(3):203-228, 2000. [318]Google Scholar
Lin, S. W., Ying, K. C., Chen, S. C., and Lee, Z. J.. Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Systems with Applications, 35:1817-1824, 2008. [241, 247]Google Scholar
Lipkovich, I., Citrome, L., Perlis, R., Deberdt, W., Houston, J. P., Ahl, J., and Hardy, T.. Early predictors of substantial weight gain in bipolar patients treated with olanzapine. Journal of Clinical Psychopharmacology, 26(3):316320, 2006. [283]Google Scholar
Little, R. J. A. and Rubin, D. B.. Statistical Analysis with Missing Data. Wiley, 1987. [95]Google Scholar
Liu, H. and Motoda, H.. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. [241, 244, 259]Google Scholar
Liu, H. and Motoda, H.. Computational Methods of Feature Selection. Chapman and Hall, 2008. [259]Google Scholar
Liu, H. and Setiono, R.. A probabilistic approach to feature selection: A filter solution. In Proceedings of the 13th International Conference on Machine Learning. Morgan Kaufmann, pages 319–327, 1996. [236, 237]Google Scholar
Liu, H., Hussain, F., Tan, C. L., and Dash, M.. Discretization: An enabling technique. Data Mining and Knowledge Discovery, 6(4):393423, 2002. [90]Google Scholar
Liu, J. N. K., Li, N. L., and Dillon, T. S.. An improved naive Bayes classifier technique coupled with a novel input solution method. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 31: 249256, 2001. [353]Google Scholar
Liu, M., Hommersom, A., van der Heijden, M., and Lucas, P. J. F.. Hybrid time Bayesian networks. In Proceedings of the 13th European Conference in Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pages 376–386. Springer, 2015. [546]Google Scholar
Liu, W., Zhu, P., Anderson, J. S., Yurgelun-Todd, D., and Fletcher, P. T.. Spatial regularization of functional connectivity using high-dimensional Markov random fields. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 363–370, 2010. [547]Google Scholar
Liu, Z., Malone, B., and Yuan, C.. Empirical evaluation of scoring functions for Bayesian network model selection. BMC Bioinformatics, 13(Suppl 15):S14, 2012. [546]Google Scholar
Lloyd, S. P.. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2): 129137, 1982. [467]Google Scholar
Lockhart, R. A. and Stephens, M. A.. Tests of fit for the von Mises distribution. Biometrika, 72(3): 647652, 1985. [169]Google Scholar
Loftsgaarden, D. O. and Quesenberry, C. P.. A nonparametric estimate of multivariate density function. The Annals of Mathematical Statistics, 36:10491051, 1965. [268]Google Scholar
Loh, W.-Y.. Fifty years of classification and regression trees. International Statistical Review, 82(3): 329348, 2014. [318]Google Scholar
Loh, W.-Y. and Shih, Y.-S.. Split selection methods for classification trees. Statistica Sinica, 7:815– 840, 1997. [283]Google Scholar
London, M., Schreibman, A., Häusser, M., Larkum, M. E., and Segev, I.. The information efficacy of a synapse. Nature Reviews Neuroscience, 5(4):332340, 2002. [139]Google Scholar
López-Cruz, P. L., Bielza, C., Larrañaga, P., Benavides-Piccione, R., and DeFelipe, J.. Models and simulation of 3D neuronal dendritic trees using Bayesian networks. Neuroinformatics, 9:347369, 2011. [44, 46, 129, 139, 539, 541]Google Scholar
López-Cruz, P. L., Bielza, C., and Larrañaga, P.. Learning conditional linear Gaussian classifiers with probabilistic class labels. In Proceedings of the 15th MultiConference of the Spanish Association for Artificial Intelligence, pages 139–148. Springer, 2013. [386]Google Scholar
López-Cruz, P. L., Bielza, C., and Larrañaga, P.. Learning mixtures of polynomials of multidimensional probability densities from data using B-spline interpolation. International Journal of Approximate Reasoning, 55(4):9891010, 2014a. [379, 380, 384]Google Scholar
López-Cruz, P. L., Larrañaga, P., DeFelipe, J., and Bielza, C.. Bayesian network modeling of the consensus between experts: An application to neuron classification. International Journal of Approximate Reasoning, 55(1):322, 2014b. [546]Google Scholar
López-Cruz, P. L., Bielza, C., and Larrañaga, P.. Directional naive Bayes classifiers. Pattern Analysis and Applications, 18:225246, 2015. [380, 381, 382, 383, 384]Google Scholar
López de Mántaras, R.. A distance-based attribute selection measure for decision tree induction. Machine Learning, 6(1):8192, 1991. [278]Google Scholar
Lu, F. M. and Yuan, Z.. PET/SPECT molecular imaging in clinical neuroscience: Recent advances in the investigation of CNS diseases. Quantitative Imaging in Medicine and Surgery, 5(3):433447, 2015. [16]Google Scholar
Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L.. The expressive power of neural networks: A view from the width. In Proceedings of the 31st Conference on Neural Information Processing Systems, 2017. [299]Google Scholar
Lucas, P.. Advances in Bayesian Networks, chapter Restricted Bayesian network structure learning, pages 217–232. Springer, 2004. [358, 359, 367]Google Scholar
Luce, R. D. and Perry, A. D.. A method of matrix analysis of group structure. Psychometrika, 14(2): 95116, 1949. [544]Google Scholar
Luengo-Sanchez, S., Bielza, C., and Larrañaga, P.. Hybrid Gaussian and von Mises model-based clustering. In 22nd European Conference on Artificial Intelligence, pages 855–862. IOS Press, 2016. [484]Google Scholar
Luengo-Sanchez, S., Fernaud-Espinosa, I., Bielza, C., Benavides-Piccione, R., Larrañaga, P., and DeFelipe, J.. 3D morphology-based clustering and simulation of human pyramidal cell dendritic spines. PLoS Computational Biology, 14(6):Article e1006221, 2018. [41, 42, 465, 475, 484]Google Scholar
Luengo-Sanchez, S., Larrañaga, P., and Bielza, C.. A directional-linear Bayesian network for clustering and simulation of neural somas. IEEE Access, 7:6990769921, 2019. [484]Google Scholar
Lunn, D., Jackson, C., Best, N., Thomas, A., and Spiegelhalter, D.. The BUGS Book: A Practical Introduction to Bayesian Analysis. Chapman & Hall/CRC, 2012. [545]Google Scholar
Luo, G. and Min, W.. Subject-adaptive real-time sleep stage classification based on conditional random fields. In AMIA Annual Symposium Proceedings, pages 488–492, 2007. [566]Google Scholar
Lusted, L. B.. Logical analysis in roentgen diagnosis. Radiology, 74:178193, 1960. [208]Google Scholar
Luxburg, U. V.. A tutorial on spectral clustering. Statistics and Computing, 17:395416, 2007. [450, 467]Google Scholar
Maas, A. I. R., Harrison-Felix, C. L., Menon, D., Adelson, P. D., Balkin, T., Bullock, R., Engel, D. C., Gordon, W., Langlois-Orman, J., Lew, H. L., Robertson, C., Temkin, N., Valadka, A., Verfaellie, M., Wainwright, M., Wright, D. W., and Schwab, K.. Standardizing data collection in traumatic brain injury. Journal of Neurotrauma, 28(2):177187, 2011. [20]Google Scholar
Maas, W.. Networks of spiking neurons: The third generation of neural network models. Neural Networks, 10:16591671, 1997. [300]Google Scholar
MacDonald, V., Halliday, G. M., Trent, R. J., and McCusker, E. A.. Significant loss of pyramidal neurons in the angular gyrus of patients with Huntington’s disease. Neuropathology and Applied Neurobiology, 23(6):492495, 1997. [179]Google Scholar
Macnaughton-Smith, P., Williams, W. T., Dale, M. B., and Mockett, L. G.. Dissimilarity analysis: A new technique of hierarchical sub-division. Nature, 202:10341035, 1964. [442]Google Scholar
MacQueen, J.. Some methods for classification and analyisis of multivariate observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pages 281– 297, 1967. [444, 445, 467]Google Scholar
Madden, M. G.. On the classification performance of TAN and general Bayesian networks. Knowledge-Based Systems, 22(7):489495, 2009. [366]Google Scholar
Madeira, S. C. and Oliveira, A. L.. Biclustering algorithms for biological data analysis: A survey. IEEE Transaction on Computational Biology and Bioinformatics, 1(1):2445, 2004. [468]Google Scholar
Madigan, D. and York, J.. Bayesian graphical models for discrete data. International Statistical Review, 63(2):215232, 1995. [519]Google Scholar
Madigan, D., Andersson, S. A., Perlman, M. D., and Volinsky, C. T.. Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs. Communications in Statistics – Theory and Methods, 25:24932519, 1996. [546]Google Scholar
Madjarov, G., Kocev, D., Gjorgjevikj, D., and Džeroski, S.. An extensive experimental comparison of methods for multi-label learning. Pattern Recognition, 45(9):30843104, 2012. [427]Google Scholar
Mahfouz, A., van de Giessen, M., van der Maaten, L., Huisman, S., Reinders, M., Hawrylycz, M. J., and Lelieveldt, B. P. F.. Visualizing the spatial gene expression organization in the brain through non-linear similarity embeddings. Methods, 73:7989, 2015. [84]Google Scholar
Mainen, Z. F. and Sejnowski, T. J.. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382(6589):363366, 1996. [43]Google Scholar
Maitra, R.. Clustering massive datasets with applications to software metrics and tomography. Technometrics, 43(3):336346, 2001. [486]Google Scholar
Malek, N., Swallow, D. M., Grosset, K. A., Lawton, M. A., Smith, C. R., Bajaj, N. P., Barker, R. A., Ben-Shlomo, Y., Bresner, C., Burn, D. J., Foltynie, T., Morris, H. R., Williams, N., Wood, N. W., Grosset, D. G., and PRoBaND Investigators. Olfaction in Parkin single and compound heterozygotes in a cohort of young onset Parkinson’s disease patients. Acta Neurologica Scandinavica, 134(4): 271–276, 2016. [186]Google Scholar
Malone, B., Yuan, C., and Hansen, E. A.. Memory-efficient dynamic programming for learning optimal Bayesian networks. In Proceedings of the 25th AAAI Conference on Artificial Intelligence, pages 1057–1062. AAAI Press, 2011. [536]Google Scholar
Manca, M., Ferraresi, G., Cosma, M., Cavazzuti, L., Morelli, M., and Benedetti, M. G.. Gait patterns in hemiplegic patients with equinus foot deformity. BioMed Research International, 2014:Article 939316, 2014. [440]Google Scholar
Mandelbrot, B.. The Fractal Geometry of Nature. Freeman, 1982. [36]Google Scholar
Mann, H. B. and Whitney, D. R.. On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18(1):5060, 1947. [178]Google Scholar
Mardia, K. V. and Jupp, P. E.. Directional Statistics. Wiley, 2000. [62]Google Scholar
Mardia, K. V., Kent, J. T., and Bibby, J. M.. Multivariate Analysis. Academic Press, 1979. [457]Google Scholar
Mardia, K. V., Hughes, G., Taylor, C. C., and Singh, H.. A multivariate von Mises distribution with applications to bioinformatics. The Canadian Journal of Statistics, 36(1):99109, 2008. [122]Google Scholar
Margaritis, D. and Bromberg, G.. Efficient Markov network structure discovery using particle filter. Computational Intelligence, 25(4):367394, 2009. [571]Google Scholar
Margaritis, D. and Thrun, V.. Bayesian network induction via local neighborhoods. In Advances in Neural Information Processing Systems 12, volume 12, pages 505–511. The MIT Press, 2000. [363, 529, 563]Google Scholar
Marill, T. and Green, D. M.. On the effectiveness of receptors in recognition systems. IEEE Transactions on Information Theory, 9:1117, 1963. [240, 241]Google Scholar
Marin, E. C., Jefferis, T., Komiyama, G. S., Zhu, H., and Luo, L.. Representation of the glomerular olfactory map in the drosophila brain. Cell, 109:243255, 2002. [82, 215, 326]Google Scholar
Markatou, M., Tian, H., Biswas, G., and Hripcsak, S.. Analysis of variance of cross-validation estimators of the generalization error. Journal of Machine Learning Research, 6:11271168, 2005. [225]Google Scholar
Maron, M. and Kuhns, J.. On relevance, probabilistic indexing, and information retrieval. Journal of the Association for Computing Machinery, 7:216244, 1960. [350, 367]Google Scholar
Martin, C. L. and Chun, M.. The BRAIN Initiative: Building, strengthening, and sustaining. Neuron, 92:570573, 2016. [9]Google Scholar
Martin-Lof, P.. The notion of redundancy and its use as a quantitative measure of the discrepancy between a statistical hypothesis and a set of observational data. Scandinavian Journal of Statistics, 1:318, 1974. [485]Google Scholar
Martínez-Ramón, M., Koltchinskii, V., Heileman, G. L., and Posse, S.. fMRI pattern classification using neuroanatomically constrained boosting. NeuroImage, 31(3):11291141, 2006. [406]Google Scholar
Martínez-Rodríguez, A. M., May, J. H., and Vargas, L. G.. An optimization-based approach for the design of Bayesian networks. Mathematical and Computer Modelling, 48(7-8):12651278, 2008. [536]Google Scholar
Masegosa, A. R. and Moral, S.. An interactive approach for Bayesian network learning using domain/expert knowledge. International Journal of Approximate Reasoning, 54(8):11681181, 2013. [546]Google Scholar
Matell, M. S., Shea-Brown, E., Gooch, C., Wilson, A. G., and Rinzel, J.. A heterogeneous population code for elapsed time in rat medial agranular cortex. Behavioral Neuroscience, 125(1):5473, 2011. [326]Google Scholar
Matérn, B.. Spatial Variation: Stochastic Models and Their Application to Some Problems in Forest Surveys and Other Sampling Investigations. PhD thesis, Meddelanden från Statens Skogsforskningsinstitut, 1960. [605]Google Scholar
Matsuzaki, M., Honkura, N., Ellis-Davies, G. C., and Kasai, H.. Structural basis of long-term potentiation in single dendritic spines. Nature, 429:761766, 2004. [41]Google Scholar
Matus, A.. Actin-based plasticity in dendritic spines. Science, 290:754758, 2000. [41]Google Scholar
Matzkevich, I. and Abramson, B.. The topological fusion of Bayes nets. In Proceedings of the 8th Conference on Uncertainty in Artificial Intelligence, pages 191–198. Morgan Kaufmann, 1992. [546]Google Scholar
McCullagh, P. and Nelder, J. A.. Generalized Linear Models. Chapman & Hall/CRC, 2nd edition, 1989. [385]Google Scholar
McCulloch, W. and Pitts, W.. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5:115133, 1943. [318]Google Scholar
McGarry, L. M., Packer, A. M., Fino, E., Nikolenko, V., Sippy, T., and Yuste, R.. Quantitative classification of somatostatin-positive neocortical interneurons identifies three interneuron subtypes. Frontiers in Neural Circuits, 4:Article 12, 2010. [34]Google Scholar
McLachlan, G. J. and Krishnan, T.. The EM Algorithm and Extensions. Wiley, 1997. [473, 475, 486]Google Scholar
McLachlan, G. J. and Peel, D.. Finite Mixture Models. Wiley, 2000. [373, 486]Google Scholar
McNemar, Q.. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12(2):153157, 1947. [219]Google Scholar
Mead, C.. Analog VLSI and Neural Systems. Addison-Wesley, 1989. [30]Google Scholar
Meek, C.. Graphical Models: Selecting Causal and Statistical Models. PhD thesis, Carnegie Mellon University, 1997. [531]Google Scholar
Meier, L., van de Geer, S., and Bühlmann, P.. The group lasso for logistic regression. Journal of the Royal Statistical Society, Series B, 70(1):5371, 2008. [341]Google Scholar
Meilă, M.. Comparing clustering by the variation of information. In 16th Annual Conference on Learning Theory, pages 173–187, 2003. [462]Google Scholar
Meilă, M. and Jordan, M. I.. Learning with mixtures of trees. Journal of Machine Learning Research, 1:148, 2000. [570]Google Scholar
Melnykov, V. and Maitra, R.. Finite mixture models and model-based clustering. Statistics Surveys, 4:80116, 2010. [478, 486]Google Scholar
Melville, P. and Mooney, R. J.. Creating diversity in ensembles using artificial data. Information Fusion, 6(1):99111, 2005. [413]Google Scholar
Meng, X. L. and Rubin, D.. Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, 80(2):267278, 1993. [473]Google Scholar
Mercer, J.. Functions of positive and negative type, and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society of London, 83(559):6970, 1909. [312]Google Scholar
Merchán-Pérez, A., Rodríguez, J.-R., Alonso-Nanclares, L., Schertel, A., and DeFelipe, J.. Counting synapses using FIB/SEM microscopy: A true revolution for ultrastructural volume reconstruction. Frontiers in Neuroanatomy, 3:Article 18, 2009. [48, 601]Google Scholar
Merchán-Pérez, A., Rodríguez, J.-R., González, S., Robles, V., DeFelipe, J., Larrañaga, P., and Bielza, C.. Three-dimensional spatial distribution of synapses in the neocortex: A dual-beam electron microscopy study. Cerebral Cortex, 24(6):15791588, 2014. [48, 49, 607, 610, 611]Google Scholar
Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyanand, F. Jackson, B. L., Imam, N., Guo, C., Nakamura, Y., Brezzo, B., Vo, I., Esser, S. K., Appuswamy, R., Taba, B., Amir, A., Flickner, M. D., Risk, W. P., Manohar, R., and Modha, D. S.. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 345:668673, 2014. [30]Google Scholar
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):10871092, 1953. [519, 545, 609]Google Scholar
Michalski, R. S.. On the quasi-minimal solution of the general covering problem. In Proceedings of the 5th International Symposium on Information Processing, pages 125–128, 1969. [287]Google Scholar
Michalski, R. S. and Chilausky, R.. Learning by being told and learning from examples: An experimental comparison of the two methods of knowledge acquisition in the context of developing an expert system for soybean disease diagnosis. International Journal of Policy Analysis and Information Systems, 4:125160, 1980. [287]Google Scholar
Michalski, R. S. and Stepp, R. E.. Automated construction of classifications: Conceptual clustering versus numerical taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5 (4):396410, 1983. [468]Google Scholar
Michie, D., Spiegelhalter, D. J., and Taylor, C. C.. Machine Learning, Neural and Statistical Classification. Ellis Horwood, 1994. [29]Google Scholar
Mielke, M. M., Leoutsakos, J. M., Tschanz, J. T., Green, R. C., Tripodis, Y., Corcoran, C. D., Norton, M. C., and Lyketsos, C. G.. Interaction between vascular factors and the APOE ε4 allele in predicting rate of progression in Alzheimer’s disease. Journal of Alzheimer’s Disease, 26(1):127– 134, 2011. [194]Google Scholar
Mihaljević, B., Bielza, C., Benavides-Piccione, R., DeFelipe, J., and Larrañaga, P.. Multi-dimensional classification of GABAergic interneurons with Bayesian network-modeled label uncertainty. Frontiers in Computational Neuroscience, 8:Article 150, 2014. [417]Google Scholar
Mihaljević, B., Benavides-Piccione, R., Guerra, L., DeFelipe, J., Larrañaga, P., and Bielza, C.. Classifying GABAergic interneurons with semi-supervised projected model-based clustering. Artificial Intelligence Medicine, 65(1):4959, 2015. [475, 486]Google Scholar
Miller, E.. Effectiveness of rehabilitation in multiple sclerosis. Polski Merkuriusz Lekarski, 26(153): 205207, 2009. [175]Google Scholar
Milligan, G. W.. An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45:325342, 1980. [467]Google Scholar
Milligan, G. W.. A Monte-Carlo study of thirty internal criterion measures for cluster analysis. Psychometrika, 46:187199, 1981. [458]Google Scholar
Milligan, G. W. and Cooper, M. C.. An examination of procedures for determining the number of clusters in a data set. Psychometrica, 50:159179, 1985. [458, 468]Google Scholar
Minka, T.. Expectation propagation for approximate Bayesian inference. In Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, pages 362–369. AUAI Press, 2001. [544, 570]Google Scholar
Minsky, M. L.. Steps toward artificial intelligence. Transactions on Institute of Radio Engineers, 49: 830, 1961. [299, 350]Google Scholar
Minsky, M. L.. Memoir on inventing the confocal scanning microscope. Scanning, 10:128138, 1988. [13]Google Scholar
Minsky, M. L. and Papert, S. A.. Perceptrons. The MIT Press, 1969. [318]Google Scholar
Mirkin, B.. Choosing the number of clusters. WIREs Data Mining and Knowledge Discovery, 1: 252260, 2011. [456]Google Scholar
Mitchell, T. M., Hutchinson, R., Niculescu, R. S., Pereira, F., Wang, X., Just, M., and Newman, S.. Learning to decode cognitive states from brain images. Machine Learning, 57(1–2):145175, 2004. [239, 372]Google Scholar
Mladenic, D. and Grobelnik, M.. Feature selection for unbalanced class distribution and naive Bayes. In Proceedings of the 16th International Conference on Machine Learning, pages 258–267. Morgan Kaufmann, 1999. [232, 234, 352]Google Scholar
Mladenovic, M. and Hansen, P.. Variable neighborhood search. Computers & Operations Research, 24:10971100, 1997. [244]Google Scholar
Mohamed, F. B., Vinitski, S., Gonzalez, C. F., Faro, S. H., Lublin, F. A., Knobler, R., and Gutierrez, J. E.. Increased differentiation of intracranial white matter lesions by multispectral 3D-tissue segmentation: Preliminary results. Magnetic Resonance Imaging, 19(2):207218, 2001. [263]Google Scholar
Mojena, R.. Hierarchical grouping methods and stopping rules. An evaluation. The Computer Journal, 20:359363, 1977. [458, 465]Google Scholar
Moldwin, T. and Segev, I.. Perceptron learning and classification in a modeled cortical pyramidal cell. Frontiers in Computional Neuroscience, 14:Article 33, 2020. [297]Google Scholar
Mollayeva, T., Pratt, B., Mollayeva, S., Shapiro, C. M., Cassidy, J. D., and Colantonio, A.. The relationship between insomnia and disability in workers with mild traumatic brain injury/concussion: Insomnia and disability in chronic mild traumatic brain injury. Sleep Medicine, 20:157166, 2015. [192]Google Scholar
Moller, J. and Waagepetersen, R. P.. Statistical Inference and Simulation for Spatial Point Processes. Chapman & Hall/CRC, 2003. [611]Google Scholar
Monti, S. and Cooper, G. F.. A multivariate discretization method for learning Bayesian networks from mixed data. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pages 404–413. Morgan Kaufmann, 1998. [499]Google Scholar
Monti, S. and Cooper, G. F.. A Bayesian network classifier that combines a finite mixture model and a naïve Bayes model. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, pages 447–456, 1999. [352]Google Scholar
Moral, S., Rumí, R., and Salmerón, A.. Mixtures of truncated exponentials in hybrid Bayesian networks. In Proceedings of the 6th European Conference in Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pages 156–167. Springer, 2001. [385, 502, 503]Google Scholar
Morales, D., Vives-Gilabert, Y., Gómez-Ansón, B., Bengoetxea, E., Larrañaga, P., Bielza, C., Pago-nabarraga, J., Kulisevsky, J., Corcuera-Solano, I., and Delfino, M.. Predicting dementia development in Parkinson’s disease using Bayesian network classifiers. Psychiatry Research: NeuroImaging, 213:9298, 2013. [238, 353]Google Scholar
Morales, J., Alonso-Nanclares, L., Rodríguez, J.-R., DeFelipe, J., Rodríguez, A., and Merchán-Pérez, A.. Espina: A tool for the automated segmentation and counting of synapses in large stacks of electron microscopy images. Frontiers in Neuroanatomy, 5:Article 18, 2011. [14, 49]Google Scholar
Morales, J., Benavides-Piccione, R., Dar, M., Fernaud, I., Rodríguez, A., Anton-Sanchez, L., Bielza, C., Larrañaga, P., DeFelipe, J., and Yuste, R.. Random positions of dendritic spines in human cerebral cortex. Journal of Neuroscience, 34(30):1007810084, 2014. [591]Google Scholar
Moreno-Dominguez, D., Anwander, A., and Knösche, T. R.. A hierarchical method for whole-brain connectivity-based parcellation. Human Brain Mapping, 35(10):50005025, 2014. [440]Google Scholar
Mori, E., Ikeda, M., Nagai, R., Matsuo, K., Nakagawa, M., and Kosaka, K.. Long-term donepezil use for dementia with Lewy bodies: Results from an open-label extension of phase III trial. Alzheimer’s Research and Theraphy, 7(1):5, 2015. [175]Google Scholar
Morisita, M.. Memoires of the Faculty of Science, volume 185 of Series E Biology, chapter Measuring of the dispersion and analysis of distribution patterns, pages 215–235. Kyushu University, 1959. [585]Google Scholar
Mortezapouraghdam, Z., Wilson, R. C., Schwabe, L., and Strauss, D. J.. Bayesian modeling of the dynamics of phase modulations and their application to auditory event related potentials at different loudness scales. Frontiers in Computational Neuroscience, 10:Article 2, 2016. [113]Google Scholar
Mu, J., Chaudhuri, K. R., Bielza, C., De Pedro, J., Larrañaga, P., and Martínez-Martín, P.. Parkinson’s disease subtypes identified from cluster analysis of motor and non-motor symptoms. Frontiers in Aging Neuroscience, 9:Article 301, 2017. [445]Google Scholar
Muata, K. and Bryson, O.. Post-pruning in decision tree induction using multiple performance measures. Computers & Operations Research, 34(11):33313345, 2007. [280]Google Scholar
Mukherjee, I. and Schapire, R. E.. A theory of multiclass boosting. Journal of Machine Learning Research, 14(1):437497, 2013. [414]Google Scholar
Mumford, J. A. and Ramsey, J. D.. Bayesian networks for fMRI: A primer. NeuroImage, 86:573582, 2014. [535]Google Scholar
Muni, D. P., Pal, N. R., and Das, J.. A novel approach to design classifiers using genetic programming. IEEE Transactions on Evolutionary Computation, 8(2):183196, 2004. [241, 250]Google Scholar
Mure, H., Tang, C. C., Argyelan, M., Ghilardi, M. F., Kaplitt, M. G., Dhawan, V., and Eidelberg, D.. Improved sequence learning with subthalamic nucleus deep brain stimulation: Evidence for treatment-specific network modulation. The Journal of Neuroscience, 32(8):28042813, 2012. [195]Google Scholar
Murphy, K. P.. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, University of California at Berkeley, 2002. [537]Google Scholar
Murphy, K. P.. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012. [384, 569]Google Scholar
Murphy, K. P., Weiss, Y., and Jordan, M. I.. Loopy belief propagation for approximate inference: An empirical study. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, pages 467–475. Morgan Kaufmann, 1999. [544]Google Scholar
Murtagh, F. and Contreras, P.. Algorithms for hierarchical clustering: An overview. WIREs Data Mining and Knowledge Discovery, 2:8697, 2012. [439]Google Scholar
Murthy, S. B., Moradiya, Y., Hanley, D. F., and Ziai, W. C.. Palliative care utilization in nontraumatic intracerebral hemorrhage in the United States. Critical Care Medicine, 44(3):575582, 2016. [179, 192]Google Scholar
Mwangi, B., Tian, S., and Soares, J. C.. A review of feature reduction techniques in neuroimaging. Neuroinformatics, 12:229244, 2014. [226]Google Scholar
Myllymäki, M., Panoutsopoulou, I. G., and Särkkä, A.. Analysis of spatial structure of epidermal nerve entry point patterns based on replicated data. Journal of Microscopy, 247:228239, 2012. [592]Google Scholar
Nadeau, C. and Bengio, Y.. Inference for the generalization error. Machine Learning, 52(3):239281, 2003. [218]Google Scholar
Narasimhan, M. and Bilmes, J. A.. A submodular-supermodular procedure with applications to discriminative structure learning. In Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, pages 404–412. AUAI Press, 2005. [385]Google Scholar
Narendra, P. and Fukunaga, K.. A branch and bound algorithm for feature subset selection. IEEE Transactions on Computers, 26:917922, 1977. [241, 242]Google Scholar
Nature Neuroscience Editorial. Running the numbers. Nature Neuroscience, 8(2):123–123, 2005. [22]Google Scholar
Nayak, C. S., Sinha, S., Nagappa, M., Kandavel, T., and Taly, A. B.. Effect of valproate on the sleep microstructure of juvenile myoclonic epilepsy patients – A cross-sectional CAP based study. Sleep Medicine, 17:129133, 2016. [186]Google Scholar
Neal, R. M. and Hinton, G. E.. Learning in Graphical Models, chapter A view of the EM algorithm that justifies incremental, sparse, and other variants, pages 355–368. NATO Science Series, 1999. [473]Google Scholar
Neapolitan, R.. Learning Bayesian Networks. Prentice Hall, 2003. [543]Google Scholar
Nemenyi, P. B.. Distribution-free Multiple Comparisons. PhD thesis, Princeton University, 1963. [194]Google Scholar
Neuro Cloud Consortium. To the cloud! A grassroots proposal to accelerate brain science discovery. Neuron, 92:622–627, 2016. [18]Google Scholar
Newcomb, S.. A generalized theory of the combination of observations so as to obtain the best results. American Journal of Mathematics, 8:343366, 1886. [486]Google Scholar
Newton, M., Kendziorski, C., Richmond, C., Blattner, C., and Tsui, K.. On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. Journal of Computational Biology, 8:3752, 2001. [233]Google Scholar
Neyman, J. and Pearson, E. S.. On the use and interpretation of certain criteria for purposes of statistical inference. Part I. Biometrika, 20:175240, 1928a. [197]Google Scholar
Neyman, J. and Pearson, E. S.. On the use and interpretation of certain criteria for purposes of statistical inference. Part II. Biometrika, 20:263294, 1928b. [197]Google Scholar
Neyman, J. and Scott, E. L.. A theory of the spatial distribution of galaxies. The Astrophysical Journal, 116:144163, 1952. [604]Google Scholar
Ng, A. and Jordan, M.. On discriminative vs. generative classifiers: A comparison of logistic regression and naïve Bayes. In Advances in Neural Information Processing Systems 14, pages 841–848. The MIT Press, 2002. [385]Google Scholar
Nielsen, J. D., Kočka, T., and Peña, J. M.. On local optima in learning Bayesian networks. In Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence, pages 435–442. Morgan Kaufmann, 2003. [531]Google Scholar
Nielsen, J. D., Gámez, J. A., and Salmerón, A.. Modelling and inference with conditional Gaussian probabilistic decision graphs. International Journal of Approximate Reasoning, 53(7):929945, 2012. [543]Google Scholar
Nielson, J. L., Guandique, C. F., Liu, A. W., Burke, D. A., Lash, A. T., Moseanko, R., Hawbecker, S., Strand, S. C., Zdunowski, S., Irvine, K. A., Brock, J. H., Nout-Lomas, Y. S., Gensel, J. C., Anderson, K. D., Segal, M. R., Rosenzweig, E. S., Magnuson, D. S., Whittemore, S. R., McTigue, D. M., Popovich, P. G., Rabchevsky, A. G., Scheff, S. W., Steward, O., Courtine, G., Edgerton, V. R., Tuszynski, M. H., Beattie, M. S., Bresnahan, J. C., and Ferguson, A. R.. Development of a database for translational spinal cord injury research. Journal of Neurotrauma, 31(21):1789–1799, 2014. [20]Google Scholar
Nieuwenhuis, S., Forstmann, B. U., and Wagenmakers, E.-J.. Erroneous analyses of interactions in neuroscience: A problem of significance. Nature Neuroscience, 14(9):11051107, 2011. [22]Google Scholar
Nikas, J. B. and Low, W. C.. Application of clustering analysis to the diagnosis of Huntington disease in mice and other diseases with well-defined group boundaries. Computer Methods and Programs in Biomedicine, 104(3):133147, 2011. [453]Google Scholar
Niso, G., Carrasco, S., Gudín, M., Maestú, F., Del-Pozo, F., and Pereda, F.. What graph theory actually tells us about resting state interictal MEG epileptic activity. NeuroImage: Clinical, 23(8):503515, 2015. [454]Google Scholar
U. Nodelman, C. R. Shelton, and D. Koller. Continuous time Bayesian networks. In Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, pages 378–387, 2002. [546]Google Scholar
Nodelman, U., Shelton, C. R., and Koller, D.. Learning continuous time Bayesian networks. In Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence, pages 451–458, 2003. [546]Google Scholar
Nordin, J. A.. Determining sample size. Journal of the American Statistical Association, 39:497506, 1944. [195]Google Scholar
Nunes, C., Silva, D., Guerreiro, M., de Mendonca, A., Carvalho, A. M., and Madeira, S. C. Class imbalance in the prediction of dementia from neuropsychological data. In Proceedings of the 16th Portuguese Conference on Artificial Intelligence, pages 138–151, 2013. [223]Google Scholar
Nusser, Z., Lujan, R., Laube, G., Roberts, J., Molnar, E., and Somogyi, P.. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron, 21: 545559, 1998. [39]Google Scholar
Ojala, M. and Garriga, G. C.. Permutation tests for studying classifier performance. Journal of Machine Learning Research, 11:18331863, 2010. [225]Google Scholar
Okabe, A. and Sugihara, K.. Spatial Analysis Along Networks. Wiley, 2012. [611]Google Scholar
Okano, H., Sasaki, E., Yamamori, T., Iriki, A., Shimogori, T., Yamaguchi, Y., Kasai, K., and Miyawaki, A.. Brain/MINDS: A Japanese national brain project for marmoset neuroscience. Neuron, 92:582– 590, 2016. [10]Google Scholar
Olesen, K. G.. Causal probabilistic networks with both discrete and continuous variables. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(3):275279, 1993. [502]Google Scholar
Oliveira, F. H. M., Machado, A. R. P., and Andrade, A. O.. On the use of t-distributed stochastic neighbor embedding for data visualization and classification of individuals with Parkinson’s disease. Computational Mathematical Methods in Medicine, 2018:Article 8019232, 2018. [84]Google Scholar
Olson, C.. Parallel algorithms for hierarchical clustering. Parallel Computing, 21:13131325, 1995. [467]Google Scholar
Olude, M. A., Mustapha, O. A., Aderounmu, O. A., Olopade, J. O., and Ihunwo, A. O.. Astrocyte morphology, heterogeneity, and density in the developing African giant rat (Cricetomys gambianus). Frontiers in Neuroanatomy, 9:Article 67, 2015. [178]Google Scholar
Ondo, W. G., Tintner, R., Thomas, M., and Jankovic, J.. Tetrabenazine treatment for Huntington’s disease-associated chorea. Clinical Neuropharmacology, 25(6):300302, 2002. [176]Google Scholar
Opitz, D. W. and Maclin, R.. Popular ensemble methods: An empirical study. Journal of Artificial Intelligence Research, 11:169198, 1999. [389]Google Scholar
Opper, M. and Saad, D.. Advanced Mean Field Methods: Theory and Practice. The MIT Press, 2001. [570]Google Scholar
Ortiz, A., Górriz, J. M., Ramírez, J., Martinez-Murcia, F. J., and Alzheimer’s Disease Neuroimaging Initiative. Automatic ROI selection in structural brain MRI using SOM 3D projection. PLoS ONE, 9(4):e93851, 2014. [449]Google Scholar
Osborne, M., Presnell, B., and Turlach, B.. On the LASSO and its dual. Journal of Computational and Graphical Statistics, 9(2):319337, 2000. [341]Google Scholar
Osei-Bryson, K.-M. and Giles, K.. Splitting methods for decision tree induction: An exploration of the relative performance of two entropy-based families. Information Systems Frontiers, 8(3):195209, 2006. [279]Google Scholar
Ota, M., Sato, N., Ishikawa, M., Hori, H., Sasayama, D., Hattori, K., Teraishi, T., Obu, S., Nakata, Y., Nemoto, K., Moriguchi, Y., Hashimoto, R., and Kunugi, H.. Discrimination of female schizophrenia patients from healthy women using multiple structural brain measures obtained with voxel-based morphometry. Psychiatry and Clinical Neurosciences, 66:611617, 2012. [326]Google Scholar
Ottosen, T. J. and Vomlel, J.. All roads lead to Rome – New search methods for the optimal triangulation problem. International Journal of Approximate Reasoning, 53(9):13501366, 2012. [511]Google Scholar
Ozcift, A.. SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease. Journal of Medical Systems, 36(4):21412147, 2011.Google Scholar
Ozenne, B., Subtil, F., Østergaard, L., and Maucort-Boulch, D.. Spatially regularized mixture model for lesion segmentation with application to stroke patients. Biostatistics, 16(3):580595, 2015. [475]Google Scholar
Pagallo, G. and Hausler, D.. Boolean feature discovery in empirical learning. Machine Learning, 9(1): 7199, 1990. [288]Google Scholar
Painold, A., Anderer, P., Holl, A. K., Letmaier, M., Saletu-Zyhlarz, G. M., Saletu, B., and Bonelli, R. M.. EEG low-resolution brain electromagnetic tomography (LORETA) in Huntington’s disease. Journal of Neurology, 285(5):840854, 2011. [190]Google Scholar
Pan, W.. On the use of permutation in and the performance of a class of nonparametric methods to detect differential gene expression. Bioinformatics, 19(11):13331340, 2003. [232, 236]Google Scholar
Pan, W. and Shen, X.. Penalized model-based clustering with application to variable selection. Journal of Machine Learning Research, 8:11451164, 2006. [478]Google Scholar
Pan, Y., Liu, M., Lian, C., Zhou, T., Xia, Y., and Shen, S.. Synthesizing missing PET from MRI with cycle-consistent generative adversarial networks for Alzheimer disease diagnosis. In 21st International Conference on Medical Image Computing and Computer Assisted Intervention, pages 455–463. Springer, 2018. [319]Google Scholar
Park, J. D. and Darwiche, A.. A differential semantics for jointree algorithms. Artificial Intelligence, 156(2):197216, 2004. [544]Google Scholar
Park, M. Y. and Hastie, T.. Penalized logistic regression for detecting gene interactions. Biostatistics, 9(1):3050, 2008. [343]Google Scholar
Parsons, L., Haque, E., and Liu, H.. Subspace clustering for high dimensional data: A review. SIGKDD Explorations, 6:90105, 2004. [458]Google Scholar
Parzen, E.. On estimation of a probability density function and mode. Annals of Mathematical Statistics, 33(3):10651076, 1962. [376]Google Scholar
Pascal, B.. Varia Opera Mathematica. D. Petri De Fermat, Senatoris Tolosani. Tolosae, 1679. [140]Google Scholar
Patil, R. B. and Ramakrishnan, S.. Analysis of sub-anatomic diffusion tensor imaging indices in white matter regions of Alzheimer with MMSE score. Computer Methods and Programs in Biomedicine, 117(1):1319, 2014. [314]Google Scholar
Patterson, A. L.. A Fourier series method for the determination of the component of inter-atomic distances in crystals. Physics Reviews, 46:372376, 1934. [586]Google Scholar
Pazzani, M.. Constructive induction of Cartesian product attributes. In Proceedings of the Information, Statistics and Induction in Science Conference, pages 66–77, 1996. [354, 355, 367, 482]Google Scholar
Pazzani, M. and Billsus, D.. Learning and revising user profiles: The identification of interesting web sites. Machine Learning, 27:313331, 1997. [352]Google Scholar
Pearl, J.. Reverend Bayes on inference engines: A distributed hierarchical approach. In Proceedings of the 2nd National Conference on Artificial Intelligence, pages 133–136. AAAI Press, 1982. [509]Google Scholar
Pearl, J.. Uncertainty in Artificial Intelligence, chapter A constraint propagation approach to probabilistic reasoning, pages 357–370. Elsevier, 1986. [544]Google Scholar
Pearl, J.. Evidential reasoning using stochastic simulation of causal models. Artificial Intelligence, 32 (2):245257, 1987. [518, 545]Google Scholar
Pearl, J.. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988. [348, 349, 490, 543, 551, 561]Google Scholar
Pearl, J.. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000. [497, 545]Google Scholar
Pearl, J., Glymour, M., Jewell, N. P.. Causal Inference in Statistics. Wiley, 2016. [497]Google Scholar
Pearl, J. and Paz, A.. Graphoids: A graph-based logic for reasoning about relevance relations. Technical Report 850038, University of California, 1985. [563]Google Scholar
Pearson, K.. Contribution to the mathematical theory of evolution. Philosophical Transactions of the Royal Society, Series A, 185:71110, 1894. [486]Google Scholar
Pearson, K.. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2(11):559572, 1901. [94]Google Scholar
Pecevski, D., Buesing, L., and Maass, W.. Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons. PLoS Computational Biology, 7:e1002294, 2011. [300]Google Scholar
Pellicano, E. and Burr, D.. When the world becomes “too real”: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10):504510, 2012. [159]Google Scholar
Pelykh, O., Klein, A. M., Bötzel, K., and Kosutzka, Z., and Ilmberger, J.. Dynamics of postural control in Parkinson patients with and without symptoms of freezing of gait. Gait Posture, 42(3):246250, 2015. [136]Google Scholar
Peña, J. M.. Learning Gaussian graphical models of gene networks with false discovery rate control. In Proceedings of the 6th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, pages 165–176. Springer, 2008. [560]Google Scholar
Peña, J. M.. Finding consensus Bayesian network structures. Journal of Artificial Intelligence Research, 42(1):661687, 2011. [546]Google Scholar
Peña, J. M., Lozano, J. A., and Larrañaga, P.. An empirical comparison of four initialization methods for the K-means algorithm. Pattern Recognition Letters, 20:10271040, 1999a. [467]Google Scholar
Peña, J. M., Lozano, J. A., and Larrañaga, P.. Learning Bayesian networks for clustering by means of constructive induction. Pattern Recognition Letters, 20:12191230, 1999b. [482]Google Scholar
Peña, J. M., Lozano, J. A., and Larrañaga, P.. Performance evaluation of compromise conditional Gaussian networks for data clustering. International Journal of Approximate Reasoning, 28:23– 50, 2001a. [483]Google Scholar
Peña, J. M., Lozano, J. A., Larrañaga, P., and Inza, I.. Dimensionality reduction in unsupervised learning of conditional Gaussian networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6):590603, 2001b. [483]Google Scholar
Peña, J. M., Lozano, J. A., and Larrañaga, P.. Learning recursive Bayesian multinets for clustering by means of constructive induction. Machine Learning, 47:6389, 2002. [483]Google Scholar
Peña, J. M., Lozano, J. A., and Larrañaga, P.. Unsupervised learning of Bayesian networks via estimation of distribution algorithms: An application to gene expression data clustering. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12(1):6382, 2004. [482]Google Scholar
Peña, J. M., Nilsson, R., Björkegren, J., and Tegnér, J.. Towards scalable and data efficient learning of Markov boundaries. International Journal of Approximate Reasoning, 45(2):211232, 2007. [364]Google Scholar
Peng, H., Long, F., and Ding, C.. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8):12261238, 2005. [254]Google Scholar
Peng, H., Hawrylycz, M., Roskams, J., Hill, S., Spruston, N., Meijering, E., and Ascoli, G. A.. BigNeuron: Large-scale 3D neuron reconstruction from optical microscopy images. Neuron, 87: 252256, 2015. [21]Google Scholar
Peng, Y. and Reggia, J. A.. A probabilistic causal model for diagnosis problem solving – Part I: Integrating symbolic causal inference with numeric probabilistic inference. IEEE Transactions on Systems, Man, and Cybernetics, 17(2):146162, 1987a. [434]Google Scholar
Peng, Y. and Reggia, J. A.. A probabilistic causal model for diagnosis problem solving – Part II: Diagnostic strategy. IEEE Transactions on Systems, Man, and Cybernetics, 17(3):395406, 1987b. [434]Google Scholar
Pensar, J., Nyman, H., Lintusaari, J., and Corander, J.. The role of local partial independence in learning of Bayesian networks. International Journal of Approximate Reasoning, 69:91105, 2016. [543]Google Scholar
Pepe, M. S.. The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press, 2003. [224]Google Scholar
Pérez, A., Larrañaga, P., and Inza, I.. Supervised classification with conditional Gaussian networks: Increasing the structure complexity from naive Bayes. International Journal of Approximate Reasoning, 43:125, 2006. [371, 372, 373, 384]Google Scholar
Pérez, A., Larrañaga, P., and Inza, I.. Bayesian classifiers based on kernel density estimation: Flexible classifiers. International Journal of Approximate Reasoning, 50:341362, 2009. [375, 376]Google Scholar
Pérez de la Cruz, S., García-Luengo, A. V., and Lambeck, J.. Effects of an Ai Chi fall prevention programme for patients with Parkinson’s disease. Neurología (English Edition), 31(3):176–182, 2016. [183]Google Scholar
Perneczky, R., Alexopoulos, P., and Alzheimer’s Disease Euroimaging Initiative. Cerebrospinal fluid BACE1 activity and markers of amyloid precursor protein metabolism and axonal degeneration in Alzheimer’s disease. Alzheimer’s & Dementia, 10(5):S425–S429, 2014. [193]Google Scholar
Pernkopf, F.. Bayesian network classifiers versus selective k-NN classifier. Pattern Recognition, 38: 110, 2005. [366]Google Scholar
Pernkopf, F. and Bilmes, J. A.. Efficient heuristics for discriminative structure learning of Bayesian network classifiers. Journal of Machine Learning Research, 11:23232360, 2010. [362]Google Scholar
Pernkopf, F. and O’Leary, P.. Floating search algorithm for structure learning of Bayesian network classifiers. Pattern Recognition Letters, 24:28392848, 2003. [353, 358, 362]Google Scholar
Pernkopf, F. and Wohlmayr, M.. On discriminative parameter learning of Bayesian network classifiers. In Proceedings of the 20th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, volume 5782, pages 221–237. Springer, 2009. [385]Google Scholar
Perrenoud, Q., Rossier, J., Geoffroy, H., Vitalis, T., and Gallopin, T.. Diversity of GABAergic interneurons in layer VIa and VIb of mouse barrel cortex. Cerebral Cortex, 23(2):423441, 2013. [34]Google Scholar
Persson, T.. A new way to obtain Watson’s U2. Scandinavian Journal of Statistics, 6(3):119122, 1979. [180]Google Scholar
Peters, A. and Jones, E. G.. Cerebral Cortex: Cellular Components of the Cerebral Cortex. Plenum, 1984. [6]Google Scholar
Peters, A. and Kaiserman-Abramof, I. R.. The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. American Journal of Anatomy, 127(4):321–355, 1970. [41, 469]Google Scholar
Peters, J., Janzing, D., Schölkopf, B.. Elements of Causal Inference. The MIT Press. 2017. [497]Google Scholar
Peters, J., Mooij, J. M., Janzing, D., and Schölkopf, B.. Causal discovery with continuous additive noise models. Journal of Machine Learning Research, 15(1):20092053, 2014. [545]Google Scholar
Pham, A., Yondorf, M. Z., Parashar, B., Scheff, R. J., Pannullo, S. C., Ramakrishna, R., Stieg, P. E., Schwartz, T. H., and Wernicke, A. G.. Neurocognitive function and quality of life in patients with newly diagnosed brain metastasis after treatment with intra-operative cesium-131 brachytherapy: A prospective trial. Journal of Neuro-Oncology, 127(1):6371, 2015. [176]Google Scholar
Pham, D. T. and Ruz, G. A.. Unsupervised training of Bayesian networks for data clustering. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465:2927–2948, 2009. [482]Google Scholar
Pham, T. T., Moore, T. S., Lewis, S. J. G., Nguyen, D. N., Dutkiewicz, E., Fuglevand, A. J., McEwan, A. L., and Leong, P. H. W.. Freezing of gait detection in Parkinson’s disease: A subject-independent detector using anomaly scores. IEEE Transactions on Biomedical Engineering, 64 (11):27192728, 2017. [224]Google Scholar
Pham, T. V., Worring, M., and Smeulders, A. W. M.. Face detection by aggregated Bayesian network classifiers. Pattern Recognition Letters, 23(4):451461, 2002.. [365, 366]Google Scholar
Pigott, T. D.. A review of methods for missing data. Educational Research and Evaluation, 7(4): 353383, 2001. [95]Google Scholar
Piguet, O., Leyton, C. E., Gleeson, L. D., Hoon, C., and Hodges, J. R.. Memory and emotion processing performance contributes to the diagnosis of non-semantic primary progressive aphasia syndromes. Journal of Alzheimer’s Disease, 2014. [333]Google Scholar
Pique-Regi, R. and Ortega, A.. Block diagonal linear discriminant analysis with sequential embedded feature selection. In 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, volume 5, pages 729–732, 2006. [253]Google Scholar
Pitman, E. and Wishart, J.. Sufficient statistics and intrinsic accuracy. Mathematical Proceedings of the Cambridge Philosophical Society, 32(4):567578, 1936. [485]Google Scholar
Pizarro, J., Guerrero, E., and Galindo, P. L. Multiple comparison procedures applied to model selection. Neurocomputing, 48:155–173, 2002. [222]Google Scholar
Plant, C., Teipel, S. J., Oswald, A., Böhm, C., Meindl, T., Mourao-Miranda, J., Bokde, A. W., Hampel, H., and Ewers, M.. Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. NeuroImage, 50:162174, 2010. [234]Google Scholar
Platero, C. and Tobar, M. C.. A label fusion method using conditional random fields with higher-order potentials: Application to hippocampal segmentation. Artificial Intelligence in Medicine, 64(2): 117129, 2015. [566]Google Scholar
Platt, J. C.. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods – Support Vector Learning, pages 185–208. The MIT Press, 1999a. [305, 315]Google Scholar
Platt, J. C.. Advances in Large Margin Classifiers, chapter Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods, pages 61–74. The MIT Press, 1999b. [393]Google Scholar
Plumpton, C. O., Kuncheva, L. I., Oosterhof, N. N., and Johnston, S. J.. Naive random subspace ensemble with linear classifiers for real-time classification of fMRI data. Pattern Recognition, 45(6):21012108, 2012. [403]Google Scholar
Poil, S. S., Bollmann, S., Ghisleni, C., O’Gorman, R. L., Klaver, P., Ball, J., Eich-Hochli, D., Brandeis, D., and Michels, L.. Age dependent electroencephalographic changes in attention-deficit/hyperactivity disorder (ADHD). Clinical Neurophysiology, 125(8):16261638, 2014. [314]Google Scholar
Poisson, S. D.. Recherches sur la Probabilité des Jugements en Matière Criminelle et en Matière Civile, Précédées des Règles Générales du Calcul des Probabilitiés. Bachelier, 1837. [140, 196]Google Scholar
Pokrajac, D., Megalooikonomou, V., Lazarevic, A., Kontos, D., and Obradovic, Z.. Applying spatial distribution analysis techniques to classification of 3D medical images. Artificial Intelligence in Medicine, 33(3):261280, 2005. [139]Google Scholar
Polikar, R., Topalis, A., Parikh, D., Green, D., Frymiare, J., Kounios, J., and Clark, C. M.. An ensemble based data fusion approach for early diagnosis of Alzheimer’s disease. Information Fusion, 9(1): 8395, 2008. [407]Google Scholar
Pólya, G.. ber den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Momenten-problem. Mathematische Zeitschrift, 8(3-4):171–181, 1920. [196]Google Scholar
Poo, M., Du, J., Ip, N. Y., Xiong, Z., Xu, B., and Tan, T.. China Brain project: Basic neuroscience, brain diseases, and brain-inspired computing. Neuron, 92:591596, 2016. [10]Google Scholar
Poole, D.. Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities. In Proceedings of the 13th International Joint Conference on Artificial Intelligence, pages 606–612, 1993. [545]Google Scholar
Poole, D.. Probabilistic partial evaluation: Exploiting rule structure in probabilistic inference. In Proceedings of the 17th International Joint Conference in Artificial Intelligence, pages 1284– 1291. Morgan Kaufmann, 1997. [544]Google Scholar
Prautzsch, H., Boehm, W., and Paluszny, M.. Bèzier and B-Spline Techniques. Springer, 2002. [378]Google Scholar
Proddutur, A., Yu, J., Elgammal, F. S., and Santhakumar, V.. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations. Chaos, 23(4), 2013. [103]Google Scholar
Provan, G. M. and Singh, M.. Learning Bayesian networks using feature selection. In Proceedings of the 5th International Workshop on Artificial Intelligence and Statistics, pages 450–456, 1995. [364, 367]Google Scholar
Pudil, P., Novovicova, J., and Kittler, J.. Floating search methods in feature selection. Pattern Recognition Letters, 15:11191125, 1994. [241]Google Scholar
Quartz, S. R. and Sejnowski, T. J.. The neural basis of cognitive development: A constructivist manifesto. Behavioral and Brain Sciences, 20(4):537556, 1997. [298]Google Scholar
Quinlan, J. R.. Induction of decision trees. Machine Learning, 1(1):81106, 1986. [29, 274]Google Scholar
Quinlan, J. R.. Simplifying decision trees. International Journal of Man-Machine Studies, 27(3): 221234, 1987. [280]Google Scholar
Quinlan, J. R.. Learning logical definitions from relations. Machine Learning, 5(3):239266, 1990. [289]Google Scholar
Quinlan, J. R.. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993. [252, 282]Google Scholar
Raamana, P. R., Weiner, M. W., Wang, L., Beg, M. F., and Alzheimer’s Disease Neuroimaging Initiative. Thickness network features for prognostic applications in dementia. Neurobiology of Aging, 36:S91–S102, 2015. [445]Google Scholar
Rabiner, L. and Juang, B.. An introduction to hidden Markov models. IEEE ASSP Magazine, 3(1): 416, 1986. [538]Google Scholar
Raftery, A. E. and Dean, N.. Variable selection for model-based clustering. Journal of the American Statistical Association, 101:168178, 2006. [478]Google Scholar
Raina, R., Shen, Y., Ng, A. Y., and McCallum, A.. Classification with hybrid generative/discriminative models. In Advances in Neural Information Processing Systems 16, pages 545–552. The MIT Press, 2004. [385]Google Scholar
Ramóny Cajal, S.. Textura del Sistema Nervioso del Hombre y de los Vertebrados. Moya, 1899. [31]Google Scholar
Ramsey, J. D., Hanson, S. J., Hanson, C., Halchenko, Y. O., Poldrack, R. A., and Glymour, C.. Six problems for causal inference from fMRI. NeuroImage, 49(2):15451558, 2010. [536]Google Scholar
Rand, W. M.. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66:846850, 1971. [465]Google Scholar
Rao, R. P. N., Olshausen, B. A., and Lewicki, M. S.. Probabilistic Models of the Brain. The MIT Press, 2002. [159]Google Scholar
Rasmussen, P. M., Hansen, L. K., Madsen, K. H., Churchill, N. W., and Strother, S. C.. Model sparsity and brain pattern interpretation of classification models in neuroimaging. Pattern Recognition, 25 (6):20852100, 2012. [252]Google Scholar
Rässler, S., Rubin, D. B., and Zell, E. R.. Imputation. WIREs Computational Statistics, 5:2029, 2013. [95]Google Scholar
Ratanamahatana, Ch.A. and Gunopulos, D.. Feature selection for the naive Bayesian classifier using decision trees. Applied Artificial Intelligence, 17(5–6):475487, 2003. [353]Google Scholar
Ratnarajah, N., Simmons, A., and Hojjatoleslami, A.. Probabilistic clustering and shape modelling of white matter fibre bundles using regression mixtures. Medical Image Computing and Computer-Assisted Intervention, 14:2532, 2011. [475]Google Scholar
Ravikumar, P., Lafferty, J., Liu, H., and Wasserman, L.. Sparse additive models. Journal of the Royal Statistical Society, Series B, 71(5):10091030, 2009. [342]Google Scholar
Ravikumar, P., Wainwright, M. J., and Lafferty, J. D.. High-dimensional Ising model selection using l1 -regularized logistic regression. The Annals of Statistics, 38(3):12871319, 2010. [571]Google Scholar
RaviPrakash, H., Korostenskaja, M., Castillo, E. M., Leed, K. H., Salinas, C. M., Baumgartner, J., Anwar, S. M., Spampinato, C., and Bagci, U.. Deep learning provides exceptional accuracy to ECoG-based functional language mapping for epilepsy surgery. Frontiers in Neuroscience, 14:Article 409, 2020. [300]Google Scholar
Read, J., Pfahringer, B., Homes, G., and Frank, E.. Classifier chains for multi-label classification. Machine Learning, 85(3):333359, 2011. [423, 427]Google Scholar
Reardon, S.. Global brain project sparks concern. Nature, 537:597597, 2016a. [12]Google Scholar
Reardon, S.. Public-health goal for brain mappers. Nature, 539:151, 2016b. [12]Google Scholar
Rechenberg, I.. Evolutionstrategie: Optimierung technischer Systeme nach Prinzipien der biologis-chen Evolution. Frommann-Holzboog, 1973. [250]Google Scholar
Reichenbach, H.. The Direction of Time. University of California Press, 1956. [543]Google Scholar
Remington, J.. Distributed Systems in Small Scale Research Environments: Hadoop and the EM Algorithm. PhD thesis, Colorado State University, 2011. [486]Google Scholar
Rickards, H., De Souza, J., Crooks, J., van Walsem, M. R., van Duijn, E., Landwehrmeyer, B., Squitieri, F., and Simpson, S. A.. Discriminant analysis of Beck depression inventory and Hamilton rating scale for depression in Huntington’s disease. The Journal of Neuropsychiatry and Clinical Neurosciences, 23:399402, 2011. [326]Google Scholar
Ridgeway, G.. Looking for lumps: Boosting and bagging for density estimation. Computational Statistics & Data Analysis, 38(4):379392, 2002. [414]Google Scholar
Ridgway, G. R., Lehmann, M., Barnes, J., Rohrer, J. D., Warren, J. D., Crutch, S. J., and Fox, N. C.. Early-onset Alzheimer disease clinical variants: Multivariate analyses of cortical thickness. Neurology, 79(1):8084, 2012. [84]Google Scholar
Ripley, B. D.. Modelling spatial patterns (with discussion). Journal of the Royal Statistical Society, Series B, 39:172212, 1977. [588, 611]Google Scholar
Ripley, B. D.. Spatial Statistics. Wiley, 1981. [599, 611]Google Scholar
Ripley, B. D.. Statistical Inference for Spatial Processes. Cambridge University Press, 2nd edition, 1988. [594]Google Scholar
Ripley, B. D.. Pattern Recognition and Neural Networks. Cambridge University Press, 1996. [318]Google Scholar
Rivest, R. L.. Learning decision lists. Machine Learning, 2:229246, 1987. [287]Google Scholar
Robert, C. P.. The Bayesian Choice: A Decision-Theoretic Motivation. Springer, 1994. [196]Google Scholar
Robert, C. P. and Casella, G.. Introducing Monte Carlo Methods with R. Springer, 2009. [545]Google Scholar
Robert, C. P., Chopin, N., and Rousseau, J.. Harold Jeffreys’s theory of probability revisited. Statistical Science, 24(2):141172, 2009. [196]Google Scholar
Robinson, R.. Counting unlabeled acyclic digraphs. In Combinatorial Mathematics V, volume 622, pages 28–43. Springer, 1977. [529]Google Scholar
Robles, V., Larrañaga, P., Peña, J. M., Pérez, M. S., Menasalvas, E., and Herves, V.. Learning semi naïve Bayes structures by estimation of distribution algorithms. In Proceedings of the 11th Portuguese Conference on Artificial Intelligence, pages 244–258, 2003. [355]Google Scholar
Robles, V., Bielza, C., Larrañaga, P., González, S., and Ohno-Machado, L.. Optimizing logistic regression coefficients for discrimination and calibration using estimation of distribution algorithms. TOP, 16(2):345366, 2008. [385]Google Scholar
Rodriguez, J. J., Kuncheva, L. I., and Alonso, C. J.. Rotation forest: A new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):16191630, 2006. [404]Google Scholar
Rodriguez-Lujan, L., Larrañaga, P., and Bielza, C.. Frobenius norm regularization for the multivariate von Mises distribution. International Journal of Intelligent Systems, 32(2):153176, 2017. [122]Google Scholar
Rohekar, R. Y., Nisimov, S., Gurwicz, Y., Koren, G., and Novik, G.. Constructing deep neural networks by Bayesian network structure learning. In Proceedings of the 32nd Conference on Neural Information Processing Systems, pages 3051–3062, 2018. [299]Google Scholar
Rokach, L.. Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography. Computational Statistics & Data Analysis, 53(12):40464072, 2009. [413]Google Scholar
Rokach, L. and Maimon, O.. The Data Mining and Knowledge Discovery Handbook, chapter Cluster analysis, pages 321–352. Springer, 2005a. [438]Google Scholar
Rokach, L. and Maimon, O.. Top-down induction of decision trees classifiers – A survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 35(4):476487, 2005b. [279]Google Scholar
Romero, T. and Larrañaga, P.. Triangulation of Bayesian networks with recursive estimation of distribution algorithms. International Journal of Approximate Reasoning, 50(3):472484, 2009. [511]Google Scholar
Romero, T., Larrañaga, P., and Sierra, B.. Learning Bayesian networks in the space of orderings with estimation of distribution algorithms. International Journal of Pattern Recognition and Artificial Intelligence, 18(4):607625, 2004. [531]Google Scholar
Romero, V., Rumí, R., and Salmerón, A.. Learning hybrid Bayesian networks using mixtures of truncated exponentials. International Journal of Approximate Reasoning, 42(1):5468, 2006. [537]Google Scholar
Roos, T., Wettig, H., Grünwald, P., Myllymäki, P., and Tirri, H.. On discriminative Bayesian network classifiers and logistic regression. Machine Learning, 59(3):267296, 2005. [385]Google Scholar
Rosenblatt, F.. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65:386408, 1958. [318]Google Scholar
Roskams, J. and Popovic, Z.. Power to the people: Addressing big data challenges in neuroscience by creating a new cadre of citizen neuroscientists. Neuron, 92:658664, 2016. [21]Google Scholar
Roth, V.. The generalized LASSO. IEEE Transactions in Neural Networks, 15(1):1628, 2004. [341]Google Scholar
Rubin, D. B.. Inference and missing data. Biometrika, 63:581590, 1976. [87, 95]Google Scholar
Rubin, D. B.. Multiple Imputation for Nonresponse in Surveys. Wiley, 1987. [95]Google Scholar
Rubin, L. H., Witiewitz, K., Andre, J. S., and Reilly, S.. Methods for handling missing data in the behavioral neurosciences: Don’t throw the baby rat out with the bath water. The Journal of Undergraduate Neouroscience Education, 5(2):7177, 2007. [88]Google Scholar
Rudin, C.. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1:206215, 2019. [25]Google Scholar
Rumelhart, D. E., Hinton, G. R., and Williams, R. J.. Learning representation by back-propagation errors. Nature, 323:533536, 1986. [318]Google Scholar
Rumí, R. and Salmerón, A.. Approximate probability propagation with mixtures of truncated exponentials. International Journal of Approximate Reasoning, 45(2):191210, 2007. [515]Google Scholar
Rumí, R., Salmerón, A., and Moral, S.. Estimating mixtures of truncated exponentials in hybrid Bayesian networks. TEST, 15:397421, 2006. [376, 377, 384, 537]Google Scholar
Ruonala, V., Meigal, A., Rissanen, S. M., Airaksinen, O., Kankaanpä, M., and Karjalainen, P. A.. EMG signal morphology and kinematic parameters in essential tremor and Parkinson’s disease patients. Journal of Electromyography and Kinesiology, 24(2):300306, 2014. [136]Google Scholar
Ryali, S., Chen, T., Supekar, K., and Menon, V.. A parcellation scheme based on von Mises-Fisher distributions and Markov random fields for segmenting brain regions using resting-state fMRI. NeuroImage, 65:8396, 2013. [547]Google Scholar
Ryali, S., Chen, T., Padmanabhan, A., Cai, W., and Menon, V.. Development and validation of consensus clustering-based framework for brain segmentation using resting fMRI. Journal of Neuroscience Methods, 240:128140, 2015. [460]Google Scholar
Ryan, T. P.. Modern Regression Methods. Wiley, 1997. [339, 384]Google Scholar
Ryzhikova, E., Kazakov, O., Halamkova, L., Celmins, D., Malone, P., Molho, E., Zimmerman, E. A., and Lednev, I. K.. Raman spectroscopy of blood serum for Alzheimer’s disease diagnostics: Specificity relative to other types of dementia. Journal of Biophotonics, 8(7):584596, 2015. [293]Google Scholar
Šabanagić-Hajrić, S. and Alajbegović, A.. Impacts of education level and employment status on health-related quality of life in multiple sclerosis patients. Medicinski Glasnik, 12(1):6167, 2015. [187]Google Scholar
Saeys, Y., Inza, I., and Larrañaga, P.. A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19):25072517, 2007. [261]Google Scholar
Safavian, S. R. and Landgrebe, D.. A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man and Cybernetics, 21(3):660674, 1991. [318]Google Scholar
Sahami, M.. Learning limited dependence Bayesian classifiers. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pages 335–338, 1996. [360, 362, 367, 373]Google Scholar
Sakar, C. O. and Kursun, O.. Telediagnosis of Parkinson’s disease using measurements of dysphonia. Journal of Medical Systems, 34(4):591599, 2010. [139]Google Scholar
Sako, W., Abe, T., Izumi, Y., Harada, M., and Kaji, R.. Fractional anisotropy in the supplementary motor area correlates with disease duration and severity of amyotrophic lateral sclerosis. Neurological Sciences, 37(4):573577, 2016. [190]Google Scholar
Salakhutdinov, R. and Roweis, S.. Adaptive overrelaxed bound optimization methods. In Proceedings of the 20th International Conference on Machine Learning, pages 664–671, 2003. [474]Google Scholar
Salza, R., Oudart, J. B., Ramont, L., Maquart, F. X., Bakchine, S., Thoannès, H., and Ricard-Blum, S.. Endostatin level in cerebrospinal fluid of patients with Alzheimer’s disease. Journal of Alzheimer’s Disease, 44(4):12531261, 2015. [187]Google Scholar
Salzberg, S. L.. On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1:317328, 1997. [225]Google Scholar
Sampat, M. P., Berger, A. M., Healy, B. C., Hildenbrand, P., Vass, J., Meier, D. S., Chitnis, T., Weiner, H. L., Bakshi, R., and Guttmann, C. R.. Regional white matter atrophy–based classification of multiple sclerosis in cross-sectional and longitudinal data. American Journal of Neuroradiology, 30(9):17311739, 2009. [273]Google Scholar
Sangelaji, B., Estebsari, F., Nabavi, S. M., Jamshidi, E., Morsali, D., and Dastoorpoor, M.. The effect of exercise therapy on cognitive functions in multiple sclerosis patients: A pilot study. Medical Journal of the Islamic Republic of Iran, 29:205, 2015. [176]Google Scholar
Santafé, G., Lozano, J. A., and Larrañaga, P.. Bayesian model averaging of naive Bayes for clustering. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 35(5):11491161, 2006a. [481]Google Scholar
Santafé, G., Lozano, J. A., and Larrañaga, P.. Bayesian model averaging of TAN models for clustering. In Proceedings of the 3rd European Workshop on Probabilistic Graphical Models, pages 271–278, 2006b. [482]Google Scholar
Santana, R., Bielza, C., and Larrañaga, P.. Regularized logistic regression and multi-objective variable selection for classifying MEG data. Biological Cybernetics, 106(6–7):389405, 2012. [252, 343]Google Scholar
Santana, R., McGarry, L. M., Bielza, C., Larrañaga, P., and Yuste, R.. Classification of neocortical interneurons using affinity propagation. Frontiers in Neural Circuits, 7:Article 185, 2013. [454]Google Scholar
Schafer, J. L.. Analysis of Incomplete Multivariate Data. Chapman and Hall, 1997. [95]Google Scholar
Schafer, J. L. and Graham, J. W.. Missing data: Our view of the state of the art. Psychological Methods, 7(2):147177, 2002. [95]Google Scholar
Schapire, R. E. and Singer, Y.. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3):297336, 1999. [427]Google Scholar
Schapire, R. E., Freund, Y., Bartlett, P., and Lee, W. S.. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):16511686, 1998. [406]Google Scholar
Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S.. A wafer-scale neuromorphic hardware system for large-scale neural modeling. In Proceedings of the 2010 International Symposium on Circuits and Systems, pages 1947–1950. IEEE, 2010. [30]Google Scholar
Scheubert, L., Lu˘strek, M., Schmidt, R., Repsilber, D., and Fuellen, G.. Tissue-based Alzheimer gene expression markers-comparison of multiple machine learning approaches and investigation of redundancy in small biomarker sets. BMC Bioinformatics, 13:266, 2012. [314]Google Scholar
Schlüter, F.. A survey on independence-based Markov networks learning. Artificial Intelligence Review, 42(4):10691093, 2014. [571]Google Scholar
Schmidhuber, J.. Deep learning in neural networks: An overview. Neural Networks, 61:85117, 2015. [319]Google Scholar
Schmitz, C., Grolms, N., Hof, P. R., Bochringer, R., Glaser, J., and Korr, H.. Altered spatial arrangement of layer V pyramidal cells in the mouse brain following prenatal low-dose X-irradiation. A stereological study using a novel three-dimensional analysis method to estimate the nearest neighbor distance distributions of cells in thick sections. Cerebral Cortex, 12(9):954960, 2002. [591]Google Scholar
Schoenberg, I. J.. Contributions to the problem of approximation of equidistant data by analytic functions. Part B: On the problem of osculatory formulae. Quarterly of Applied Mathematics, 4:112141, 1946. [378]Google Scholar
Schreiner, S. J., Liu, X., Gietl, A. F., Wyss, M., Steininger, S. C., Gruber, E., Treyer, V., Meier, I. B., Kälin, A. M., Leh, S. E., Buck, A., Nitsch, R. M., Pruessmann, K. P., Hock, C., and Unschuld, P. G.. Regional fluid-attenuated inversion recovery (FLAIR) at 7 Tesla correlates with amyloid beta in hippocampus and brainstem of cognitively normal elderly subjects. Frontiers in Aging Neuroscience, 6:Article 240, 2014. [194]Google Scholar
Schwarz, G.. Estimating the dimension of a model. The Annals of Statistics, 6(2):461464, 1978. [532]Google Scholar
Scott, E. K. and Luo, L.. How do dendrites take their shape? Nature Neuroscience, 4(4):359365, 2001. [539]Google Scholar
Sebestyen, G.. Decision-Making Processes in Pattern Recognition. MacMillan, 1962. [227, 413]Google Scholar
Sechidis, K., Tsoumakas, G., and Vlahavas, I.. On the stratification of multi-label data. In Proceedings of the 14th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, volume 6913, pages 145–158. Springer, 2011. [434]Google Scholar
Seeliger, K., Güçlü, U., Ambrogioni, L., Güçlütürk, Y., and van Gerven, M. A. J.. Generative adversarial networks for reconstructing natural images from brain activity. NeuroImage, 181:775785, 2018. [319]Google Scholar
Sejnowski, T. J., Churchland, P. S., and Movshon, J. A.. Putting big data to good use in neuroscience. Nature Neuroscience, 17(11):14401441, 2014. [20]Google Scholar
Sengupta, D., Aich, I., and Bandyopadhyay, S.. Feature selection using feature dissimilarity measure and density-based clustering: Application to biological data. Journal of Biosciences, 40:721730, 2015. [456]Google Scholar
Sepehri, H. and Ganji, F.. The protective role of ascorbic acid on hippocampal CA1 pyramidal neurons in a rat model of maternal lead exposure. Journal of Chemical Neuroanatomy, 74:510, 2016. [186]Google Scholar
Setiono, R. and Liu, H.. Neural-network feature selector. IEEE Transactions on Neural Networks, 8 (3):654662, 1997. [253]Google Scholar
Shachter, R. D.. Evaluating influence diagrams. Operations Research, 34:871882, 1986. [543]Google Scholar
Shachter, R. D. and Kenley, C. R.. Gaussian influence diagrams. Management Science, 35(5):527– 550, 1989. [499, 500]Google Scholar
Shachter, R. D. and Peot, M. A.. Simulation approaches to general probabilistic inference on belief networks. In Proceedings of the 5th Annual Conference on Uncertainty in Artificial Intelligence, pages 221–234. Elsevier, 1989. [516, 544]Google Scholar
Shafer, G. and Shenoy, P. P.. Probability propagation. Annals of Mathematics and Artificial Intelligence, 2:327352, 1990. [509]Google Scholar
Shahrbanian, S., Duquette, P., Kuspinar, A., and Mayo, N. E.. Contribution of symptom clusters to multiple sclerosis consequences. Quality of Life Research, 24(3):617629, 2015. [446]Google Scholar
Shannon, C. E.. A mathematical theory of communication. The Bell System Technical Journal, 27(3): 379–423 and 623–656, 1948. [136]Google Scholar
Shapiro, S. S. and Wilk, M. B.. An analysis of variance test for normality (complete samples). Biometrika, 52(3-4):591611, 1965. [167]Google Scholar
Sharief, A. A., Badea, A., Dale, A. M., and Johnson, G. A.. Automated segmentation of the actively stained mouse brain using multi-spectral MR microscopy. NeuroImage, 39(1):136145, 2008. [549]Google Scholar
Sharma, S.. Applied Multivariate Techniques. Wiley, 1996. [384]Google Scholar
Sharp, H.. Cardinality of finite topologies. Journal of Combinatorial Theory, 5:8286, 1968. [444]Google Scholar
Shaygannejad, V., Dehnavi, S. R., Ashtari, F., Karimi, S., Dehghani, L., Meamar, R., and Tolou-Ghamari, Z.. Study of type A and B behavior patterns in patients with multiple sclerosis in an Iranian population. International Journal of Preventive Medicine, 4:279283, 2013. [178]Google Scholar
Shenoy, P. P.. Inference in hybrid Bayesian networks using mixtures of Gaussians. In Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, pages 428–436. AUAI Press, 2006. [503]Google Scholar
Shenoy, P. P.. Two issues in using mixtures of polynomials for inference in hybrid Bayesian networks. International Journal of Approximate Reasoning, 53(5):847866, 2012. [378, 385]Google Scholar
Shenoy, P. P. and Shafer, G.. Axioms for probability and belief-function propagation. In Proceedings of the 6th Conference on Uncertainty in Artificial Intelligence, pages 169–198. Elsevier, 1990. [509]Google Scholar
Shenoy, P. P. and West, J. C.. Inference in hybrid Bayesian networks using mixtures of polynomials. International Journal of Approximate Reasoning, 52(5):641657, 2011. [377, 378, 385, 502, 503, 515]Google Scholar
Sheskin, D. J.. Handbook of Parametric and Nonparametric Statistical Procedures. Chapman and Hall/CRC, 2000. [165]Google Scholar
Shevade, S. and Keerthi, S.. A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics, 19(17):22462253, 2003. [341]Google Scholar
Shi, J. and Malik, J.. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888905, 2000. [452]Google Scholar
Shi, J., Yin, W., Osher, S., and Sajda, P.. A fast hybrid algorithm for large-scale ℓ1 -regularized logistic regression. Journal of Machine Learning Research, 11(1):713741, 2010. [341]Google Scholar
Shih, Y.-S.. Families of splitting criteria for classification trees. Statistics and Computing, 9(4):309– 315, 1999. [279]Google Scholar
Shimony, S. E.. Explanation, irrelevance and statistical independence. In Proceedings of the 9th National Conference on Artificial Intelligence, pages 482–487. AAAI Press, 1991. [543]Google Scholar
Sholl, D. A.. Dendritic organization in the neurons of the visual and motor cortices of the cat. Journal of Anatomy, 87:387406, 1953. [32]Google Scholar
Šidák, Z.. Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association, 62(31):626633, 1967. [193]Google Scholar
Siedlecki, W. and Sklansky, J.. A note on genetic algorithms for large-scale feature selection. Pattern Recognition Letters, 10:335347, 1989. [241, 249]Google Scholar
Siegel, S.. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, 1956. [165]Google Scholar
Sierra, B. and Larrañaga, P.. Predicting the survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches. Artificial Intelligence in Medicine, 14:215230, 1998. [364]Google Scholar
Sietsma, J. and Dow, R. J. F.. Creating artificial neural networks that generalize. Neural Networks, 4 (1):6769, 1991. [261]Google Scholar
Silander, T. and Myllymäki, P.. A simple approach for finding the globally optimal Bayesian network structure. In Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, pages 445–452. AUAI Press, 2006. [536]Google Scholar
Silander, T., Kontkanen, P., and Myllymäki, P.. On sensitivity of the MAP Bayesian network structure to the equivalent sample size parameter. In Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence, pages 360–367. AUAI Press, 2007. [534]Google Scholar
Silander, T., Roos, T., Kontkanen, P., and Myllymäki, P.. Factorized normalized maximum likelihood criterion for learning Bayesian network structures. In Proceedings of the 4th European Workshop on Probabilistic Graphical Models, pages 257–264, 2008. [546]Google Scholar
Silverman, B. W.. Density Estimation for Statistics and Data Analysis. Chapman and Hall, 1986. [268, 374, 375]Google Scholar
Silverman, B. W. and Jones, M. C.. Fix, E. and Hodges, J. L. (1951): An important contribution to nonparametric discriminant analysis and density estimation. International Statistical Review, 57: 233–247, 1989. [263]Google Scholar
Simon, D.. Evolutionary Optimization Algorithms. Wiley, 2013. [247]Google Scholar
Simonoff, J. S.. Smoothing Methods in Statistics. Springer, 1996. [375]Google Scholar
Sing, T., Sander, O., Beerenwinkel, N., and Lengauer, T.. ROCR: Visualizing classifier performance in R. Bioinformatics, 21:39403941, 2005. [210]Google Scholar
Singh, G. and Samavedham, L.. Unsupervised learning based feature extraction for differential diagnosis of neurodegenerative diseases: A case study on early-stage diagnosis of Parkinson disease. Journal of Neuroscience Methods, 256:3040, 2015. [449]Google Scholar
Singh, M. and Provan, G.. Efficient learning of selective Bayesian network classifiers. In Proceedings of the 13th International Conference on Machine Learning, pages 453–461, 1996. [365]Google Scholar
Singh, M. and Valtorta, M.. Construction of Bayesian network structures from data: A brief survey and an efficient algorithm. International Journal of Approximate Reasoning, 12(2):111131, 1995. [365, 531]Google Scholar
Skirton, H., Williams, J. K., Jackson-Barnette, J., and Paulsen, J. S.. Huntington disease: Families’ experiences of healthcare services. Journal of Advanced Nursing, 66(3):500510, 2010. [192]Google Scholar
Skurichina, M.. Stabilizing Weak Classifiers: Regularization and Combining Techniques in Discriminant Analysis. PhD thesis, Delft University of Technology, 2001. [402]Google Scholar
Slaets, S., Le Bastard, N., Martin, J. J., Sleegers, K., Van Broeckhoven, C., De Deyn, P. P., and Engelborghs, S.. Cerebrospinal fluid Aβ1–40 improves differential dementia diagnosis in patients with intermediate P-tau181P levels. Journal of Alzheimer’s Disease, 36(4):759767, 2013. [283]Google Scholar
Slonim, D. K., Tamayo, P., Mesirov, J. P., Golub, T. R., and Lander, E. S.. Class prediction and discovery using gene expression data. In Proceedings of the 4th Annual International Conference on Computational Molecular Biology, pages 263–272, 2000. [232, 235]Google Scholar
Small, S., Kent, K., Pierce, A., Leung, C., Kang, M. S., Okada, H., Honig, L., Vonsattel, J. P., and Kim, T. W.. Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Annals of Neurology, 58(6):909919, 2005. [193]Google Scholar
Smeraldi, F., Bicego, M., Cristani, M., and Murino, V.. CLOOSTING: CLustering data with bOOSTING. In Proceedings of the 10th International Workshop on Multiple Classifier Systems, volume 6713, pages 289–298. Springer, 2011. [414]Google Scholar
Smialowski, P., Frishman, D., and Kramer, S.. Pitfalls of supervised feature selection. Bioinformatics, 26(3):440443, 2010. [230]Google Scholar
Smirnov, N. V.. Estimate of deviation between empirical distribution functions in two independent samples. Bulletin Moscow University, 2:316, 1939. [197]Google Scholar
Smith, P. W. F. and Whittaker, J.. Edge exclusion tests for graphical Gaussian models. In Learning in Graphical Models, pages 555–574. Kluwer Academic Publishers, 1998. [484, 529, 559]Google Scholar
Smith, S. F.. A Learning System Based on Genetic Adaptive Algorithms. PhD thesis, University of Pittsburgh, 1980. [318]Google Scholar
Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., Ramsey, J. D., and Woolrich, M. W.. Network modelling methods for fMRI. NeuroImage, 54(2):875– 891, 2011. [535]Google Scholar
Smolensky, P.. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations, chapter Information processing in dynamical systems: Foundations of harmony theory, pages 194–281. The MIT Press, 1986. [555]Google Scholar
Sneath, P. H. A. and Sokal, R. R.. Numerical Taxonomy. Freeman, 1973. [467]Google Scholar
Sobstyl, M., Zabek, M., Górecki, W., and Mossakowski, Z.. Quality of life in advanced Parkinson’s disease after bilateral subthalamic stimulation: 2 years follow-up study. Clinical Neurology and Neurosurgery, 124:161165, 2014. [177]Google Scholar
Sokal, R. R. and Michener, C. D.. A statistical method for evaluating systematic relationships. University of Kansas Scientific Bulletin, 38:14091438, 1958. [441]Google Scholar
Sokolova, M. and Lapalme, G.. A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45:427437, 2009. [224]Google Scholar
Somol, P. and Novovicová, J.. Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(11):19211939, 2010. [255]Google Scholar
Sonntag, D., Peña, J. M., and Gómez-Olmedo, M.. Approximate counting of graphical models via MCMC revisited. International Journal of Intelligent Systems, 30(3):384420, 2015. [530]Google Scholar
Sonquist, J. A. and Morgan, J. N.. The detection of interaction effects. Technical Report 35, University of Michigan, 1964. [467]Google Scholar
Sørensen, T.. A method for establishing groups of equal amplititude in plant sociology based on similarity of species contents and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter, 5:134, 1948. [440, 441]Google Scholar
Spackman, K. A.. Signal detection theory: Valuable tools for evaluating inductive learning. In Proceedings of the 6th International Workshop on Machine Learning, pages 160–163. Morgan Kaufmann, 1989. [224]Google Scholar
Speed, T. P. and Kiiveri, H.. Gaussian Markov distributions over finite graphs. The Annals of Statistics, 14:138150, 1986. [558]Google Scholar
Spiegelhalter, D. J. and Lauritzen, S. L.. Sequential updating of conditional probabilities on directed graphical structures. Networks, 20:579605, 1990. [521, 522]Google Scholar
Spirtes, P. and Glymour, C.. An algorithm for fast recovery of sparse causal graphs. Social Science Computer Review, 90(1):6272, 1991. [525]Google Scholar
Spirtes, P., Glymour, C., and Scheines, R.. Causation, Prediction, and Search. Springer, 1993. [362, 497, 525, 551]Google Scholar
Spirtes, P., Meek, C., and Richardson, T.. Causal inference in the presence of latent variables and selection bias. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, pages 499–506. Morgan Kaufmann, 1999. [529]Google Scholar
Spisak, K., Klimkowicz-Mrowiec, A., Pera, J., Dziedzic, T., Aleksandra, G., and Slowik, A.. rs2070424 of the SOD1 gene is associated with risk of Alzheimer’s disease. Neurologia i Neurochirurgia Polska, 48(5):342–345, 2014. [178]Google Scholar
Spitzka, E. A.. A study of the brains of six eminent scientist and scholars belonging to the American anthropometric society, together with a description of the skull of professor E. D. Cope. Transactions of the American Philosophical Society, 21:175308, 1907. [7]Google Scholar
Sporns, O.. Networks of the Brain. The MIT Press, 2010. [5]Google Scholar
Sra, S.. A short note on parameter approximation for von Mises–Fisher distributions: And a fast implementation of Is (x). Computational Statistics, 27(1):177190, 2012. [151]Google Scholar
Srebro, N.. Maximum likelihood bounded tree-width Markov networks. Artificial Intelligence, 143: 123138, 2003. [570]Google Scholar
Srinivas, S.. A probabilistic approach to hierarchical model-based diagnosis. In Proceedings of the 10th International Conference on Uncertainty in Artificial Intelligence, pages 538–545. Morgan Kaufmann, 1994. [543]Google Scholar
Stearns, S. D.. On selecting features for pattern recognition. In Proceedings of the 3rd International Conference on Pattern Recognition, pages 71–75, 1976. [241]Google Scholar
Steck, H. and Jaakkola, T. S.. Predictive discretization during model selection. In Proceedings of the 26th Symposium of the German Association for Pattern Recognition, pages 1–8. Springer, 2004. [499]Google Scholar
Steinhaus, H.. Sur la division des corps matériels en parties. Bulletin de L’Academie Polonaise des Sciences, IV(12):801–804, 1956. [467]Google Scholar
Stella, F. and Amer, Y.. Continuous time Bayesian network classifiers. Journal of Biomedical Informatics, 45(6):11081119, 2012. [386]Google Scholar
Stella, F., Banzato, C. E., Barasnevicius-Quagliato, E. M., and Viana, M. A.. Depression in patients with Parkinson’s disease: Impact on functioning. Journal of Neurological Sciences, 272(1–2):158163, 2008. [178]Google Scholar
Stephenson, W.. Introduction of inverted factor analysis with some applications to studies in orexis. Journal of Educational Psychology, 5:553567, 1936. [467]Google Scholar
Sterio, D. C.. The unbiased estimation of number and sizes of arbitrary particles using the disector. Journal of Microscopy, 134(2):127136, 1984. [601]Google Scholar
Stigler, S. M.. Who discovered Bayes’s theorem? The American Statistician, 37(4):290296, 1983. [196]Google Scholar
Stone, M.. Asymptotics for and against cross-validation. Biometrika, 64(1):2935, 1977. [213, 268]Google Scholar
Storn, R. and Price, K.. Differential evolution. A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4):341359, 1997. [249]Google Scholar
Strauss, D. J.. A model for clustering. Biometrika, 62:467475, 1975. [608]Google Scholar
Strauss, M. E. and Brandt, J.. Attempt at preclinical identification of Huntington’s disease using the WAIS. Journal of Clinical and Experimental Neuropsychology, 8(3):210218, 1986. [440]Google Scholar
Strehl, A. and Ghosh, J.. Combining multiple clusterings using evidence accumulation. Journal of Machine Learning Research, 3:583617, 2002. [462]Google Scholar
Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., and Zeileis, A.. Conditional variable importance for random forests. BMC Bioinformatics, 9(1):307, 2008. [403]Google Scholar
Sturrock, A., Laule, C., Wyper, K., Milner, R. A., Decolongon, J., Dar Santos, R., Coleman, A. J., Carter, K., Creighton, S., Bechtel, N., Bohlen, S., Reilmann, R., Johnson, H. J., Hayden, M. R., Tabrizi, S. J., Mackay, A. L., and Leavitt, B. R.. A longitudinal study of magnetic resonance spectroscopy Huntington’s disease biomarkers. Movement Disorders, 30(3):393401, 2015. [186]Google Scholar
Su, J., Zhang, H., Ling, C. X., and Matwin, S.. Discriminative parameter learning for Bayesian networks. In Proceedings of the 25th International Conference on Machine Learning, volume 307, pages 1016–1023. ACM, 2008. [385]Google Scholar
Su, L., Wang, L., Shen, H., Feng, G., and Hu, D.. Discriminative analysis of nonlinear brain connectivity in schizophrenia: An fMRI study. Frontiers in Human Neuroscience, 7:Article 702, 2013. [314]Google Scholar
Sucar, L. E.. Probabilistic Graphical Models: Principles and Applications. Springer, 2015. [543]Google Scholar
Suermondt, H. J. and Cooper, G. F.. Probabilistic inference in multiply connected belief networks using loop cutsets. International Journal of Approximate Reasoning, 4(4):283306, 1990. [544]Google Scholar
Suh, D. C., Pahwa, R., and Mallya, U.. Treatment patterns and associated costs with Parkinson’s disease levodopa induced dyskinesia. Journal of Neurological Sciences, 319(1-2):2431, 2012. [108]Google Scholar
Sundberg, R.. Maximum likelihood theory for incomplete data from an exponential family. Scandinavian Journal of Statistics, 1(2):4958, 1974. [485]Google Scholar
Sundberg, R.. An iterative method for solution of the likelihood equations for incomplete data from exponential families. Communications in Statistics–Simulation and Computation, 5(1):5564, 1976. [485]Google Scholar
Supekar, K., Menon, V., Rubin, D., Musen, M., and Greicius, M. D.. Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Computational Biology, 4(6):111, 2008. [46]Google Scholar
Tandrup, T.. Unbiased estimates of number and size of rat dorsal root ganglion cells in studies of structure and cell survival. Journal of Neurocytology, 33(2):173192, 2004. [57]Google Scholar
Tangelder, J. W. H. and Veltkamp, R. C.. A survey of content based 3D shape retrieval methods. Multimedia Tools and Applications, 39:441471, 2008. [41]Google Scholar
Tardif, C. L., Collins, D. L., Eskildsen, S. F., Richardson, J. B., and Pike, G. B.. Medical Image Computing and Computer-Assisted Intervention, chapter Segmentation of cortical MS lesions on MRI using automated laminar profile shape analysis, pages 181–188. Springer, 2010. [445]Google Scholar
Tarjan, R. E. and Yannakakis, M.. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on Computing, 13(3):566579, 1984. [511]Google Scholar
Tax, D. M. J. and Duin, R. P. W.. Support vector domain description. Pattern Recognition Letters, 20 (11):11911199, 1999. [319]Google Scholar
Tenenboim, L., Rokach, L., and Shapira, B.. Identification of label dependencies for multi-label classification. In Proceedings of the 2nd International Workshop on Learning from Multi-Label Data, pages 53–60, 2010. [426]Google Scholar
Tenopir, C., Allard, S., Douglass, K., Aydinoglu, A. U., Wu, L., Read, E., Manoff, M., and Frame, M.. Data sharing by scientists: Practices and perceptions. PLoS ONE, 6(6):e21101, 2011. [20]Google Scholar
Teramoto, H., Morita, A., Ninomiya, S., Shiota, H., and Kamei, S.. Relation between freezing of gait and frontal function in Parkinson’s disease. Parkinsonism & Related Disorders, 20(10):10461069, 2014. [179]Google Scholar
Teufel, C., Subramaniam, N., and Fletcher, P.. The role of priors in Bayesian models of perception. Frontiers in Computational Neuroscience, 7:Article 25, 2013. [159]Google Scholar
Teyssier, M. and Koller, D.. Ordering-based search: A simple and effective algorithm for learning Bayesian networks. In Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, pages 584–590. AUAI Press, 2005. [531]Google Scholar
Thiesson, B., Meek, C., Chickering, D. M., and Heckerman, D.. Learning mixtures of DAG models. In Proceedings of the 14th Conference in Uncertainty in Artificial Intelligence, pages 504–513. AUAI Press, 1998. [483]Google Scholar
Thomas, J., Olson, J., Tapscott, S., and Zhao, L.. An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Research, 11:12271236, 2001. [232, 235]Google Scholar
Thomas, M.. A generalization of Poisson’s binomial limit for use in ecology. Biometrika, 36(1/2): 1825, 1949. [605]Google Scholar
Thorburn, W. M.. Occam’s razor. Mind, 24:287288, 1915. [28]Google Scholar
Thorndike, R. L. Who belongs in the family? Psychometrika, 18(4):267–276, 1953. [457, 466]Google Scholar
Tian, G. L., Tang, M. L., Fang, H. B., and Tan, M.. Efficient methods for estimating constrained parameters with applications to regularized (lasso) logistic regression. Computational Statistics & Data Analysis, 52(7):35283542, 2008. [343]Google Scholar
Tibshirani, R.. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58(1):267288, 1996. [252, 261, 341]Google Scholar
Tibshirani, R., Walther, G., and Hastie, T.. Estimating the number of clusters in a dataset via the gap statistics. Journal of the Royal Statistical Society, Series B, 63:411423, 2001. [458]Google Scholar
Tikhonov, A. N.. On the stability of inverse problems. Doklady Akademii Nauk SSSR, 39(5):176179, 1943. [252]Google Scholar
Titterington, D., Smith, A., and Makov, U.. Statistical Analysis of Finite Mixture Distributions. Wiley, 1985. [486]Google Scholar
Tomson, S. N., Narayan, M., Allen, G. I., and Eagleman, D. M.. Neural networks of colored sequence synesthesia. Journal of Neuroscience, 33(35):1409814106, 2013. [548]Google Scholar
Torben-Nielsen, B., Vanderlooy, S., and Postma, E. O.. Non-parametric algorithmic generation of neuronal morphologies. Neuroinformatics, 6:257277, 2008. [540]Google Scholar
Torgerson, W. S.. Multidimensional scaling: I. Theory and method. Psychometrika, 17(4):401419, 1952. [95]Google Scholar
Torres, E. B.. The rates of change of the stochastic trajectories of acceleration variability are a good predictor of normal aging and of the stage of Parkinson’s disease. Frontiers in Integrative Neuroscience, 7:Article 50, 2013. [108]Google Scholar
Trabelsi, G.. New Structure Learning Algorithms and Evaluation Methods for Large Dynamic Bayesian Networks. PhD thesis, Université de Nantes, 2013. [538]Google Scholar
Triantaphyllou, E. and Felici, G., editors. Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques. Springer, 2006. [318]Google Scholar
Tripoliti, E. E., Tzallas, A. T., Tsipouras, M. G., Rigas, G., Bougia, P., Leontiou, M., Konitsiotis, S., Chondrogiorgi, M., Tsouli, S., and Fotiadis, D. I.. Automatic detection of freezing of gait events in patients with Parkinson’s disease. Computer Methods and Programs in Biomedicine, 110(1): 1226, 2013. [282]Google Scholar
Tryon, R. C.. Cluster Analysis. Edwards Bros, 1939. [467]Google Scholar
Tsai, A., Malek-Ahmadi, M., Kahlon, V., and Sabbagh, M. N.. Differences in cerebrospinal fluid biomarkers between clinically diagnosed idiopathic normal pressure hydrocephalus and Alzheimer’s disease. Journal of Alzheimer’s Disease & Parkinsonism, 4(4), 2014. [179]Google Scholar
Tsamardinos, I. and Aliferis, C. F.. Towards principled feature selection: Relevancy, filters and wrappers. In Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics, 2003. [364, 560]Google Scholar
Tsamardinos, I., Aliferis, C. F., and Statnikov, A. R.. Algorithms for large scale Markov blanket discovery. In Proceedings of the 16th International Florida Artificial Intelligence Research Society Conference, pages 376–381. AAAI Press, 2003a. [364]Google Scholar
Tsamardinos, I., Aliferis, C. F., and Statnikov, A. R.. Time and sample efficient discovery of Markov blankets and direct causal relations. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 673–678, 2003b. [364]Google Scholar
Tsamardinos, I., Brown, L. E., and Aliferis, C. F.. The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning, 65(1):3178, 2006. [538, 546]Google Scholar
Tsiola, A., Hamzei-Sichani, F., Peterlin, Z., and Yuste, R.. Quantitative morphological classification of layer 5 neurons from mouse primary visual cortex. The Journal of Comparative Neurology, 461: 415428, 2003. [34]Google Scholar
Tsoumakas, G. and Katakis, I.. Multi-label classification: An overview. International Journal of Data Warehousing and Mining, 3:113, 2007. [416]Google Scholar
Tsoumakas, G., Dimou, A., Spyromitros, E., Mezaris, V., Kompatsiaris, I., and Vlahavas, I.. Correlation-based pruning of stacked binary relevance models for multi-label learning. In Proceedings of the 1st International Workshop on Learning from Multi-Label Data, pages 101–116, 2009. [426]Google Scholar
Tsoumakas, G., Katakis, I., and Vlahavas, I.. Random k-labelsets for multi-label classification. IEEE Transactions on Knowledge and Data Engineering, 23(7):10791089, 2010. [425]Google Scholar
Tsurusawa, R., Goto, Y., Mitsudome, A., Nakashima, T., and Tobimatsu, S.. Different perceptual sensitivities for Chernoff’s face between children and adults. Neuroscience Research, 60(2):176– 183, 2008. [73]Google Scholar
Tukey, J. W.. Exploratory Data Analysis. Addison-Wesley, 1977. [53, 89, 94, 413]Google Scholar
Turner, M., Chakrabarti, C., Jones, T. B., Xu, J. F., Fox, P. T., Luger, G. F., Laird, A. R., and Turner, J. A.. Automated annotation of functional imaging experiments via multi-label classification. Frontiers in Neuroscience, 7:Article 240, 2013. [417]Google Scholar
Tutz, G. and Binder, H.. Boosting ridge regression. Computational Statistics & Data Analysis, 51(12): 60446059, 2007. [414]Google Scholar
Tversky, A. and Kahneman, D.. Judgment under uncertainty: Heuristics and biases. Science, 185 (4157):11241131, 1974. [498]Google Scholar
Uhring, M., Ittrich, C., Wiedmann, V., Knyazev, Y., Weninger, A., Riemenschneider, M., and Hart-mann, T.. New Alzheimer amyloid β responsive genes identified in human neuroblastoma cells by hierarchical clustering. PLoS ONE, 4(8):e6779, 2009. [440]Google Scholar
Uludağ, K. and Roebroeck, A.. General overview on the merits of multimodal neuroimaging data fusion. NeuroImage, 102:310, 2014. [16]Google Scholar
Uszynski, M., Purtill, H., and Coote, S.. Relationship between foot vibration threshold and walking and balance functions in people with multiple sclerosis (PwMS). Gait Posture, 41(1):228232, 2015. [179]Google Scholar
Vafaie, H. and De Jong, K.. Improving the performance of a rule induction system using genetic algorithms. In Proceedings of the 1st International Workshop on Multistrategy Learning, pages 8–11, 1991. [261]Google Scholar
Valtokin, I., Theimer, W., and Rudolph, G.. Design and comparison of differential evolution strategies for feature selection and consolidation in music classification. In 2009 Congress on Evolutionary Computation, pages 174–181. IEEE Conference Publications, 2009. [241, 250]Google Scholar
van Buuren, S.. Flexible Imputation of Missing Data. Chapman and Hall, 2012. [95]Google Scholar
van den Kommer, T. N., Comijs, H. C., Rijs, K. J., Heymans, M. W., van Boxtel, M. P. J., and Deeg, D. J. H.. Classification models for identification of at-risk groups for incident memory complaints. International Psychogeriatrics, 26(2):257271, 2014. [88]Google Scholar
van der Eerden, A. W., Khalilzadeh, O., Perlbarg, V., Dinkel, J., Sanchez, P., Vos, P. E., Luyt, C. E., Stevens, R. D., Menjot de Champfleur, N., Delmaire, C., Tollard, E., Gupta, R., Dormont, D., Laureys, S., Benali, H., Vanhaudenhuyse, A., Galanaud, D., Puybasset, L., and NICER (Neuro Imaging for Coma Emergence and Recovery) Consortium. White matter changes in comatose survivors of anoxic ischemic encephalopathy and traumatic brain injury: Comparative diffusion-tensor imaging study. Radiology, 270(2):506–516, 2014. [193]Google Scholar
van der Gaag, L. C. and de Waal, P. R.. Multi-dimensional Bayesian network classifiers. In Proceedings of the 3rd European Workshop on Probabilistic Graphical Models, pages 107–114, 2006. [428, 429]Google Scholar
van der Heijden, M., Velikova, M., and Lucas, P. J. F.. Learning Bayesian networks for clinical time series analysis. Journal of Biomedical Informatics, 48:94105, 2014. [386]Google Scholar
van der Maaten, L. J. P. and Hinton, G. E.. Visualizing high-dimensional data using t-SNE. Journal of Machine Learning Research, 9:25792605, 2008. [83]Google Scholar
van Eeden, M., Kootker, J. A., S. M. Evers, C. M. van Heugten, A. C. Geurts, and G. A. van Mastrigt. An economic evaluation of an augmented cognitive behavioral intervention vs. computerized cognitive training for post-stroke depressive symptoms. BMC Neurology, 15(1):266, 2015. [88]Google Scholar
van Gerven, M. and Lucas, P. J. F.. Employing maximum mutual information for Bayesian classification. In Proceedings of the 5th International Symposium on Biological and Medical Data Analysis, pages 188–199. Springer, 2004. [362]Google Scholar
van Gerven, M., Hesse, C., Jensen, O., and Heskes, T.. Interpreting single trial data using groupwise regularisation. NeuroImage, 46:665676, 2009. [252]Google Scholar
van Gerven, M., Cseke, B., de Lange, F. P., and Heskes, T.. Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior. NeuroImage, 50(1):150161, 2010. [341]Google Scholar
van Lieshout, M. N. M.. Markov Point Processes and Their Applications. Imperial College Press, 2000. [607]Google Scholar
van Lieshout, M. N. M.. A J-function for inhomogeneous point processes. Statistica Neerlandica, 65 (2):183201, 2011. [597]Google Scholar
Van Rijsbergen, C. J.. Information Retrieval. Butterworth, 1979. [205]Google Scholar
Vapnik, V. N.. Statistical Learning Theory. Wiley, 1998. [300, 314]Google Scholar
Varando, G., Bielza, C., and Larrañaga, P.. Decision boundary for discrete Bayesian network classifiers. Journal of Machine Learning Research, 16:27252749, 2015. [362]Google Scholar
Vardi, Y., Shepp, L. A., and Kaufman, L. A.. A statistical model for positron emission tomography. Journal of the American Statistical Association, 80:837, 2006. [475]Google Scholar
Varga, B. E., Gao, W., K. L. Laurik, E. Tátrai, M. Simó, G. M. Somfai, and D. Cabrera DeBuc. Investigating tissue optical properties and texture descriptors of the retina in patients with multiple sclerosis. PLoS ONE, 10(11):e0143711, 2015. [186]Google Scholar
Vega-Pons, S. and Ruiz-Shulcloper, J.. A survey of clustering ensemble algorithms. International Journal of Pattern Recognition and Artificial Intelligence, 25(3):337372, 2011. [414]Google Scholar
Vergara, J. R. and Estévez, P. A.. A review of feature selection methods based on mutual information. Neural Computation and Applications, 24(1):175186, 2013. [261]Google Scholar
Verma, T. and Pearl, J.. Equivalence and synthesis of causal models. In Proceedings of the 6th Conference on Uncertainty in Artificial Intelligence, pages 255–270. Elsevier, 1990a. [498]Google Scholar
Verma, T. and Pearl, J.. Causal networks: Semantics and expressiveness. In Proceedings of the 4th Annual Conference on Uncertainty in Artificial Intelligence, pages 69–78. North-Holland, 1990b. [493]Google Scholar
Vetter, P., Roth, A., and Häusser, M.. Propagation of action potentials in dendrites depends on dendritic morphology. Journal of Neurophysiology, 85(2):926937, 2001. [43]Google Scholar
Vidal, R.. Subspace clustering. IEEE Signal Processing Magazine, 28:5268, 2011. [458]Google Scholar
Vidaurre, D., Bielza, C., and Larrañaga, P.. Learning an L1-regularized Gaussian Bayesian network in the equivalence class space. IEEE Transactions on Systems, Man and Cybernetics, Part B, 40(5): 12311242, 2010. [531]Google Scholar
Vidaurre, D., Bielza, C., and Larrañaga, P.. Forward stagewise naive Bayes. Progress in Artificial Intelligence, 1:5769, 2012. [353, 354]Google Scholar
Vidaurre, D., Bielza, C., and Larrañaga, P.. An L1 -regularized naive Bayes-inspired classifier for discarding redundant predictors. International Journal on Artificial Intelligence Tools, 22(4): 1350019, 2013a. [261, 354]Google Scholar
Vidaurre, D., Bielza, C., and Larrañaga, P.. A survey on L1 -regression. International Statistical Review, 81(3):361387, 2013b. [385]Google Scholar
Viggiano, D., Srivastava, D. P., Speranza, L., Perrone-Capano, C., Bellenchi, G. C., di Porzio, U., and Buckley, N. J.. Quantifying barcodes of dendritic spines using entropy-based metrics. Scientific Reports, 5:14622, 2015. [136]Google Scholar
Vital, T. M., Hernandez, S. S., Stein, A. M., Garuffi, M., Corazza, D. I., de Andrade, L. P. J. L. Costa, , and Stella, F.. Depressive symptoms and level of physical activity in patients with Alzheimer’s disease. Geriatrics and Gerontology International Journal, 12(4):67642, 2012. [167]Google Scholar
von Hippel, P. T.. Mean, median, and skew: Correcting a textbook rule. Journal of Statistics Education, 13(2), 2005. [59]Google Scholar
von Mises, R.. Uber die “Ganzzahligkeit” der Atomgewichte und verwandte Fragen. Physikalische Zeitschrift, 19:490500, 1918. [113]Google Scholar
von Neumann, J.. Various techniques used in connection with random digits. National Bureau of Standards Applied Math Series, 12:3638, 1951. [130]Google Scholar
Wainwright, M. J., P. Ravikumar, and J. D. Lafferty. High-dimensional graphical model selection using 1 -regularized logistic regression. In Advances in Neural Information Processing Systems 19, pages 1465–1472. The MIT Press, 2007. [570]Google Scholar
Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., and Jiang, T.. Altered functional connectivity in early Alzheimer’s disease: A resting-state fMRI study. Human Brain Mapping, 28:967978, 2007. [46]Google Scholar
Wang, S. and Zhu, J.. Variable selection for model-based high-dimensional clustering and its application to microarray data. Biometrics, 64:440448, 2008. [478]Google Scholar
Wang, S., M. Chopp, M. R. Nazem-Zadeh, G. Ding, S. P. Nejad-Davarani, C. Qu, M. Lu, L. Li, E. Davoodi-Bojd, J. Hu, Q. Li, A. Mahmood, and Q. Jiang. Comparison of neurite density measured by MRI and histology after TBI. PLoS ONE, 8(5):e63511, 2013. [190]Google Scholar
Ward, J. H.. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58:236244, 1963. [441]Google Scholar
Watson, G. S.. Goodness-of-fit tests on a circle. Biometrika, 48:109114, 1961. [168]Google Scholar
Watson, G. S.. Statistics on Spheres. Wiley, 1983. [179]Google Scholar
Webb, G. I. and Pazzani, M. J.. Adjusted probability naïve Bayesian induction. In Proceedings of the 11th Australian Joint Conference on Artificial Intelligence, pages 285–295. Springer, 1998. [351]Google Scholar
Webb, G. I., Boughton, J., and Wang, Z.. Not so naive Bayes: Aggregating one-dependence estimators. Machine Learning, 58:524, 2005. [359]Google Scholar
Wei, G. and Tanner, M.. A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms. Journal of the American Statistical Association, 85(411):699704, 1990. [474]Google Scholar
Weiss, S. M. and Kulikowski, C. A.. Computer Systems that Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems. Morgan Kaufmann, 1991. [29]Google Scholar
Weiss, S. M., Galen, R. S., and Tadepalli, P. V.. Maximizing the predictive value of production rules. Artificial Intelligence, 45:4771, 1990. [286]Google Scholar
Weiss, Y.. Correctness of local probability propagation in graphical models with loops. Neural Computation, 12(1):141, 2000. [570]Google Scholar
Weiss, Y., Simoncelli, E. P., and Adelson, E. H.. Motion illusions as optimal percepts. Nature Neuroscience, 5(6):598604, 2002. [159]Google Scholar
Wells, H. G.. World Brain. Methuen & Co, 1938. [23]Google Scholar
Wen, Q., Stepanyants, A., Elston, G., Grosberg, A., and Chklovskii, D.. Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors. Proceedings of the National Academy of Sciences, 106(30):1253612541, 2009. [43]Google Scholar
Werbos, P. J.. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, 1974. [318]Google Scholar
Wermuth, N.. Analogies between multiplicative models in contingency tables and covariance selection. Biometrics, 32:95108, 1976. [570]Google Scholar
Wermuth, N.. Linear recursive equations, covariance selection, and path analysis. Journal of the American Statistical Association, 75(372):963972, 1980. [500]Google Scholar
Weston, J., S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature selection for SVMs. In Advances in Neural Information Processing Systems 13, pages 51–63. The MIT Press, 2001. [261, 319]Google Scholar
Whittaker, J.. Graphical Models in Applied Multivariate Statistics. Wiley, 1990. [484, 559, 570]Google Scholar
Wicherts, J. M., M. Bakker, and D. Molenaar. Willingness to share research data is related to the strength of the evidence and the quality of reporting of statistical results. PLoS ONE, 6(11):e26828, 2011. [20]Google Scholar
Widrow, B. and Hoff, M. E.. Adaptive switching circuits. In 1960 IRE WESCON Convention Record, pages 96–104, 1960. [318]Google Scholar
Wiest, R., Burren, Y., Hauf, M., Schroth, G., Pruessner, J., Zbinden, M., Cattapan-Ludewig, K., and Kiefer, C.. Classification of mild cognitive impairment and Alzheimer disease using model-based MR and magnetization transfer imaging. American Journal of Neuroradiology, 34(4):740746, 2013. [448]Google Scholar
Wilcoxon, F.. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):8083, 1945. [176]Google Scholar
Wille, A. and Bühlmann, P.. Low-order conditional independence graphs for inferring genetic networks. Statistical Applications in Genetics and Molecular Biology, 5:Article 1, 2006. [570]Google Scholar
Williams, W. T. and Lambert, J. M.. Multivariate methods in plant ecology I. Association analysis in plant communities. The Journal of Ecology, 47:83101, 1959. [442]Google Scholar
Wilson, D. L.. Asympotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics, 2(3):408421, 1972. [269]Google Scholar
Wilt, B. A., Burns, L. D., E. Tatt Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer. Advances in light microscopy for neuroscience. Annual Review of Neuroscience, 32:435–506, 2009. [13]Google Scholar
Winn, J., Bishop, C. M., and Jaakkola, T.. Variational message passing. Journal of Machine Learning Research, 6:661694, 2005. [544]Google Scholar
Witten, D. M. and Tibshirani, R.. Penalized classification using Fisher’s linear discriminant. Journal of the Royal Statistical Society, Series B, 73(5):753772, 2011. [261]Google Scholar
Wolfe, J. H.. NORMIX: Computational methods for estimating the parameters of multivariate normal mixture distributions. Technical Bulletin USNPRA, 68(2), 1967. [475]Google Scholar
Wolpert, D. H.. Stacked generalization. Neural Networks, 5:241259, 1992. [399, 426]Google Scholar
Wolpert, D. H. and Macready, W. G.. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1):6782, 1997. [388]Google Scholar
Wong, A. M., Wang, J. W., and Axel, R.. Spatial representation of the glomerular map in the drosophila protocerebrum. Cell, 109:229241, 2002. [34]Google Scholar
Wood, A. T. A.. Simulation of the von Mises–Fisher distribution. Communications in Statistics – Simulation and Computation, 23(1):157164, 1994. [152]Google Scholar
Woolrich, M. W., Behrens, T. E., Beckmann, C. F., and Smith, S. M.. Mixture models with adaptive spatial regularization for segmentation with an application to fMRI data. IEEE Transactions on Medical Imaging, 24(1):111, 2005. [547]Google Scholar
Wozniak, M., Graña, M., and Corchado, E.. A survey of multiple classifier systems as hybrid systems. Information Fusion, 16(0):317, 2014. [413]Google Scholar
Wu, C. F. J.. On the convergence properties of the EM algorithm. The Annals of Statistics, 11:95103, 1983. [473]Google Scholar
Wu, J., Chen, J., Xiong, H., and Xie, M.. External validation measures for k-means clustering: A data distribution perspective. Expert Systems with Applications, 36:60506061, 2009. [462]Google Scholar
Wu, Y., Warfiled, S. K., Tan, I. L., Wells, W. M., Meier, D. S., van Schijndel, R. A. F. Barkhof, , and Guttmann, C. R.. Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI. NeuroImage, 32(3):12051215, 2006. [263]Google Scholar
Xiao, J., He, C., and Jiang, X.. Structure identification of Bayesian classifiers based on GMDH. Knowledge-Based Systems, 22:461470, 2009. [362]Google Scholar
Xie, B., Pan, W., and Shen, X.. Variable selection in penalized model-based clustering via regularization on grouped parameters. Bioinformatics, 64:921930, 2008. [478]Google Scholar
Xu, L., Yan, P., and Chang, T.. Best first strategy for feature selection. In Proceedings of the 9th International Conference on Pattern Recognition, pages 706–708, IEEE, 1988. [240, 241]Google Scholar
Xu, X. L., Olson, J. M., and Zhao, L. P.. A regression-based method to identify differentially expressed genes in microarray time course studies and its application in an inducible Huntington’s disease transgenic model. Human Molecular Genetics, 11(17):19771985, 2002. [195]Google Scholar
Xue, J.-H. and Titterington, D. M.. Joint discriminative-generative modelling based on statistical tests for classification. Pattern Recognition Letters, 31(9):10481055, 2010. [385]Google Scholar
Yang, G., Chang, P. C., Bekker, A., Blanck, T. J., and Gan, W. B.. Transient effects of anesthetics on dendritic spines and filopodia in the living mouse cortex. Anesthesiology, 115(4):718726, 2011. [175]Google Scholar
Yang, G., Raschke, F., Barrick, T. R., and Howe, F. A.. Manifold learning in MR spectroscopy using nonlinear dimensionality reduction and unsupervised clustering. Magnetic Resonance in Medicine, 74(3):868878, 2015. [440]Google Scholar
Yang, H., J. Liu, J. Sui, G. Pearlson, and V. D. Calhoun. A hybrid machine learning method for fusing fMRI and genetic data: Combining both improves classification of schizophrenia. Frontiers in Human Neuroscience, 4:Article 192, 2010a. [406]Google Scholar
Yang, J., W. Peng, M. O. Ward, and E. A. Rundensteiner. Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets. In Proceedings of the 9th Annual IEEE Conference on Information Visualization, pages 105–112. IEEE, 2003. [74]Google Scholar
Yang, Y. and G. I. Webb. On why discretization works for naive-Bayes classifiers. In Proceedings of the 16th Australian Conference on Artificial Intelligence, volume 2903, pages 440–452, 2003. [374]Google Scholar
Yang, Y. and Webb, G. I.. Discretization for naive-Bayes learning: Managing discretization bias and variance. Machine Learning, 74(1):3974, 2009. [91]Google Scholar
Yang, Y., K. B. Korb, K. M. Ting, and G. I. Webb. Ensemble selection for superparent-one-dependence estimators. In Proceedings of the 18th Australian Conference on Artificial Intelligence, pages 102–112, 2005. [359]Google Scholar
Yang, Y., Webb, G. I., Cerquides, J., Korb, K. B., Boughton, J., and Ting, K. M.. To select or to weigh: A comparative study of linear combination schemes for superparent-one-dependence estimators. IEEE Transactions on Knowledge and Data Engineering, 19:16521665, 2007. [360]Google Scholar
Yang, Y., Webb, G. I., and Wu, X.. Data Mining and Knowledge Discovery Handbook, chapter Discretization methods, pages 101–116. Springer, 2010b. [90]Google Scholar
Yanmin, S., Wong, A. K. C., and Kamel, M. S.. Classification of imbalanced data: A review. International Journal of Pattern Recognition and Artificial Intelligence, 23(4):687719, 2009. [223]Google Scholar
Yaramakala, S. and Margaritis, D.. Speculative Markov blanket discovery for optimal feature selection. In Proceedings of the 5th IEEE International Conference on Data Mining, pages 809– 812. IEEE, 2005. [364]Google Scholar
Yates, F.. Contingency table involving small numbers and the χ2 test. Journal of the Royal Statistical Society, 1(2):217235, 1934. [220]Google Scholar
Yedidia, J. S., Freeman, W. T., and Weiss, Y.. Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Transactions on Information Theory, 51(7):22822312, 2005. [562]Google Scholar
Yildiz, C. T. and Alpaydın, E.. Omnivariate decision trees. IEEE Transactions on Neural Networks, 12(6):15391546, 2001. [276]Google Scholar
Yu, J., Cheng, Q., and Huang, M.. Analysis of the weighting exponent in the FCM. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 34:634639, 2004. [447]Google Scholar
Yuan, C. and Druzdzel, M. J.. Importance sampling algorithms for Bayesian networks: Principles and performance. Mathematical and Computer Modelling, 43(9-10):11891207, 2006. [544]Google Scholar
Yuan, J., Cui, G., Li, W., Zhang, X., Wang, X., Zheng, H., Zhang, J., Xiang, S., and Xie, Z.. Propofol enhances hemoglobin-induced cytotoxicity in neurons. Anesthesia and Analgesia Journal, 122 (4):10241030, 2016. [179]Google Scholar
Yuan, M. and Lin, Y.. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B, 70(1):5371, 2006. [341]Google Scholar
Yuste, R.. Dendritic Spines. The MIT Press, 2010. [38]Google Scholar
Yuste, R. and Church, G. M.. The new century of the brain. Scientific American, 310(3):3845, 2014. [13, 19]Google Scholar
Yuste, R., Lein, E., Hawrylycz, M., and Copenhagen Convention Group. A community-based transcriptomics classification and nomenclature of neocortical cell types, Nature Neuroscience, 23, in press 2020. [34]Google Scholar
Yuste, R., Majewska, A., and Holthoff, K.. From form to function: Calcium compartmentalization in dendritic spines. Nature Neuroscience, 3:653659, 2000. [39]Google Scholar
Zaidi, N. A., Cerquides, J., Carman, M. J., and Webb, G. I.. Alleviating naive Bayes attribute independence assumption by attribute weighting. Journal of Machine Learning Research, 14: 1947–1988, 2013. [385]Google Scholar
Zhang, H. and Sun, G.. Feature selection using tabu search method. Pattern Recognition, 35:701711, 2002. [241, 242]Google Scholar
Zhang, J.. On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. Artificial Intelligence, 172(16-17):18731896, 2008. [545]Google Scholar
Zhang, M.-L., Peña, J. M., and Robles, V.. Feature selection for multi-label naive Bayes classification. Information Sciences, 179(19):32183229, 2009. [429]Google Scholar
Zhang, M.-L. and Zhou, Z.-H.. Multilabel neural networks with applications to functional genomics and text categorization. IEEE Transactions on Knowledge and Data Engineering, 18(10):1338– 1351, 2006. [427]Google Scholar
Zhang, M.-L. and Zhou, Z.-H.. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7):20382048, 2007. [427]Google Scholar
Zhang, M.-L. and Zhou, Z.-H.. A review on multi-label learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 26(8):18191837, 2014. [416]Google Scholar
Zhang, N. and Poole, D.. A simple approach to Bayesian network computations. In Proceedings of the 10th Biennial Canadian Conference on Artificial Intelligence, pages 171–178, 1994. [507]Google Scholar
Zhang, N. L.. Hierarchical latent class models for cluster analysis. Journal of Machine Learning Research, 5:697723, 2004. [486]Google Scholar
Zhang, N. L., Nielsen, T. D., and Jensen, F. V.. Latent variable discovery in classification models. Artificial Intelligence in Medicine, 30(3):283299, 2004. [351, 352]Google Scholar
Zhang, T., Ramakrishnan, R., and Livny, M.. BIRCH: An efficient data clustering method for very large databases. In Proceedings of the ACM SIGMOD Conference on Management of Data, pages 103–114, 1996. [467]Google Scholar
Zhang, X., Henriquez, C., and Ferrari, S.. Spike-based indirect training of a spiking neural network-controlled virtual insect. In 52nd IEEE Conference on Decision and Control, pages 6798–6805, 2013a. [300]Google Scholar
Zhang, Y., Wang, S., Ji, G., and Dong, Z.. An MR brain images classifier system via particle swarm optimization and kernel support vector machine. The Scientific World Journal, 2013:Article 130134, 2013b. [314]Google Scholar
Zhang, Y. N.. Can a smartphone diagnose Parkinson disease? A deep neural network method and telediagnosis system implementation. Parkinson’s Disease, 2017: Article 6209703, 2017. [299]Google Scholar
Zhao, M., Batista, A., Cunningham, J. P., Chestek, C., Rivera-Alvidrez, Z., Kalmar, R., Ryu, S., Shenoy, K., and Iyengar, S.. An L1-regularized logistic model for detecting short-term neuronal interactions. Journal of Computational Neuroscience, 32(3):479497, 2012. [341]Google Scholar
Zheng, Z. and Webb, G. I.. Lazy learning of Bayesian rules. Machine Learning, 41(1):5384, 2000. [409]Google Scholar
Zheutlin, A. B., Viehman, R. W., Fortgang, R., Borg, J., Smith, D. J., Suvisaari, J., Therman, S., Hultman, C. M., and Cannon, T. D.. Cognitive endophenotypes inform genome-wide expression profiling in schizophrenia. Neuropsychology, 30(1):4052, 2016. [193]Google Scholar
Zhou, S., Rütimann, P., Xu, M., and Bühlmann, P.. High-dimensional covariance estimation based on Gaussian graphical models. Journal of Machine Learning Research, 12:29753026, 2011. [570]Google Scholar
Zhou, Z.-H.. Ensemble Methods. Foundations and Algorithms. Chapman & Hall/CRC, 2012. [413, 414]Google Scholar
Zhou, Z.-H., Zhang, M. L., Huang, S. J., and Li, Y. F.. Multi-instance multi-label learning. Artificial Intelligence, 176:22912320, 2012. [434]Google Scholar
Zhu, G., Li, Y., Wen, P. P, and Wang, S.. Signal and Image Analysis for Biomedical and Life Sciences. Advances in Experimental Medicine and Biology, chapter Classifying epileptic EEG signals with delay permutation entropy and multi-scale K-means, pages 143–157. Springer, 2015. [445]Google Scholar
Ziebart, B., Dey, A. K., and Bagnell, J. A.. Learning selectively conditioned forest structures with applications to DBNs and classification. In Proceedings of the 23rd Conference Annual Conference on Uncertainty in Artificial Intelligence, pages 458–465. AUAI Press, 2007. [358, 359]Google Scholar
Zong, Z.. Information-Theoretic Methods for Estimating Complicated Probability Distributions. Elsevier, 2006. [378, 379]Google Scholar
Zuk, O., Margel, S., and Domany, E.. On the number of samples needed to learn the correct structure of a Bayesian network. In Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, pages 560–567. AUAI Press, 2006. [545]Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Concha Bielza, Universidad Politécnica de Madrid, Pedro Larrañaga, Universidad Politécnica de Madrid
  • Book: Data-Driven Computational Neuroscience
  • Online publication: 05 November 2020
  • Chapter DOI: https://doi.org/10.1017/9781108642989.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Concha Bielza, Universidad Politécnica de Madrid, Pedro Larrañaga, Universidad Politécnica de Madrid
  • Book: Data-Driven Computational Neuroscience
  • Online publication: 05 November 2020
  • Chapter DOI: https://doi.org/10.1017/9781108642989.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Concha Bielza, Universidad Politécnica de Madrid, Pedro Larrañaga, Universidad Politécnica de Madrid
  • Book: Data-Driven Computational Neuroscience
  • Online publication: 05 November 2020
  • Chapter DOI: https://doi.org/10.1017/9781108642989.023
Available formats
×