Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T14:33:00.725Z Has data issue: false hasContentIssue false

1 - Overview of Models of Cognitive Aging

from Part I - Models of Cognitive Aging

Published online by Cambridge University Press:  28 May 2020

Ayanna K. Thomas
Affiliation:
Tufts University, Massachusetts
Angela Gutchess
Affiliation:
Brandeis University, Massachusetts
Get access

Summary

This chapter reviews major theories of cognitive aging. Theories such as the sensory deficit hypothesis, speed of processing, and inhibitory deficit hypothesis are based largely on behavioral findings and focus on a single process that is purported to account for a number of cognitive changes with age. Specific to memory, theories focus on age deficits in recollection and binding. Over the past twenty-five years, brain-based models have begun to pervade the literature. These have focused on concepts such as compensation, dedifferentiation, and suppression of the default mode network. The scaffolding theory of aging and cognition integrates many of these concepts into a single comprehensive model, including consideration of enrichment and depletion factors that operate over the life span. We conclude the chapter with some debates, critiques, and consideration of future directions, particularly considering the contributions of cognitive neuroscience methods.

Type
Chapter
Information
The Cambridge Handbook of Cognitive Aging
A Life Course Perspective
, pp. 5 - 31
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anstey, K. J., Hofer, S. M., & Luszcz, M. A. (2003). Cross-sectional and longitudinal patterns of dedifferentiation in late-life cognitive and sensory function: The effects of age, ability, attrition, and occasion of measurement. Journal of Experimental Psychology: General, 132(3), 470487. https://dx.doi.org/10.1037/0096-3445.132.3.470Google Scholar
Anstey, K. J., Lord, S. R., & Williams, P. (1997). Strength in the lower limbs, visual contrast sensitivity, and simple reaction time predict cognition in older women. Psychology and Aging, 12(1), 137144. https://dx.doi.org/10.1037/0882-7974.12.1.137Google Scholar
Anstey, K. J., Luszcz, M. A., & Sanchez, L. (2001). A reevaluation of the common factor theory of shared variance among age, sensory function, and cognitive function in older adults. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 56(1), 311. https://dx.doi.org/10.1093/geronb/56.1.p3Google Scholar
Anstey, K., Stankov, L., & Lord, S. (1993). Primary aging, secondary aging, and intelligence. Psychology and Aging, 8(4), 562570. https://dx.doi.org/10.1037//0882-7974.8.4.562Google Scholar
Arbuckle, T. Y., & Gold, D. P. (1993). Aging, inhibition, and verbosity. Journals of Gerontology, 48(5), 225232. https://dx.doi.org/10.1093/geronj/48.5.p225Google Scholar
Atkinson, R. C., & Juola, J. F. (1974). Search and decision processes in recognition memory. In Krantz, D. H., Atkinson, R. C., Luce, R. D., & Suppes, P. (Eds.), Learning, memory and thinking (Contemporary developments in mathematical psychology, Vol. 1) (pp. 242293). Oxford: W. H. Freeman.Google Scholar
Baltes, P. B., & Lindenberger, U. (1997). Emergence of a powerful connection between sensory and cognitive functions across the adult life span: A new window to the study of cognitive aging? Psychology and Aging, 12(1), 1221. https://dx.doi.org/10.1037/0882-7974.12.1.12CrossRefGoogle Scholar
Belleville, S., Clément, F., Mellah, S., et al. (2011). Training-related brain plasticity in subjects at risk of developing Alzheimer’s disease. Brain, 134(Pt. 6), 16231634. https://dx.doi.org/10.1093/brain/awr037CrossRefGoogle ScholarPubMed
Berry, A. S., Zanto, T. P., Clapp, W. C., et al. (2010). The influence of perceptual training on working memory in older adults. PLoS One, 5(7), e11537. https://dx.doi.org/10.1371/journal.pone.0011537Google Scholar
Bowman, C. R., Chamberlain, J. D., & Dennis, N. A. (2019). Sensory representations supporting memory specificity: Age effects on behavioral and neural discriminability. Journal of Neuroscience, 39(12), 22652275. https://dx.doi.org/10.1523/jneurosci.2022-18.2019Google Scholar
Bunting, M. (2006). Proactive interference and item similarity in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(2), 183196. https://dx.doi.org/10.1037/0278-7393.32.2.183Google Scholar
Burianová, H., Lee, Y., Grady, C. L., & Moscovitch, M. (2013). Age-related dedifferentiation and compensatory changes in the functional network underlying face processing. Neurobiology of Aging, 34(12), 27592767. https://dx.doi.org/10.1016/j.neurobiolaging.2013.06.016Google Scholar
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17(1), 85100. https://dx.doi.org/10.1037//0882-7974.17.1.85CrossRefGoogle ScholarPubMed
Cabeza, R., Albert, M., Belleville, S., et al. (2018). Maintenance, reserve, and compensation: The cognitive neuroscience of healthy aging. Nature Reviews Neuroscience, 19(11), 701710. https://dx.doi.org/10.1038/s41583-018-0068-2CrossRefGoogle Scholar
Cabeza, R., & Dennis, N. A. (2012). Frontal lobes and aging: Deterioration and Compensation. In Stuss, D. T. & Knight, R. T. (Eds.), Principles of frontal lobe function (2nd ed., pp. 628652). New York: Oxford University Press.Google Scholar
Cabeza, R., Grady, C. L., Nyberg, L., et al. (1997). Age-related differences in neural activity during memory encoding and retrieval: A positron emission tomography study. Journal of Neuroscience, 17(1), 391400. https://dx.doi.org/10.1523/jneurosci.17-01-00391.1997CrossRefGoogle ScholarPubMed
Cappell, K. A., Gmeindl, L., & Reuter-Lorenz, P. A. (2010). Age differences in prefontal recruitment during verbal working memory maintenance depend on memory load. Cortex, 46(4), 462473. https://dx.doi.org/10.1016/j.cortex.2009.11.009CrossRefGoogle ScholarPubMed
Carp, J., Park, J., Polk, T. A., & Park, D. C. (2011). Age differences in neural distinctiveness revealed by multi-voxel pattern analysis. NeuroImage, 56(2), 736743. https://dx.doi.org/10.1016/j.neuroimage.2010.04.267Google Scholar
Chalfonte, B. L., & Johnson, M. K. (1996). Feature memory and binding in young and older adults. Memory and Cognition, 24(4), 403416. https://dx.doi.org/10.3758/bf03200930Google Scholar
Chevalier, N., Kurth, S., Doucette, M. R., et al. (2015). Myelination is associated with processing speed in early childhood: Preliminary insights. PLoS One, 10(10), e0139897. https://dx.doi.org/10.1371/journal.pone.0139897Google Scholar
Craik, F. I. M., & Byrd, M. (1982). Aging and cognitive deficits: The role of attentional resources. In Craik, F. I. M. & Trehub, S. E. (Eds.), Aging and Cognitive Processes (pp. 191211). New York: Plenum.Google Scholar
Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19(4), 450466. https://dx.doi.org/10.1016/S0022-5371(80)90312-6Google Scholar
Daselaar, S. M., Fleck, M. S., Dobbins, I. G., Madden, D. J., & Cabeza, R. (2006). Effects of healthy aging on hippocampal and rhinal memory functions: An event-related fMRI study. Cerebral Cortex, 16, 17711782. https://dx.doi.org/10.1093/cercor/bhj112Google Scholar
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18, 12011209. https://dx.doi.org/10.1093/cercor/bhm155Google Scholar
Deary, I. J., Pattie, A., & Starr, J. M. (2013). The stability of intelligence from age 11 to age 90 years: The Lothian birth cohort of 1921. Psychological Science, 24, 23612368. https://dx.doi.org/10.1177/0956797613486487Google Scholar
DeCaro, R., & Thomas, A. K. (2019). How retrieval success and task demands drive age differences in self-regulated learning. Journal of Memory and Language.Google Scholar
Dennis, N. A., & Cabeza, R. (2008). Neuroimaging of health cognitive aging. In Craik, F. E. M. & Salthouse, T. (Eds.), Handbook of cognitive aging (3rd ed., pp. 154). New York: Psychological Press.Google Scholar
Dennis, N. A., & Cabeza, R. (2011). Age-related dedifferentiation of learning systems: An fMRI study of implicit and explicit learning. Neurobiology of Aging, 32, p. 2318.e17–2318.e30. https://dx.doi.org/10.1016/j.neurobiolaging.2010.04.004Google Scholar
Dodson, C. S., Holland, P. W., & Shimamura, A. P. (1998). On the recollection of specific- and partial-source information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(5), 11211136. https://dx.doi.org/10.1037//0278-7393.24.5.1121Google ScholarPubMed
Engle, R. W., Cantor, J., & Carullo, J. J. (1992). Individual differences in working memory and comprehension: A test of four hypotheses. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(5), 972992. https://dx.doi.org/10.1037//0278-7393.18.5.972Google Scholar
Ferguson, S. A., Hashtroudi, S., & Johnson, M. K. (1992). Age differences in using source-relevant cues. Psychology and Aging, 7(3), 443452. https://dx.doi.org/10.1037/0882-7974.7.3.443Google Scholar
Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: A latent-variable analysis. Journal of Experimental Psychology: General, 133(1), 101135. https://dx.doi.org/10.1037/0096-3445.133.1.101CrossRefGoogle ScholarPubMed
Gazzaley, A., Sheridan, M. A., Cooney, J. W., & D’Esposito, M. (2007). Age-related deficits in component processes of working memory. Neuropsychology, 21(5), 532539.Google Scholar
Glisky, E. L., Rubin, S. R., & Davidson, P. S. (2001). Source memory in older adults: an encoding or retrieval problem? Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(5), 11311146. https://dx.doi.org/10.1037//0278-7393.27.5.1131Google Scholar
Gow, A. J., Johnson, W., Pattie, A., et al. (2011). Stability and change in intelligence from age 11 to ages 70, 79, and 87: The Lothian birth cohorts of 1921 and 1936. Psychology and Aging, 26, 232240. https://dx.doi.org/10.1037/a0021072Google Scholar
Grady, C. L., Maisog, J. M., Horwitz, B., et al. (1994). Age-related changes in cortical blood flow activation during visual processing of faces and location. Journal of Neuroscience, 14, 14501462. https://dx.doi.org/10.1523/jneurosci.14-03-01450.1994Google Scholar
Grady, C. L., McIntosh, A. R., Horwitz, B., et al. (1995). Age-related reductions in human recognition memory due to impaired encoding. Science, 269, 218221. https://dx.doi.org/10.1126/science.7618082CrossRefGoogle ScholarPubMed
Grady, C. L., Protzner, A. B., Kovacevic, N., et al. (2010). A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cerebral Cortex, 20, 14321447. https://dx.doi.org/10.1093/cercor/bhp207Google Scholar
Gruppuso, V., Lindsay, D. S., & Kelley, C. M. (1997). The process-dissociation procedure and similarity: Defining and estimating recollection and familiarity in recognition memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(2), 259278. https://dx.doi.org/10.1037/0278-7393.23.2.259Google Scholar
Gutchess, A. H. (2014). Plasticity of the aging brain: New directions in cognitive neuroscience. Science, 346, 579582. https://dx.doi.org/10.1126/science.1254604Google Scholar
Gutchess, A. H., Welsh, R. C., Hedden, T., et al. (2005). Aging and the neural correlates of successful picture encoding: Frontal activations compensate for decreased medial-temporal activity. Journal of Cognitive Neuroscience, 17, 8496. https://dx.doi.org/10.1162/0898929052880048CrossRefGoogle ScholarPubMed
Hamm, V. P., & Hasher, L. (1992). Age and the availability of inferences. Psychology and Aging, 7(1), 5664. https://dx.doi.org/10.1037/0882-7974.7.1.56CrossRefGoogle ScholarPubMed
Hampstead, B. M., Sathian, K., Phillips, P. A., et al. (2012). Mnemonic strategy training improves memory for object location associations in both healthy elderly and patients with amnestic mild cognitive impairment: A randomized, single-blind study. Neuropsychology, 26, 385399. https://dx.doi.org/10.1037/a0027545Google Scholar
Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 22, pp. 193–225). San Diego: Academic Press. https://doi.org/10.1016/S0079-7421(08)60041-9Google Scholar
Hashtroudi, S., Johnson, M. K., & Chrosniak, L. D. (1989). Aging and source monitoring. Psychology and Aging, 4(1), 106112. https://dx.doi.org/10.1037//0882-7974.4.1.106Google Scholar
Hedden, T., & Park, D. C. (2003). Contributions of source and inhibitory mechanisms to age-related retroactive interference in verbal working memory. Journal of Experimental Psychology: General, 132(1), 93112. https://dx.doi.org/10.1037/0096-3445.132.1.93Google Scholar
Hintzman, D. L., & Curran, T. (1994). Retrieval dynamics of recognition and frequency judgments: Evidence for separate processes of familiarity and recall. Journal of Memory and Language, 33(1), 118. https://dx.doi.org/10.1006/jmla.1994.1001Google Scholar
Horn, J. L., & Cattell, R. B. (1967). Age differences in fluid and crystallized intelligence. Acta Psychologica, 26, 107129. https://dx.doi.org/10.1016/0001-6918(67)90011-xCrossRefGoogle ScholarPubMed
Hsu, W. Y., Ku, Y., Zanto, T. P., & Gazzaley, A. (2015). Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: A systematic review and meta-analysis. Neurobiology of Aging, 36, 23482359. https://dx.doi.org/10.1016/j.neurobiolaging.2015.04.016Google Scholar
Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory. Journal of Memory and Language, 30(5), 513541. https://dx.doi.org/10.1016/0749-596x(91)90025-fGoogle Scholar
Jacoby, L. L. (1999). Ironic effects of repetition: Measuring age-related differences in memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(1), 322. https://dx.doi.org/10.1037//0278-7393.25.1.3Google Scholar
Jacoby, L. L., Bishara, A. J., Hessels, S., & Toth, J. P. (2005). Aging, subjective experience, and cognitive control: Dramatic false remembering by older adults. Journal of Experimental Psychology: General, 134(2), 131148. https://dx.doi.org/10.1037/0096-3445.134.2.131Google Scholar
Jacoby, L. L., Kelley, C., Brown, J., & Jasechko, J. (1989a). Becoming famous overnight: Limits on the ability to avoid unconscious influences of the past. Journal of Personality and Social Psychology, 56(3), 326338. https://dx.doi.org/10.1037//0022-3514.56.3.326Google Scholar
Jacoby, L. L., Kelley, C. M., & Dywan, J. (1989b). Memory attributions. In H. L. Roediger III & F. I. M. Craik (Eds.), Varieties of memory and consciousness: Essays in honour of Endel Tulving (pp. 391–422). Lawrence Erlbaum Associates, Inc.Google Scholar
Jacoby, L. L., Yonelinas, A. P., & Jennings, J. M. (1997). The relation between conscious and unconscious (automatic) influences: A declaration of independence. In Cohen, J. D. & Schooler, J. W. (Eds.), Carnegie Mellon Symposia on cognition: Scientific approaches to consciousness (pp. 1347). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
Kane, M. J., Hasher, L., Stoltzfus, E. R., Zacks, R. T., & Connelly, S. (1994). Inhibitory attentional mechanisms and aging. Psychology and Aging, 9(1), 103112. https://dx.doi.org/10.1037//0882-7974.9.1.103Google Scholar
Kaszniak, A. W., & Newman, M. C. (2000). Toward a neuropsychology of cognitive aging. In Honn Qualis, S. & Abeles, N. (Eds.), Psychology and the aging revolution: How we adapt to longer life (pp. 4367). Washington: American Psychological Association, Washington, DC.Google Scholar
Kausler, D. H., & Puckett, J. M. (1981a). Adult age differences in memory for sex of voice. Journal of Gerontology, 36(1), 4450. https://dx.doi.org/10.1093/geronj/36.1.44Google Scholar
Kausler, D. H., & Puckett, J. M. (1981b). Modality memory and frequency of occurrence memory for young and middle-aged adults. Experimental Aging Research, 7(3), 235243. https://dx.doi.org/10.1080/03610738108259807CrossRefGoogle Scholar
Kelley, C. M., & Sahakyan, L. (2003). Memory, monitoring, and control in the attainment of memory accuracy. Journal of Memory and Language, 48(4), 704721. https://dx.doi.org/10.1016/s0749-596x(02)00504-1Google Scholar
Kiely, K. M., & Anstey, K. J. (2015). Common cause theory in aging. In Pachana, N. (Ed.), Encyclopedia of Geropsychology (pp. 559569). Singapore: Springer.Google Scholar
Kirchhoff, B. A., Anderson, B. A., Smith, S. E., Barch, D. M., & Jacoby, L. L. (2012). Cognitive training-related changes in hippocampal activity associated with recollection in older adults. Neuroimage, 62(3), 19561964. https://dx.doi.org/10.1016/j.neuroimage.2012.06.017Google Scholar
Koen, J. D., Hauck, N., & Rugg, M. D. (2019). The relationship between age, neural differentiation, and memory performance. Journal of Neuroscience, 39, 149162. https://dx.doi.org/10.1101/345181Google Scholar
Li, K. Z., Lindenberger, U., Freund, A. M., & Baltes, P. B. (2001). Walking while memorizing: Age-related differences in compensatory behavior. Psychological Science, 12(3), 230237. https://dx.doi.org/10.1111/1467-9280.00341Google Scholar
Li, S. C., & Lindenberger, U. (1999). Cross-level unification: A computational exploration of the link between deterioration of neurotransmitter systems and dedifferentiation of cognitive abilities in old age. In Nilsson, L.-G. & Markowitsch, H. J., (Eds.), Cognitive Neuroscience of Memory (pp. 103146). Seattle: Hogrefe & Huber.Google Scholar
Light, L. L. (2012). Dual-process theories of memory in old age: An update. In Naveh-Benjamin, M. & Ohta, N. (Eds.), Memory and aging: Current issues and future directions (pp. 97124). New York: Psychology Press.Google Scholar
Light, L. L., LaVoie, D., Valencia-Laver, D., Albertson Owens, S. A., & Mead, G. (1992). Direct and indirect measures of memory for modality in young and older adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(6), 12841297. https://dx.doi.org/10.1037//0278-7393.18.6.1284Google Scholar
Light, L. L., & Zelinski, E. M. (1983). Memory for spatial information in young and old adults. Developmental Psychology, 19(6), 901906. https://dx.doi.org/10.1037//0012-1649.19.6.901Google Scholar
Lindenberger, U., & Baltes, P. B. (1994). Sensory functioning and intelligence in old age: A strong connection. Psychology and Aging, 9, 339355. https://dx.doi.org/10.1037//0882-7974.9.3.339Google Scholar
Lindenberger, U., & Ghisletta, P. (2009). Cognitive and sensory declines in old age: Gauging the evidence for a common cause. Psychology and Aging, 24(1), 116. https://dx.doi.org/10.1037/a0014986Google Scholar
Lindenberger, U., Marsiske, M., & Baltes, P. B. (2000). Memorizing while walking: Increase in dual-task costs from young adulthood to old age. Psychology and Aging, 15(3), 417436. https://dx.doi.org/10.1037/0882-7974.15.3.417Google Scholar
Lindsay, D. S., Johnson, M. K., and Kwon, P. (1991). Developmental changes in memory source monitoring. Journal of Experimental Child Psychology, 52(3), 297318. https://dx.doi.org/10.1016/0022-0965(91)90065-zGoogle Scholar
Lustig, C., Hasher, L., & Zacks, R. T. (2007). Inhibitory deficit theory: Recent developments in a “new view.” In Gorfein, D. S. & MacLeod, C. M. (Eds.), Inhibition in cognition (pp. 145162). Washington: American Psychological Association.Google Scholar
Lustig, C., May, C. P., & Hasher, L. (2001). Working memory span and the role of proactive interference. Journal of Experimental Psychology: General, 130(2), 199207. https://dx.doi.org/10.1037/11587-008CrossRefGoogle ScholarPubMed
Lustig, C., Snyder, A. Z., Bhakta, M., et al. (2003). Functional deactivations: Change with age and dementia of the Alzheimer type. Proceedings of the National Academy of Sciences USA, 100, 1450414509. https://dx.doi.org/10.1073/pnas.2235925100Google Scholar
May, C. P., Hasher, L., & Kane, M. J. (1999). The role of interference in memory span. Memory and Cognition, 27(5), 759767. https://dx.doi.org/10.3758/bf03198529Google Scholar
McElree, B., Dolan, P. O., & Jacoby, L. L. (1999). Isolating the contributions of familiarity and source information to item recognition: A time course analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(3), 563582. https://dx.doi.org/10.1037/0278-7393.25.3.563Google Scholar
McIntyre, J. S., & Craik, F. I. (1987). Age differences in memory for item and source information. Canadian Journal of Psychology/Revue canadienne de psychologie, 41(2), 175192. https://dx.doi.org/10.1037/h0084154Google Scholar
Mitchell, D. B., Hunt, R. R., & Schmitt, F. A. (1986). The generation effect and reality monitoring: Evidence from dementia and normal aging. Journal of Gerontology, 41(1), 7984. https://dx.doi.org/10.1093/geronj/41.1.79Google Scholar
Mitchell, K. J., Johnson, M. K., Raye, C. L., Mather, M., & D’Esposito, M. (2000). Aging and reflective processes of working memory: Binding and test load deficits. Psychology and Aging, 15(3), 527541. https://dx.doi.org/10.1037//0882-7974.15.3.527CrossRefGoogle ScholarPubMed
Mitchell, K. J., & Zaragoza, M. S. (2001). Contextual overlap and eyewitness suggestibility. Memory and Cognition, 29(4), 616626. https://dx.doi.org/10.3758/bf03200462Google Scholar
Monge, Z. A., Stanley, M. L., Geib, B. R., Davis, S. W., & Cabeza, R. C. (2018). Functional networks underlying item and source memory: Shared and distinct network components and age-related differences. Neurobiology of Aging, 69, 140150. https://dx.doi.org/10.1016/j.neurobiolaging.2018.05.016Google Scholar
Naveh-Benjamin, M. (2000). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 11701187. https://dx.doi.org/10.1037//0278-7393.26.5.1170Google Scholar
Naveh-Benjamin, M., Brav, T. K., & Levy, O. (2007). The associative memory deficit of older adults: The role of strategy utilization. Psychology and Aging, 22(1), 202208. https://dx.doi.org/10.1037/0882-7974.22.1.202Google Scholar
Nyberg, L., Sandblom, J., Jones, S., et al. (2003). Neural correlates of training-related memory improvement in adulthood and aging. Proceedings of the National Academy of Sciences USA, 100, 1372813733. https://dx.doi.org/10.1073/pnas.1735487100Google Scholar
O’Hanlon, L., Wilcox, K. A., & Kemper, S. (2001). Age differences in implicit and explicit associative memory: Exploring elaborative processing effects. Experimental Aging Research, 27(4), 341359. https://dx.doi.org/10.1080/03610730109342353Google Scholar
Old, S. R., & Naveh-Benjamin, M. (2008). Memory for people and their actions: Further evidence for an age-related associative deficit. Psychology and Aging, 23(2), 467472. https://dx.doi.org/10.1037/0882-7974.23.2.467Google Scholar
Park, D. C., & Payer, D. (2006). Working memory across the adult lifespan. In Bialystok, E. & Craik, F. I. M. (Eds.), Lifespan cognition: Mechanisms of change (pp. 128142). New York: Oxford University Press.Google Scholar
Park, D. C., Polk, T. A., Park, R., et al. (2004). Aging reduces neural specialization in ventral visual cortex. Proceedings of the National Academy of Sciences USA, 101, 1309113095. https://dx.doi.org/10.1073/pnas.0405148101Google Scholar
Park, D. C., Puglisi, J. T., & Sovacool, M. (1983). Memory for pictures, words, and spatial location in older adults: Evidence for pictorial superiority. Journal of Gerontology, 38(5), 582588. https://dx.doi.org/10.1093/geronj/38.5.582Google Scholar
Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173196. https://dx.doi.org/10.1146/annurev.psych.59.103006.093656Google Scholar
Park, J., Carp, J., Kennedy, K. M., et al. (2012). Neural broadening or neural attenuation? Investigating age-related dedifferentiation in the face network in a large lifespan sample. Journal of Neuroscience, 32, 21542158. https://dx.doi.org/10.1523/jneurosci.4494-11.2012Google Scholar
Persson, J., Lustig, C., Nelson, J. K., & Reuter-Lorenz, P. A. (2007). Age differences in deactivation: A link to cognitive control? Journal of Cognitive Neuroscience, 19, 10211032. https://dx.doi.org/10.1162/jocn.2007.19.6.1021Google Scholar
Pezdek, K. (1983). Memory for items and their spatial locations by young and elderly adults. Developmental Psychology, 19(6), 895900. https://dx.doi.org/10.1037//0012-1649.19.6.895Google Scholar
Rabbitt, P. M. (1968). Channel-capacity, intelligibility and immediate memory. Quarterly Journal of Experimental Psychology, 20(3), 241248. https://dx.doi.org/10.1080/14640746808400158Google Scholar
Rabbitt, P. (1991). Management of the working population. Ergonomics, 34(6), 775790. https://dx.doi.org/10.1080/00140139108967350Google Scholar
Reinitz, M. T., Séguin, J. A., Peria, W., & Loftus, G. R. (2012). Confidence–accuracy relations for faces and scenes: Roles of features and familiarity. Psychonomic Bulletin and Review, 19(6), 10851093. https://dx.doi.org/10.3758/s13423-012-0308-9Google Scholar
Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17, 177182. https://dx.doi.org/10.1111/j.1467-8721.2008.00570.xGoogle Scholar
Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., et al. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience, 12, 174187. https://dx.doi.org/10.1162/089892900561814Google Scholar
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24, 355370. https://dx.doi.org/10.1007/s11065-014-9270-9Google Scholar
Rhodes, M. G., Castel, A. D., & Jacoby, L. L. (2008). Associative recognition of face pairs by younger and older adults: The role of familiarity-based processing. Psychology and Aging, 23(2), 239249. https://dx.doi.org/10.1037/0882-7974.23.2.239Google Scholar
Rosen, A. C., Prull, M. W., O’Hara, R., et al. (2002). Variable effects of aging on frontal lobe contributions to memory. NeuroReport, 13, 24252428. https://dx.doi.org/10.1097/00001756-200212200-00010Google Scholar
Rossi, S., Miniussi, C., Pasqualetti, P., et al. (2004). Age-related functional changes of prefrontal cortex in long-term memory: A repetitive transcranial magnetic stimulation study. Journal of Neuroscience, 24(36), 79397944. https://dx.doi.org/10.1523/jneurosci.0703-04.2004Google Scholar
Rowe, G., Hasher, L., & Turcotte, J. (2008). Age differences in visuospatial working memory. Psychology and Aging, 23(1), 7984. https://dx.doi.org/10.1037/0882-7974.23.1.79Google Scholar
Salthouse, T. A. (1979). Adult age and the speed-accuracy trade-off. Ergonomics, 22(7), 811821. https://dx.doi.org/10.1080/00140137908924659Google Scholar
Salthouse, T. A. (1985). Speed of behavior and its implications for cognition. In J. E. Birren & K. W. Schaie (Eds.), The handbooks of aging. Handbook of the psychology of aging (pp. 400–426). Van Nostrand Reinhold Co.Google Scholar
Salthouse, T. A. (1985a). Anticipatory processing in transcription typing. Journal of Applied Psychology, 70(2), 264271. https://dx.doi.org/10.1037//0021-9010.70.2.264Google Scholar
Salthouse, T. A. (1991a). Cognitive facets of aging well. Generations: Journal of the American Society on Aging, 15(1), 3538.Google Scholar
Salthouse, T. A. (1991b). Mediation of adult age differences in cognition by reductions in working memory and speed of processing. Psychological Science, 2(3), 179183. https://dx.doi.org/10.1111/j.1467-9280.1991.tb00127.xGoogle Scholar
Salthouse, T. A. (1994). How many causes are there of aging-related decrements in cognitive functioning? Developmental Review, 14, 413437. https://dx.doi.org/10.1006/drev.1994.1016Google Scholar
Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403428. https://dx.doi.org/10.1037//0033-295x.103.3.403Google Scholar
Salthouse, T. A. (2000). Aging and measures of processing speed. Biological Psychology, 54, 3554. https://dx.doi.org/10.1016/s0301-0511(00)00052-1Google Scholar
Salthouse, T. A., Babcock, R. L., & Shaw, R. J. (1991). Effects of adult age on structural and operational capacities in working memory. Psychology and Aging, 6(1), 118127. https://dx.doi.org/10.1037/0882-7974.6.1.118CrossRefGoogle ScholarPubMed
Salthouse, T. A., Legg, S., Palmon, R., & Mitchell, D. R. (1990). Memory factors in age-related differences in simple reasoning. Psychology and Aging, 5(1), 915. https://dx.doi.org/10.1037/0882-7974.5.1.9Google Scholar
Salthouse, T. A., & Mitchell, D. R. (1990). Effects of age and naturally occurring experience on spatial visualization performance. Developmental Psychology, 26(5), 845854. https://dx.doi.org/10.1037/0012-1649.26.5.845Google Scholar
Schacter, D. L., Koutstaal, W., Johnson, M. K., Gross, M. S., & Angell, K. E. (1997). False recollection induced by photographs: A comparison of older and younger adults. Psychology and Aging, 12(2), 203215. https://dx.doi.org/10.1037/0882-7974.12.2.203Google Scholar
Spencer, W. D., & Raz, N. (1995). Differential effects of aging on memory for content and context: A meta-analysis. Psychology and Aging, 10(4), 527539. https://dx.doi.org/10.1037//0882-7974.10.4.527CrossRefGoogle ScholarPubMed
Spreng, R. N., & Turner, G. R. (2019). The shifting architecture of cognition and brain function in older adulthood. Perspectives on Psychological Science, 14(4), 523–542. https://doi.org/10.1177/1745691619827511Google Scholar
Stine, E. L., Wingfield, A., & Poon, L. W. (1989). Speech comprehension and memory through adulthood: The roles of time and strategy. In Poon, L. W., Rubin, D. C., & Wilson, B. A. (Eds.), Everyday cognition in adulthood and late life (pp. 195221). New York: Cambridge University Press.Google Scholar
Thomas, A. K., & Bulevich, J. B. (2006). Effective cue utilization reduces memory errors in older adults. Psychology and Aging, 21(2), 379389. https://dx.doi.org/10.1037/0882-7974.21.2.379Google Scholar
Thomas, A. K., Bulevich, J. B., & Loftus, E. F. (2003). Exploring the role of repetition and sensory elaboration in the imagination inflation effect. Memory and Cognition, 31(4), 630640. https://dx.doi.org/10.3758/bf03196103Google Scholar
Tipper, S. P. (1991). Mechanisms of visual selective attention. Canadian Psychology/Psychologie Canadienne, 32(4), 640642. http://dx.doi.org/10.1037/h0084644Google Scholar
Tucker-Drob, E. M. (2011). Global and domain-specific changes in cognition throughout adulthood. Developmental Psychology, 47, 331343. https://dx.doi.org/10.1037/a0021361Google Scholar
Tucker-Drob, E. M., Brandmaier, A. M., & Lindenberger, U. (2019). Coupled cognitive changes in adulthood: A meta-analysis. Psychological Bulletin, 145(3), 273301. https://dx.doi.org/10.1037/bul0000179Google Scholar
Turner, G. R., & Spreng, R. N. (2015). Prefrontal engagement and reduced default network suppression co-occur and are dynamically coupled in older adults: The default–executive coupling hypothesis of aging. Journal of Cognitive Neuroscience, 27, 24622476. https://dx.doi.org/10.1162/jocn_a_00869Google Scholar
Wong, J. T., Cramer, S. J., & Gallo, D. A. (2012). Age-related reduction of the confidence–accuracy relationship in episodic memory: Effects of recollection quality and retrieval monitoring. Psychology and Aging, 27(4), 10531065. https://dx.doi.org/10.1037/a0027686Google Scholar
Yonelinas, A. P., & Jacoby, L. L. (1996a). Noncriterial recollection: Familiarity as automatic, irrelevant recollection. Consciousness and Cognition: An International Journal, 5(1–2), 131141. https://dx.doi.org/10.1006/ccog.1996.0008Google Scholar
Yonelinas, A. P., & Jacoby, L. L. (1996b). Response bias and the process-dissociation procedure. Journal of Experimental Psychology: General, 125(4), 422434. https://dx.doi.org/10.1037//0096-3445.125.4.422Google Scholar
Yonelinas, A. P., & Jacoby, L. L. (2012). The process-dissociation approach two decades later: Convergence, boundary conditions, and new directions. Memory and Cognition, 40(5), 663680. https://dx.doi.org/10.3758/s13421-012-0205-5Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×