Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T06:17:38.122Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  22 April 2019

Joseph Braat
Affiliation:
Technische Universiteit Delft, The Netherlands
Peter Török
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Imaging Optics , pp. 945 - 958
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Aarts, E. H. L., Korst, J. H. M., and van Laarhoven, P. J. M.. Local Search in Combinatorial Optimisation, chapter 4, Simulated Annealing, pages 91120. John Wiley, New York, USA, 1997. 409Google Scholar
[2] Abbe, E.. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. mikrosk. Anat., 9(1):413468, 1873. 218, 660Google Scholar
[3] Abbe, E.. On new methods for improving spherical correction, applied to the construction of wide-angled object-glasses. J. R. Microsc. Soc., 2:812–824, 1879. 503Google Scholar
[4] Abramowitz, M. and Stegun, I. A.. Handbook of Mathematical Functions. Dover Publications, New York, USA, 9th edition, 1972. 395, 600, 772, 890, 891, 892, 893, 895, 902Google Scholar
[5] Adler, R.. An optical video disc player for NTSC receivers. IEEE Trans. Broadc. Telev., BTR-20:230–234, 1974. 711Google Scholar
[6] Agurok, I.. Double expansion of wavefront deformation in Zernike polynomials over the pupil and field-of-view of optical systems: lens design, testing, and alignment. In Proc. SPIE, volume 3430, pages 8087, Bellingham WA, USA, 1998. 360Google Scholar
[7] Aharonov, Y. and Bohm, D.. Significance of electromagentic potentials in the quantum theory. Phys. Rev., 115(3):485491, 1959. 13Google Scholar
[8] Airy, G. B.. On the diffraction of an object-glass with circular aperture. Trans. Camb. Phil. Soc., 5:283–291, 1835. 582Google Scholar
[9] Andersen, T. B.. Automatic computation of optical aberration coefficients. Appl. Opt., 19:38003816, 1980. 339, 360CrossRefGoogle ScholarPubMed
[10] Arfken, G.. Mathematical Methods for Physicists. Academic Press, Boston, third edition, 1985. 19, 169, 692, 858Google Scholar
[11] Arnison, M. R. and Sheppard, C. J. R.. A 3D vectorial optical transfer function suitable for arbitrary pupil functions. Opt. Commun., 211:53–63, 2002. 767Google Scholar
[12] Artzner, G.. Aspherical wavefront measurements: Shack-Hartmann numerical and practical experiments. Pure Appl. Opt., 7:435–48, 1998. 496Google Scholar
[13] Ashkin, A.. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 24(4):156159, 1970. 640Google Scholar
[14] Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., and Chu, S.. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11(5):288290, 1986. 640Google Scholar
[15] Asvestas, J. S.. Diffraction by a black screen. J. Opt. Soc. Am., 65(2):111118, 1975. 561Google Scholar
[16] Axelrod, D.. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys. J., 26:557–574, 1979. 833Google Scholar
[17] Azzam, R. M. A. and Bashara, N. M.. Ellipsometry and Polarized Light. North-Holland, Amsterdam, third edition, 1992. 787Google Scholar
[18] Baker, B. B. and Copson, E. T.. The Mathematical Theory of Huygens’ Principle. Oxford University Press, second edition, 1953. 550Google Scholar
[19] Baker, J. G.. On improving the effectiveness of large telescopes. IEEE Trans. Aerosp. Elect. Syst., 5(2):261272, 1969. 488Google Scholar
[20] Bal, M. F., Bociort, F., and Braat, J. J. M.. Analysis, search, and classification for reflective ring-field projection systems. Appl. Opt., 42:2301–2311, 2003. 537Google Scholar
[21] Barnett, S. M. and Allen, L.. Orbital angular momentum and nonparaxial light beams. Opt. Commun., 110(5):670678, 1994. 591Google Scholar
[22] Bayliss, A. and Turkel, E.. Radiation boundary conditions for wave-like equations. Commun. Pure Appl. Math., 33(6):707725, 1980. 858Google Scholar
[23] Benoît, C.. Note sur une méthode de résolution des équations normales provenant de l’application de la méthode des moindres carrés à un système d’équations linéaires en nombre inférieur à celui des inconnues (Procédé du Commandant Cholesky). B. Geod., 2:67–77, 1924. 402Google Scholar
[24] Berek, M.. Grundlagen der praktischen Optik. W. de Gruyter, Berlin, 1930. 309, 446, 447Google Scholar
[25] Bérenger, J.-P.. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 114(2):185200, 1994. 103, 858Google Scholar
[26] Bessel, F. W.. Untersuchung des Teils der planetarischen Störungen, welcher aus der Bewegung der Sonne entsteht. Abh. d. K. Akad. Wiss. Berl., pages 1–52, 1824. 582Google Scholar
[27] Birch, K. P. and Downs, M. J.. An updated Edlén equation for the refractive index of air. Metrologia, 30:155–162, 1993. 325Google Scholar
[28] Bluestein, L. I.. A linear filtering approach to the computation of the discrete Fourier transform. IEEE Trans. Acoust. Speech, 18(4):451455, 1970. 867Google Scholar
[29] Bociort, F., Andersen, T. B., and Beckmann, L. H. J. F.. High-order optical aberration coefficients: extension to finite objects and to telecentricity in object space. Appl. Opt., 47:56915700, 2008. 339, 360, 460Google Scholar
[30] Bociort, F., van Driel, E., and Serebriakov, A.. Network structure of the set of local minima in optical system optimization. In Proc. SPIE, volume 5174, pages 2634, Bellingham WA, USA, 2003. 412Google Scholar
[31] Bociort, F. and van Grol, P.. Systematics of the design shapes in the optical merit function landscape. In Proc. SPIE, volume 7717, pages 77170F–1 –77170F–14, Bellingham WA, USA, 2010. 412Google Scholar
[32] Bociort, F. and van Turnhout, M.. Looking for order in the optical design landscape. In Mouroulis, P. Z., Smith, W. J., and Johnson, R. B., editors, Current Developments in Lens Design and Optical Engineering VII, volume 6288 of Proc. SPIE, page 628806, Bellingham WA, USA, 2006. 412, 414Google Scholar
[34] Boerner, M., Glasmachers, G., Bernecker, O., Riemann, V., and Maslowski, S.. Signal playback system transducer with optical resonance cavity, 1976. US patent 3,941,945, German application DE 19,722,244,119, September 1973, TELDEC company. 715Google Scholar
[35] Bohren, C. F. and Huffmann, D. R.. Absorption and Scattering of Light by Small Particles. John Wiley, New York, USA, 1983. 106Google Scholar
[36] Born, M.. Optik. Springer, Berlin, 1933. 3, 108Google Scholar
[37] Born, M. and Wolf, E.. Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge (UK), seventh edition, 1999. 3, 46, 164, 189, 191, 197, 224, 231, 324, 339, 384, 545, 550, 553, 611, 612, 689, 888, 889, 900Google Scholar
[38] Borsboom, P.-P. and Frankena, H. J.. Field analysis of two-dimensional focusing grating couplers. J. Opt. Soc. Am. A, 12(5):11421146, 1995. 515Google Scholar
[39] Borsboom, P.-P. and Frankena, H. J.. Field analysis of two-dimensional integrated optical gratings. J. Opt. Soc. Am. A, 12(5):11341141, 1995. 515Google Scholar
[40] van den Bos, A.. Parameter Estimation for Scientists and Engineers. John Wiley, New York, USA, 2007. 403Google Scholar
[41] Bouwhuis, G. and Burgstede, P.. The optical scanning system of the Philips VLP record player. Philips Tech. Rev., 33:186–189, 1973. 711Google Scholar
[42] Bouwkamp, C. J.. Diffraction theory. Rep. Prog. Phys., 17:35100, 1954. 88, 545, 561Google Scholar
[43] Boyd, G. D. and Gordon, J. P.. Confocal multimode resonator for millimeter through optical wavelength masers. Bell Sys. Tech. J., 40:489–508, 1961. 35CrossRefGoogle Scholar
[44] Boyd, G. D. and Kogelnik, H.. Generalized confocal resonator theory. Bell Sys. Tech. J., 41:1347–1369, 1962. 35Google Scholar
[45] Boyd, S. and Vandenberghe, L.. Convex Optimization. Cambridge University Press, Cambridge, UK, 2004. 411Google Scholar
[46] Braat, J. J. M.. Polynomial expansion of severely aberrated wave fronts. J. Opt. Soc. Am. A, 4:643650, 1987. 366, 368Google Scholar
[47] Braat, J. J. M.. Quality of microlithographic projection lenses. In Proc. SPIE, volume 811, pages 2230, Bellingham WA, USA, 1987. 531Google Scholar
[48] Braat, J. J. M.. Optics of recording and read-out in optical disc systems. Jpn. J. Appl. Phys., 28(3):103108, 1989. 724CrossRefGoogle Scholar
[49] Braat, J. J. M.. Analytic expressions for the wave-front aberration coefficients of a tilted plane-parallel plate. Appl. Opt., 36:8459–8467, 1997. 322Google Scholar
[50] Braat, J. J. M.. Mirror projection system for a scanning lithographic projection apparatus, and lithographic apparatus comprising such a system. US Patent 6396067, May 28, 2002. 538Google Scholar
[51] Braat, J. J. M., Dirksen, P., and Janssen, A. J. E. M.. Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions. J. Opt. Soc. Am. A, 19:858–870, 2002. 584Google Scholar
[52] Braat, J. J. M., Dirksen, P., Janssen, A. J. E. M., and van de Nes, A. S.. Extended Nijboer-Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system. J. Opt. Soc. Am. A, 20:22812292, 2003. 363, 584, 627, 630, 644, 901Google Scholar
[53] Braat, J. J. M. and Greve, P. F.. Aplanatic optical system containing two aspheric surfaces. Appl. Opt., 18:2187–2191, 1979. 391Google Scholar
[54] Braat, J. J. M., van Haver, S., Janssen, A. J. E. M., and Dirksen, P.. Energy and momentum flux in a high-numerical-aperture beam using the extended Nijboer-Zernike diffraction formalism. J. Eur. Opt. Soc.-Rapid, 2(07032), 2007. 642, 651, 653, 654, 655Google Scholar
[55] Braat, J. J. M., van Haver, S., Janssen, A. J. E. M., and Dirksen, P.. Assessment of optical systems by means of point-spread functions. In Wolf, E., editor, Prog. Optics, volume 51, chapter 6, pages 349468. Elsevier B.V., 2008. 611Google Scholar
[56] Braat, J. J. M., van Haver, S., Janssen, A. J. E. M., and Pereira, S. F.. Image formation in a multilayer using the Extended Nijboer-Zernike theory. J. Eur. Opt. Soc.-Rapid, 4(09048), 2009. 636, 637, 638Google Scholar
[57] Braat, J. J. M. and Janssen, A. J. E. M.. Double Zernike expansion of the optical aberration function from its power series expansion. J. Opt. Soc. Am. A, 30(6):12131222, 2013. 361, 363, 364, 900Google Scholar
[58] Braat, J. J. M. and Janssen, A. J. E. M.. Derivation of various transfer functions of ideal or aberrated imaging systems from the three-dimensional transfer function. J. Opt. Soc. Am. A, 32:11461159, 2015. 736, 767Google Scholar
[59] Braat, J. J. M. and Laurijs, M. O. E.. Geometrical optics design and aberration analysis of a focusing grating coupler. Opt. Eng., 33(4):10371043, 1994. 513Google Scholar
[60] Brillouin, L.. Wave Propagation and Group Velocity. Academic Press, New York, 1960. 169Google Scholar
[61] Brouwer, W.. Matrix Methods in Optical Instrument Design. W. A. Benjamin, New York, USA, 1964. 234Google Scholar
[62] Buchdahl, H. A.. Aberrations of Optical Systems. Dover Publications, New York, USA, 1968. 339, 360, 395, 460Google Scholar
[63] Cagnet, M., Françon, M., and Thrierr, J.-C.. Atlas of Optical Phenomena. Springer-Verlag, Berlin, 1962. 582, 583Google Scholar
[64] Callis, P. R.. On the theory of two-photon induced fluorescence anisotropy with application to indoles. J. Chem. Phys., 99:2737, 1993. 833Google Scholar
[65] Charney, E.. The Molecular Basis of Optical Activity. John Wiley, New York, USA, 1979. 143Google Scholar
[66] Chavannes, N. P.. Local Mesh Refinement Algorithms for Enhanced Modeling Capabilities in the FDTD Method. PhD thesis, ETH, Zürich, 2002. 104Google Scholar
[67] Cheng, L.-C., Horton, N. G., Wang, K., Chen, S.-J., and Xu, C.. Measurements of multiphoton action cross-sections for multiphoton microscopy. Biomed. Opt. Express, 5(10):34273433, 2014. 839Google Scholar
[68] Chong, C.-W., Raveendran, P., and Mukundan, R.. A comparative analysis of algorithms for fast computation of Zernike moments. Pattern Recogn., 36:731742, 2003. 610Google Scholar
[69] Ciddor, P. E.. Refractivity index of air: new equations for the visible and near infrared. Appl. Opt., 35:15661573, 1996. 324, 325Google Scholar
[70] van Cittert, P. H.. Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direkt oder mittels einer Linse beleuchteten Ebene. Physica, 1:201210, 1934. 498, 673, 689Google Scholar
[71] Clausius, R.. Über die Concentration von Wärme- und Lichtstrahlen und die Grenzen ihrer Wirkung. Ann. Phys. (Pogg. Ann.), 121(1):144, 1864. 218Google Scholar
[72] Coddington, H.. A Treatise on the Reflexion and Refraction of Light, being Part I. of a System of Optics. Cambridge University, 1829. 350Google Scholar
[73] Collins, S. A.. Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am., 60(9):11681177, 1970. 571Google Scholar
[74] Compaan, K. and Kramer, P.. The Philips ‘VLP’ system. Philips Tech. Rev., 33:178–180, 1973. 711Google Scholar
[75] Condon, E. U.. Theories of optical rotatory power. Rev. Mod. Phys., 9:432–457, 1937. 143Google Scholar
[76] Conrady, A. E.. Star discs. Mon. Not. R. Astr. Soc., 79:575, 1919. 583Google Scholar
[77] Conrady, A. E.. Applied Optics and Optical Design. Oxford University Press, London, 1929. 329, 330, 454Google Scholar
[78] Conway, A. W. and Synge, J. L.. The Mathematical Papers of Sir W. R. Hamilton, volume I (Geometrical Optics). Cambridge University Press, Cambridge, 1931. 203Google Scholar
[79] Couder, A.. Sur un type nouveau de télescope photographique. C. R. Acad. Sci., 183:12761279, 1926. 481Google Scholar
[80] Cox, I. J. and Sheppard, C. J. R.. Information capacity and resolution in an optical system. J. Opt. Soc. Am. A, 3(8):11521158, 1986. 812Google Scholar
[81] den Dekker, A. J. and van den Bos, A.. Resolution: a survey. J. Opt. Soc. Am., 14:547557, 1997. 660Google Scholar
[82] Denk, W., Strickler, J. H., and Webb, W. W.. Two-photon fluorescence scanning microscopy. Science, 248:7376, 1990. 840Google Scholar
[83] van Dijk, T., Gbur, G., and Visser, T. D.. Shaping the focal intensity distribution using spatial coherence. J. Opt. Soc. Am. A, 25:575581, 2008. 796Google Scholar
[84] Dilworth, D. C.. Pseudo-second-derivative matrix and its application to automatic lens design. Appl. Opt., 17:33723375, 1978. 406, 407Google Scholar
[85] Dirac, P. A. M.. Quantised singularities in the electromagnetic field. Proc. Roy. Soc. Lond. A, 133(821):6072, 1931. 5Google Scholar
[86] Dodoc, A., Ulrich, W., and Rostalski, H.-J.. Projection objective for immersion lithography. US Patent 7969663, June 28 2011. 533Google Scholar
[87] Dollond, J.. XCVIII. An account of some experiments concerning the different refrangibility of light. By Mr. John Dollond. With a letter from James Short. Phil. Trans., 50:733743, 1758. 2Google Scholar
[88] Drude, P.. Optics. Longmans, Green and Co., New York, USA, 1901. 143Google Scholar
[89] Duffieux, P. M.. L’intégrale de Fourier et ses applications à l’optique. Privately published, Printing house Oberthur, Rennes, 1946. 660Google Scholar
[90] Edlén, K.. The refractive index of air. Metrologia, 2:7180, 1966. 325Google Scholar
[91] van den Eerenbeemd, J. and Stallinga, S.. Compact system description for systems comprising a tilted plane parallel plate. Appl. Opt., 46:319326, 2007. 322Google Scholar
[92] Engquist, B. and Majda, A.. Absorbing boundary conditions for the numerical simulation of waves. Math. Comput., 31:629651, 1977. 858Google Scholar
[93] Erkkila, J. H. and Rogers, M. E.. Diffracted fields in the focal volume of a converging wave. J. Opt. Soc. Am., 71:904905, 1981. 575Google Scholar
[94] Euler, L.. Recherches sur la courbure des surfaces. Mém. Acad. Sc. Berlin, 16:119143, 1767. 288Google Scholar
[95] Faraday, M.. On the magnetic affection of light, and on the distinction between the ferromagnetic and diamagnetic conditions of matter. Philos. Mag., 29(193):153156, 1846. 143Google Scholar
[96] Faraday, M.. On the magnetization of light and the illumination of magnetic lines of force. Phil. Trans. R. Soc. Lond., 136:120, 1846. 143Google Scholar
[97] Feder, D. P.. Automatic optical design. Appl. Opt., 2:12091226, 1963. 400, 407Google Scholar
[98] Flewett, S., Quiney, H., Tran, C., and Nugent, K.. Extracting coherent modes from partially coherent wavefields. Opt. Lett., 33:21982200, 2009. 796Google Scholar
[99] Fokker, A. D.. Over het anomale phaseverloop bij een brandpunt. Physica, 3:334337, 1923 (in Dutch). 603Google Scholar
[100] Fokker, A. D.. Hyperbolische zones van Fresnel. Physica, 4:166172, 1924 (in Dutch). 603, 604Google Scholar
[101] Forbes, G. W.. Shape specification for axially symmetric optical surfaces. Opt. Expr., 15:52185226, 2007. 343Google Scholar
[102] Fox, A. G. and Li, T.. Resonant modes in a maser interferometer. Bell Sys. Tech. J., 40:453488, 1961. 35Google Scholar
[103] Fresnel, A.-J.. Mémoire sur la diffraction de la lumiére. Mem. Acad. Sci. Inst. France, 1818. 603Google Scholar
[104] Fresnel, A.-J.. Mémoire sur la double réfraction. Rec. Acad. Sci. Inst. France, VII:45176, 1824. 2Google Scholar
[105] Fresnel, A.-J.. Mémoire sur les modifications que la réflexion imprime à la lumière polarisée. Mem. Acad. Sci. Inst. France, 11:373434, 1832. 62Google Scholar
[106] Friedrich, D. M.. Tensor patterns and polarization ratios for three-photon transition in fluid media. J. Chem. Phys., 75:32583268, 1981. 833Google Scholar
[107] Gan, X. S. and Sheppard, C. J. R.. Detectability: A new criterion for evaluation of the confocal microscope. Scanning, 15:187192, 1993. 847Google Scholar
[108] Gauderon, R. and Sheppard, C. J. R.. Effect of a finite-size pinhole on noise performance in single-, two-, and three-photon confocal fluorescence microscopy. Appl. Opt., 38(16):35623565, 1999. 847Google Scholar
[109] Gerrard, A. and Burch, J. M.. Introduction to Matrix Methods in Optics. John Wiley, New York, USA, 1974. 235Google Scholar
[110] Glatzel, E. New lenses for microlithography. In Fisher, R. E., editor, Proceedings 1980 International Lens Design Conference, volume 237 of Proc. SPIE, pages 310320, Bellingham WA, USA, 1980. 531Google Scholar
[111] Golub, M. A. and Friesem, A. A.. Effective grating theory for resonance domain surface-relief diffraction gratings. J. Opt. Soc. Am. A, 22:11151126, 2005. 388Google Scholar
[112] Goodman, J. W.. Statistical Optics. John Wiley, New York, USA, 1985. 768Google Scholar
[113] Goodman, J. W.. Introduction to Fourier Optics. Roberts & Co. Publishers, Greenwood Village, USA, 2004. 660, 696, 823Google Scholar
[114] Goos, F. and Haenchen, H.. Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann. Physik, 436:333346, 1947. 62Google Scholar
[115] Gori, F., Santarsiero, M., Simon, R., Piquero, G., Borghi, R., and Guattari, G.. Coherent-mode decomposition of partially polarized, partially coherent sources. J. Opt. Soc. Am. A, 20(1):7884, 2003. 798Google Scholar
[116] Gouy, L. G.. Sur une propriété nouvelle des ondes lumineuses. C. R. Hebd. Acad. Sci. Paris, 110:12511253, 1890. 600Google Scholar
[117] Grimaldi, F. M.. Physico-mathesis de lumine, coloribus, et iride aliisque adnexis libri duo. V. Bonati, Bologna, 1665. 1, 543Google Scholar
[118] Gryczynski, I., Malak, H., and Lakowicz, J. R.. Multiphoton excitation of the DNA stains DAPI and Hoechst. Bioimaging, 4:138148, 1996. 833Google Scholar
[119] Gryczynski, I., Malak, H., and Lakowicz, J. R.. Three-photon excitation of P-Quaterphenyl with a mode-locked femtosecond Ti:Sapphire laser. J. Fluoresc., 6:139145, 1996. 839Google Scholar
[120] Gu, M. and Sheppard, C. J. R.. Three-dimensional imaging in confocal fluorescent microscopy with annular lenses. J. Mod. Opt., 38:22472263, 1991. 767CrossRefGoogle Scholar
[121] Guattari, G., Palma, C., and Padovani, C.. Cross-spectral densities with axial symmetry. Opt. Commun., 73:173178, 1989. 802Google Scholar
[122] Gustafsson, M. G.. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198(2):8287, 2000. 725Google Scholar
[123] Haisma, J., Hugues, E., and Babolat, C.. Realization of a bi-aspherical objective lens for the Philips Video Long Play system. Opt. Lett., 4(2):7072, 1979. 509Google Scholar
[124] Hamilton, W. R.. On some results of the view of a characteristic function in optics. Rep. Br. Ass. (Cambridge), pages 360–370, 1833. 138Google Scholar
[125] Hardy, A. and Treves, D.. Structure of the electromagnetic field near the focus of a stigmatic lens. J. Opt. Soc. Am., 63(1):8590, 1973. 804Google Scholar
[126] Hariharan, P.. Optical Interferometry. Elsevier Science, London, 2nd edition, 2003. 591Google Scholar
[127] van Haver, S. and Janssen, A. J. E. M.. Advanced analytic treatment and efficient computation of the diffraction integrals in the Extended Nijboer-Zernike theory. J. Eur. Opt. Soc.-Rapid, 8(13044), 2013. 611, 628, 902, 918Google Scholar
[128] van Haver, S. and Janssen, A. J. E. M.. Truncation of the series expressions in the advanced ENZ-theory of diffraction integrals. J. Eur. Opt. Soc.-Rapid, 9(14042), 2014. 628, 918Google Scholar
[129] Heaviside, O.. Electrical Papers, Vol. I and II. MacMillan & Co., London and New York, 1892. 13Google Scholar
[130] Hecht, B. and Novotny, L.. Principles of Nano-Optics. Cambridge University Press, Cambridge, UK, 2006. 180Google Scholar
[131] van Heel, A. C. S.. Inleiding in de optica. Martinus Nijhoff, The Hague, Netherlands, 1958. 234Google Scholar
[132] Heemskerk, J. P. J.. Noise in a video disc system: experiments with an (AlGa)As laser. Appl. Opt., 17:20072012, 1978. 715Google Scholar
[133] von Helmholtz, H.. Die theoretische Grenze für die Leistungsfähigkeit der Mikroskope. Ann. Phys. (Pogg. Ann., Jubelband J. C. Poggendorf gewidmet), pages 557–584, 1874. 218Google Scholar
[134] Herschel, J. F. W.. On the aberrations of compound lenses and object-glasses. Phil. Trans. R. Soc. Lond., 111:222267, 1821. 222Google Scholar
[135] Herzberger, M. and McClure, N. R.. The design of superachromatic lenses. Appl. Opt., 2:553560, 1963. 334Google Scholar
[136] Higdon, P. D., Török, P., and Wilson, T.. Imaging properties of high aperture multiphoton fluorescence scanning optical microscopes. J. Microsc.-Oxford, 193(2):127141, 1999. 840, 841, 842, 843, 844, 845, 846, 847Google Scholar
[137] Hooft, G. W.’t. Comment on ‘Negative refraction makes a perfect lens’. Phys. Rev. Lett., 87:249701, 2001. 178, 186Google Scholar
[138] de Hoop, A. T.. Reciprocity of the electromagnetic field. Appl. Sci. Res. B, 8:135139, 1959. 911Google Scholar
[139] de Hoop, A. T.. Time-domain reciprocity theorems for electromagnetic fields in dispersive media. Radio Sci., 22:11711178, 1987. 911Google Scholar
[140] Hopkins, H. H.. Wave Theory of Aberrations. Clarendon Press, Oxford, UK, 1950. 361, 389, 398, 425Google Scholar
[141] Hopkins, H. H.. The wave aberration associated with skew rays. Proc. Phys. Soc. B, 65:934942, 1952. 226, 339, 357Google Scholar
[142] Hopkins, H. H.. On the diffraction theory of optical images. Proc. R. Soc. Lond. Ser. A, 217:408432, 1953. 660, 680Google Scholar
[143] Hopkins, H. H.. The frequency response of a defocused optical system. Proc. R. Soc. Lond. Ser. A, 231:91103, 1955. 753Google Scholar
[144] Hopkins, H. H.. Diffraction theory of laser read-out systems for optical video discs. J. Opt. Soc. Am., 69(1):424, 1979. 723Google Scholar
[145] Hopkins, H. H.. Canonical and real-space coordinates used in the theory of image formation. In Applied Optics and Optical Engineering, volume IX, chapter 8, pages 307369. Academic Press, New York, USA, 1983. 229, 230Google Scholar
[146] Hopkins, H. H. and Barham, P. M.. The influence of the condenser on microscopic resolution. Proc. Phys. Soc. B, 63:737744, 1950. 660Google Scholar
[147] Hou, Z., Livshits, I., and Bociort, F.. One-dimensional searches for finding new lens design solutions efficiently. Appl. Opt., 55:1044910456, 2016. 412CrossRefGoogle ScholarPubMed
[148] Hsu, W. and Barakat, R.. Stratton-Chu vectorial diffraction of electromagnetic fields by apertures with application to small-Fresnel-number systems. J. Opt. Soc. Am. A, 11(2):623629, 1994. 562Google Scholar
[149] Huang, S., Xi, F., Liu, C., and Jiang, Z.. Eigenfunctions of Laplacian for phase estimation from wavefront gradient or curvature sensing. Opt. Commun., 284:27812783, 2011. 905Google Scholar
[150] van de Hulst, H. C.. Light Scattering by Small Particles. Dover Publications, New York, USA, 1981. 817, 818Google Scholar
[151] Hunsperger, R. G.. Integrated Optics, Theory and Technology. Springer, New York, USA, sixth edition, 2009. 168Google Scholar
[152] Huygens, C.. Treatise on Light. Dover Publications, New York, USA, 1962. 107, 267, 268, 274Google Scholar
[153] Ignatowsky, V. S.. Diffraction by a lens of arbitrary aperture. Trans. Opt. Inst. Petrograd, I(4):136, 1919. 565, 584, 622, 627, 628, 782Google Scholar
[154] Ignatowsky, V. S.. Diffraction by a parabolic mirror of arbitrary aperture. Trans. Opt. Inst. Petrograd, 1(5):130, 1920. 565, 622Google Scholar
[155] Ignatowsky, V. S.. The relationship between geometrical and wave optics and the diffraction of a homocentric beam. Trans. Opt. Inst. Petrograd, I(3):130, 1920. 565, 622Google Scholar
[156] Inoué, S.. Studies of depolarization of light at microscope lens surfaces. I. The origin of stray light by rotation at the lens surfaces. Exp. Cell Biol., 3:199208, 1952. 783, 804Google Scholar
[157] Inoué, S. and Hyde, W. L.. Studies of depolarization of light at microscope lens surfaces. II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope. J Biophys. Biochem. Cy., 3:831838, 1957. 804Google Scholar
[158] Isshiki, M., Ono, H., Hiraga, K., Ishikawai, J., and Nakadate, S.. Lens design: Global optimization with escape function. Opt. Rev., 2:463470, 1995. 411, 412Google Scholar
[159] Jackson, D. G. A., Gu, M., and Sheppard, C. J. R.. Three-dimensional optical transfer function for circular and annular lenses with spherical aberration and defocus. J. Opt. Soc. Am. A, 11:17581767, 1994. 767Google Scholar
[160] Jackson, J. D.. Classical Electrodynamics. John Wiley, New York, USA, third edition, 1998. 3, 12, 180, 552, 648, 817Google Scholar
[161] Jahn, K. and Bokor, N.. Vector Slepian basis functions with optimal energy concentration in high numerical aperture focusing. Opt. Commun., 285:20282038, 2012. 614Google Scholar
[162] Janssen, A. J. E. M.. Extended Nijboer-Zernike approach for the computation of optical point-spread functions. J. Opt. Soc. Am. A, 19:849857, 2002. 584, 609, 610, 627Google Scholar
[163] Janssen, A. J. E. M.. Computation of Hopkins’ 3-circle integrals using Zernike expansions. J. Eur. Opt. Soc.-Rapid, 6(11059), 2011. 680, 705Google Scholar
[164] Janssen, A. J. E. M.. New analytic results for the Zernike circle polynomials from a basic result in the Nijboer-Zernike diffraction theory. J. Eur. Opt. Soc.-Rapid, 6(11028), 2011. 896, 897Google Scholar
[165] Janssen, A. J. E. M.. Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials. arXiv, math-ph (1404.1766v1), 2014. 902Google Scholar
[166] Janssen, A. J. E. M., Braat, J. J. M., and Dirksen, P.. On the computation of the Nijboer-Zernike aberration integrals at arbitrary defocus. J. Mod. Opt., 51:687703, 2004. 627Google Scholar
[167] Janssen, A. J. E. M. and Dirksen, P.. Computing Zernike polynomials of arbitrary degree using the discrete Fourier transform. J. Eur. Opt. Soc.-Rapid, 2(07012), 2007. 863, 895Google Scholar
[168] Janssen, O. T. A., van Haver, S., Janssen, A. J. E. M., Braat, J. J. M., Urbach, H. P., and Pereira, S. F.. Extended Nijboer-Zernike (ENZ) based mask imaging: efficient coupling of electromagnetic field solvers and the ENZ imaging algorithm. In Proc. SPIE, Optical Microlithography XXI, volume 6924, Bellingham WA, USA, 2008. 418Google Scholar
[169] Jewell, T., Rodgers, J. M., and Thompson, K. P.. Reflective systems design study for soft-X-ray projection lithography. J. Vac. Technol. B, 8:15191523, 1990. 536Google Scholar
[170] Jin, J.. The Finite Element Method of Electromagnetics. Wiley Interscience, New York, USA, 2002. 857Google Scholar
[171] Juškaitis, R. C. and Wilson, T.. The measurement of the amplitude point-spread function of microscope objective lenses. J. Microsc., 189(1):811, 1998. 581Google Scholar
[172] Kahnert, F. M.. Numerical methods in electromagnetic scattering theory. J. Quant. Spectr. Rad. Transf., 79–80:775824, 2003. 100Google Scholar
[173] van Kampen, N. G.. The method of stationary phase and the method of Fresnel zones. Physica, 24:437444, 1958. 603Google Scholar
[174] Kant, R.. An analytical solution of vector diffraction for focusing optical systems with Seidel aberrations. I. Spherical aberration, curvature of field and distortion. J. Mod. Opt., 40(11):22932310, 1993. 614Google Scholar
[175] Kant, R.. An analytical solution of vector diffraction for focusing optical systems. J. Mod. Opt., 40(2):337347, 1993. 614Google Scholar
[176] Karczewski, B. and Wolf, E.. Comparison of three theories of electromagnetic diffraction at an aperture. Part I: Coherence matrices, Part II: The far field. J. Opt. Soc. Am., 56:12071219, 1966. 557Google Scholar
[177] Karhunen, K.. Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fenn. A1, A137:179, 1947. 797Google Scholar
[178] Keller, J. B.. Geometrical theory of diffraction. J. Opt. Soc. Am., 52:116130, 1962. 197Google Scholar
[179] Kelly, M. M., West, J. B., and Lloyd, D. E.. Reflectance of silicon carbide in the vacuum ultraviolet. J. Phys. D: Appl. Phys., 14:401404, 1981. 536Google Scholar
[180] Kermisch, D.. Principle of equivalence between scanning and conventional optical imaging systems. J. Opt. Soc. Am., 67:13571360, 1977. 714Google Scholar
[181] Kingslake, R.. Lens Design Fundamentals. Academic Press, New York, USA, 1978. 454, 461, 784Google Scholar
[182] Kingslake, R.. Who discovered Coddington’s equations? Opt. Phot. News, 5:2023, 1994. 350Google Scholar
[183] Kintner, E. C. and Sillitto, R. M.. A new ‘analytic’ method for computing the optical transfer function. Opt. Acta, 23:607619, 1976. 590, 609Google Scholar
[184] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.. Optimization by simulated annealing. Science, 220(4598):671680, 1983. 409Google Scholar
[185] Kleemann, B. H., Seesselberg, M., and Ruoff, J.. Design concepts for broadband high-efficiency DOEs . J. Eur. Opt. Soc.-Rapid, 3(08015), 2008. 391Google Scholar
[186] Kline, M. and Kay, I. W.. Electromagnetic Theory and Geometrical Optics. Interscience Publishers, New York, USA, 1965. 191, 197Google Scholar
[187] Knop, K.. Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves. J. Opt. Soc. Am., 68:12061210, 1978. 100Google Scholar
[188] Kogelnik, H.. Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J., 48:29092947, 1969. 100Google Scholar
[189] Kogelnik, H. and Li, T.. Laser beams and resonators. Appl. Opt., 5(10):15501567, 1966. 35Google Scholar
[190] Köhler, A.. Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke. Z. Wiss. Mikrosk., 10(4):433440, 1893. 497Google Scholar
[191] Korn, G. A. and Korn, T. M.. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. McGraw-Hill, New York, USA, 1968. 580Google Scholar
[192] Kottler, F.. Diffraction at a black screen I. Prog. Optics, 4:283314, 1965. 88, 545Google Scholar
[193] Kottler, F.. Diffraction at a black screen II. Prog. Optics, 6:336377, 1967. 88, 545, 561Google Scholar
[194] Kramers, H. A.. La diffusion de la lumière par les atomes. In Atti del Congresso Internationale dei Fisici (Transactions of Volta Centenary Congress, Como), volume 2, pages 1–13 (545–557), 1927. 882Google Scholar
[195] Kriezis, E. E., Filippov, S., and Elston, S. J.. Light propagation in domain walls in ferroelectric liquid crystal devices by the Finite-Difference Time-Domain method. J. Opt. A-Pure Appl. Opt., 2:2733, 2000. 818Google Scholar
[196] de Laer Kronig, R.. On the theory of dispersion of X-rays. J. Opt. Soc. Am., 12(6):547557, 1926. 882Google Scholar
[197] Kross, J.. Beschreibung, Analyse und Bewertung der Bildfehler optischer Systeme durch interpolierende Darstellungen mit Hilfe von Zernike-Kreispolynomen. Optik, 29:6580, 1969. 366Google Scholar
[198] Kubota, H. and Inoué, S.. Diffraction images in the polarizing microscope. J. Opt. Soc. Am., 49:191198, 1959. 783, 804Google Scholar
[199] Kwee, I. W. and Braat, J. J. M.. Double Zernike expansion of the optical aberration function. Pure Appl. Opt., 2:2132, 1993. 360Google Scholar
[200] Lalanne, P., Besbes, M., Hugonin, J. P., van Haver, S., Janssen, O. T. A., Nugrowati, A. M., Xu, M., Pereira, S. F., Urbach, H. P., van de Nes, A. S., Bienstman, P., Granet, G., Moreau, A., Helfert, S., Sukharev, M., Seideman, T., Baida, F., Guizal, B., and van Labeke, D.. Numerical analysis of a slit-groove diffraction problem. J. Eur. Opt. Soc.-Rapid, 2(07022), 2007. 100, 857Google Scholar
[201] Lalanne, P. and Morris, G.. Highly improved convergence of the coupled-wave method for TM-polarization. J. Opt. Soc. Am. A, 13:779784, 1996. 100Google Scholar
[202] Lamb, H.. On group-velocity. Proc. London Math. Soc., 1:473479, 1904. 169Google Scholar
[203] Lawson, C. L. and Hanson, R. J.. Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1974. 403, 406Google Scholar
[204] Lee, J., van der Aa, M., Verschuren, C., Zijp, F., and van der Mark, M.. Development of an air gap servo system for high data transfer rate near-field optical recording. Jpn. J. Appl. Phys., 44:34233426, 2005. 639Google Scholar
[205] van Leijenhorst, D. C., Lucasius, C. B., and Thijssen, J. M.. Optical design with the aid of a genetic algorithm. Biosystems, 37:177187, 1996. 409Google Scholar
[206] Lessing, N. v. d. W.. Selection of optical glasses in superachromats. Appl. Opt., 9:16651668, 1970. 334, 335Google Scholar
[207] Levenberg, K.. A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math., 2:164168, 1944. 403Google Scholar
[208] Li, L.. Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A, 13:10241035, 1996. 86, 98Google Scholar
[209] Li, L.. Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A, 13:18701876, 1996. 101Google Scholar
[210] Li, Y. and Wolf, E.. Three-dimensional intensity distribution near the focus in systems of different Fresnel numbers. J. Opt. Soc. Am. A, 1:801808, 1984. 575Google Scholar
[211] Lindek, S., Salmon, N., Cremer, C., and Stelzer, E. H. K.. Theta microscopy allows phase regulation in 4Pi (A)-confocal two-photon fluorescence microscopy. Optik, 98(1):1520, 1994. 839Google Scholar
[212] Linnemann, M.. Über nicht-sphärische Objektive. PhD thesis, Universität Göttingen, 1905. 391Google Scholar
[213] Linnik, W. P.. A simple interferometer for the investigation of optical systems. C. R. Acad. Sci. URSS, 5:210, 1933; English translation in Appl. Opt. 18, pp. 2010-2011 (1979). 600Google Scholar
[214] Lister, J. J.. On the improvement of achromatic compound microscopes. Phil. Trans. Roy. Soc., 120:187200, 1830. 500Google Scholar
[215] Lloyd, H.. Further experiments on the phaenomena presented by light in its passage along the axes of biaxal crystals. Philos. Mag., 2:207210, 1833. 138Google Scholar
[216] Lloyd, H.. On the phaenomena presented by light in its passage along the axes of biaxal crystals. Philos. Mag., 2:112120, 1833. 138Google Scholar
[217] Loève, M.. Probability Theory. Springer-Verlag, Berlin, 1978. 797Google Scholar
[218] Lommel, E.. Die Beugungserscheinungen einer kreisrunden Oeffnung und eines kreisrunden Schirmchens. Abh. Bayer. Akad. Math. Naturwiss. Kl, 15:233328, 1885. 582, 611Google Scholar
[219] Loomis, J.. A computer program for analysis of interferometric data. In Optical Interferograms - Reduction and Interpretation. ASTM International, West Conshohocken, Pa., USA, 1978. 899Google Scholar
[220] Lorentz, H. A.. The theorem of Poynting concerning the energy in the electromagnetic field and two general propositions concerning the propagation of light. Versl. K. Akad. W. Amsterdam, 4:176, 1896. 911Google Scholar
[221] Lorentz, H. A.. Collected Papers, volume 2-3. Martinus Nijhoff, The Hague, The Netherlands, 1936. 143, 536@@@@@@@@@@@@@@@Google Scholar
[222] Louis, E., Voorma, H.-J., Koster, N. B., Bijkerk, F., Platonov, Y. Y., Zuev, S. Y., Andreev, S. S., Shamov, E. A., and Salashchenko, N. N.. Multilayer coated reflective optics for Extreme UV lithography. Microelectron. Eng., 27:235238, 1995. 536Google Scholar
[223] Lukosz, W.. Der Einfluss der Aberrationen auf die optische Übertragungsfunktion bei kleinen Orts-Frequenzen. Opt. Acta, 10:119, 1963. 366Google Scholar
[224] Luneburg, R. K.. Propagation of Electromagnetic Waves (lecture notes). New York University, New York, USA, 1947-1948. 191Google Scholar
[225] R. K., Luneburg. Mathematical Theory of Optics. University of California Press, Berkeley and Los Angeles, 1966. 565, 567, 789Google Scholar
[226] Macías-Romero, C., Lim, R., Foreman, M. R., and Török, P.. Synthesis of structured partially spatially coherent beams. Opt. Lett., 36(9):16381640, 2011. 801Google Scholar
[227] Mackay, T. G. and Lakhtakia, A.. Electromagnetic fields in linear bianisotropic mediums. In Wolf, E., editor, Prog. Optics, volume 51, chapter 3, pages 121–209. Elsevier B.V., 2008. 146Google Scholar
[228] Macleod, H. A.. Thin-film Optical Filters. CRC Press Taylor and Francis, London, 3rd rev. edition, 2001. 68Google Scholar
[229] Mahajan, V. N.. Optical Imaging and Aberrations, Part I, Ray Geometrical Optics. SPIE Press, Bellingham WA, USA, 1998. 295, 361Google Scholar
[230] Mahajan, V. N.. Optical Imaging and Aberrations, Part II, Diffraction Optics. SPIE Press, Bellingham WA, USA, 2001. 768Google Scholar
[231] Malacara, D., Carpio, J. M., and Sánchez, J. J.. Wavefront fitting with discrete orthogonal polynomials in a unit radius circle. Opt. Eng., 29:672675, 1990. 610Google Scholar
[232] Mandel, L. and Wolf, E.. Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge, 1995. 26, 545, 570, 581Google Scholar
[233] Mann, H.-J., Seitz, G., and Ulrich, W.. 8-Spiegel-Mikrolithographie-Projektionsobjektiv. European Patent EP1199590 A1, April 24, 2002, . 542Google Scholar
[234] Mann, H.-J., Ulrich, W., and Hudyma, R. M.. Reflective projection lens for EUV-photolithography. US Patent 7199922, April 3, 2007. 538Google Scholar
[235] Marcuse, D.. Theory of Dielectric Optical Waveguides. Academic Press, New York, USA, 2nd revised edition, 1991. 168Google Scholar
[236] Maréchal, A.. Étude des effets combinés de la diffraction et des aberrations géometriques sur l’image d’un point lumineux. Rev. Opt. Theor. Instrum., 26:257277, 1947. 361, 599, 681Google Scholar
[237] Maréchal, A.. Study of the combined effects of diffraction and geometrical aberrations on the image of a luminous point. Rev. Opt., 26:257277, 1947. 583Google Scholar
[238] Maréchal, A. and Françon, M.. Traité d’optique instrumentale; la formation des images. Tome 2. Diffraction, structure des images, influence de la cohérence de la lumière. Éditions de la ‘Revue d’optique théorique et instrumentale’, 1960. 660Google Scholar
[239] Marquardt, D. W.. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math., 11:431441, 1963. 403Google Scholar
[240] Martin, O. J. F., Dereux, A., and Girard, C.. Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape. J. Opt. Soc. Am. A, 11(3):10731080, 1994. 857Google Scholar
[241] Matsuyama, T. and Ujike, T.. Orthogonal aberration functions for microlithographic optics. Opt. Rev., 11:199207, 2004. 360Google Scholar
[242] Matthae, M., Schreiber, L., Faulstich, A., and Kleinschmidt, W.. High aperture objective lens, 2003. US Patent 6,504,653, Jan 7 2003. 849Google Scholar
[243] Maystre, D.. Rigorous vector theories of diffraction gratings. In Wolf, E., editor, Prog. Optics, volume 21, chapter 1, pages 1–67. Elsevier, Amsterdam, 1984. 89Google Scholar
[244] McClain, S. C., Hillman, L. W., and Chipman, R. S.. Polarization ray tracing in anisotropical optically active media. II. Theory and physics. J. Opt. Soc. Am. A, 10:23832393, 1993. 143Google Scholar
[245] McCutchen, C. W.. Generalized aperture and the three-dimensional diffraction image. J. Opt. Soc. Am., 54(2):240244, 1964. 585Google Scholar
[246] Milonni, P. W.. Fast Light, Slow Light and Left-Handed Light. Institute of Physics Publishing, Bristol, UK, 2005. 186Google Scholar
[247] Minsky, M.. Microscopy apparatus, US Patent 3,013,467, filed 19 December 1961. 711Google Scholar
[248] Mitchell, T. M.. Machine Learning. McGraw-Hill, New York, USA, 1997. 409Google Scholar
[249] Moharam, M. G.. Coupled-wave analysis of two-dimensional gratings. In I. Cindrich, editor, Holographic Optics: Design and Applications, volume 883 of Proc. SPIE, pages 8–11, Bellingham WA, USA, 1988. 100Google Scholar
[250] Moharam, M. G. and Gaylord, T. K.. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am., 71:811818, 1981. 91, 100, 857Google Scholar
[251] Moharam, M. G., Grann, E. B., Pommet, D. A., and Gaylord, T. K.. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A, 12:10681076, 1995. 100Google Scholar
[252] Moreno, E., Erni, D., Hafner, C., and Vahldieck, R.. Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures. J. Opt. Soc. Am. A, 19(1):101111, 2002. 857Google Scholar
[253] Mur, G.. Absorbing boundary conditions for the Finite-Difference approximation of the Time-Domain electromagnetic-field equations. IEEE Trans. Electromagn. C., EMC-23(4):377382, 1981. 858Google Scholar
[254] Mur, G. and de Hoop, A. T.. A finite-element method for computing three-dimensional electromagnetic fields in inhomogeneous media. IEEE Trans. Magn., MAG- 21(6):21882191, 1985. 106Google Scholar
[255] Nédélec, J.-C.. Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems. Springer Verlag, Heidelberg, 2001. 550Google Scholar
[256] Neil, M. A. A., Juškaitis, R. C., and Wilson, T.. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett., 22:19051907, 1997. 725Google Scholar
[257] Neil, M. A. A., Massoumian, F., Juškaitis, R. C., and Wilson, T.. Method for the generation of arbitrary complex vector wave fronts. Opt. Lett., 27(21):19291931, 2002. 791Google Scholar
[258] Newton, I.. Opticks: or, a Treatise of the Reflexions, Refractions, Inflexions & Colours of Light. Dover Publications (fourth edition, 1730), New York, USA, 1979. 1Google Scholar
[259] Nijboer, B. R. A.. The Diffraction Theory of Aberrations. PhD thesis, Rijksuniversiteit Groningen, Groningen, The Netherlands, 1942. Downloadable from: http://www.nijboerzernike.nl. 368, 583, 595, 596, 599, 600, 606, 607, 681, 892, 895, 900, 901, 902Google Scholar
[260] Noll, R. J.. Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am., 66(3):207211, 1976. 902Google Scholar
[261] Noponen, E. and Turunen, J.. Eigenmode method for electromagnetic synthesis of diffractive elements with three-dimensional profiles. J. Opt. Soc. Am. A, 11:24942502, 1994. 91, 98Google Scholar
[262] Nugrowati, A. M.. Vectorial Diffraction of Extreme Ultraviolet Light and Ultrashort Light Pulses. PhD thesis, Technische Universiteit Delft, 2008. 91, 98, 99, 100Google Scholar
[263] Nugrowati, A. M., Pereira, S. F., and van de Nes, A. S.. Near and intermediate fields of an ultrashort pulse transmitted through Young’s double-slit experiment. Phys. Rev. A, 77(053810):18, 2008. 100Google Scholar
[264] Offner, A.. New concepts in projection mask aligners. Opt. Eng., 14:130132, 1975. 527Google Scholar
[265] Oldenbourg, R. and Mei, G.. New polarized light microscope with precision universal compensator. J. Microsc., 180(2):140147, 1995. 828, 829Google Scholar
[266] Olver, F. W. J., Lozier, D. W., Boisvert, R. F., and Clark, C. W.. Handbook of Mathematical Functions. Cambridge University Press, Cambridge, UK, 1st edition, 2010. 44, 47, 492, 595, 756, 879, 901, 904Google Scholar
[267] Oron, R., Blit, S., Davidson, N., Friesem, A. A., Bomzon, Z., and Hasman, E.. The formation of laser beams with pure azimuthal or radial polarization. Appl. Phys. Lett., 77(21):33223324, 2000. 791Google Scholar
[268] Palma, C. and Cincotti, G.. Imaging of J 0 correlated Bessel-Gauss beams. IEEE J. Quantum Elect., 33(6):10321040, 1997. 796Google Scholar
[269] Papoulis, A.. Probability, Random Variables and Stochastic Processes. McGraw-Hill, New York, USA, 1st edition, 1965. 420, 423, 778Google Scholar
[270] Paul, M.. Systèmes correcteurs pour réflecteurs astronomiques. Rev. Opt. Theor. Instrum., 14(5):169202, 1935. 488, 490Google Scholar
[271] Peck, E. R. and Reeder, K.. Dispersion of air. J. Opt. Soc. Am., 62:958962, 1972. 324Google Scholar
[272] Pendry, J. B.. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85(18):39663969, 2000. 179Google Scholar
[273] Pendry, J. B.. Negative refraction. Contemp. Phys., 45(3):191202, 2004. 68, 160, 179Google Scholar
[274] Penrose, R.. A generalized inverse for matrices. Proc. Camb. Philos. Soc., 51:406413, 1955. 404Google Scholar
[275] Perrin, F.. La fluorescence des solutions. Ann. Phys.-Paris, 12:169275, 1929. 833Google Scholar
[276] Petit, R., editor. Electromagnetic Theory of Gratings. Springer Verlag, Berlin, 1980. 89, 100Google Scholar
[277] Philip, J.. Optical transfer function in three dimensions for a large numerical aperture. J. Mod. Opt., 46:10311042, 1999. 767Google Scholar
[278] Picht, J.. Über den Schwingungsvorgang, der einem beliebigen (astigmatischen) Strahlenbündel entspricht. Ann. Phys., 382:785882, 1925. 583Google Scholar
[279] Picht, J.. Die Intensitätsverteilung in einem astigmatischen Strahlenbündel in Abhängigkeit von dem Brennlinienabstand und der Öffnung auf Grund der Wellentheorie des Lichtes. Ann. Phys., 385:491508, 1926. 583Google Scholar
[280] Piestun, R., Schechner, Y. Y., and Shamir, J.. Propagation-invariant wave fields with finite energy. J. Opt. Soc. Am. A, 17(2):294303, 2000. 791Google Scholar
[281] Pocklington, H.. Electrical oscillations in wires. Proc. Camb. Philos. Soc., 9:324332, 1897.857Google Scholar
[282] Poynting, J. H.. On the transfer of energy in the electromagnetic field. Phil. Trans., 175:277, 1884. 11Google Scholar
[283] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York, USA, 3rd edition, 2007. 393Google Scholar
[284] Quabis, S., Dorn, R., Eberler, M., Glockl, O., and Leuchs, G.. Focusing light to a tighter spot. Opt. Commun., 179:17, 2000. 791Google Scholar
[285] Rabiner, L. R., Schafer, R. W., and Rader, C. M.. The Chirp z-Transform algorithm. IEEE Trans. Acoust. Speech, 17(2):8692, 1969. 864, 866Google Scholar
[286] Rayleigh, Lord. Treatise on Sound, volume II. Macmillan, London, 1878. 911Google Scholar
[287] Rayleigh, Lord. Investigations in optics with special reference to the spectroscope. Philos. Mag., 8(49):261274, 1879. 657Google Scholar
[288] Rayleigh, Lord. On images formed without reflection or refraction. Philos. Mag., 11(67):214218, 1881. 411, 812Google Scholar
[289] Redheffer, R.. Difference equations and functional equations in transmission-line theory. In Beckenbach, E. F., editor, Modern Mathematics for the Engineer. McGraw-Hill, New York, USA, 1961. 82, 85Google Scholar
[290] Rengarajan, S. R. and Rahmat, Y.-Samii, . The field equivalence principle: Illustration of the establishment of the non-intuitive null fields. IEEE Antennas Propag. Mag., 42(4):122128, 2000. 555Google Scholar
[291] Rice, P., Macovski, A., Jones, E., Frohbach, H., Crews, R., and Noon, A.. An experimental television recording and playback system using photographic discs. J. Soc. Motion Pict. T., 79:9971002, 1970. 711Google Scholar
[292] Richards, B.. Diffraction in systems of high relative aperture. In Kopal, Z., editor, Astronomical Optics and Related Subjects, pages 352359. North Holland Publishing Company, Amsterdam, 1955. 789Google Scholar
[293] Richards, B. and Wolf, E.. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. Roy. Soc. Lond. A, 253:358379, 1959. 565, 622, 627, 789Google Scholar
[294] Richter, R.. Zur beugungstheoretischen Untersuchung optischer Systeme. Z. Instrumentenkd., 45:115, 1925.583Google Scholar
[295] von Rohr, M.. Theorie und Geschichte des photographischen Objektivs. J. Springer, Berlin, 1899. 447Google Scholar
[296] Roy Frieden, B.. Optical transfer of the three-dimensional object. J. Opt. Soc. Am., 57(1):5666, 1967. 725, 734Google Scholar
[297] Ruoff, J. and Totzeck, M.. Orientation Zernike polynomials: a useful way to describe the polarization effects of optical imaging systems. J. Microlith. Microfab., 8(3):031404, 2009. 813Google Scholar
[298] Sandison, D. R., Williams, R. M., Wells, K. S., Stricker, J., and Webb, W. W.. Quantitative fluorescence confocal laser scanning microscopy (CLSM). In Pawley, J. B., editor, Handbook of Biological Confocal Microscopy, pages 39–53. Plenum, New York, USA, 1995. 847Google Scholar
[299] Schoenle, A. and Hell, S. W.. Calculation of vectorial three-dimensional transfer functions in large-angle focusing systems. J. Opt. Soc. Am. A, 19:21212126, 2002. 767Google Scholar
[300] Schwarzschild, K.. Untersuchungen zur geometrischen Optik. II. Theorie der Spiegeltelescope. Abh. Königl. Ges. Wiss. Göttingen, Math. Phys. Kl, Neue Folge Band IV, 2:128, 1905. 391, 479, 480, 482, 484Google Scholar
[301] Seidel, L.. Über die Entwicklung der Glieder 3ter Ordnung welche den Weg eines ausserhalb der Ebene der Axe gelegene Lichtstrahles durch ein System brechender Medien bestimmen. Astr. Nach., 43:289304, 1856. 276, 278, 283, 295, 425, 446Google Scholar
[302] Seong, N., Lai, K., Rosenbluth, A. E., and Gallatin, R.. Assessing the impact of intrinsic birefringence on 157nm lithography. In Smith, B. W., editor, Optical Microlithography XVII, volume 5377 of Proc. SPIE, pages 99–103, Bellingham WA, USA, 2004. 536Google Scholar
[303] Serebriakov, A., Maksimov, E., Bociort, F., and Braat, J. J. M.. Birefringence induced by the spatial dispersion in deep UV lithography: theory and advanced compensation strategy. Opt. Rev., 12:140145, 2005. 536Google Scholar
[304] Severin, H.. Zur Theorie der Beugung elektromagnetischer Wellen. Z. Phys., 129:426439, 1951. 556Google Scholar
[305] Shakibaei, B. H. and Paramesran, R.. Recursive formula to compute Zernike radial polynomials. Opt. Lett., 38:24872489, 2013. 896Google Scholar
[306] Sheppard, C. J. R.. Stray light and noise in confocal microscopy. Micron, 22:239243, 1991. 847Google Scholar
[307] Sheppard, C. J. R., Gu, M., Kawata, Y., and Kawata, S.. Three-dimensional transfer functions for high- aperture systems. J. Opt. Soc. Am. A, 11:593598, 1994. 767Google Scholar
[308] Sheppard, C. J. R. and Hole, M.. Three-dimensional optical transfer function for weak aberrations. J. Mod. Opt., 42:19211928, 1995. 767Google Scholar
[309] Sheppard, C. J. R. and Larkin, K. G.. Vectorial pupil functions and vectorial transfer functions. Optik, 107:7987, 1997. 767Google Scholar
[310] Sheppard, C. J. R. and Török, P.. Efficient calculation of electromagnetic diffraction in optical systems using a multipole expansion. J. Mod. Opt., 44:803818, 1997. 614Google Scholar
[311] Sheppard, C. J. R. and Török, P.. Effect of Fresnel number in focusing and imaging. In Nijhawan, O., Gupta, A. K., Musla, A. K., and Singh, K., editors, Optics and Optoelectronics Theory, Devices and Applications, chapter 106, pages 635–649. Narosa Publishing House, New Delhi, India, 1999. 564Google Scholar
[312] Sherif, S. S., Foreman, M. R., and Török, P.. Eigenfunction expansion of the electric fields in the focal region of a high numerical aperture focusing system. Opt. Express, 16:33973407, 2008. 614Google Scholar
[313] Sherif, S. S. and Török, P.. Pupil plane masks for super-resolution in high-numerical-aperture focusing. J. Mod. Opt., 51(13):20072019, 2004. 793Google Scholar
[314] Sherif, S. S. and Török, P.. Eigenfunction representation of the integrals of the Debye-Wolf diffraction formula. J. Mod. Opt., 52(6):857876, 2005. 793Google Scholar
[315] Siegman, A. E.. Lasers. University Science Books, Mill Valley CA, USA, 1986. 591Google Scholar
[316] Singh, M. and Braat, J. J. M.. Design of multilayer extreme-ultraviolet mirrors for enhanced reflectivity. Appl. Opt., 39:21892197, 2000. 536Google Scholar
[317] Smartt, R. N. and Strong, J.. Point-diffraction interferometer. J. Opt. Soc. Am., 62:737, 1972. 600Google Scholar
[318] Smith, T.. On multiple reflection within a symmetrical optical instrument. J. Opt. Soc. Am., 18(2):7581, 1929. 235Google Scholar
[319] Snyder, A. W. and Love, J. D.. Optical Waveguide Theory. Chapman and Hall, London, 1983. 830Google Scholar
[320] Soleillet, P.. Sur les paramètres caractérisant la polarisation partielle de la lumière dans les phénomènes de fluorescence. Ann. Phys.-Paris, 10(12):2397, 1929. 833Google Scholar
[321] Sommerfeld, A.. Mathematische Theorie der Diffraction. Math. Ann., 47:317374, 1896. 88Google Scholar
[322] Sommerfeld, A.. Optics, volume IV of Lectures on Theoretical Physics. Academic Press, New York, USA, 1954. 570, 580, 581Google Scholar
[323] Sparrow, C. M.. The influence of the condenser on microscopic resolution. Astrophys. J., 44:7686, 1916. 658Google Scholar
[324] Spiller, E.. Reflective multilayer coatings for the far UV region. Appl. Opt., 15:23332338, 1976. 536Google Scholar
[325] Stamnes, J. J.. Waves in Focal Regions. Adam Hilger, Bristol and Boston, 1986. 545, 557, 565Google Scholar
[326] Steward, G. C.. Aberration diffraction effects. Phil. Trans. Roy. Soc. A, 225:131198, 1926. 583Google Scholar
[327] Steward, G. C.. The aberrations of a symmetrical optical system. Trans. Camb. Phil. Soc., 23:235263, 1926. 583Google Scholar
[328] Stratton, J. A.. Electromagnetic Theory. McGraw-Hill, New York, USA, 1941. 3, 12, 546, 547, 550, 552, 554, 561, 648Google Scholar
[329] Stratton, J. A. and Chu, L. J.. Diffraction theory of electromagnetic waves. Phys. Rev., 56:99107, 1939. 550Google Scholar
[330] Strehl, K.. Die Theorie des Fernrohrs auf Grund der Beugung des Lichtes. Teil I. J.A. Barth, Leipzig, 1894. 583, 599Google Scholar
[331] Strehl, K.. Aplanatische und fehlerhafte Abbildung im Fernrohr. Z. Instrumentenkd., 15:362370, 1895. 498, 681Google Scholar
[332] Sylvester, J. J.. Sur les puissances et les racines de substitutions linéaires. C. R. Acad. Sci., XCIV:5559, 1882. 255Google Scholar
[333] Taflove, A.. Computational Electrodynamics: the Finite-difference Time-domain Method. Artech House, Norwood (MA), USA, 2005. 101, 180Google Scholar
[334] Taflove, A. and Brodwin, M. E.. Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations. IEEE T. Microw. Theory, 23:623630, 1975. 101, 102, 103Google Scholar
[335] Taflove, A. and Hagness, S.. Computational Electrodynamics. Artech House, Norwood (MA), USA, 2nd edition, 2000. 857, 858Google Scholar
[336] Tango, W. J.. The circle polynomials of Zernike and their application in optics. Appl. Phys., 13:327332, 1977. 598, 607, 609, 895, 901Google Scholar
[337] Tervo, J., Setälä, T., and Friberg, A. T.. Theory of partially coherent electromagnetic fields in the space-frequency domain. J. Opt. Soc. Am. A, 21(11):22052215, 2004. 795, 798, 799Google Scholar
[338] Thompson, K. P.. Aberration Fields in Tilted and Decentered Optical Systems. PhD thesis, The University of Arizona, Tucson, USA, 1980. 361Google Scholar
[339] Tidwell, S. C., Ford, D. H., and Kimura, W. D.. Generating radially polarized beams interferometrically. Appl. Opt., 29(15):22342239, 1990. 791Google Scholar
[340] Török, P.. Focusing of electromagnetic waves through a dielectric interface by lenses of finite Fresnel number. J. Opt. Soc. Am. A, 15(12):30093015, 1998. 562Google Scholar
[341] Török, P.. Imaging of small birefringent objects by polarised light conventional and confocal microscopes. Opt. Commun., 181(1):718, 2000. 829, 831, 832, 833, 834, 835, 836Google Scholar
[342] Török, P.. Propagation of electromagnetic dipole waves through dielectric interfaces. Opt. Lett., 25(19):14631465, 2000. 852Google Scholar
[343] Török, P., Higdon, P. D., and Wilson, T.. On the general properties of polarised light conventional and confocal microscopes. Opt. Commun., 148(4):300 – 315, 1998. 783, 786, 787, 810, 811, 812, 813, 814, 815Google Scholar
[344] Török, P., Munro, P. R., and Kriezis, E. E.. Rigorous near- to far-field transformation for vectorial diffraction calculations and its numerical implementation. J. Opt. Soc. Am. A, 23(3):713722, 2006. 548, 550Google Scholar
[345] Török, P. and Varga, P.. Electromagnetic diffraction of light focused through a stratified medium. Appl. Opt., 36(11):23052312, 1997. 785, 848Google Scholar
[346] Török, P., Varga, P., Laczik, Z., and Booker, G. R.. Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation. J. Opt. Soc. Am. A, 12(2):325332, 1995. 609, 848Google Scholar
[347] van Turnhout, M. and Bociort, F.. Chaotic behavior in an algorithm to escape from poor local minima in lens design. Opt. Express, 17:64366450, 2009. 408Google Scholar
[348] van Turnhout, M., van Grol, P., Bociort, F., and Urbach, H. P.. Obtaining new local minima in lens design by constructing saddle points. Opt. Express, 23:66796691, 2015. 412Google Scholar
[349] Ulrich, W., Rostalski, H.-J., and Hudyma, R. M.. The development of dioptric projection lenses for DUV lithography. In Manhart, P. K. and Sasián, J. M., editors, International Optical Design Conference 2002, volume 4832 of Proc. SPIE, pages 158–169, Bellingham WA, USA, 2002. 533Google Scholar
[350] Ura, S., Suhara, T., Nishihara, H., and Koyama, J.. An integrated-optic disk pickup device. J. Lightwave Technol., LT- 4(7):913918, 1986. 513Google Scholar
[351] Urbach, H. P. and Bernard, D. A.. Modeling latent-image formation in photolithography, using the Helmholtz equation. J. Opt. Soc. Am. A, 6:13431356, 1989. 106Google Scholar
[352] Vaskas, E. M.. Note on the Wasserman-Wolf method for designing aspheric surfaces. J. Opt. Soc. Am., 47:669670, 1957. 391Google Scholar
[353] Vellekoop, I. M. and Mosk, A. P.. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32(16):23092311, 2007. 725Google Scholar
[354] Velzel, C. H. F. and de Meijere, J. L. F.. Characteristic functions and the aberrations of symmetric optical systems. II. Addition of aberrations. J. Opt. Soc. Am. A, 5:251256, 1988. 339Google Scholar
[355] Verrall, S. C. and Kakarala, R.. Disc-harmonic coefficients for invariant pattern recognition. J. Opt. Soc. Am. A, 15(2):389401, 1998. 768, 904, 905Google Scholar
[356] Veselago, V. G.. The electrodynamics of substances with simultaneously negative values of ϵ and μ. Sov. Phys. Usp., 10(4):509514, 1967 (1968: English translation). 68, 160, 169, 179, 186Google Scholar
[357] Wang, W., Friberg, A. T., and Wolf, E.. Focusing of partially coherent light in systems of large Fresnel numbers. J. Opt. Soc. Am. A, 14:491496, 1997. 581Google Scholar
[358] Wang, W. and Wolf, E.. Far-zone behavior of focused fields in systems with different Fresnel numbers. Opt. Commun., 119:453459, 1995. 581Google Scholar
[359] Wassermann, G. D. and Wolf, E.. On the theory of aplanatic aspheric systems. Proc. Phys. Soc. B, 62:752756, 1949. 391Google Scholar
[360] Watson, G. N.. A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge, UK, second edition, 1995. 575, 904Google Scholar
[361] Welford, W. T.. Length measurement at the optical resolution limit by scanning microscopy. In Mollet, P., editor, Optics in Metrology, pages 85–91. Pergamon Press, New York, USA, 1960. 711, 713Google Scholar
[362] Welford, W. T.. A new total aberration formula. Opt. Acta, 19:719727, 1972. 358Google Scholar
[363] Welford, W. T.. On the relationship between the modes of image formation in scanning microscopy and conventional microscopy. J. Microsc., 96(1):105107, 1972. 713Google Scholar
[364] Welford, W. T.. Aberrations of Optical Systems. Adam Hilger (IOP Publishing Ltd), Bristol, UK, 1986. 224, 295, 297, 339Google Scholar
[365] Wiener, N.. Coherency matrices and quantum theory. J. Math. Phys., 7(1–4):109125, 1928. 795Google Scholar
[366] Wiener, N.. Harmonic analysis and the quantum theory. J. Franklin Inst., 207(4):525534, 1929. 795Google Scholar
[367] Wigner, E.. Einige Folgerungen aus der Schrödingerschen Theorie für die Termstrukturen. Z. Phys., 43:601623, 1927. 609Google Scholar
[368] Wilson, R. N.. Reflecting Telescope Optics I, II. Springer, Berlin, 1996. 474, 480Google Scholar
[369] Wilson, T. and Sheppard, C. J. R.. Theory and Practice of Scanning Optical Microscopy. Academic Press, London, 1984. 712Google Scholar
[370] Wolf, E.. On the designing of aspheric surfaces. Proc. Phys. Soc., 61:494503, 1948. 385Google Scholar
[371] Wolf, E.. A macroscopic theory of interference and diffraction of light from finite sources. II. Fields with a spectral range of arbitrary width. Proc. Roy. Soc. Lond. A, 230:246265, 1955. 689Google Scholar
[372] Wolf, E.. Reciprocity inequalities, coherence time and bandwidth in signal analysis and optics. Proc. Phys. Soc., 71:257269, 1958. 689Google Scholar
[373] Wolf, E.. Coherence properties of partially polarized electromagnetic radiation. Nuovo cimento, 13(6):11651181, 1959. 795Google Scholar
[374] Wolf, E.. Electromagnetic diffraction in optical systems. I. An integral representation of the image field. Proc. Roy. Soc. Lond. A, 253:349357, 1959. 622, 627Google Scholar
[375] Wolf, E.. New theory of partial coherence in the space-frequency domain. Part I: spectra and cross spectra of steady-state sources. J. Opt. Soc. Am., 72:343351, 1982. 796Google Scholar
[376] Wolf, E.. Introduction to the Theory of Coherence and Polarization of Light. Cambridge University Press, Cambridge, UK, 2007. 795, 796, 797Google Scholar
[377] Wolf, E. and Li, Y.. Conditions for the validity of the Debye integral representation of focused fields. Opt. Commun., 39:205210, 1981. 581Google Scholar
[378] Wöltche, W.. Optical systems design with reference to the evolution of the Double-Gauss lens. In Fisher, R. E., editor, Proceedings 1980 International Lens Design Conference, volume 237 of Proc. SPIE, pages 202–215, Bellingham WA, USA, 1980. 523Google Scholar
[379] Wu, A. and Yang, C.. Evolution of the concept of the vector potential in the description of fundamental interactions. Int. J. Mod. Phys. A, 21(16):32353277, 2006. 13Google Scholar
[380] Wyant, J. C. and Creath, K.. Basic wavefront aberration theory for optical metrology. In Applied Optics and Optical Engineering, volume XI, chapter 1, pages 27–39. Academic Press, Cambridge MA, USA, 1992. 897, 899Google Scholar
[381] Wynne, C. G.. Monocentric telescopes for microlithography. Opt. Eng., 26:300303, 1987. 527Google Scholar
[382] Yee, K.. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antenn. Propag., 14(3):302307, 1966. 101, 857Google Scholar
[383] Young, T.. On the mechanism of the eye. Phil. Trans. R. Soc. Lond., 91:2388, 1801. 350Google Scholar
[384] Zangwill, A.. Modern Electrodynamics. Cambridge University Press, Cambridge, U.K., 2013. 12, 648Google Scholar
[385] Zernike, F.. Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode. Physica, 1:689704, 1934. 583, 595, 709, 888, 890, 892Google Scholar
[386] Zernike, F.. The concept of degree of coherence and its applications to optical problems. Physica, 5:785795, 1938. 498, 673, 689, 692Google Scholar
[387] Zernike, F.. Phase contrast, a new method for the microscopic observation of transparent objects, part I. Physica, 9(7):686698, 1942. 665Google Scholar
[388] Zernike, F.. Phase contrast, a new method for the microscopic observation of transparent objects, part II. Physica, 9(10):974980, 1942. 665Google Scholar
[389] Zernike, F.. How I discovered phase contrast. http://www.nobelprize.org/nobel_prizes/physics/laureates/1953/ zernike-lecture.html, 1953. 664, 815Google Scholar
[390] Zernike, F.. Diffraction theory of the knife-edge test and its improved form, the phase-contrast method (English translation of the original publication in the German language in Physica 1, 689704, 1934). J. Microlith. Microfab., 1(2):8794, 2002. 595Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Joseph Braat, Technische Universiteit Delft, The Netherlands, Peter Török, Imperial College of Science, Technology and Medicine, London
  • Book: Imaging Optics
  • Online publication: 22 April 2019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Joseph Braat, Technische Universiteit Delft, The Netherlands, Peter Török, Imperial College of Science, Technology and Medicine, London
  • Book: Imaging Optics
  • Online publication: 22 April 2019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Joseph Braat, Technische Universiteit Delft, The Netherlands, Peter Török, Imperial College of Science, Technology and Medicine, London
  • Book: Imaging Optics
  • Online publication: 22 April 2019
Available formats
×