Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-01T10:12:45.684Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  14 September 2018

Francesco Calogero
Affiliation:
Università degli Studi di Roma 'La Sapienza', Italy
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arlind, J., Bordemann, M., Hoppe, J., and Lee, C.. “Goldfish geodesics and Hamiltonian reduction of matrix dynamics.” Lett. Math. Phys. 84: 8998. (2008).CrossRefGoogle Scholar
Bihun, O. and Calogero, F.. “Solvable many-body models of goldfish type with one-, two- and three-body forces.” SIGMA 9(059) (18 pages). (2013). http://arxiv.org/abs/1310.2335.Google Scholar
Bihun, O. and Calogero, F.. “Novel solvable many-body problems.” J. Nonlinear Math. Phys. 23: 190212. (2016). DOI: 10.1080/14029251.2016.1161260.CrossRefGoogle Scholar
Bihun, O. and Calogero, F.. “A new solvable many-body problem of goldfish type.” J. Nonlinear Math. Phys. 23: 28–46. (2016); arXiv:13749 [math-ph].Google Scholar
Bihun, O. and Calogero, F.. “Generations of monic polynomials such that the coefficients of each polynomial of the next generation coincide with the zeros of a polynomial of the current generation, and new solvable many-body problems.” Lett. Math. Phys. 106(7), 10111031. (2016). DOI: 10.1007/s11005–016–0836–8.CrossRefGoogle Scholar
Bihun, O. and Calogero, F.. “Generations of solvable discrete-time dynamical systems,” J. Math. Phys. 58: 052701 (2017). DOI: 10.1063/1.4928959.CrossRefGoogle Scholar
Bihun, O. and Calogero, F.. “Time-dependent polynomials with one double root, and related new solvable systems of nonlinear evolution equations,” Qual. Theory Dyn. Syst. (submitted November 2017).CrossRefGoogle Scholar
Bihun, O. and Calogero, F.. “Zeros of time-dependent superpositions of orthogonal polynomials, and related new solvable systems of nonlinear evolution equations.” (in preparation).Google Scholar
Bihun, O. and Fulghesu, D.. “Polynomials whose coefficients coincide with their zeros.” Aequationes mathematicae 92(3), 453470 (2018). DOI: 10.1007/s000100–018–0546–7. arXiv:1705.02057v1[Math.CA]5May2017.CrossRefGoogle Scholar
Bruschi, M. and Calogero, F.. “Novel solvable variants of the goldfish many-body model.” J. Math. Phys. 47: 022703 (2006) (25 pages).Google Scholar
Bruschi, M. and Calogero, F.. “Goldfishing: a new solvable many-body problem.” J. Math. Phys. 47: 042901:135. (2006).Google Scholar
Bruschi, M. and Calogero, F.. “A convenient expression of the time-derivative of arbitrary order k, of the zero zn(t) of a time-dependent polynomial pN(z; t) of arbitrary degree N in z, and solvable dynamical systems.” J. Nonlinear Math. Phys. 23: 474485. (2016).CrossRefGoogle Scholar
Bruschi, M., Calogero, F., and Leyvraz, F.. “A large class of solvable discrete-time many-body problems.” J. Math. Phys. 55: 082703 (9 pages) (2014). DOI: http://dx.doi.org/10.1063/1.4891760.CrossRefGoogle Scholar
Bruschi, M. and Calogero, F.. “A convenient expression of the time-derivative of arbitrary order k, of the zero zn(t) of a time-dependent polynomial pN(z; t) of arbitrary degree N in z, and solvable dynamical systems.” J. Nonlinear Math. Phys. 23: 474485. (2016).CrossRefGoogle Scholar
Calogero, F.. “Solution of the one-dimensional N-body problem with quadratic and inversely-quadratic pair potentials.” J. Math. Phys. 12: 419436. Erratum: 1996. Journal of Mathematical Physics 37: J. Math. Phys. 37, 3646. (1996).CrossRefGoogle Scholar
Calogero, F.. “Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations, and related ‘solvable’ many body problems.” Nuovo Cimento 43B: 177241. (1978).CrossRefGoogle Scholar
Calogero, F.. “Why are certain nonlinear PDEs both widely applicable and integrable?” In What is integrability?, edited by Zakharov, V. E., 162. Heidelberg: Springer. (1991).Google Scholar
Calogero, F.. “Integrable nonlinear evolution equations and dynamical systems in multidimensions.” in: KdV’95, Proceedings of the International Symposium held in Amsterdam, The Netherlands, April 23–26,1995 (edited by M. Hazewinkel, H.W. Capel and E.M. de Jager).CrossRefGoogle Scholar
Calogero, F.. “A class of integrable Hamiltonian systems whose solutions are (perhaps) all completely periodic.” J. Math. Phys. 38: 57115719. (1997).CrossRefGoogle Scholar
Calogero, F.. Classical many-body problems amenable to exact treatments, Lecture Notes in Physics Monograph m66. Heidelberg: Springer. (2001). (749 pages).CrossRefGoogle Scholar
Calogero, F.. “The ‘neatest’ many-body problem amenable to exact treatments (a ‘goldfish’?).” Physica D: 152–153, 7884. (2001).CrossRefGoogle Scholar
Calogero, F.. “On the quantization of two other nonlinear harmonic oscillators.” 2003. Phys. Lett. A 319: 240245. (2003).CrossRefGoogle Scholar
Calogero, F.. “Solution of the goldfish N-body problem in the plane with (only) nearest-neighbor coupling constants all equal to minus one half.” J. Nonlinear Math. Phys. 11: 102112. (2004).CrossRefGoogle Scholar
Calogero, F.. “On the quantization of yet another two nonlinear harmonic oscillators.” J. Nonlinear Math. Phys. 11: 16. (2004).CrossRefGoogle Scholar
Calogero, F.. “A technique to identify solvable dynamical systems, and a solvable generalization of the goldfish many-body problem.” J. Math. Phys. 45: 22662279. (2004).CrossRefGoogle Scholar
Calogero, F.. “A technique to identify solvable dynamical systems, and another solvable extension of the goldfish many-body problem.” J. Math. Phys. 45: 4661– 4678. (2004).Google Scholar
Calogero, F.. Isochronous systems. Oxford University Press: Oxford. (2008) (264 pages) (marginally updated paperback version, 2012).CrossRefGoogle Scholar
Calogero, F.. “Two new solvable dynamical systems of goldfish type.” J. Nonlinear Math. Phys. 17: 397414. (2010). DOI: 10.1142/S1402925110000970.CrossRefGoogle Scholar
Calogero, F.. “Discrete-time goldfishing.” SIGMA 7: 082, 35 pages (2011).CrossRefGoogle Scholar
Calogero, F.. “A new goldfish model.” Theor. Math. Phys. 167: 714724. (2011).CrossRefGoogle Scholar
Calogero, F.. “On a technique to identify solvable discrete-time many-body problems.” Theor. Math. Phys. 172: 10521072. (2012).CrossRefGoogle Scholar
Calogero, F.. “New solvable many-body model of goldfish type.” J. Nonlinear Math. Phys. 19: 1250006. (19 pages) (2012). DOI: 10.1142/S1402925112500064.Google Scholar
Calogero, F.. “Another new solvable model of goldfish type.” SIGMA 8:046 (17 pages) (2012).Google Scholar
Calogero, F.. “New solvable variants of the goldfish many-body problem”, Studies Appl. Math. 137(1), 123139 (2016); DOI: 10.1111/sapm.12096.CrossRefGoogle Scholar
Calogero, F.. “Nonlinear differential algorithm to compute all the zeros of a generic polynomial.” J. Math. Phys. 57: 083508 (4 pages) (2016). DOI: 10.1063/1.4960821.Google Scholar
Calogero, F.. “Comment on ‘Nonlinear differential algorithm to compute all the zeros of a generic polynomial’ [J. Math. Phys. 57: 083508 (2016)].” J. Math. Phys. 57: 104101 (4 pages) (2016).Google Scholar
Calogero, F.. “A solvable N-body problem of goldfish type featuring N2 arbitrary coupling constants.” J. Nonlinear Math. Phys. 23: 300305 (2016). DOI: 10.1080/14029251.2016.1175823.CrossRefGoogle Scholar
Calogero, F.. “Novel isochronous N-body problems featuring N arbitrary rational coupling constants.” J. Math. Phys. 57: 072901 (2016). DOI:10.1063/1.4954851.CrossRefGoogle Scholar
Calogero, F.. “Three new classes of solvable N-body problems of goldfish type with many arbitrary coupling constants.” Symmetry 8: 53. (2016). DOI:10.3390/sym8070053.CrossRefGoogle Scholar
Calogero, F.. “Yet another class of new solvable N-body problems of goldfish type.” Qualit. Theory Dyn. Syst. 16: (3), 561577 (2017). DOI: 10.1007/s12346–016–0215-y.CrossRefGoogle Scholar
Calogero, F.. “New solvable dynamical systems.” J. Nonlinear Math. Phys. 23: 486– 493. (2016).Google Scholar
Calogero, F.. “Integrable Hamiltonian N-body problems of goldfish type featuring N arbitrary functions.” J. Nonlinear Math. Phys. 24(1): 16. (2017).CrossRefGoogle Scholar
Calogero, F.. “New C-integrable and S-integrable systems of nonlinear partial differential equation.” J. Nonlinear Math. Phys. 24(1): 142148. (2017).CrossRefGoogle Scholar
Calogero, F.. “Novel differential algorithm to evaluate all the zeros of any generic polynomial.” J. Nonlinear Math. Phys. 24: 469472. (2017).CrossRefGoogle Scholar
Calogero, F.. “Zeros of entire functions and related systems of infinitely many nonlinearly coupled evolution equations.” Theor. Math. Phys. (in press).Google Scholar
Calogero, F. and Degasperis, A.. Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations. North Holland: Amsterdam. (1982). pp.514.Google Scholar
Calogero, F. and Degasperis, A.. “On the quantization of Newton-equivalent Hamiltonians.” Amer. J. Phys. 72: 12021203. (2004).CrossRefGoogle Scholar
Calogero, F. and De Lillo, S., “The Eckhaus PDE iyt + yxx + 2 (|y|2)x y +|y|4 y = 0.” Inverse Problems 3: 633681. (1987); Erratum 4: 571. (1988).CrossRefGoogle Scholar
Calogero, F. and Françoise, J.P.. “Hamiltonian character of the motion of the zeros of a polynomial whose coefficients oscillate over time.” J. Phys. A: Math. Gen. 30: 211218. (1997).CrossRefGoogle Scholar
Calogero, F. and Françoise, J.P.. “A novel solvable many-body problem with elliptic interactions.” Int. Math. Res. Notices 15: 775786. (2000).CrossRefGoogle Scholar
Calogero, F., Françoise, J.P., and Sommacal, M.. “Solvable nonlinear evolution PDEs in multidimensional space involving trigonometric functions.” J. Phys. A: Math. Theor. 40: F363F368. (2007).CrossRefGoogle Scholar
Calogero, F., Françoise, J.P., and Sommacal, M.. “Solvable nonlinear evolution PDEs in multidimensional space involving elliptic functions.” J. Phys. A: Math. Theor. 40: F705F711. (2007).CrossRefGoogle Scholar
Calogero, F. and Gómez-Ullate, D.. “Two novel classes of solvable many-body problems of goldfish type with constraints.” J. Phys. A: Math. Theor. 40: 53355353. (2007).CrossRefGoogle Scholar
Calogero, F. and Gómez-Ullate, D.. “Asymptotically isochronous systems.” J. Nonlinear Math. Phys. 15: 410426. (2008).CrossRefGoogle Scholar
Calogero, F., Gómez-Ullate, D., Santini, P. M., and Sommacal, M.. “The transition from regular to irregular motions, explained as travel on Riemann surfaces.” J. Phys. A: Math. Gen. 38: 88738896. (2005). arXiv:nlin.SI/0507024 v1 13 Jul 2005.CrossRefGoogle Scholar
Calogero, F., Gómez-Ullate, D., Santini, P. M., and Sommacal, M.. “Towards a theory of chaos explained as travel on Riemann surfaces.” J. Phys. A.: Math. Theor. 42: 015205 (26 pages) (2009). DOI: 10.1088/1751–8113/42/1/015205.CrossRefGoogle Scholar
Calogero, F. and Graffi, S.. “On the quantization of a nonlinear Hamiltonian oscillator.” Phys. Lett. A 313: 356362. (2003).CrossRefGoogle Scholar
Calogero, F. and Iona, S.. “Novel solvable extensions of the goldfish many-body model.” J. Math. Phys. 46: 103515 (2005).CrossRefGoogle Scholar
Calogero, F. and Langmann, E.. “Goldfishing by gauge theory.” J. Math. Phys. 47, 082702: 123 (2006).CrossRefGoogle Scholar
Calogero, F. and Leyvraz, F.. “On a class of Hamiltonians with (classical) isochronous motions and (quantal) equispaced spectra.” J. Phys. A: Math. Gen. 39: 1180311824. (2006).CrossRefGoogle Scholar
Calogero, F. and Leyvraz, F.. “Isochronous extension of the Hamiltonian describing free motion in the Poincaré half-plane: classical and quantal treatments.” J. Math. Phys. 48, 092903: 115. (2007).CrossRefGoogle Scholar
Calogero, F. and Leyvraz, F.. “On a new technique to manufacture isochronous Hamiltonian systems: classical and quantal treatments.” J. Nonlinear Math. Phys. 14: 505529. (2007).Google Scholar
Calogero, F. and Leyvraz, F.. “General technique to produce isochronous Hamiltonians.” J. Phys. A: Math. Theor. 40: 1293112944. (2007).CrossRefGoogle Scholar
Calogero, F. and Leyvraz, F.. “New solvable discrete-time many-body problem featuring several arbitrary parameters.” J. Math. Phys. 53: 082702 (19 pages) (2012).CrossRefGoogle Scholar
Calogero, F. and Leyvraz, F.. “New solvable discrete-time many-body problem featuring several arbitrary parameters. II.” J. Math. Phys. 54: 102702 (15 pages) (2013). DOI: http://dx.doi.org/10.1063/1.4822419.CrossRefGoogle Scholar
Calogero, F. and Leyvraz, F.. “A nonautonomous yet solvable discrete-time N-body problem.” J. Phys. A: Math. Theor. 47, 105203 (10 pages) (2014).CrossRefGoogle Scholar
Calogero, F. and Leyvraz, F.. “The peculiar (monic) polynomials the zeros of which equal their coefficients.” J. Nonlinear Math. Phys. 24: 541551 (2017). DOI:10.1080/14029251.2017.1375690.Google Scholar
Calogero, F. and Leyvraz, F.. “Examples of Hamiltonians isochronous in configuration space only, and their quantization.” J. Math. Phys. (in press).Google Scholar
Calogero, F. and Sommacal, M.. “Solvable nonlinear evolution PDEs in multidimensional space.” SIGMA 2: 088 (2006) (17 pages), nlin.SI/0612019.Google Scholar
Calogero, F. and Yi, Ge. “A new class of solvable many-body problems.” SIGMA 8: 066 (29 pages) (2012).Google Scholar
Di Scala, A. J. and Maciá, O.. “Finiteness of Ulam polynomials.” La matematica e le sue applicazioni, Quaderni del Dipartimento di Matematica, Politecnico Torino, 11: July 2008. Turin, Italy; arXiv:00904.0133v1[math.AG]1April2009.Google Scholar
Erdélyi, A. (editor). Higher transcendental functions, vol. II. McGraw-Hill: New York. (1953).Google Scholar
Gallavotti, G. and Marchioro, C.. “On the computation of an integral.” J. Math. Anal. Appl. 44: 661675. (1973).CrossRefGoogle Scholar
Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura, R. M.. “Method for Solving the Korteweg-deVries Equation.” Phys. Rev. Lett. 19: 10951097 (1967). DOI: 10.1103/PhysRevLett.19.1095.CrossRefGoogle Scholar
Gómez-Ullate, D., Santini, P. M., Sommacal, M., and Calogero, F.. “Understanding complex dynamics by means of an associated Riemann surface.” Physica D. 241: 1291–1305: (2012).CrossRefGoogle Scholar
Gómez-Ullate, D. and Sommacal, M.. “Periods of the goldfish many-body problem.” J. Nonlinear Math. Phys. 12, Suppl. 1: 351362. (2005).CrossRefGoogle Scholar
Grinevich, P. G. and Santini, P. M.. “Newtonian dynamics in the plane corresponding to straight and cyclic motions on the hyperelliptic curve μ2 = νn −1, n ∈ Z: Ergodicity, isochrony and fractals.” Physica D 232: 2232. (2007).CrossRefGoogle Scholar
Guillot, A.. “The Painleve’ property for quasi homogeneous systems and a many-body problem in the plane.” Comm. Math. Phys. 256: 181194. (2005).CrossRefGoogle Scholar
Jairuk, U., Yoo-Kong, S., and Tanasittikosol, M.. “On the Lagrangian structure of Calogero’s goldfish model.” arXiv:1409.7168 [nlin.SI] (2014).CrossRefGoogle Scholar
Kundu, A.. “Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations.” J. Math. Phys. 25: 34333438. (1984).CrossRefGoogle Scholar
Leyvraz, F.. “An approach for obtaining integrable Hamiltonians from Poisson-commuting polynomial families.” J. Math. Phys. 58: 072902 (2017).CrossRefGoogle Scholar
Mathematica, Wolfram Research, Inc., Version 11.0. Champaign, IL, USA. (2016).Google Scholar
Marikhin, V. G.. “Electron-levels dynamics in the presence of impurities and the Ruijsenaars-Schneider model.” JETP Lett. 77:44 (2003). DOI:10.1134/1.1561980.126CrossRefGoogle Scholar
Moser, J.. “Three integrable Hamiltonian systems connected with isospectral deformations.” Adv. Math. 16: 197220. (1975).CrossRefGoogle Scholar
Nucci, M. C.. “Calogero’s ‘goldfish’ is indeed a school of free particles.” J. Phys. A: Math. Gen. 37: 1139111400. (2004).CrossRefGoogle Scholar
Olshanetsky, M. A. and Perelomov, A. M.. “Explicit solution of the Calogero model in the classical case and geodetic flows on symmetric spaces of zero curvature.” Lett. Nuovo Cimento 16: 333339. (1976).CrossRefGoogle Scholar
Salmon, G.. Lessons Introductory to the Higher Modern Algebra. Cambridge University Press: Cambridge, U. (1885).Google Scholar
Sabatier, P. C. (ed.). Inverse Methods in Action. Springer: Berlin. (1990).CrossRefGoogle Scholar
Sommacal, M.. “The transition from regular to irregular motion, explained as travel on Riemann surfaces.” PhD thesis, SISSA, Trieste. (2005).Google Scholar
Stein, P. R.. “On polynomial equations with coefficients equal to their roots.” A. Math. Monthly 73(3): 272274. (1966).CrossRefGoogle Scholar
Suris, Y. B.. “Time discretization of F. Calogero’s ‘Goldfish’. J. Nonlinear Math. Phys. 12, Suppl. 1: 633647. (2005).CrossRefGoogle Scholar
Ulam, S. M.. A collection of mathematical problems. Interscience: New York. 1960 (see pages 30–31).Google Scholar
Zakharov, V. E.. “On the dressing method.” in [88], pp. 602–623 (see p. 622).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Francesco Calogero, Università degli Studi di Roma 'La Sapienza', Italy
  • Book: Zeros of Polynomials and Solvable Nonlinear Evolution Equations
  • Online publication: 14 September 2018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Francesco Calogero, Università degli Studi di Roma 'La Sapienza', Italy
  • Book: Zeros of Polynomials and Solvable Nonlinear Evolution Equations
  • Online publication: 14 September 2018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Francesco Calogero, Università degli Studi di Roma 'La Sapienza', Italy
  • Book: Zeros of Polynomials and Solvable Nonlinear Evolution Equations
  • Online publication: 14 September 2018
Available formats
×