Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-17T16:48:47.868Z Has data issue: false hasContentIssue false

7 - Physicochemical Mechanics

Selected Applications

Published online by Cambridge University Press:  30 November 2023

Nikolai Kocherginsky
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Chapter 7 gives derivation of major laws of mechanochemstry, colloid chemistry, chemical kinetics of mono- and bimolecular reactions and electrochemistry.

Type
Chapter
Information
Physicochemical Mechanics
With Applications in Physics, Chemistry, Membranology and Biology
, pp. 142 - 187
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelroth, P., Gennis, R. B. & Brzezinski, P., 1998. Role of the pathway through K(I-362) in proton transfer in cytochrome. Biochemistry, 37, pp. 24702476.CrossRefGoogle ScholarPubMed
Aniansson, E. A. G. Wall, S. N., Almgren, M. et al., 1976. Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants. Journal of Physical Chemistry, 80(9), pp. 905922.CrossRefGoogle Scholar
Anna, J. M. & Kubarych, K. J., 2010. Watching solvent friction impedes ultrafast barrier crossings: A direct test of Kramers theory. Journal of Chemical Physics, 133(17), 174506.CrossRefGoogle ScholarPubMed
Ashkin, A., 1970. Acceleration and trapping of particles by radiation pressure. Physical Review Letters, 24, pp. 156159.CrossRefGoogle Scholar
Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S., 1986. Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11(5), pp. 288290.CrossRefGoogle ScholarPubMed
Attard, G., 2018. A phenomenological theory of electrosorption. Journal of Electroanalytical Chemistry, 819, pp. 481494.CrossRefGoogle Scholar
Balian, R., 2007. From Microphysics to Macrophysics. Vols. 1 & 2. Berlin: Springer.Google Scholar
Baoukina, S., Mendez-Villuendas, E. & Tieleman, D. P., 2012. Molecular view of phase coexistence in lipid monolayers. Journal of American Chemical Society, 134(42), pp. 1754317553.CrossRefGoogle ScholarPubMed
Bazant, M., 2013. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Accounts of Chemical Research, 46(5), pp. 11441160.CrossRefGoogle ScholarPubMed
Berry, R. & Rice, S. R., 2002. Physical and Chemical Kinetics. 2nd ed. Oxford: Oxford University Press.Google Scholar
Binney, J. J., Dowrick, N. J., Fisher, A. J. & Newman, M. E. J., 1992. The Theory of Critical Phenomena. Oxford: Oxford University Press.CrossRefGoogle Scholar
Blums, E. & Odenbach, S., 2000. Thermophoretic separation of ultrafine particles in ferrofluids in thermal diffusion column under the effect of an MHD convection. International Journal of Heat and Mass Transfer, 43(9), pp. 16371649.CrossRefGoogle Scholar
Brechet, S. D., Vetro, F., Papa, E., Barnes, Stewart E., Ansermet, S. E., J-P., 2013. Evidence for a magnetic Seebeck effect. arXiv, 1306.1001v2.CrossRefGoogle Scholar
Brett, C. & Brett, A., 1996. Electrochemistry: Principles, Methods, Applications. 3rd ed. Oxford: Oxford University Press.Google Scholar
Buchachenko, A. & Lawler, R. G., 2017. New possibilities for magnetic control of chemical and biochemical reactions. Accounts of Chemical Research, 50(4), pp. 877884.CrossRefGoogle ScholarPubMed
Butyagin, P. Y., 1999. Forced reactions in inorganic and organic chemistry. Colloid Journal, 61, pp. 537544.Google Scholar
Cahn, J., 1965. Phase separation by spinodal decomposition in isotropic systems. Journal of Chemical Physics, 42, pp. 9399.CrossRefGoogle Scholar
de Gennes, P. G., Brochard-Wyart, F. & Quere, D., 2004. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. New York: Springer.CrossRefGoogle Scholar
de Groot, S. R. & Mazur, P., 1962. Non-equilibrium Thermodynamics. Amsterdam: North-Holland.Google Scholar
Defay, R. & Prigogine, I., 1966. Surface Tension and Adsorption. New York: John Wiley.Google Scholar
Dhar, P. J., Tierno, P., Hare, J., Johansen, T. H., Fischer, T. M., 2007. Curvature driven transport of mouse macrophages in a pulsating magnetic garnet film ratchet. Journal of Physical Chemistry B, 111(45), pp. 1309713100.CrossRefGoogle Scholar
Di Lieto, A., Giuliano, A., Maccarrone, F. & Paffuti, G., 2012. Hall effect in a moving liquid. European Journal of Physics, 33(1), pp. 115127.CrossRefGoogle Scholar
Ehre, D., Lavert, E., Lahav, M. & Lubomirsky, I., 2010. Water freezes differently on positively and negatively charged surfaces of pyroelectric materials. Science, 327(5966), pp. 672675.CrossRefGoogle ScholarPubMed
Everitt, C. W. F. DeBra, D. B., Parkinson, B. W., et al., 2011. Gravity probe B: Final results of a space experiment to test general relativity. Physical Review Letters, 106, 221101.CrossRefGoogle ScholarPubMed
Eyring, H., 1935. The activated complex in chemical reactions. Journal of Chemical Physics, 3, pp. 107115.CrossRefGoogle Scholar
Fert, A., 2008. Nobel lecture: Origin, development, and future of spintronics. Reviews of Modern Physics, 80, 1517.CrossRefGoogle Scholar
Galanis, J. & Tsori, Y., 2013. Mixing-demixing phase diagram for simple liquids in nonuniform electric fields. Physical Review E, 88, 012304.CrossRefGoogle ScholarPubMed
Goldenfeld, N., 1992. Lectures on Phase Transitions and the Renormalization Group. Frontiers in Physics. Reading: Addison-Wesley.Google Scholar
Gutman, E., 1997. Mechanochemistry of Materials. Cambridge: Cambridge International Science.Google Scholar
Haase, R., 1969. Thermodynamics of Irreversible Processes. Reading: Addison-Wesley.Google Scholar
Hiemenz, P. C. & Rajagopalan, R., 1997. Principles of Colloid and Surface Chemistry. 3rd ed. New York: Marcel Dekker.Google Scholar
Hunter, R. J., 1995. Foundations of Colloid Science. Vol. 1. Oxford: Clarendon Press.Google Scholar
Iino, M. & Fujimura, Y., 2009. Surface tension of heavy water under high magnetic fields. Applied Physics Letters, 94, 261902.CrossRefGoogle Scholar
Israelachvili, J. N., 1998. Intermolecular & Surface Forces. London: Academic Press.Google Scholar
Joswiak, M. N., Duff, N., Doherty, M. F. & Peters, B., 2013. Size-dependent surface free energy and Tolman-corrected droplet nucleation of TIP4P/2005 water. Journal of Physical Chemistry Letters, 4(24), pp. 42674272.CrossRefGoogle ScholarPubMed
Koch, C., 2000. Experimental evidence for magnetic or electric field effects on phase transformation. Materials Science & Engineering A, 287(2), pp. 213218.CrossRefGoogle Scholar
Kocherginsky, N. M., 2009. Acidic lipids, H+-ATPases, and mechanism of oxidative phosphorylation: Physico-chemical ideas 30 years after P. Mitchell’s Nobel Prize award. Progress in Biophysics and Molecular Biology, 99, pp. 2041.CrossRefGoogle ScholarPubMed
Kocherginsky, N. M., 2010. Semi-phenomenological thermodynamic description of chemical kinetics and mass transport. Journal of Non-equilibrium Thermodynamics, 35(2), pp. 97124.CrossRefGoogle Scholar
Kocherginsky, N. M., 2021. Interpretation of Schrodinger equation based on classical mechanics and spin. Quantum Studies: Mathematics and Foundations, 8, pp. 217227.CrossRefGoogle Scholar
Kocherginsky, N. M. & Mogutov, A. V., 1998. Biomimetic way to improve liquid membrane facilitated transport with a mobile carrier and mediator. Journal of Membrane Science, 148, pp. 3743.CrossRefGoogle Scholar
Kramers, H. A., 1940. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7(4), pp. 284304.CrossRefGoogle Scholar
Laidler, K. J., 1969. Theories of Chemical Reaction Rates. New York: McGraw-Hill.Google Scholar
Levich, V., 1962. Physicochemical Hydrodynamics. Englewood Cliffs: Prentice Hall.Google Scholar
Levitas, V. I., 2004. High pressure mechanochemistry: Conceptual multiscale theory and interpretation of experiments. Physical Review B, 70, 184118.CrossRefGoogle Scholar
Ma, S.-K., 1976. Modern Theory of Critical Phenomena. New York: Addison–Wesley.Google Scholar
Marcus, R. A. & Sutin, N., 1985. Electron transfers in chemistry and biology. Biochimica et Biophysica Acta, 811, pp. 265322.CrossRefGoogle Scholar
Mazenko, G. F., 2003. Fluctuations, Order and Defects. Hoboken: Wiley.Google Scholar
Mel’nikov, V. I., 1991. The Kramers problem: Fifty years of development. Physics Reports, 209(1–2), pp. 171.CrossRefGoogle Scholar
Mogutov, A. V. & Kocherginsky, N. M., 1994. Macrokinetics of facilitated transport through liquid membranes. Part 2. Stirring. Journal of Membrane Science, 86, pp. 127135.CrossRefGoogle Scholar
Morris, C. E., Prikryl, E. A. & Joos, B., 2015. Mechanosensitive gating of Kv channels. PLOS One, 10(2), e0118335.CrossRefGoogle ScholarPubMed
Muddana, H. S., Gullapalli, R. R., Manias, E. & Butler, P. J., 2011. Atomistic simulation of lipid and DiI dynamics in membrane bilayers under tension. Physical Chemistry Chemical Physics, 13(4), pp. 13681378.CrossRefGoogle ScholarPubMed
Newman, J. & Thomas-Alyea, K. E., 2004. Electrochemical Systems. 3rd ed. Hoboken: Wiley-Interscience.Google Scholar
Niessner, C. & Winklhofer, M., 2017. Radical-pair-based magnetoreception in birds: Radio-frequency experiments and the role of cryptochrome. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural and Behavioral Physiology, 203(6–7), pp. 499507.CrossRefGoogle ScholarPubMed
Novotny, L., Bian, R. X. & Xie, X. S., 1997. Theory of nanometric optical tweezers. Physical Review Letters, 79(4), pp. 645648.CrossRefGoogle Scholar
Pascal, T. A. & Goddard, I. W. A., 2014. Interfacial thermodynamics of water and six other liquid solvents. Journal Physical Chemistry B, 118, pp. 59435956.CrossRefGoogle ScholarPubMed
Penrose, O. & Fife, P. C., 1990. Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Physica D: Nonlinear Phenomena, 43, pp. 4462.CrossRefGoogle Scholar
Pitaevskii, L. P. & Lifshitz, E. M., 1995. Physical Kinetics: Course of Theoretical Physics. Vol. 10. Oxford: Butterworth-Heinemann.Google Scholar
Plouffe, B. D., Murthy, S. K. & Lewis, L. H., 2015. Fundamentals and application of magnetic particles in cell isolation and enrichment: A review. Reports on Progress in Physics, 78(1), 016601.CrossRefGoogle ScholarPubMed
Poger, D. & Mark, A. E., 2012. Lipid bilayers: The effect of force field on ordering and dynamics. Journal of Chemical Theory and Computation, 8(11), pp. 48074817.CrossRefGoogle ScholarPubMed
Popovic, R., 2004. Hall Effect Devices. 2nd ed. Bristol: IOP.CrossRefGoogle Scholar
Pruppacher, H. R., 1973. Electrofreezing of supercooled water. Pure and Applied Geophysics, 104(1), pp. 623634.CrossRefGoogle Scholar
Ragone, D. V., 1995. Thermodynamics of Materials. Vol. 2. New York: Wiley.Google Scholar
Rehbinder, P. A., 1958. Fiziko-Khimicheskaia Mekhanika. Moscow: Nauka.Google Scholar
Roldughin, V. I., 2012. Nonequilibrium thermodynamics of colloidal systems. Russian Chemical Reviews (Uspekhi Khimii), 81(10), pp. 875917.CrossRefGoogle Scholar
Rusanov, A. I., 2012. The development of the fundamental concepts of surface thermodynamics. Colloid Journal, 74, pp. 136153.CrossRefGoogle Scholar
Safran, S. A., 1994. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. Reading: Addison-Wesley.Google Scholar
Schmelzer, J. W. P. & Abyzov, A. S., 2011. Thermodynamic analysis of nucleation in confined space: Generalized Gibbs approach. Journal of Chemical Physics, 134, 054511.CrossRefGoogle ScholarPubMed
Schmelzer, J. W. P., Boltachev, G. S. & Abyzov, A. S., 2013. Temperature of critical clusters in nucleation theory: Generalized Gibbs’ approach. Journal of Chemical Physics, 139, 034702.CrossRefGoogle ScholarPubMed
Slezov, V. V., 2009. Kinetics of First-Order Phase Transitions. Berlin: Wiley.CrossRefGoogle Scholar
Solov’yov, I. A., Hore, P. J., Ritz, T. & Schulten, K., 2013. A chemical compass for bird navigation. In Mohseni, M., Omar, Y., Engel, G. S. & Plenio, M. B., eds. Quantum Effects in Biology. Cambridge: Cambridge University Press, pp. 218226.Google Scholar
Stanley, H. E., 1987. Introduction to Phase Transitions and Critical Phenomena. International Series of Monographs on Physics. Oxford: Oxford Science.Google Scholar
Starikov, E. B. & Norden, B., 2012. Entropy-enthalpy compensation as a fundamental concept and analysis tool for systematical experimental data. Chemical Physics Letters, 538, pp. 118120.CrossRefGoogle Scholar
Tolman, R. C., 1949. The effect of droplet size on surface tension. Journal of Chemical Physics, 17(3), pp. 333337.CrossRefGoogle Scholar
Tsekov, R. & Toshev, B. V., 2012. Capillary pressure of van der Waals liquid nanodrops. Colloid Journal, 74(2), pp. 266268.CrossRefGoogle Scholar
Verwey, E. J. W. & Overbeek, J. T. G., 1999. Theory of the Stability of Lyophobic Colloids. Mineola: Dover.Google Scholar
Xuan, F. Z., Shao, S. S., Wang, Z. D. & Tu, S. T., 2009. Coupling effects of chemical stresses and external mechanical stresses on diffusion. Journal of Physics D: Applied Physics, 42, 015401.CrossRefGoogle Scholar
Yang, Q.-Z. Huang, Z., Kucharski, T.J., Khvostichenko, D., Chen, J., Boulatov, R., 2009. A molecular force probe. Nature Nanotechnology, 4(5), pp. 302306.CrossRefGoogle ScholarPubMed
Zel’dovich, Y. B., 1943. On the theory of new phase formation, cavitation. Acta Physicochimica URSS, 18(1), pp. 122.Google Scholar
Zel’dovich, Y. B., Buchachenko, A. L. & Frankevich, E. L., 1988. Magnetic-spin effects in chemistry and molecular physics. Soviet Physics Uspekhi, 31(5), pp. 385408.CrossRefGoogle Scholar
Zewail, A., 2002. Femtochemistry: Reaction dynamics with atomic resolution. In Berry, R., Rice, S. & Ross, J., eds. Physical and Chemical Kinetics. Oxford: Oxford University Press, pp. 896904.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×