Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T14:10:43.614Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  14 July 2018

Yakov M. Shnir
Affiliation:
Joint Institute for Nuclear Research, Dubna
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablowitz, M. J., Kruskal, M. D., and Ladik, J. F., Solitary wave collisions, SIAM J. Appl. Math. 36, 428 (1979).Google Scholar
Ablowitz, M. J., Kaup, D. J., Newell, A. C., and Segur, H., Method for solving the sine-Gordon equation, Phys. Rev. Lett. 30, 1262 (June 1973).Google Scholar
Ackerman, P. J. and Smalyukh, I. I., Diversity of knot solitons in liquid crystals manifested by linking of preimages in torons and hopfions, Phys. Rev. X 7, 011006 (2017).Google Scholar
Adam, C., Sanchez-Guillen, J., Vazquez, R. A., and Wereszczynski, A., Investigation of the Nicole model, J. Math. Phys. 47, 052302 (2006).CrossRefGoogle Scholar
Adam, C., Sanchez-Guillen, J., and Wereszczynski, A., Conservation laws in Skyrme-type models, J. Math. Phys. 48, 032302 (2007).CrossRefGoogle Scholar
Adam, C., Klimas, P., Sanchez-Guillen, J., and Wereszczynski, A., Compact baby skyrmions, Phys. Rev. D 80, 105013 (2009).CrossRefGoogle Scholar
Adam, C., Romanczukiewicz, T., Sanchez-Guillen, J., and Wereszczynski, A., Investigation of restricted baby Skyrme models, Phys. Rev. D 81, 085007 (2010).Google Scholar
Adam, C., Sanchez-Guillen, J., and Wereszczynski, A., A Skyrme-type proposal for baryonic matter, Phys. Lett. B 691, 105 (2010).Google Scholar
Adam, C., Sanchez-Guillen, J., and Wereszczynski, A., A BPS Skyrme model and baryons at large N c , Phys. Rev. D 82, 085015 (2010).CrossRefGoogle Scholar
Adam, C., Sanchez-Guillen, J., and Wereszczynski, A., A BPS Skyrme model: Mathematical properties and physical applications, Acta Phys. Polon. B 41, 2717 (2010).Google Scholar
Adam, C., Fosco, C. D., Queiruga, J. M., Sanchez-Guillen, J., and Wereszczynski, A., Symmetries and exact solutions of the BPS Skyrme model, J. Phys. A 46, 135401 (2013).Google Scholar
Adam, C., Naya, C., Sanchez-Guillen, J., and Wereszczynski, A., Bogomolnyi– Prasad–Sommerfield Skyrme model and nuclear binding energies, Phys. Rev. Lett. 111, 232501 (2013).Google Scholar
Adam, C., Sanchez-Guillen, J., and Wereszczynski, A., BPS submodels of the Skyrme model, Phys. Lett. B 769, 362 (2017).Google Scholar
Adkins, G. S., Nappi, C. R., and Witten, E., Static properties of nucleons in the Skyrme model, Nucl. Phys. B 228, 552 (1983).CrossRefGoogle Scholar
Adkins, G. S. and Nappi, C. R., The Skyrme model with pion masses, Nucl. Phys. B 233, 109 (1984).CrossRefGoogle Scholar
Affleck, I. and Dine, M., A new mechanism for baryogenesis, Nucl. Phys. B 249, 361 (1985).CrossRefGoogle Scholar
Aitchison, I. J. R., Berry phases, magnetic monopoles and Wess–Zumino terms or how the skyrmion got its spin, Acta Phys. Polon. B 18, 207 (1987).Google Scholar
Airy, G. B., Tides and waves, Encyclopaedia Metropolitana , 1841, 5, Sect. 392, 241 30, 1262 (1973).Google Scholar
de Alfaro, V., Fubini, S., and Furlan, G., A new classical solution of the Yang–Mills field equations, Phys. Lett. 65B, 163 (1976).Google Scholar
de Alfaro, V., Fubini, S., and Furlan, G., Nonlinear σ models and classical solutions, Nuovo Cim. A 48, 485 (1978).CrossRefGoogle Scholar
Alvarez, O., Ferreira, L. A., and Sanchez Guillen, J., A new approach to integrable theories in any dimension, Nucl. Phys. B 529, 689 (1998).CrossRefGoogle Scholar
Anagnostopoulos, K. N., Axenides, M., Floratos, E. G., and Tetradis, N., Large gauged Q balls, Phys. Rev. D 64, 125006 (2001).Google Scholar
Anninos, P., Oliveira, S., and Matzner, R. A., Fractal structure in the scalar λ(ϕ 2 − 1)2 model, Phys. Rev. D 44, 1147 (1991).Google Scholar
Aratyn, H., Ferreira, L. A., and Zimerman, A. H., Exact static soliton solutions of (3+1)-dimensional integrable theory with nonzero Hopf numbers, Phys. Rev. Lett. 83, 1723 (1999).Google Scholar
Aratyn, H., Ferreira, L. A., and Zimerman, A. H., Toroidal solitons in (3+1)-dimensional integrable theories, Phys. Lett. B 456, 162 (1999).CrossRefGoogle Scholar
Arodz, H., Topological compactons, Acta Phys. Polon. B 33, 1241 (2002).Google Scholar
Arodz, H. and Lis, J., Compact Q-balls in the complex signum-Gordon model, Phys. Rev. D 77, 107702 (2008).Google Scholar
Arodz, H., Klimas, P., and Tyranowski, T., Field-theoretic models with V-shaped potentials, Acta Phys. Polon. B 36, 3861 (2005).Google Scholar
Arthur, K., Roche, G., Tchrakian, D. H., and Yang, Y. S., Skyrme models with self-dual limits: d = 2, 3, J. Math. Phys. 37, 2569 (1996).Google Scholar
Atiyah, M. F. and Manton, N. S., Skyrmions from instantons, Phys. Lett. B 222, 438 (1989);Google Scholar
Geometry and kinematics of two skyrmions, Commun. Math. Phys. 153, 391 (1993).Google Scholar
Aubin, T., Nonlinear Analysis on Manifolds: Monge–Ampère Equations (Springer-Verlag, 1982).CrossRefGoogle Scholar
Axenides, M., Komineas, S., Perivolaropoulos, L., and Floratos, M., Dynamics of nontopological solitons: Q balls, Phys. Rev. D 61, 085006 (2000).Google Scholar
Axenides, M., Floratos, E., Komineas, S., and Perivolaropoulos, L., Metastable ringlike semitopological solitons, Phys. Rev. Lett. 86, 4459 (2001).CrossRefGoogle ScholarPubMed
van Baal, P. and Wipf, A., Classical gauge vacua as knots, Phys. Lett. B 515, 181 (2001).Google Scholar
Babaev, E., Faddeev, L. D., and Niemi, A. J., Hidden symmetry and knot solitons in a charged two-condensate Bose system, Phys. Rev. B 65, 100512 (2002).CrossRefGoogle Scholar
Babaev, E., Non-Meissner electrodynamics and knotted solitons in two-component superconductors, Phys. Rev. B 79, 104506 (2009).CrossRefGoogle Scholar
Babelon, O., Bernard, D., and Talon, M., Introduction to Classical Integrable Systems (Cambridge University Press, 2003).Google Scholar
Babelon, O. and Ferreira, L. A., Integrability and conformal symmetry in higher dimensions: A model with exact Hopfion solutions, JHEP 0211, 020 (2002).Google Scholar
Bagger, J., Goldstein, W., and Soldate, M., Static solutions in the vacuum sector of the Skyrme model, Phys. Rev. D 31, 2600 (1985).Google Scholar
Bak, P. and Jensen, M. H., Theory of helical magnetic structures and phase transitions in MnSi and FeGe, J. Phys. C Solid State 13, L881 (1980).Google Scholar
Barnes, C., Baskerville, W. K., and Turok, N., Normal mode spectrum of the deuteron in the Skyrme model, Phys. Lett. B 411, 180 (1997).Google Scholar
Baskerville, W. K. and Michaels, R., Classification of normal modes for multiskyrmions, Phys. Lett. B 448, 275 (1999).Google Scholar
Battye, R. A. and Haberichter, M., Isospinning baby skyrmion solutions, Phys. Rev. D 88, 125016 (2013).Google Scholar
Battye, R. A. and Haberichter, M., Classically isospinning Hopf solitons, Phys. Rev. D 87, 105003 (2013).CrossRefGoogle Scholar
Battye, R. A., Haberichter, M., and Krusch, S., Classically isospinning skyrmion solutions, Phys. Rev. D 90, 125035 (2014).CrossRefGoogle Scholar
Battye, R. A. and Sutcliffe, P. M., Multi-soliton dynamics in the Skyrme model, Phys. Lett. B 391, 150 (1997).CrossRefGoogle Scholar
Battye, R. A. and Sutcliffe, P. M., Symmetric skyrmions, Phys. Rev. Lett. 79, 363 (1997).Google Scholar
Battye, R. A. and Sutcliffe, P. M., A Skyrme lattice with hexagonal symmetry, Phys. Lett. B 416, 385 (1998).Google Scholar
Battye, R. A. and Sutcliffe, P. M., Knots as stable soliton solutions in a three-dimensional classical field theory, Phys. Rev. Lett. 81, 4798 (1998).Google Scholar
Battye, R. A. and Sutcliffe, P. M., Solitons, links and knots, Proc. Roy. Soc. Lond. A 455, 4305 (1999).Google Scholar
Battye, R. A. and Sutcliffe, P. M., Q-ball dynamics, Nucl. Phys. B 590, 329 (2000).Google Scholar
Battye, R. A. and Sutcliffe, P. M., Solitonic fullerenes, Phys. Rev. Lett. 86, 3989 (2001).Google Scholar
Battye, R. A. and Sutcliffe, P. M., Skyrmions, fullerenes and rational maps, Rev. Math. Phys. 14, 29 (2002).Google Scholar
Battye, R. A. and Sutcliffe, P. M., Skyrmions and the pion mass, Nucl. Phys. B 705, 384 (2005).Google Scholar
Battye, R. A., Krusch, S., and Sutcliffe, P., Spinning skyrmions and the skyrme parameters, Phys. Lett. B 626, 120 (2005).Google Scholar
Battye, R. A. and Sutcliffe, P. M., Skyrmions and the alpha-particle model of nuclei, Phys. Rev. C 73, 055205 (2006).Google Scholar
Battye, R. A., Manton, N. S., and Sutcliffe, P. M., Skyrmions and the alpha-particle model of nuclei, Proc. Roy. Soc. Lond. A 463, 261 (2007).Google Scholar
Battye, R. A., Manton, N. S., Sutcliffe, P., and Wood, S. W., Light nuclei of even mass number in the Skyrme model, Phys. Rev. C 80, 034323 (2009).CrossRefGoogle Scholar
Bazeia, D., dos Santos, M. J., and Ribeiro, R. F., Solitons in systems of coupled scalar fields, Phys. Lett. A208, 84 (1995).Google Scholar
Bazeia, D., Losano, L., and Malbouisson, J. M. C., Deformed defects, Phys. Rev. D 66, 101701 (2002).CrossRefGoogle Scholar
Bäcklund, A. V., Zur Theorie der partiellen Differential Gleichungen erster Ordnung, Math. Ann. XVII, 285 (1880).Google Scholar
Barone, A., Esposito, F., Magee, C. J., and Scott, A. C., Theory and applications of the sine-Gordon equation, La Rivista del Nuovo Cimento 1, 227 (1971).Google Scholar
Beals, R., Sattinger, D. H., and Szmigielski, J., Multipeakons and the classical moment problem, Adv. Math. 154, 229 (2000).Google Scholar
Belavin, A. A., Polyakov, A. M., Schwartz, A. S., and Tyupkin, Y. S., Pseudoparticle solutions of the Yang–Mills equations, Phys. Lett. B 59, 85 (1975).Google Scholar
Belova, T. I. and Kudryavtsev, A. E., Quasi-periodic orbits in the scalar classical ϕ 4 field theory, Physica D 32, 18 (1988).Google Scholar
Belova, T. I. and Kudryavtsev, A. E., Solitons and their interactions in classical field theory, Phys. Usp. 40, 359 (1997).CrossRefGoogle Scholar
Benes, N., Kasman, A., and Young, K., On decompositions of the KdV 2-Soliton, J. Nonlinear Sci. 16, 179 (2006).Google Scholar
Bishop, A. R. and Schneider, T., eds., Solitons and Condensed Matter Physics (Springer-Verlag 1978).Google Scholar
Blumenhagen, R. and Plauschinn, E., Introduction to Conformal Field Theory: With Applications to String Theory (Springer-Verlag 2009).Google Scholar
Bogdanov, A. N. and Yablonsky, D. A., Thermodynamically stable “vortices” in magnetically ordered crystals: The mixed state of magnets, Sov. Phys. JETP 95, 178 (1989).Google Scholar
Bogdanov, A. N., New localized solutions of the nonlinear field equations, JETP Lett. 62, 247 (1995).Google Scholar
Bogdanov, A. N., Rößler, U. K., Wolf, M., and Muller, K.-H., Magnetic structures and reorientation transitions in noncentrosymmetric uniaxial antiferromagnets, Phys. Rev. B 66, 214410 (2002).CrossRefGoogle Scholar
Bogolubskaya, A. A. and Bogolubsky, I. L., Stationary topological solitons in the two-dimensional anisotropic Heisenberg model with a Skyrme term, Phys. Lett. A 136, 485 (1989).CrossRefGoogle Scholar
Bogolyubskaya, A. A. and Bogolyubsky, I. L., On stationary topological solitons in two-dimensional anisotropic Heisenberg model, Lett. Math. Phys. 19, 171 (1990).Google Scholar
Bogolyubsky, I. L. and Makhankov, V. G., On the pulsed soliton lifetime in two classical relativistic theory models, JETP Lett. 24, 12 (1976).Google Scholar
Bogomolny, E. B., Stability of classical solutions, Sov. J. Nucl. Phys. 24, 449 (1976).Google Scholar
Bonenfant, E. and Marleau, L., Nuclei as near BPS-skyrmions, Phys. Rev. D 82, 054023 (2010).CrossRefGoogle Scholar
Boussinesq, J., Théorie de lintumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire, C. R. Acad. Sci. Paris 72, 755 (1871).Google Scholar
Bowcock, P., Foster, D., and Sutcliffe, P., Q-balls, integrability and duality, J. Phys. A 42, 085403 (2009).Google Scholar
Bour, E., Théorie de la déformation des surfaces, J. Ecole Imperiale Polytechnique 19 1 (1862).Google Scholar
Braaten, E. and Ralston, J. P., Limitations of a semiclassical treatment of the skyrmion, Phys. Rev. D 31, 598 (1985).Google Scholar
Braaten, E. and Carson, L., The deuteron as a toroidal skyrmion, Phys. Rev. D 38, 3525 (1988).Google Scholar
Braaten, E., Townsend, S., and Carson, L., Novel structure of static multi-soliton solutions in the Skyrme model, Phys. Lett. B 235, 147 (1990).Google Scholar
Braun, O. M. and Kivshar, Y., The Frenkel-Kontorova Model: Concepts, Methods, and Applications (Springer-Verlag, 2004).Google Scholar
Brihaye, Y. and Hartmann, B., Interacting Q-balls, Nonlinearity 21, 1937 (2008).Google Scholar
Brink, D. M., Friedrich, H., Weiguny, A., and Wong, C. W., Investigation of the alpha-particle model for light nuclei, Phys. Lett. 33B, 143 (1970).Google Scholar
Brown, G. E. and Rho, M., eds., The Multifaceted Skyrmion (World Scientific, Singapore, 2010).Google Scholar
Bullodgh, R. K., The wave par excellence, the solitary progressive great wave of equilibrium of the fluid: An early history of the solitary wave, in Solitons: Introduction and Applications, ed. Lakshmanan, M., 742, Springer Series in Nonlinear Dynamics (Springer, 1988).Google Scholar
Bullodgh, R. K., Solitons, in Interaction of Radiation with Condensed Matter, vol. I, IAEA SMR-20/51, Vienna, 381 (1977).Google Scholar
Bunkov, Y. M. and Volovik, G. E., Magnons condensation into Q-ball in He3-B, Phys. Rev. Lett. 98, 265302 (2007).Google Scholar
Burt, P. B., Exact, multiple soliton solutions of the double sine-Gordon equation, Proc. Roy. Soc. Lond. A 359, 479 (1978).Google Scholar
Campbell, D. K., Peyrard, M., and Sodano, P., Kink–antikink interactions in the double sine-Gordon equation, Physica D 19, 165 (1986).Google Scholar
Campbell, D. K., Schonfeld, J. F., and Wingate, C. A., Resonance structure in kink–antikink interactions in ϕ 4 theory, Physica D 9D, 1 (1983).Google Scholar
Campbell, D. K. and Peyrard, M., Kink antikink interactions in a modified sine-Gordon model, Physica D 9, 33 (1983).Google Scholar
Caputo, J. G. and Flytzanis, N., Kink antikink collisions in sine-Gordon and ϕ 4 models: Problems in the variational approach, Phys. Rev. A 44, 6219 (1991).Google Scholar
Camassa, R. and Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71, 1661 (1993).Google Scholar
Carotta, M. C., Ferrario, C., Vecchio, G. L., and Galgani, L., New phenomenon in the stochastic transition of coupled oscillators, Phys. Rev. A 17 (2), 786 (1978).Google Scholar
Carson, L., B = 3 nuclei as quantized multiskyrmions, Phys. Rev. Lett. 66, 1406 (1991).Google Scholar
Castillejo, L., Jones, P. S. J., Jackson, A. D., Verbaarschot, J. J. M., and Jackson, A., Dense skyrmion systems, Nucl. Phys. A 501, 801 (1989).CrossRefGoogle Scholar
Chakrabarti, A., Piette, B., Tchrakian, D. H., and Zakrzewski, W. J., A Class of n-dimensional models with extended structure solutions, Z. Phys. C 56, 461 (1992).Google Scholar
Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability (Dover Publications, 1981).Google Scholar
Cho, Y. M., A restricted gauge theory, Phys. Rev. D 21, 1080 (1980).Google Scholar
Cho, Y. M., Extended gauge theory and its mass spectrum, Phys. Rev. D 23, 2415 (1981).Google Scholar
Coleman, S., The quantum Sine-Gordon equation as the massive Thirring model, Phys. Rev. D 11, 2088 (1975).Google Scholar
Coleman, S. R., Q Balls, Nucl. Phys. B 262, 263 (1985); Erratum: Nucl. Phys. B 269, 744 (1986).Google Scholar
Coleman, S. R., The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15, 2929 (1977).CrossRefGoogle Scholar
Cooper, F. and Shepard, H., Solitons in the Camassa–Holm shallow water equation, Phys. Lett. A 194, 246 (1994).Google Scholar
Copeland, E. J., Gleiser, M., and Muller, H. R., Oscillons: Resonant configurations during bubble collapse, Phys. Rev. D 52, 1920 (1995).Google Scholar
Copeland, E. J., Saffin, P. M., and Zhou, S. Y., Charge-swapping Q-balls, Phys. Rev. Lett. 113, 231603 (2014).Google Scholar
Paccetti Correia, F. and Schmidt, M. G., Q balls: Some analytical results, Eur. Phys. J. C21, 181 (2001).Google Scholar
Creutz, M., Quarks, Gluons and Lattices (Cambridge University Press, 1983).Google Scholar
Crutchfield, W. Y. and Bell, J. B., Instabilities of the Skyrme model, J. Comp. Phys. 110, 234 (1994).Google Scholar
Daley, H. and Iachello, F., Alpha-clustering in heavy nuclei, Phys. Lett. B 131, 281 (1983).Google Scholar
Dauxois, T. and Peyrard, M., Physics of Solitons (Cambridge University Press, 2006).Google Scholar
Dauxois, T., Peyrard, M., and Ruffo, S., The Fermi–Pasta–Ulam “numerical experiment”: History and pedagogical perspectives, Eur. J. Phys. 26, 3 (2005).Google Scholar
Dash, P. C., Correct dynamics of sine-Gordon 2πkink in presence of periodic perturbing force, J. Phys. C 18, L125 (1985).Google Scholar
Dashen, R. F., Hasslacher, B., and Neveu, A., Nonperturbative methods and extended hadron models in field theory. 1. Semiclassical functional methods, Phys. Rev. D 10, 4114 (1974).Google Scholar
Degasperis, A., Holm, D. D., Darryl, D., and Hone, A., A new integrable equation with peakon solutions, Theor. Math. Phys. 133, 1463 (2002).Google Scholar
Derrick, G. H., Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys. 5, 1252 (1964).Google Scholar
Diakonov, D. and Petrov, V. Y., Nucleons as chiral solitons, in At the Frontier of Particle Physics, vol. 1, ed. Shifman, M., 359415 (World Scientific, 2005).Google Scholar
Dolan, L. and Jackiw, R., Symmetry behavior at finite temperature, Phys. Rev. D 9, 3320 (1974).Google Scholar
Domrin, A., Lechtenfeld, O., Linares, R., and Maceda, M., Exact BPS bound for noncommutative baby skyrmions, Phys. Lett. B 727, 303 (2013).Google Scholar
Dorey, P., Mersh, K., Romanczukiewicz, T., and Shnir, Y., Kink–antikink collisions in the ϕ 6 model, Phys. Rev. Lett. 107, 091602 (2011).Google Scholar
Drazin, P. G. and Johnson, R. S., Solitons: An Introduction (Cambridge University Press, 1989).Google Scholar
Dzyaloshinskii, I. E., Theory of helicoidal structures in antiferromagnets. I. Nonmetals, Soviet Physics JETP 19, 960 (1964).Google Scholar
Eckart, C., The penetration of a potential barrier by electrons, Phys. Rev. 35, 1303 (1930).Google Scholar
Enqvist, K. and McDonald, J., Q balls and baryogenesis in the MSSM, Phys. Lett. B 425, 309 (1998).Google Scholar
Enqvist, K. and Laine, M., Q-ball dynamics from atomic Bose–Einstein condensates, JCAP 0308, 003 (2003).Google Scholar
Epstein, P. S., Reflection of waves in an inhomogeneous absorbing medium, Proc. Natl. Acad. Sci. USA 16, 627 (1930).Google Scholar
Faddeev, L. D., Some comments on the many dimensional solitons, Lett. Math. Phys. 1, 289 (1976).Google Scholar
Faddeev, L. D., Quantization of Solitons, Preprint-75–0570, IAS, Princeton (1975)Google Scholar
Faddeev, L. D. and Niemi, A. J., Knots and particles, Nature 387, 58 (1997).Google Scholar
Faddeev, L. D. and Niemi, A. J., Partially dual variables in SU(2) Yang–Mills theory, Phys. Rev. Lett. 82, 1624 (1999).Google Scholar
Faddeev, L., Niemi, A. J., and Wiedner, U., Glueballs, closed flux tubes and eta (1440), Phys. Rev. D 70, 114033 (2004).Google Scholar
Falk, F., Ginzburg–Landau theory and solitary waves in shape-memory alloys, Z. Phys. B Con. Mat. 54, 159 (1984).Google Scholar
Feist, D. T. J., Lau, P. H. C., and Manton, N. S., Skyrmions up to baryon number 108, Phys. Rev. D 87, 085034 (2013).Google Scholar
Fendley, P., Saleur, H., and Warner, N. P., Exact solution of a massless scalar field with a relevant boundary interaction, Nucl. Phys. B 430, 577 (1994).Google Scholar
Fermi, E., Pasta, J., and Ulam, S., Studies of nonlinear problems, I, Los Alamos Report LA-1940, Los Alamos (1955).Google Scholar
Ferreira, L. A., Exact vortex solutions in an extended Skyrme–Faddeev model, JHEP 0905, 001 (2009).Google Scholar
Ferreira, L. A. and Zakrzewski, W. J., A Skyrme-like model with an exact BPS bound, JHEP 1309, 097 (2013).Google Scholar
Ferreira, L. A. and Shnir, Y., Exact self-dual skyrmions, Phys. Lett. B 772, 621 (2017).Google Scholar
Ferreira, L. A., Exact self-duality in a modified Skyrme model, JHEP 1707, 039 (2017).Google Scholar
Filippov, A. T., The Versatile Soliton (Birkhauser, 2000).Google Scholar
Finkelstein, D. and Rubinstein, J., Connection between spin, statistics, and kinks, J. Math. Phys. 9, 1762 (1968).Google Scholar
Fordy, A. P., Soliton Theory: A Survey of Results (Manchester University Press, 1990).Google Scholar
Ginsparg, P. H., Applied conformal field theory, in Fields, Strings, and Critical Phenomena, ed. Brezin, E. and Zinn-Justin, J., 1168 (North-Holland, 1990).Google Scholar
Friedberg, R., Lee, T. D., and Sirlin, A., A class of scalar-field soliton solutions in three space dimensions, Phys. Rev. D 13, 2739 (1976).Google Scholar
Friedberg, R., Lee, T. D., and Pang, Y., Scalar soliton stars and black holes, Phys. Rev. D 35, 3658 (1987).Google Scholar
Forgacs, P., Lukacs, A., and Romanczukiewicz, T., Negative radiation pressure exerted on kinks, Phys. Rev. D 77, 125012 (2008).Google Scholar
Fodor, G., Forgacs, P., Grandclement, P., and Racz, I., Oscillons and quasi-breathers in the ϕ 4 Klein–Gordon model, Phys. Rev. D 74, 124003 (2006).Google Scholar
Foster, D., Baby skyrmion chains, Nonlinearity 23, 465 (2010).Google Scholar
Foster, D., Massive hopfions, Phys. Rev. D 83, 085026 (2011).Google Scholar
Foster, D. and Krusch, S., Negative baryon density and the folding structure of the B=3 skyrmion, J. Phys. A 46, 265401 (2013).Google Scholar
Frenkel, Y. and Kontorova, T., The model of dislocation in solid body, Zh. Eksp. Teor. Fiz. 8, 1340 (1938).Google Scholar
Garaud, J., Carlstrom, J., and Babaev, E., Topological solitons in three-band superconductors with broken time reversal symmetry, Phys. Rev. Lett. 107, 197001 (2011).Google Scholar
Geicke, J., Logarithmic decay of ϕ 4 breathers of energy E ≲ 1, Phys. Rev. E 49, 3539 (1994).Google Scholar
Gell-Mann, M. and Levy, M., The axial vector current in beta decay, Nuovo Cim. 16, 705 (1960).Google Scholar
Getmanov, B. S., New Lorentz invariant systems with exact multi-soliton solutions, JETP Lett. 25, 119 (1977).Google Scholar
Gillard, M. and Sutcliffe, P., Hopf solitons in the Nicole model, J. Math. Phys. 51, 122305 (2010).Google Scholar
Gillard, M., Solitons and volume preserving flow, PhD diss., Durham University, 2010.Google Scholar
Gillard, M., Harland, D., and Speight, M., Skyrmions with low binding energies, Nucl. Phys. B 895, 272 (2015).Google Scholar
Ginzburg, V. L. and Landau, L. D., On the theory of superconductivity, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).Google Scholar
Gisiger, T. and Paranjape, M. B., Baby skyrmion strings, Phys. Lett. B 384, 207 (1996).Google Scholar
Gisiger, T. and Paranjape, M. B., Solitons in a baby Skyrme model with invariance under area preserving diffeomorphisms, Phys. Rev. D 55, 7731 (1997).Google Scholar
Gisiger, T. and Paranjape, M. B., Recent mathematical developments in the Skyrme model, Phys. Rept. 306, 109 (1998).Google Scholar
Gladikowski, J. and Hellmund, M., Static solitons with nonzero Hopf number, Phys. Rev. D 56, 5194 (1997).Google Scholar
Gleiser, M., Pseudostable bubbles, Phys. Rev. D 49, 2978 (1994).Google Scholar
Gleiser, M. and Sicilia, D., Analytical characterization of oscillon energy and lifetime, Phys. Rev. Lett. 101, 011602 (2008).Google Scholar
Goldhaber, A. S. and Manton, N. S., Maximal symmetry of the Skyrme crystal, Phys. Lett. B 198, 231 (1987).Google Scholar
Gorsky, A., Shifman, M., and Yung, A., Revisiting the Faddeev–Skyrme model and Hopf solitons, Phys. Rev. D 88, 045026 (2013).Google Scholar
Giulini, D., On the possibility of spinorial quantization in the Skyrme model, Mod. Phys. Lett. A 8, 1917 (1993).Google Scholar
Gulamov, I. E., Nugaev, E. Y., and Smolyakov, M. N., Analytic Q-ball solutions and their stability in a piecewise parabolic potential, Phys. Rev. D 87, 085043 (2013).Google Scholar
Goodman, R. H. and Haberman, R., Kink–antikink collisions in the ϕ 4 equation: The n-bounce resonance and the separatrix map, SIAM J. Appl. Dyn. Sys. 4, 1195 (2005).Google Scholar
Goodman, R. H. and Haberman, R., Vector soliton interactions in birefringent optical fibers, Phys. Rev. E 71, 56605 (2005).CrossRefGoogle Scholar
Gross, D. J., Meron configurations in the two-dimensional O(3) sigma model, Nucl. Phys. B 132, 439 (1978).Google Scholar
Gudnason, S. B., Zhang, B., and Ma, N., Generalized Skyrme model with the loosely bound potential, Phys. Rev. D 94, 125004 (2016).Google Scholar
Gudnason, S. B. and Nitta, M., Modifying the pion mass in the loosely bound Skyrme model, Phys. Rev. D 94, 065018 (2016).Google Scholar
Gudnason, S. B. and Nitta, M., Fractional skyrmions and their molecules, Phys. Rev. D 91, 085040 (2015).Google Scholar
Gudnason, S. B. and Nitta, M., Skyrmions confined as beads on a vortex ring, Phys. Rev. D 94, 025008 (2016).Google Scholar
Gies, H., Wilsonian effective action for SU(2) Yang–Mills theory with Cho– Faddeev–Niemi-Shabanov decomposition, Phys. Rev. D 63, 125023 (2001).Google Scholar
Haberichter, M., Classically spinning and isospinning non-linear σ-model solitons, PhD diss., University of Manchester, 2013.Google Scholar
Halavanau, A., Romanczukiewicz, T., and Shnir, Y., Resonance structures in coupled two-component ϕ 4 model, Phys. Rev. D 86, 085027 (2012).Google Scholar
Halavanau, A. and Shnir, Y., Isorotating baby skyrmions, Phys. Rev. D 88, 085028 (2013).Google Scholar
Hale, M., Schwindt, O., and Weidig, T., Simulated annealing for topological solitons, Phys. Rev. E 62, 4333 (2000).Google Scholar
Halcrow, C. J., Vibrational quantisation of the B = 7 skyrmion, Nucl. Phys. B 904, 106 (2016).Google Scholar
Halcrow, C. J., King, C., and Manton, N. S., A dynamical α-cluster model of 16O, Phys. Rev. C 95, 031303 (2017).Google Scholar
Harada, M. and Yamawaki, K., Hidden local symmetry at loop: A new perspective of composite gauge boson and chiral phase transition, Phys. Rept. 381, 1 (2003).Google Scholar
Harland, D. and Ward, R. S., Chains of skyrmions, JHEP 0812 093 (2008).Google Scholar
Harland, D., Speight, M., and Sutcliffe, P., Hopf solitons and elastic rods, Phys. Rev. D 83, 065008 (2011).Google Scholar
Harland, D., Topological energy bounds for the Skyrme and Faddeev models with massive pions, Phys. Lett. B 728, 518 (2014).Google Scholar
Harland, D., Jäkkä, J., Shnir, Y., and Speight, M., Isospinning hopfions, J. Phys. A 46, 225402 (2013).Google Scholar
Heinze, S., et al., Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nature Phys. 7, 713 (2011).Google Scholar
Hietarinta, J. and Salo, P., Faddeev–Hopf knots: Dynamics of linked unknots, Phys. Lett. B 451, 60 (1999).Google Scholar
Hietarinta, J. and Salo, P., Ground state in the Faddeev–Skyrme model, Phys. Rev. D 62, 081701 (2000).Google Scholar
Hietarinta, J., Palmu, J., Jaykka, J., and Pakkanen, P., Scattering of knotted vortices (hopfions) in the Faddeev–Skyrme model, New J. Phys. 14, 013013 (2012).Google Scholar
Hindmarsh, M. and Salmi, P., Oscillons and domain walls, Phys. Rev. D 77, 105025 (2008).Google Scholar
Hirota, R., Exact solution of the Korteweg–de Vries Equation for multiple collisions of solitons, Phys. Rev. Lett. 27, 1192 (1971).Google Scholar
Hen, I. and Karliner, M., Rotational symmetry breaking in baby Skyrme models, Nonlinearity 21, 399 (2008).Google Scholar
Holm, D. D. and Ivanov, R. I., Smooth and peaked solitons of the CH equation, J. Phys. A 43, 434003 (2010).Google Scholar
Honda, E. P. and Choptuik, M. W., Fine structure of oscillons in the spherically symmetric ϕ 4 Klein–Gordon model, Phys. Rev. D 65, 084037 (2002).Google Scholar
Hollowood, T. J. and Miramontes, J. L., The AdS 5 × S 5 semi-symmetric space sine-Gordon theory, JHEP 1104, 119 (2011).Google Scholar
Hooft, G.’t, Magnetic monopoles in unified gauge theories, Nucl. Phys. B79, 276 (1974).Google Scholar
Hooft, G.’t, A two-dimensional model for mesons, Nucl. Phys. B 75, 461 (1974).Google Scholar
Hopf, H., Abbildung der 3-dimensch. Sphäre auf der Kugelfläche, Math. Ann. 104, 637 (1930).Google Scholar
Houghton, C. J., Manton, N. S., and Sutcliffe, P. M., Rational maps, monopoles and skyrmions, Nucl. Phys. B 510, 507 (1998).Google Scholar
Houghton, C. J. and Krusch, S., Folding in the Skyrme model, J. Math. Phys. 42, 4079 (2001).CrossRefGoogle Scholar
Ioannidou, T., Kleihaus, B. and Zakrzewski, W., An improved harmonic map ansatz, Phys. Lett. B 597, 346 (2004).Google Scholar
Irwin, P., Zero mode quantization of multi-skyrmions, Phys. Rev. D 61, 114024 (2000).Google Scholar
Ishibashi, Y. and Takagi, Y., Computer experiment on linear chain of atoms lying in double minimum potential, J. Phys. Soc. Jap. 33, 1 (1972).Google Scholar
Isler, K., LeTourneux, J., and Paranjape, M. B., Morse theory and the skyrmion– skyrmion potential, Phys. Rev. D 43, 1366 (1991).Google Scholar
Itzykson, C., Saleur, H., and Zuber, J. B., Conformal Invariance and Application to Statistical Mechanics (World Scientific 1988).Google Scholar
Izrailev, F. M. and Chirikov, B. V., Stochasticity of the simplest dynamical model with divided phase space, Sov. Phys. Doklady 11, 30 (1966).Google Scholar
Ismail, M. S. and Taha, T. R., A numerical study of compactons, Math. Comput. Simulat. 47, 519 (1998).Google Scholar
Izquierdo, J. M., Rashid, M. S., Piette, B., and Zakrzewski, W. J., Models with solitons in (2+1)-dimensions, Z. Phys. C 53, 177 (1992).Google Scholar
Jackson, A. D. and Rho, M., Baryons as chiral solitons, Phys. Rev. Lett. 51, 751 (1983).Google Scholar
Jackson, A., Jackson, A. D., and Pasquier, V., The skyrmion–skyrmion interaction, Nucl. Phys. A 432, 567 (1985).Google Scholar
Jackson, A. D., Verbaarschot, J. J. M., Zahed, I., and Castillejo, L., Solitons and Superconductivity in Two-Dimensions (Stony Brook, 1988).Google Scholar
De Jager, E. M., On the Origin of the Korteweg–de Vries Equation, arXiv preprint math/0602661 (2006).Google Scholar
Jaykka, J., Speight, M., and Sutcliffe, P., Broken baby skyrmions, Proc. Roy. Soc. Lond. A 468, 1085 (2012).Google Scholar
Jaykka, J. and Speight, M., Easy plane baby skyrmions, Phys. Rev. D 82, 125030 (2010).Google Scholar
Jennings, P., Cabling in the Skyrme–Faddeev model, J. Phys. A 48, 315401 (2015).Google Scholar
Jennings, P. and Winyard, T., Broken planar Skyrmions – statics and dynamics, JHEP 1401, 122 (2014).Google Scholar
Jetzer, P., Boson stars, Phys. Rept. 220 163 (1992).Google Scholar
Kantz, H., Livi, R., and Ruffo, S., Equipartition thresholds in chains of anharmonic oscillators, J. Stat. Phys. 76 (1), 627 (1994).Google Scholar
Kartashov, Y. V., Malomed, B. A., Shnir, Y., and Torner, L., Twisted toroidal vortex-solitons in inhomogeneous media with repulsive nonlinearity, Phys. Rev. Lett. 113, 264101 (2014).Google Scholar
Kauffman, L. H., Knots and Physics (World Scientific Publishing, 2001).Google Scholar
Kedia, H., Bialynicki-Birula, I., Peralta-Salas, D., and Irvine, W. T. M., Tying knots in light fields, Phys. Rev. Lett. 111, 150404 (2013).Google Scholar
Keener, P. and McLaughlin, D. W., Solitons under perturbations, Phys. Rev. A 16, 777 (1977).Google Scholar
Kiselev, V. G., Shnir, Y. M., and Tregubovich, A. Y., Introduction to Quantum Field Theory (Gordon and Breach Science Pulishers, 2000).Google Scholar
Kiselev, V. G. and Shnir, Y. M., Forced topological nontrivial field configurations, Phys. Rev. D 57, 5174 (1998).Google Scholar
Kivshar, Y. S., Fei, Z., and Vazquez, L., Resonant soliton-impurity interactions, Phys. Rev. Lett. 67, 1177 (1991).Google Scholar
Kivshar, Y. T. and Malomed, B. A., Dynamics of solitons in nearly integrable systems, Rev. Mod. Phys. 61, 763 (1989) [Addendum-ibid. 63, 211 (1991)].Google Scholar
Klebanov, I. R., Nuclear matter in the Skyrme model, Nucl. Phys. B 262, 133 (1985).Google Scholar
Kleihaus, B. and Kunz, J., A monopole–anti-monopole solution of the SU(2) Yang– Mills–Higgs model, Phys. Rev. D 61, 025003 (2000).Google Scholar
Kleihaus, B., Kunz, J., and List, M., Rotating boson stars and Q-balls, Phys. Rev. D 72, 064002 (2005).Google Scholar
Kleihaus, B., Kunz, J., List, M., and Schaffer, I., Rotating boson stars and Q-balls. II. Negative parity and ergoregions, Phys. Rev. D 77, 064025 (2008).Google Scholar
Klinkhamer, F. R. and Manton, N. S., A saddle point solution in the Weinberg– Salam theory, Phys. Rev. D 30, 2212 (1984).Google Scholar
Kobayashi, M. and Nitta, M., Vortex polygons and their stabilities in Bose– Einstein condensates and field theory, J. Low Temp. Phys. 175, 208 (2014).Google Scholar
Kobayashi, M. and Nitta, M., Fractional vortex molecules and vortex polygons in a baby Skyrme model, Phys. Rev. D 87, 125013 (2013).Google Scholar
Kobayashi, M. and Nitta, M., Torus knots as hopfions, Phys. Lett. B 728, 314 (2014).Google Scholar
Kobayashi, M. and Nitta, M., Toroidal domain walls as hopfions, arXiv:1304.4737 [hep-th] (2013).Google Scholar
Kobzarev, I. Y., Okun, L. B., and Voloshin, M. B., Bubbles in metastable vacuum, Sov. J. Nucl. Phys. 20, 644 (1975).Google Scholar
Kopeliovich, V. B. and Stern, B. E., Exotic skyrmions, JETP Lett. 45, 203 (1987).Google Scholar
Kopeliovich, V. B., Characteristic predictions of topological soliton models, J. Exp. Theor. Phys. 93, 435 (2001).Google Scholar
Kosevich, A. M. and Kovalev, A. S., Self-localization of vibrations in a one-dimensional anharmonic chain, JETP 40, 891 (1975).Google Scholar
Korteweg, D. J. and de Vries, G., On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Magazine 39 Series 5, 240 (1895).Google Scholar
Kochendörfer, A. and Seeger, A., Theorie der Versetzungen in eindimensionalen Atomreihen, Z. Phys. 127, 533 (1950).Google Scholar
Krumhansl, J. A. and Schrieffer, J. R., Dynamics and statistical mechanics of a one-dimensional model Hamiltonian for structural phase transitions, Phys. Rev. B 11, 3535 (1975).Google Scholar
Krusch, S., Homotopy of rational maps and the quantization of skyrmions, Annals Phys. 304, 103 (2003).Google Scholar
Krusch, S. and Sutcliffe, P., Sphalerons in the Skyrme model, J. Phys. A 37, 9037 (2004).Google Scholar
Kudryavtsev, A. E., About soliton similar solutions for Higgs scalar field, Pisma Zh. Tech. Fiz.+ 22, 178 (1975).Google Scholar
Kugler, M. and Shtrikman, S., A new skyrmion crystal, Phys. Lett. B 208, 491 (1988).Google Scholar
Kundu, A. and Rybakov, Y. P., Closed vortex type solitons with Hopf index, J. Phys. A 15, 269 (1982).Google Scholar
Kundu, A., Hedgehog and toroidal solitons of Skyrme model, Phys. Lett. B 171, 67 (1986).Google Scholar
Kunz, P. D., An alpha-particle model for some light nuclei, Ann. Phys. 11, 275 (1960).Google Scholar
Kusenko, A., Solitons in the supersymmetric extensions of the standard model, Phys. Lett. B 405, 108 (1997).Google Scholar
Kusenko, A., Small Q balls, Phys. Lett. B 404, 285 (1997).Google Scholar
Kusenko, A., Shaposhnikov, M. E., and Tinyakov, P. G., Sufficient conditions for the existence of Q balls in gauge theories, Pisma Zh. Tech. Fiz.+ 67, 229 (1998); JETP Lett. 67, 247 (1998).Google Scholar
Kusenko, A. and Shaposhnikov, M. E., Supersymmetric Q balls as dark matter, Phys. Lett. B 418, 46 (1998).Google Scholar
Landau, L. D. and Lifshitz, E. M., Statistical Physics, 2nd ed. (Pergamon, 1977).Google Scholar
Lau, P. H. C. and Manton, N. S., States of carbon-12 in the Skyrme model, Phys. Rev. Lett. 113, 232503 (2014).Google Scholar
Lau, P. H. C. and Manton, N. S., Quantization of T d - and O h -symmetric skyrmions, Phys. Rev. D 89, 125012 (2014).Google Scholar
Lax, P. D., Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21, 467 (1968).Google Scholar
Lee, K. M., Stein-Schabes, J. A., Watkins, R., and Widrow, L. M., Gauged Q balls, Phys. Rev. D 39, 1665 (1989).Google Scholar
Lee, T. D., Soliton stars and the critical masses of black holes, Phys. Rev. D 35, 3637 (1987).Google Scholar
Lee, T. D. and Pang, Y., Nontopological solitons, Phys. Rept. 221, 251 (1992).Google Scholar
Leese, R. A., Q lumps and their interactions, Nucl. Phys. B 366, 283 (1991).Google Scholar
Leese, R. A., Peyrard, M., and Zakrzewski, W. J., Soliton stability in the O(3) σ model in (2+1)-dimensions, Nonlinearity 3, 387 (1990).Google Scholar
Leese, R. A. and Manton, N. S., Stable instanton generated Skyrme fields with baryon numbers three and four, Nucl. Phys. A 572, 575 (1994).Google Scholar
Levin, A. and Rubakov, V., Q-balls with scalar charges, Mod. Phys. Lett. A 26, 409 (2011).Google Scholar
Lin, F. H. and Yang, Y. S., Energy splitting, substantial inequality, and minimization for the Faddeev and Skyrme models, Commun. Math. Phys. 269, 137 (2007).Google Scholar
Lin, S.-Z. and Hayami, S., Ginzburg–Landau theory for skyrmions in inversion-symmetric magnets with competing interactions, Phys. Rev. 93, 064430 (2016).Google Scholar
Liu, J. P., Zhang, Z., and Zhao, G., eds., Skyrmions: Topological Structures, Properties, and Applications (CRC Press, 2016).Google Scholar
Lohe, M. A., Soliton structures in P (ϕ)2 , Phys. Rev. D 20, 3120 (1979).Google Scholar
Lonngren, K. and Scott, A., eds., Solitons in Action: Proceedings of the Workshop on Solitons, Redstone 1977 (Academic Press, 1978).Google Scholar
Lukács, Á., “Half a proton” in the Bogomolnyi–Prasad–Sommerfield Skyrme model, J. Math. Phys. 57, 072903 (2016).Google Scholar
Lund, F. and Regge, T., Unified approach to strings and vortices with soliton solutions, Phys. Rev. D 14, 1524 (1976).Google Scholar
Makhankov, V. G., Dynamics of classical solitons in nonintegrable systems, Phys. Rept. 35, 1 (1978).Google Scholar
Manko, O. V., Manton, N. S., and Wood, S. W., Light nuclei as quantized skyrmions, Phys. Rev. C 76, 055203 (2007).Google Scholar
Makhankov, V. G., Rybakov, Y. P., and Sanyuk, V. I., The Skyrme Model: Fundamentals, Methods, Applications (Springer-Verlag, 1993).Google Scholar
Manton, N. and Sutcliffe, P., Topological Solitons (Cambridge University Press, 2004).Google Scholar
Manton, N. S., An effective Lagrangian for solitons, Nucl. Phys. B 150, 397 (1979).Google Scholar
Manton, N. S. and Ruback, P. J., Skyrmions in flat space and curved space, Phys. Lett. B 181, 137 (1986).Google Scholar
Manton, N. S., Scaling identities for solitons beyond Derrick’s theorem, J. Math. Phys. 50, 032901 (2009).Google Scholar
Manton, N. S., A remark on the scattering of BPS monopoles, Phys. Lett. B110, 54 (1982).Google Scholar
Manton, N. S., Topology in the Weinberg–Salam theory, Phys. Rev. D 28, 2019 (1983).Google Scholar
Manton, N. S., Geometry of skyrmions, Commun. Math. Phys. 111, 469 (1987).Google Scholar
Manton, N. S., Is the B = 2 skyrmion axially symmetric? Phys. Lett. B 192, 177 (1987).Google Scholar
Manton, N. S. and Merabet, H., ϕ 4 kinks: Gradient flow and dynamics, Nonlinearity 10, 3 (1997).Google Scholar
Manton, N. S. and Piette, B. M. A. G., Understanding skyrmions using rational maps, Prog. Math. 201, 469 (2001).Google Scholar
Manton, N. S. and Sutcliffe, P. M., Skyrme crystal from a twisted instanton on a four torus, Phys. Lett. B 342, 196 (1995).Google Scholar
Manton, N. S., Classical skyrmions: Static solutions and dynamics, Math. Methods Appl. Sci. 35, 1188 (2012).Google Scholar
Marsh, G. E., Force-Free Magnetic Fields: Solutions, Topology and Applications (World Scientific, 1996)Google Scholar
Meissner, U. G. and Zahed, I., Skyrmions in the presence of vector mesons, Phys. Rev. Lett. 56, 1035 (1986).Google Scholar
Meissner, U. G., Kaiser, N., and Weise, W., Nucleons as Skyrme solitons with vector mesons: Electromagnetic and axial properties, Nucl. Phys. A 466, 685 (1987).CrossRefGoogle Scholar
Mikhailov, A., An action variable of the sine-Gordon model, J. Geom. Phys. 56, 2429 (2006).Google Scholar
Mikhailov, A. and Schafer-Nameki, S., Sine-Gordon-like action for the superstring in AdS(5) × S 5 , JHEP 0805, 075 (2008).Google Scholar
Grigoriev, M. and Tseytlin, A. A., Pohlmeyer reduction of AdS(5) × S 5 superstring sigma model, Nucl. Phys. B 800, 450 (2008).Google Scholar
Miles, J. W., The Korteweg–de Vries equation: A historical essay, J. Fluid Mech. 106, 131 (1981).Google Scholar
Milnor, W., Topology from the Differentiable Viewpoint (University of Virginia Press, 1965).Google Scholar
Miramontes, J. L., Pohlmeyer reduction revisited, JHEP 0810, 087 (2008).Google Scholar
Miura, R., Gardner, G., and Kruskal, M., Korteweg–de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys. 9, 1204 (1968).Google Scholar
Mollenauer, L. F. and Gordon, J. P., Solitons in Optical Fibers (Academic Press, 2006).Google Scholar
Moriya, T., Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev. 120, 91 (1960).Google Scholar
Moshir, M., Soliton–anti-soliton scattering and capture in λϕ 4 theory, Nucl. Phys. B 185, 318 (1981).Google Scholar
Multamaki, T. and Vilja, I., Analytical and numerical properties of Q balls, Nucl. Phys. B 574, 130 (2000).Google Scholar
Mühlbauer, S. et al., Skyrmion lattice in a chiral magnet, Science 323, 915 (2009).Google Scholar
Nakahara, M., Geometry, Topology and Physics (A. Hilger, 1990).Google Scholar
Newell, A. C., Solitons in Mathematics and Physics (SIAM, 1985).Google Scholar
Nicole, D. A., Solitons with nonvanishing Hopf index, J. Phys. G 4, 1363 (1978).Google Scholar
Nielsen, H. B. and Olesen, P., Vortex line models for dual strings, Nucl. Phys. B 61, 45 (1973).Google Scholar
Neubauer, A. et al., Topological Hall effect in the A phase of MnSi, Phys. Rev. Lett. 102, 186602 (2009).Google Scholar
Novikov, S. P., Manakov, S. V., Pitaevskii, L. P., and Zakharov, V. E., Theory of Solitons: The Inverse Scattering Method (Consultants Bureau, 1984).Google Scholar
Olsen, O. H. and Samuelsen, M. R., Sine-Gordon 2π-kink dynamics in the presence of small perturbations, Phys. Rev. B 28, 210 (1983).Google Scholar
Painlevé, P., Mémoire sur les équations différentielles dont l’intégrale générale est uniforme, Bull. Soc. Math. France, 28, 201 (1900).Google Scholar
Palais, R. S., The principle of symmetric criticality, Commun. Math. Phys. 69, 19 (1979).Google Scholar
Perapechka, I. and Shnir, Y., Crystal structures in generalized Skyrme model, Phys. Rev. D 96, 045013 (2017).Google Scholar
Perring, J. K. and Skyrme, T. H. R., A model unified field equation, Nucl. Phys. 31, 550 (1962).Google Scholar
Piette, B. and Zakrzewski, W. J., Shrinking of solitons in the (2+1)-dimensional sigma model, Nonlinearity 9, 897 (1996).Google Scholar
Piette, B. M. A., Schroers, B. J., and Zakrzewski, W. J., Dynamics of baby skyrmions, Nucl. Phys. B 439, 205 (1995).Google Scholar
Piette, B. M. A., Zakrzewski, W. J., Mueller-Kirsten, H. J. W., and Tchrakian, D. H., Chern–Simons solitons in a CP(1) model, Phys. Lett. B 320, 294 (1994);Google Scholar
Piette, B. M. A., Schroers, B. J., and Zakrzewski, W. J., Multi-solitons in a two-dimensional Skyrme model, Z. Phys. C 65, 165 (1995).Google Scholar
Pohlmeyer, K., Integrable Hamiltonian systems and interactions through quadratic constraints, Commun. Math. Phys. 46, 207 (1976);Google Scholar
Pohlmeyer, K. and Rehren, K. H., Reduction of the two-dimensional O(n) nonlinear sigma model, J. Math. Phys. 20, 2628 (1979).Google Scholar
Pöschl, G. and Teller, E., Bemerkungen zur Quantenmechanik des anharmonischen Oszillators, Zeit. für Physik 83, 143 (1933).Google Scholar
Polyakov, A. M. and Belavin, A. A., Metastable states of two-dimensional isotropic ferromagnets, JETP Lett. 22, 245 (1975); Pisma Zh. Tekh. Fiz.+ 22, 503 (1975).Google Scholar
Polyakov, A. M., Particle spectrum in the quantum field theory, JETP Lett. 20, 194 (1974) (Pisma Zh. Tekh. Fiz.+ 20, 430 (1974)).Google Scholar
Radjaraman, R., Solitons and Instantons (North-Holland Publishers, 1982).Google Scholar
Radu, E. and Volkov, M. S., Existence of stationary, non-radiating ring solitons in field theory: Knots and vortons, Phys. Rept. 468, 101 (2008).Google Scholar
Rayleigh, Lord, On waves, Phil. Mag. 1, 257 (1876).Google Scholar
Ringwald, A., High-energy breakdown of perturbation theory in the electroweak instanton sector, Nucl. Phys. B 330, 1 (1990).Google Scholar
Espinosa, O., High-energy behavior of Baryon and Lepton number violating scattering amplitudes and breakdown of unitarity in the standard model, Nucl. Phys. B 343, 310 (1990).Google Scholar
Rice, M. J., Charged π-phase kinks in lightly doped polyacetylene, Phys. Lett. A 71, 152 (1979).Google Scholar
Rogers, C. and Schief, W. K., Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory (Cambridge University Press, 2002).Google Scholar
Romanczukiewicz, T., Interaction between kink and radiation in ϕ 4 model, Acta Phys. Pol. B35, 523 (2004).Google Scholar
Romanczukiewicz, T. and Shnir, Y., Oscillon resonances and creation of kinks in particle collisions, Phys. Rev. Lett. 105, 081601 (2010).Google Scholar
Rosen, G., Charged particlelike solutions to nonlinear complex scalar field theories, J. Math. Phys 9, 999 (1968).Google Scholar
Rosenau, P. and Hyman, J. M., Compactons: Solitons with finite wavelength, Phys. Rev. Lett. 70, 564 (1993).Google Scholar
Rosenau, P., On solitons, compactons, and Lagrange maps, Phys. Lett. A 211, 265 (1996).Google Scholar
Rubakov, V., Classical Theory of Gauge Fields (Princeton University Press, 2009).Google Scholar
Safian, A. M., Coleman, S. R. and Axenides, M., Some nonabelian Q balls, Nucl. Phys. B 297, 498 (1988).Google Scholar
Sakai, T. and Sugimoto, S., More on a holographic dual of QCD, Prog. Theor. Phys. 113, 843 (2005).Google Scholar
Saleur, H., Skorik, S. and Warner, N. P., The boundary sine-Gordon theory: Classical and semiclassical analysis, Nucl. Phys. B 441, 421 (1995).Google Scholar
Salmi, P., Oscillons, PhD diss., University of Leiden, 2008.Google Scholar
Salmi, P. and Hindmarsh, M., Radiation and relaxation of oscillons, Phys. Rev. D 85, 085033 (2012).Google Scholar
Salmi, P. and Sutcliffe, P., Aloof baby skyrmions, J. Phys. A 48, 035401 (2015).Google Scholar
Samoilenka, A. and Shnir, Y., Gauged multisoliton baby Skyrme model, Phys. Rev. D 93, 065018 (2016).Google Scholar
Samoilenka, A. and Shnir, Y., Fractional hopfions in the Faddeev–Skyrme model with a symmetry breaking potential, JHEP 1709, 029 (2017).Google Scholar
Sawado, N., Shiiki, N., Maeda, K. I., and Torii, T., Regular and black hole skyrmions with axisymmetry, Gen. Rel. Grav. 36, 1361 (2004).Google Scholar
Schäfer, T. and Shuryak, E., Instantons in QCD, Rev. Mod. Phys. 70, 323 (1998).Google Scholar
Scott, A. C., A nonlinear Klein–Gordon equation, Amer. J. Phys. 37, 52 (1969).Google Scholar
Shabanov, S. V., An effective action for monopoles and knot solitons in Yang– Mills theory, Phys. Lett. B 458, 322 (1999).Google Scholar
Shifman, M. and Yung, A., Supersymmetric Solitons (Cambridge University Press, 2009).Google Scholar
Shnir, Ya., Magnetic Monopoles (Springer-Verlag, 2005).Google Scholar
Shnir, Y. and Tchrakian, D. H., Skyrmion–anti-skyrmion chains, J. Phys. A 43, 025401 (2010).Google Scholar
Shnir, Y. and Zhilin, G., Sphaleron solutions of the Skyrme model from Yang–Mills holonomy, Phys. Lett. B 723, 236 (2013).Google Scholar
Seeger, A., Early work on imperfections in crystals, and forerunners of dislocation theory, Proc. Roy. Soc. London A 371, 173 (1980).Google Scholar
Seeger, A. and Wesolowski, Z., Standing-wave solutions of the Enneper (sine-Gordon) equation, Int. J. Eng. Sci. 19, 1535 (1981).Google Scholar
Segur, H. and Kruskal, M. D., Nonexistence of Small amplitude breather solutions in ϕ 4 theory, Phys. Rev. Lett. 58, 747 (1987).Google Scholar
Singer, M. A. and Sutcliffe, P. M., Symmetric instantons and Skyrme fields, Nonlinearity 12, 987 (1999).Google Scholar
Skyrme, T. H. R., A nonlinear field theory, Proc. Roy. Soc. Lond. A 260, 127 (1961).Google Scholar
Spector, D., First order phase transitions in a sector of fixed charge, Phys. Lett. B 194, 103 (1987).Google Scholar
Speight, J. M., Supercurrent coupling in the Faddeev–Skyrme model, J. Geom. Phys. 60, 599 (2010).Google Scholar
Speight, J. M., Compactons and semi-compactons in the extreme baby Skyrme model, J. Phys. A 43, 405201 (2010).Google Scholar
Speight, J. M., Solitons on tori and soliton crystals, Commun. Math. Phys. 332, 355 (2014).Google Scholar
Stokes, G. G., On the theory of oscillatory waves, Trans. Cam. Phil. Soc. 8, 441 (1849).Google Scholar
Sugiyama, T., Kink–antikink collisions in the two-dimensional ϕ 4 model, Prog. Theor. Phys. 61, 1550 (1979).Google Scholar
Sutcliffe, P. M., The interaction of Skyrme-like lumps in (2+1) dimensions, Nonlinearity 4, 1109 (1991).Google Scholar
Sutcliffe, P. M., Instantons and the buckyball, Proc. Roy. Soc. Lond. A 460, 2903 (2004).Google Scholar
Sutcliffe, P. M., Knots in the Skyrme–Faddeev model, Proc. Roy. Soc. Lond. A 463, 3001 (2007).Google Scholar
Sutcliffe, P., Skyrmion knots in frustrated magnets, Phys. Rev. Lett. 118, 247203 (2017).Google Scholar
Svistunov, B., Babaev, E., and Prokofev, N., Superfluid States of Matter (Taylor and Francis, 2014).Google Scholar
Tamaki, T. and Sakai, N., Unified picture of Q-balls and boson stars via catastrophe theory, Phys. Rev. D 81, 124041 (2010).Google Scholar
Tamaki, T. and Sakai, N., Unified pictures of Q-balls and Q-tubes, Phys. Rev. D 86, 105011 (2012).Google Scholar
Takyi, I. and Weigel, H., Collective coordinates in one-dimensional soliton models revisited, Phys. Rev. D 94, 085008 (2016).Google Scholar
Tao, T., Why are solitons stable? Bull. Amer. Math. Soc. 46, 1 (2009).Google Scholar
Taubes, C. H., The existence of a nonminimal solution to the SU(2) Yang–Mills– Higgs equations on R 3 , Comm. Math. Phys. 86, 257 (1982).Google Scholar
Tchrakian, D. H. and Mueller-Kirsten, H. J. W., Skyrme-like solitons with absolute scale in (2+1)-dimensions Phys. Rev. D 44, 1204 (1991).Google Scholar
Theodorakis, S., Analytic Q ball solutions in a parabolic-type potential, Phys. Rev. D 61, 047701 (2000).Google Scholar
Sir, W. Thomson (Lord Kelvin), On vortex atoms, Proc. R. Soc. Edin. 6, 94 (1869).Google Scholar
Toda, M., Nonlinear Waves and Solitons (Kluwer, 1989).Google Scholar
Trullinger, S. E., Zakharov, V. E. and Pokrovsky, V. L., Solitons (Elsevier, Amsterdam, 1986).Google Scholar
Tsvelik, A. M., Quantum Field Theory in Condensed Matter Physics (Cambridge University Press, 1995).Google Scholar
Vachaspati, T., Kinks and Domain Walls (Cambridge University Press, 2006).Google Scholar
Vakulenko, A. F. and Kapitansky, L. V., Stability of solitons in S(2) in the nonlinear sigma model, Sov. Phys. Dokl. 24, 433 (1979).Google Scholar
Verbaarschot, J. J. M., Axial symmetry of bound baryon number two solution of the Skyrme model, Phys. Lett. B 195, 235 (1987).Google Scholar
Vilenkin, A. and Shellard, E. P. S., Cosmic Strings and Other Topological Defects (Cambridge University Press, 1994).Google Scholar
Volkov, M. S. and Wohnert, E., Spinning Q balls, Phys. Rev. D 66, 085003 (2002).Google Scholar
Weidig, T., The baby skyrme models and their multiskyrmions, Nonlinearity 12, 1489 (1999).Google Scholar
Weigel, H., Kink–antikink scattering in φ 4 and ϕ 6 models, J. Phys. Conf. Ser. 482, 012045 (2014).Google Scholar
Walhout, T. S., Quantizing the four baryon skyrmion, Nucl. Phys. A 547, 423 (1992).Google Scholar
Ward, R. S., Sigma models in 2+1 dimensions, in Harmonic Maps and Integrable Systems, vol. E 23, ed. Fordy, A. P. and Wood, J. C. 193–202 (Vieweg+Teubner Verlag, Braunschweig/Wiesbaden, 1994.Google Scholar
Ward, R. S., Slowly moving lumps in the CP1 model in (2+1)-dimensions, Phys. Lett. B 158, 424 (1985).Google Scholar
Ward, R. S., Hopf solitons on S 3 and R 3 , Nonlinearity 12, 241 (1999).Google Scholar
Ward, R. S., The interaction of two Hopf solitons, Phys. Lett. B 473, 291 (2000).Google Scholar
Ward, R. S., Topological Q solitons, J. Math. Phys. 44, 3555 (2003).Google Scholar
Ward, R. S., Planar skyrmions at high and low density, Nonlinearity 17, 1033 (2004).Google Scholar
Wahlquist, H. D. and Eastabrook, F. B., Backlund transformation for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett. 31, 1386 (1973).Google Scholar
Whitham, G. B., Non-linear dispersive waves, Proc. R. Soc. Lond. A 283, 23 (1965).Google Scholar
Witten, E., Baryons in the 1/n expansion, Nucl. Phys. B 160, 57 (1979).Google Scholar
Witten, E., Global aspects of current algebra, Nucl. Phys. B 223, 422 (1983).Google Scholar
Yale, P. B., Geometry and Symmetry (Dover, 1988).Google Scholar
Yang, J. and Tan, Y., Fractal structure in the collision of vector solitons, Phys. Rev. Lett. 85, 3624 (2000).Google Scholar
Yomosa, S., Soliton excitations in deoxyribonucleic acid (DNA) double helices, Phys. Rev. A 27, 2120 (1983).Google Scholar
Yu, X. Z. et al., Real-space observation of a two-dimensional skyrmion crystal, Nature 465, 901 (2010).Google Scholar
Zabusky, N. and Kruskal, M., Interactions of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15, 240 (1965).Google Scholar
Zakrzewski, W. J., Low Dimensional Sigma Models (Institute of Physics Publishing, 1989).Google Scholar
Zakrzewski, W. J., Soliton-like scattering in the Op3q sigma-model in (2+1) dimensions, Nonlinearity 4, 429 (1991).Google Scholar
Zahed, I. and Brown, G. E., The Skyrme model, Phys. Rept. 142, 1 (1986).Google Scholar
Zhang, D.-J. and Chen, D.-Y., The N-soliton solutions of the sine-Gordon equation with self-consistent sources, Physica A 321, 467 (2003).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Yakov M. Shnir
  • Book: Topological and Non-Topological Solitons in Scalar Field Theories
  • Online publication: 14 July 2018
  • Chapter DOI: https://doi.org/10.1017/9781108555623.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Yakov M. Shnir
  • Book: Topological and Non-Topological Solitons in Scalar Field Theories
  • Online publication: 14 July 2018
  • Chapter DOI: https://doi.org/10.1017/9781108555623.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Yakov M. Shnir
  • Book: Topological and Non-Topological Solitons in Scalar Field Theories
  • Online publication: 14 July 2018
  • Chapter DOI: https://doi.org/10.1017/9781108555623.013
Available formats
×