Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-01T03:35:02.428Z Has data issue: false hasContentIssue false

Appendices

Published online by Cambridge University Press:  03 February 2020

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Taylor, B. N., Guide for the Use of the International System of Units (SI), National Institute of Standards and Technology (NIST) NIST Special Publication 811, 1995.Google Scholar
Taylor, B. N., The International System of Units (SI), National Institute of Standards and Technology (NIST) NIST Special Publication 330, 2001.Google Scholar
Panofsky, W. K. H., Phillips, M., Classical Electricity and Magnetism, Addison-Wesley,Reading, MA, 1962.Google Scholar
Particle Data Group, Tanabashi, M., Hagiwara, K., et al., Review of particle physics, Phys. Rev. D 98 (2018).Google Scholar
Wikipedia contributors, 2019 redefinition of the SI base unit, Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=2019_redefinition_of_the_SI_base_units&oldid=915062971.Google Scholar
Borghini, M., Choice of substances for polarized proton targets, CERN Yellow Report CERN 66–3, 1966.Google Scholar
Ingram, D. J. E., Free Radicals as Studied by E.S.R., Butterworth, London, 1958.Google Scholar
Lilly Thankamony, A. S., Wittmann, J. J., Kaushik, M., Corzilius, B., Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR, Progress in Nuclear Magnetic Resonance Spectroscopy 102103 (2017) 120195.Google Scholar
Smith, R. L., Miser, J., Compilation of the Properties of Lithium Hydride, NASA Technical Memorandum NASA TM X-483, 1963.Google Scholar
Talón, C., Ramos, M. A., Cuello, G. J., et al., Low-temperature specific heat and glassy dynamics of a polymorphic molecular solid, Phys. Rev. B 58 (1998) 745755.CrossRefGoogle Scholar
Zhou, Y., Bowler, B. E., Eaton, G. R., Eaton, S. S., Electron spin lattice relaxation rates for S = 1/2 molecular species in glassy matrices or magnetically dilute solids at temperatures between 10 and 300K, J. Magnetic Resonance 139 (1999) 165174.Google Scholar
Alvesalo, T. A., Berglund, P. M., Islander, S. T., Pickett, G. R., Zimmermann, W., Specific heat of liquid He3/He4 mixtures near the junction of the λ and phase-separation curves. I, Phys. Rev. A 4 (1971) 23542368.Google Scholar
Radebaugh, R., Thermodynamic properties of 3He-4He solutions with applications to the 3He-4He dilution refrigerator, National Bureau of Standards Technical Note 362, 1967.CrossRefGoogle Scholar
Watson, G. E., Reppy, J. D., Richardson, R. C., Low-Temperature density and solubility of He3 in liquid He4 under pressure, Phys. Rev. 188 (1969) 384394.Google Scholar
Castelijns, C. A. M., Flow Properties of 3He in Dilute 3He-4He Mixtures at Temperatures between 10 and 150 mK, Dr. Techn. Thesis, 1986, Department of Physics, Eindhoven University of Technology.Google Scholar
Kuerten, J. G. M., Castelijns, C. A. M., de Waele, A. T. A. M., Gijsman, H. M., Thermodynamic properties of liquid 3He-4He mixtures at zero pressure for temperatures below 250mK and 3He concentrations below 8%, Cryogenics 25 (1985) 419.Google Scholar
Landau, J., Tough, J. T., Brubacker, N. R., Edwards, D. O., Osmotic pressure of degenerate He3-He4 mixtures, Phys. Rev. A2 (1970) 2472.Google Scholar
Bloyet, D., Ghozlan, A. C., Varoquaux, E. J.-A., Osmotic pressure secondary thermometer for dilution refrigerators, in: Timmerhaus, K.D., et al. (Eds.) Low Temperature Physics – LT13, Plenum Press, New York and London, 1974, pp. 503509.Google Scholar
Ghozlan, A., Varoquaux, E., Propriétés osmotiques et magnétiques des solutions d’hélium-3 dans l’hélium-4 superfluide, Ann. de Phys. 4 (1979) 239327.Google Scholar
Kuerten, J. G. M., 3He-4He II Mixtures: Thermodynamic and Hydrodynamic Properties, Dr. Techn. Thesis, 1987, Department of Physics, Eindhoven University of TechnologyGoogle Scholar
de Waele, A. T. A. M., Kuerten, J. G. M., Thermodynamics of liquid 3He-4He mixtures, Physica B 160 (1989) 143153.Google Scholar
Rosenbaum, R. L., Eckstein, Y., Landau, J., Thermometry using the osmotic pressure of mixtures of He3 in superfluid He4, Cryogenics 14 (1974) 2124.CrossRefGoogle Scholar
Hudson, R. P., Marshak, H., Soulen, R. J., Utton, D. B., Review paper: recent advances in thermometry below 300mK, Journal of Low Temperature Physics 20 (1975) 1102.CrossRefGoogle Scholar
Preston-Thomas, H., The international temperature scale of 1990 (ITS-90), Metrologia 27 (1990) 310.CrossRefGoogle Scholar
Engert, J., Fellmuth, B., Jousten, K., A new 3He vapour-pressure based temperature scale from 0.65K to 3.2K consistent with the PLTS-2000, Metrologia 44 (2007) 4053.Google Scholar
Suomi, M., Anderson, A. C., Holmström, B., Heat transfer below 0.2°K, Physica 38 (1968) 6780.Google Scholar
Lounasmaa, O. V., Experimental Principles and Methods below 1K, Academic Press, New York, 1974.Google Scholar
Fairbank, H.A., Lee, D.M., Thermal conductivity of 70–30 cupro-nickel alloy from 0.3° to 4.0°K, Rev. Sci Instrum. 31 (1960) 660.CrossRefGoogle Scholar
Boyes, E., Court, G. R., Craven, B., Gamet, R., Hayman, P. J., Measurements of the effect of absorbed power on the polarization attainable in a butanol target, in: Shapiro, G. (Ed.) Proc. 2nd Int. Conf. on Polarized Targets, LBL, University of California, Berkeley, Berkeley, 1971, pp. 403406.Google Scholar
Anderson, A. C., Connolly, J. I., Vilches, O. E., Wheatley, J. C., Experimental thermal conductivity of helium-3, Phys. Rev. 147 (1966) 8693.Google Scholar
Abel, W. R., Johnson, R. T., Wheatley, J. C., Zimmermann, W., Thermal conductivity of pure He3 and of dilute solutions of He3 in He4 at low temperatures, Phys. Rev. Lett. 18 (1967) 737740.Google Scholar
Abel, W. R., Wheatley, J. C., Experimental thermal conductivity of two dilute solutions of He3 in superfluid He4, Phys. Rev. Lett. 21 (1968) 12311234.Google Scholar
Black, M. A., Hall, H. E., Thompson, K., The viscosity of liquid helium-3, Journal of Physics C: Solid State Physics 4 (1971) 129142.Google Scholar
Abel, W. R., Anderson, A. C., Wheatley, J. C., Propagation of zero sound in liquid 3He at low temperatures, Phys. Rev. Lett. 17 (1966) 7478.Google Scholar
Baym, G., Saam, W. F., Phonon-quasiparticle interactions in dilute solutions of He3 in superfluid He4. II phonon Boltzmann equation and first viscosity, Phys. Rev. 171 (1968) 172178.CrossRefGoogle Scholar
Fisk, D. J., Hall, H. E., The viscosity of 3He-4He solutions, 13th Int. Conf. of Low Temp. Phys. (LT13), 1972, pp. 568570.CrossRefGoogle Scholar
Kuenhold, K. A., Crum, D. B., Sarwinski, R. E., The viscosity of dilute solutions of 3He in 4He at low temperatures, 13th Int. Conf. of Low Temp. Phys. (LT13), 1972, pp. 563567.CrossRefGoogle Scholar
Zeegers, J., Critical Velocities and Mutual Friction in 3He-4He Mixtures at Temperatures Below 100 mK, Dr. Techn. Thesis, 1991, Physics Department, Eindhoven University of TechnologyGoogle Scholar
Wheatley, J. C., Vilches, O. E., Abel, W. R., Principles and methods of dilution refrigeration, Physics 4 (1968) 164.CrossRefGoogle Scholar
de Waele, A. T. A. M., Keltjens, J. C. M., Castelijns, C. A. M., Gijsma, H. M., Flow properties of 3He moving through 4He-II at temperatures below 150 mK, Phys. Rev. B28 (1983) 53505353.Google Scholar
Monchick, L., Mason, E. A., Munn, R. J., Smith, F. J., Transport properties of gaseous He3 and He4, Phys. Rev. 139 (1965) A1076A1082.CrossRefGoogle Scholar
Burghart, G., Baseline Design of the Cryogenic System for EURECA, Dr. Techn. Thesis, 2010, Atominstitut (E141), Technical University of ViennaGoogle Scholar
Andres, K., Sprenger, W. O., Kapitza resistance measurements between 3He and silver at very low temperatures, in: Krusius, M., Vuorio, M. (Eds.) 14th International Conference on Low Temperature Physics, North-Holland, Otaniemi, 1975, pp. 123126.Google Scholar
Niinikoski, T. O., Dilution refrigeration: new concepts, in: Mendelssohn, K. (Ed.) 6th Int. Cryogenic Engineering Conf., IPC Science and Technology Press, Guilford, 1976, pp. 102111.Google Scholar
Olver, F. W. J., Lozier, D. W., Boisvert, R. F., Clark, C. W., NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010.Google Scholar
Jahnke, E., Emde, F., Tables of Functions, 4 ed., Dover Publications, Inc., New York, 1945.Google Scholar
Abramowitz, M., Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, NIST 1972.Google Scholar
Dhawan, S. K., Understanding effect of teflon room temperature phase transition on coax cable delay in order to improve the measurement of TE signals of deuterated polarized targets, IEEE Trans. Nucl. Sci. 39 (1992) 13311335.Google Scholar
Spin Muon Collaboration (SMC), Adams, D., Adeva, B., et al., The polarized double-cell target of the SMC, Nucl. Instr. and Meth. in Phys. Res. A 437 (1999) 2367.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Appendices
  • Tapio O. Niinikoski
  • Book: The Physics of Polarized Targets
  • Online publication: 03 February 2020
  • Chapter DOI: https://doi.org/10.1017/9781108567435.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Appendices
  • Tapio O. Niinikoski
  • Book: The Physics of Polarized Targets
  • Online publication: 03 February 2020
  • Chapter DOI: https://doi.org/10.1017/9781108567435.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Appendices
  • Tapio O. Niinikoski
  • Book: The Physics of Polarized Targets
  • Online publication: 03 February 2020
  • Chapter DOI: https://doi.org/10.1017/9781108567435.013
Available formats
×