Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T00:50:29.512Z Has data issue: false hasContentIssue false

Part III - Assessment and Diagnosis of Specific Mental Disorders

Published online by Cambridge University Press:  06 December 2019

Martin Sellbom
Affiliation:
University of Otago, New Zealand
Julie A. Suhr
Affiliation:
Ohio University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.Google Scholar
Baio, J. B., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J., Warren, Z., Kurzuis-Spencer, M.Dowling, N.F. (2018). Prevalence of autism spectrum disorder among children aged 8 years: Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. Morbidity and Mortality Weekly Report Surveillance Summaries, 67(6), 123.Google Scholar
Bastiaansen, J. A., Meffert, H., Hein, S., Huizinga, P., Ketelaars, C., Pijnenborg, M., … & de Bildt, A. (2011). Diagnosing autism spectrum disorders in adults: The use of Autism Diagnostic Observation Schedule (ADOS) module 4. Journal of Autism and Developmental Disorders, 41(9), 12561266.CrossRefGoogle ScholarPubMed
Baum, K. T., Shear, P. K., Howe, S. R., & Bishop, S. L. (2015). A comparison of WISC-IV and SB-5 intelligence scores in adolescents with autism spectrum disorder. Autism, 19(6), 736745.Google Scholar
Bayley, N. (2006). Bayley scales of infant and toddler development, third edition: Technical manual. San Antonio, TX: Harcourt.Google Scholar
Begeer, S., Mandell, D., Wijnker-Holmes, B., Venderbosch, S., Rem, D., Stekelenburg, F., & Koot, H. M. (2012). Sex differences in the timing of identification among children and adults with autism spectrum disorders. Journal of Autism and Developmental Disorders, 43(5), 11511156. http://doi.org/10.1007/s10803-012–1656-zGoogle Scholar
Berthoz, S., & Hill, E. L. (2005). The validity of using self-reports to assess emotion regulation abilities in adults with autism spectrum disorder. European Psychiatry, 20(3), 291298. http://doi.org/10.1016/j.eurpsy.2004.06.013CrossRefGoogle ScholarPubMed
Bishop, S. L., & Seltzer, M. M. (2012). Self-reported autism symptoms in adults with autism spectrum disorders. Journal of Autism and Developmental Disorders, 42(11), 23542363. http://doi.org/10.1007/s10803-012–1483-2Google Scholar
Borys, S. V., Spitz, H. H., & Dorans, B. A. (1982). Tower of Hanoi performance of retarded young adults and nonretarded children as a function of solution length and goal state. Journal of Experimental Child Psychology, 33(1), 87110.CrossRefGoogle Scholar
Bracken, B. A., & McCallum, R. S. (2016). Universal Nonverbal Intelligence Test. Austin, TX: PRO-ED.Google Scholar
Brown, L., Sherbenou, R. J., & Johnsen, S. K. (2010). Test of Nonverbal Intelligence: TONI-4. Austin, TX: PRO-ED.Google Scholar
Bruni, T. P. (2014). Test review: Social responsiveness scale–Second edition (SRS-2). Journal of Psychoeducational Assessment, 32(4), 365369.CrossRefGoogle Scholar
Brunsdon, V. E., Colvert, E., Ames, C., Garnett, T., Gillan, N., Hallett, V., … & Happé, F. (2015). Exploring the cognitive features in children with autism spectrum disorder, their co‐twins, and typically developing children within a population‐based sample. Journal of Child Psychology and Psychiatry, 56(8), 893902.Google Scholar
Burger-Caplan, R., Saulnier, C. A., & Sparrow, S. S. (2018). Vineland adaptive behavior scales. In Kreutzer, J., DeLuca, J., & Caplan, B. (Eds.), Encyclopedia of clinical neuropsychology. Cham: Springer.Google Scholar
Channell, M. M., Phillips, B. A., Loveall, S. J., Conners, F. A., Bussanich, P. M., & Klinger, L. G. (2015). Patterns of autism spectrum symptomatology in individuals with Down syndrome without comorbid autism spectrum disorder. Journal of Neurodevelopmental Disorders, 7(5), 19. https://doi.org/10.1186/1866–1955–7–5Google Scholar
Chapman, R. S. (1997). Language development in children and adolescents with Down syndrome. Developmental Disabilities Research Reviews, 3(4), 307312.Google Scholar
Chapman, R. S., Seung, H. K., Schwartz, S. E., & Bird, E. K. R. (1998). Language skills of children and adolescents with Down syndrome: II. Production deficits. Journal of Speech, Language, and Hearing Research, 41(4), 861873.Google Scholar
Christensen, D. L., Baio, J., Braun, K. V. N., Bilder, D., Charles, J., Constantino, J. N., … & Yeargin-Allsopp, M. (2016). Prevalence and characteristics of autism spectrum disorder among children aged 8 years: Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012. Morbidity and Mortality Weekly Report. Surveillance Summaries, 65(3), 123. http://doi.org/10.15585/mmwr.ss6503a1Google ScholarPubMed
Conners, C. K. (2008). Conners-3. Toronto, ON: Multi-Health Systems.Google Scholar
Cook, C. M., Bolinger, E., & Suhr, J. (2016). Further validation of the Conners’ adult attention deficit/hyperactivity rating scale infrequency index (CII) for detection of non-credible report of attention deficit/hyperactivity disorder symptoms. Archives of Clinical Neuropsychology, 31(4), 358364. http://doi.org/10.1093/arclin/acw015CrossRefGoogle ScholarPubMed
Constantino, J. N. (2011). The quantitative nature of autistic social impairment. Pediatric Research, 69, 5562.CrossRefGoogle ScholarPubMed
Constantino, J. N., & Gruber, C. P. (2012). Social Responsiveness Scale – Second Edition (SRS-2). Torrance, CA: Western Psychological Services.Google Scholar
Cox, A., Klein, K., Charman, T., Baird, G., Baron-Cohen, S., Swettenham, J., … & Wheelwright, S. (1999). Autism spectrum disorders at 20 and 42 months of age: Stability of clinical and ADI-R diagnosis. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 40(5), 719732.Google Scholar
Dimitropoulos, A., & Schultz, R. T. (2007). Autistic-like symptomatology in Prader-Willi syndrome: A review of recent findings. Current Psychiatry Reports, 9(2), 159164.CrossRefGoogle ScholarPubMed
Durkin, M. S., Elsabbagh, M., Barbaro, J., Gladstone, M., Happe, F., Hoekstra, R. A., … & Shih, A. (2015). Autism screening and diagnosis in low resource settings: Challenges and opportunities to enhance research and services worldwide. Autism Research, 8(5), 473476. http://doi.org/10.1002/aur.1575Google Scholar
Dworzynski, K., Ronald, A., Bolton, P., & Happé, F. (2012). How different are girls and boys above and below the diagnostic threshold for autism spectrum disorders? Journal of the American Academy of Child and Adolescent Psychiatry, 51(8), 788797. http://doi.org/10.1016/j.jaac.2012.05.018CrossRefGoogle ScholarPubMed
Elliott, C. D. (2007). Differential Ability Scales (2nd ed.). San Antonio, TX: Harcourt Assessment.Google Scholar
Evenhuis, H. M., Sjoukes, L., Koot, H. M., & Kooijman, A. C. (2009). Does visual impairment lead to additional disability in adults with intellectual disabilities? Journal of Intellectual Disability Research, 53(1), 1928.CrossRefGoogle ScholarPubMed
Falkmer, T., Anderson, K., Falkmer, M., & Horlin, C. (2013). Diagnostic procedures in autism spectrum disorders: A systematic literature review. European Child and Adolescent Psychiatry, 22(6), 329340.Google Scholar
Fellinger, J., Holzinger, D., Beitel, C., Laucht, M., & Goldberg, D. P. (2009). The impact of language skills on mental health in teenagers with hearing impairments. Acta Psychiatrica Scandinavica, 120(2), 153159.Google Scholar
Flynn, S., Vereenooghe, L., Hastings, R.P., Adams, D., Cooper, S., Gore, N., … & Waite, J. (2017). Measurement tools for mental health problem and mental well-being with severe or profound intellectual disabilities: A systematic review. Clinical Psychology Review, 57, 3244.CrossRefGoogle ScholarPubMed
Garvey, M. A., & Cuthbert, B. N. (2017). Developing a motor systems domain for the NIMH RDoC Program. Schizophrenia Bulletin, 43(5), 935936.Google Scholar
Geurts, H. M., Corbett, B., & Solomon, M. (2009). The paradox of cognitive flexibility in autism. Trends in Cognitive Sciences, 13(2), 7482. http://doi.org/10.1016/j.tics.2008.11.006Google Scholar
Gioia, G. A., Isquith, P. K., Guy, S. C., & Kenworthy, L. (2000). Behavior rating inventory of executive function: BRIEF. Odessa, FL: Psychological Assessment Resources.Google Scholar
Goldberg Edelson, M., Edelson, S. M., & Jung, S. S. (1998). Assessing the intelligence of individuals with autism: A cross-cultural replication of the usefulness of the TONI. Focus on Autism and Other Developmental Disabilities, 13(4), 221227.Google Scholar
Grant, D. A., & Berg, E. (1948). A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. Journal of Experimental Psychology, 38(4), 404.Google Scholar
Gray, K. M., Tonge, B. J., & Sweeney, D. J. (2008). Using the Autism Diagnostic Interview-Revised and the Autism Diagnostic Observation Schedule with young children with developmental delay: Evaluating diagnostic validity. Journal of Autism and Developmental Disorders, 38(4), 657667.Google Scholar
Greaves, N., Prince, E., Evans, D. W., & Charman, T. (2006). Repetitive and ritualistic behaviour in children with Prader–Willi syndrome and children with autism. Journal of Intellectual Disability Research, 50(2), 92100.Google Scholar
Grzadzinski, R., Dick, C., Lord, C., & Bishop, S. (2016). Parent-reported and clinician-observed autism spectrum disorder (ASD) symptoms in children with attention deficit/hyperactivity disorder (ADHD): Implications for practice under DSM-5. Molecular Autism, 7(1), 7.CrossRefGoogle ScholarPubMed
Hack, M., Taylor, H. G., Drotar, D., Schluchter, M., Cartar, L., Wilson-Costello, D., … & Morrow, M. (2005). Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age. Pediatrics, 116(2), 333341.Google Scholar
Halladay, A. K., Bishop, S., Constantino, J. N., Daniels, A. M., Koenig, K., Palmer, K., … & Szatmari, P. (2015). Sex and gender differences in autism spectrum disorder: Summarizing evidence gaps and identifying emerging areas of priority. Molecular Autism, 6(1), 15. http://doi.org/10.1186/s13229-015–0019-yGoogle Scholar
Happé, F., Booth, R., Charlton, R., & Hughes, C. (2006). Executive function deficits in autism spectrum disorders and attention-deficit/hyperactivity disorder: Examining profiles across domains and ages. Brain and Cognition, 61, 2539. http://doi.org/10.1016/j.bandc.2006.03.004Google Scholar
Harrison, P., & Oakland, T. (2015). Adaptive behavior assessment systemthird edition (ABAS-3). Torrance, CA: WPS Publishing.Google Scholar
Hazlett, H. C., Hongbin, G., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J. … & the IBIS Network. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542, 348351. https://doi.org/10.1038/nature21369Google Scholar
Heaton, R. K., Chelune, G. J., Talley, J. L., Kay, G. G., & Curtiss, G. (1993). Wisconsin card Sorting Test manual revised and expanded. Lutz, FL: Psychological Assessment Resources.Google Scholar
Hepburn, S., Philofsky, A., Fidler, D. J., & Rogers, S. (2008). Autism symptoms in toddlers with Down syndrome: A descriptive study. Journal of Applied Research in Intellectual Disabilities, 21(1), 4857.Google Scholar
Ibañez, L. V., Stone, W. L., & Coonrod, E. E. (2014). Screening for autism in young children. In Volkmar, F., Rogers, S., Paul, R., & Pelphrey, K. (Eds.), Handbook of autism and pervasive developmental disorders (4th ed., pp. 585608). Hoboken, NJ: John Wiley & Sons.Google Scholar
Insel, T. R. (2017). Digital phenotyping: Technology for a new science of behavior. JAMA, 318(13), 12151216.Google Scholar
Johnson, C. P., & Myers, S. M. (2007). Identification and evaluation of children with autism spectrum disorders. Pediatrics, 120(5), 11831215.Google Scholar
Johnson, S., Hollis, C., Hennessy, E., Kochhar, P., Wolke, D., & Marlow, N. (2011). Screening for autism in preterm children: Diagnostic utility of the Social Communication Questionnaire. Archives of Disease in Childhood, 96(1), 7377.Google Scholar
Kanne, S. M., Randolph, J. K., & Farmer, J. E. (2008). Diagnostic and assessment findings: A bridge to academic planning for children with autism spectrum disorders. Neuropsychology Review, 18(4), 367384.Google Scholar
Kasari, C., Brady, N., Lord, C., & Tager‐Flusberg, H. (2013). Assessing the minimally verbal school‐aged child with autism spectrum disorder. Autism Research, 6(6), 479493.Google Scholar
Kim, S. H., & Lord, C. (2012). New autism diagnostic interview-revised algorithms for toddlers and young preschoolers from 12 to 47 months of age. Journal of Autism and Developmental Disorders, 42(1), 8293. http://doi.org/10.1007/s10803-011–1213-1Google Scholar
Kim, S. H., Thurm, A., Shumway, S., & Lord, C. (2013). Multisite study of new Autism Diagnostic Interview-Revised (ADI-R) algorithms for toddlers and young preschoolers, Journal of Autism and Developmental Disorders 43(7), 15271538. https://doi.org/10.1007/s10803-012–1696–4Google Scholar
Klin, A., Saulnier, C. A., Sparrow, S. S., Cicchetti, D. V, Volkmar, F. R., & Lord, C. (2007). Social and communication abilities and disabilities in higher functioning individuals with autism spectrum disorders: The Vineland and the ADOS. Journal of Autism and Developmental Disorders, 37(4), 748–59. http://doi.org/10.1007/s10803-006–0229-4Google Scholar
Klinger, L. G., Dawson, G., Barnes, K., & Crisler, M. (2014). Autism spectrum disorder. In Mash, E. J. & Barkley, R. A. (Eds.), Child psychopathology (3rd ed., pp. 531572). New York: Guilford Press.Google Scholar
Klinger, L. G., Mussey, J. L., & O’Kelley, S. (2018). Assessment of intellectual functioning in autism spectrum disorder. In Goldstein, S. & Ozonoff, S. (Eds.). Assessment of autism spectrum disorder (2nd ed., pp. 215262). New York: Guilford Press.Google Scholar
Koenig, K., & Tsatsanis, K. D. (2005). Pervasive developmental disorders in girls. In Bell, D. J., Foster, S. L., & Mash, E. J. (Eds.), Handbook of behavioral and emotional problems in girls (pp. 211237). New York: Kluwer Academic/Plenum Publishers.Google Scholar
Lauritsen, M. B., Pedersen, C. B., & Mortensen, P. B. (2005). Effects of familial risk factors and place of birth on the risk of autism: A nationwide register-based study. Journal of Child Psychology and Psychiatry and Allied Disciplines, 46(9), 963971. http://doi.org/10.1111/j.1469–7610.2004.00391.xCrossRefGoogle ScholarPubMed
Leekam, S. R., Prior, M. R., & Uljarevic, M. (2011). Restricted and repetitive behaviors in autism spectrum disorders: A review of research in the last decade. Psychological Bulletin, 137(4), 562.Google Scholar
Lord, C., Rutter, M., Dilavore, P., & Risi, S. (2003). Autism diagnostic observation schedule. Los Angeles, CA: Western Psychological Services.Google Scholar
Lord, C., Rutter, M., DiLavore, P., Risi, S., Gotham, K., & Bishop, S. (2012). Autism diagnostic observation schedule (2nd ed.). Torrance, CA: Western Psychological Services.Google Scholar
Lord, C., Rutter, M., & LeCouteur, A. (1994). Autism diagnostic interview: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659685.Google Scholar
Lord, C., Storoschuk, S., Rutter, M., & Pickles, A. (1993). Using the ADI-R to diagnose autism in preschool children. Infant Mental Health Journal, 14(3), 234252.3.0.CO;2-F>CrossRefGoogle Scholar
Mammarella, I. C., Ghisi, M., Bomba, M., Bottesi, G., Caviola, S., Broggi, F., & Nacinovich, R. (2016). Anxiety and depression in children with nonverbal learning disabilities, reading disabilities, or typical development. Journal of Learning Disabilities, 49(2), 130139.Google Scholar
Mandell, D. S., Lawer, L. J., Branch, K., Brodkin, E. S., Healey, K., Witalec, R., … & Gur, R. E. (2012). Prevalence and correlates of autism in a state psychiatric hospital. Autism, 16, 557567.Google Scholar
Mandell, D. S., Ittenbach, R. F., Levy, S. E., & Pinto-Martin, J. A. (2007). Disparities in diagnoses received prior to a diagnosis of autism spectrum disorder. Journal of Autism and Developmental Disorders, 37(9), 17951802. http://doi.org/10.1007/s10803-006–0314-8Google Scholar
Mandell, D. S., Wiggins, L. D., Carpenter, L. A., Daniels, J., DiGuiseppi, C., Durkin, M. S., … & Kirby, R. S. (2009). Racial/ethnic disparities in the identification of children with autism spectrum disorders. American Journal of Public Health, 99(3), 493498. http://doi.org/10.2105/AJPH.2007.131243Google Scholar
Matson, J. L. (Ed.). (2016). Handbook of assessment and diagnosis of autism spectrum disorder. New York: Springer International.CrossRefGoogle Scholar
Matson, J. L., & Matson, M. L. (Eds.). (2015). Comorbid conditions in individuals with intellectual disabilities. New York: Springer International.Google Scholar
Meyer, A. T., Powell, P. S., Buttera, N., Klinger, M. R., & Klinger, L. G. (2018). Brief Report: Developmental trajectories of adaptive behavior in children and adolescents with ASD diagnosed between 1968–2000. Journal of Autism and Developmental Disorders, 48(8), 28702878.Google Scholar
Mildenberger, K., Sitter, S., Noterdaeme, M., & Amorosa, H. (2001). The use of the ADI-R as a diagnostic tool in the differential diagnosis of children with infantile autism and children with a receptive language disorder. European Child and Adolescent Psychiatry, 10(4), 248255.Google Scholar
Moody, E. J., Reyes, N., Ledbetter, C., Wiggins, L., DiGuiseppi, C., Alexander, A., … & Rosenberg, S. A. (2017). Screening for autism with the SRS and SCQ: Variations across demographic, developmental and behavioral factors in preschool children. Journal of Autism and Developmental Disorders, 47(11), 35503561.Google Scholar
Mullen, E. (1995). Mullen Scales of Early Learning. Circle Pines, MN: American Guidance Service.Google Scholar
Mussey, J. L., Ginn, N. C., & Klinger, L. G. (2017). Are males and females with autism spectrum disorder more similar than we thought? Autism, 21(6), 733737. http://doi.org/10.1177/1362361316682621CrossRefGoogle ScholarPubMed
Ozonoff, S., Goodlin-Jones, B., & Solomon, M. (2005). Evidence-based assessment of autism spectrum disorders in children and adolescents. Journal of Clinical Child and Adolescent Psychology, 34(3), 559568. http://doi.org/10.1207/s15374424jccp3403Google Scholar
Ozonoff, S., Heung, K., Byrd, R., Hansen, R., & Hertz‐Picciotto, I. (2008). The onset of autism: Patterns of symptom emergence in the first years of life. Autism Research, 1(6), 320328.Google Scholar
Pandolfi, V., & Magyar, C. I. (2016). Psychopathology. In Matson, J. (Ed.). Comorbid conditions among children with Autism Spectrum Disorder (pp. 171186). New York: Springer International.Google Scholar
Paul, R., Chawarska, K., Klin, A., & Volkmar, F. (2007). Dissociations in development of early communication in ASD. In Paul, R. (Ed.), Language disorders from a developmental perspective: Essays in honor of Robin Chapman (pp. 163194). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Paul, R., & Wilson, K. P. (2009). Assessing speech, language, and communication in autism spectrum disorders. In Goldstein, S., Nagliere, J. A., & Ozonoff, S. (Eds.). Assessment of autism spectrum disorders. New York: Guilford Press.Google Scholar
Pearl, A. M., & Mayes, S. D. (2016). Methods and procedures for measuring comorbid disorders: Psychological. In Matson, J. (Ed.). Comorbid conditions among children with autism spectrum disorder (pp. 4563). New York: Springer International.Google Scholar
Perry, A., Condillac, R. A., Freeman, N. L., Dunn-Geier, J., & Belair, J. (2005). Multi-site study of the Childhood Autism Rating Scale (CARS) in five clinical groups of young children. Journal of Autism and Developmental Disorders, 35(5), 625634. http://doi.org/10.1007/s10803-005–0006-9Google Scholar
Rivet, T. T., & Matson, J. L. (2011). Review of gender differences in core symptomatology in autism spectrum disorders. Research in Autism Spectrum Disorders, 5(3), 957976. http://doi.org/10.1016/j.rasd.2010.12.003CrossRefGoogle Scholar
Roid, G. H. (2003). Stanford-Binet Intelligence Scales (5th ed.). Torrance, CA: WPS Publishing.Google Scholar
Roid, G. H., Miller, L .J., Pomplun, M., & Koch, C. (2013). Leiter international performance scale revised. Torrance, CA: Western Psychological Services.Google Scholar
Rudra, A., Banerjee, S., Singhal, N., Barua, M., Mukerji, S., & Chakrabarti, B. (2014). Translation and usability of autism screening and diagnostic tools for autism spectrum conditions in India. Autism Research, 7(5), 598607. http://doi.org/10.1002/aur.1404CrossRefGoogle ScholarPubMed
Rutter, M., Bailey, A., & Lord, C. (2003). Social Communication Questionnaire. Los Angeles, CA: Western Psychological Services.Google Scholar
Rutter, M., Le Couteur, A., & Lord, C. (2003). Autism Diagnostic Interview – Revised. Los Angeles, CA: Western Psychological Services.Google Scholar
Saint-Georges, C., Cassel, R. S., Cohen, D., Chetouani, M., Laznik, M. C., Maestro, S., & Muratori, F. (2010). What studies of family home movies can teach us about autistic infants: A literature review. Research in Autism Spectrum Disorders, 4(3), 355366.CrossRefGoogle Scholar
Sandercock, R. (2018). Assessing the convergence of self-report and informant measures for adults with Autism Spectrum Disorder. Master’s thesis, University of North Carolina at Chapel Hill. (Available from ProQuest Dissertations and Theses A&I database [UMI No. 10790685].)Google Scholar
Schopler, E., Van Bourgondien, M. E., Wellman, G. J., & Love, S. R. (2010). Childhood autism rating scale – 2nd Edition (CARS2). Torrance, CA: WPS Publishing.Google Scholar
Shalom, B. D., Mostofsky, S. H., Hazlett, R. L., Goldberg, M. C., Landa, R. J., Faran, Y., … & Hoehn-Saric, R. (2006). Normal physiological emotions but differences in expression of conscious feelings in children with high-functioning autism. Journal of Autism and Developmental Disorders, 36(3), 395400. http://doi.org/10.1007/s10803-006–0077-2Google Scholar
Shipley, K. G., & McAfee, J. G. (2015). Assessment in speech-language pathology: A resource manual. Toronto, ON: Nelson Education.Google Scholar
Silverman, W., Miezejeski, C., Ryan, R, Zigman, W., Krinsky-McHale, S., & Urv, T. (2010). Stanford-Binet and WAIS IQ differences and their implications for adults with intellectual disability (aka mental retardation). Intelligence, 38(2), 242248. https://doi.org/10.1016/j.intell.2009.12.005CrossRefGoogle ScholarPubMed
Simonoff, E., Pickles, A., Charman, T., Chandler, S., Loucas, T., & Baird, G. (2008). Psychiatric disorders in children with autism spectrum disorders: Prevalence, comorbidity, and associated factors in a population-derived sample. Journal of the American Academy of Child & Adolescent Psychiatry, 47(8), 921929.Google Scholar
Smith, L.E., Maenner, M.J., Mailick Seltzer, M. (2012). Developmental trajectories in adolescents and adults with autism: The case of daily living skills. Journal of the American Academy of Child and Adolescent Psychiatry, 51 (6), 622631. https://doi.org/10.1016/j.jaac.2012.03.001CrossRefGoogle ScholarPubMed
Smith, L., Malcolm-Smith, S., & de Vries, P. J. (2017). Translation and cultural appropriateness of the Autism Diagnostic Observation Schedule-2 in Afrikaans. Autism, 21(5), 552563. http://doi.org/10.1177/1362361316648469Google Scholar
Sparrow, S. S., Balla, D. A., & Cicchetti, D. V. (1984). Vineland adaptive behavior scales (Expanded Form). Circle Pines, MN: American Guidance Service.Google Scholar
Sparrow, S. S., Cicchetti, D. V., & Balla, D. A. (2005). Vineland Adaptive Behavior Scales (2nd ed.). Livonia, MN: Pearson Assessments.Google Scholar
Sparrow, S. S., Cicchetti, D. V., & Saulnier, C. A. (2016). Vineland adaptive behavior scales (3rd ed.). Upper Saddle River, NJ: Pearson.Google Scholar
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643.Google Scholar
Suhr, J. A., Sullivan, B. K., & Rodriguez, J. L. (2011). The relationship of noncredible performance to continuous performance test scores in adults referred for attention-deficit/hyperactivity disorder evaluation. Archives of Clinical Neuropsychology, 26(1), 17. http://doi.org/10.1093/arclin/acq094Google Scholar
Taylor, J. L., & Seltzer, M. M. (2010). Changes in the autism behavioral phenotype during the transition to adulthood. Journal of Autism and Developmental Disorders, 40(12), 14311446. http://doi.org/10.1007/s10803-010–1005-zGoogle Scholar
Turner-Brown, L. M., Baranek, G. T., Reznick, J. S., Watson, L. R., & Crais, E. R. (2013). The First Year Inventory: A longitudinal follow-up of 12-month-old to 3-year-old children. Autism, 17(5), 527540.Google Scholar
US Department of Health and Human Services. (2012). Child maltreatment 2012. US Department of Health and Human Services Administration on Children, Youth and Families, Children’s Bureau. www.acf.hhs.gov/programs/cb/research-data-technology/statistics-research/child-maltreatmentGoogle Scholar
Ventola, P. E., Kleinman, J., Pandey, J., Barton, M., Allen, S., Green, J., … & Fein, D. (2006). Agreement among four diagnostic instruments for autism spectrum disorders in toddlers. Journal of Autism and Developmental Disorders, 36(7), 839847. http://doi.org/10.1007/s10803-006–0128-8Google Scholar
Vriezen, E. R., & Pigott, S. . (2010). The relationship between parental report on the BRIEF and performance-based measures of executive function in children with moderate to severe traumatic brain injury. Child Neuropsychology: A Journal on Normal and Abnormal Development in Childhood and Adolescence, 8(4), 296303.CrossRefGoogle Scholar
Wachtel, L. E., Jaffe, R., & Kellner, C. H. (2011). Electroconvulsive therapy for psychotropic-refractory bipolar affective disorder and severe self-injury and aggression in an 11-year-old autistic boy. European Child and Adolescent Psychiatry, 20(3), 147152.Google Scholar
Watt, N., Wetherby, A. M., Barber, A., & Morgan, L. (2008). Repetitive and stereotyped behaviors in children with autism spectrum disorders in the second year of life. Journal of Autism and Developmental Disorders, 38(8), 15181533.Google Scholar
Wetherby, A. M., Woods, J., Allen, L., Cleary, J., Dickinson, H., & Lord, C. (2004). Early indicators of autism spectrum disorders in the second year of life. Journal of Autism and Developmental Disorders, 34(5), 473493.Google Scholar
Wiggins, L. D., & Robins, D. L. (2008). Brief report: Excluding the ADI-R behavioral domain improves diagnostic agreement in toddlers. Journal of Autism and Developmental Disorders, 38(5), 972976. http://doi.org/10.1007/s10803-007–0456-3CrossRefGoogle ScholarPubMed
Woodbury-Smith, M., & Scherer, S.W. (2018). Progress in the genetics of autism spectrum disorder. Developmental Medicine and Child Neurology, 60(5), 445451. https://doi.org/10.1111/dmcn.13717Google Scholar
Zwaigenbaum, L., Bryson, S. E., Szatmari, P., Brian, J., Smith, I. M., Roberts, W., … & Roncadin, C. (2012). Sex differences in children with autism spectrum disorder identified within a high-risk infant cohort. Journal of Autism and Developmental Disorders, 42(12), 25852596. http://doi.org/10.1007/s10803-012–1515-yGoogle Scholar
Zwaigenbaum, L., Thurm, A., Stone, W., Baranek, G., Bryson, S., Iverson, J., … & Rogers, S. (2007). Studying the emergence of autism spectrum disorders in high-risk infants: Methodological and practical issues. Journal of Autism and Developmental Disorders, 37(3), 466480.Google Scholar

References

Achenbach, T. M., & Rescorla, L. A. (2001). Manual for the ASEBA. Burlington: University of Vermont, Department of Psychiatry.Google Scholar
Allan, D. M., & Lonigan, C. J. (2015). Relations between response trajectories on the continuous performance test and teacher-rated problem behaviors in preschoolers. Psychological Assessment, 27, 678–88.Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.Google Scholar
Barkley, R. A. (2013). Distinguishing sluggish cognitive tempo from ADHD in children adolescent: Executive functioning, impairment, and comorbidity. Journal of Clinical Child and Adolescent Psychology, 42, 161173.Google Scholar
Barry, C. T., Frick, P. J., & Kamphaus, R. W. (2013). Psychological assessment in child mental health settings. In Geisinger, K. F., Bracken, B., Carlson, J., Hansen, J., Kucel, N., Reise, S, & Rodrequez, M. (Eds.), APA handbook of testing and assessment in psychology (pp. 253270). Washington, DC: American Psychological Association.Google Scholar
Barry, C. T., Golmaryami, F. N., Rivera-Hudson, N. J., & Frick, P. J. (2013). Evidence-based assessment of conduct disorder: Current considerations and preparation for DSM-5. Professional Psychology: Research and Practice, 44, 5663.Google Scholar
Bendiksen, B., Svensson, E., Aase, H., Reichborn-Kjennerud, T., Friis, S., Myhre, A. M., & Zeiner, P. (2017). Co-occurrence of ODD and CD in preschool children with symptoms of ADHD. Journal of Attention Disorders, 21, 741752.Google Scholar
Conners, C. K. (2008). Conners (3rd ed.). Toronto, ON: Multi-Health Systems.Google Scholar
De Los Reyes, A., & Kazdin, A. E. (2005). Informant discrepancies in the assessment of childhood psychopathology: A critical review, theoretical framework, and recommendations for further study. Psychological Bulletin, 131, 483509.Google Scholar
Diamond, J. M., & Bloch, R. M. (2010). Telepsychiatry assessments of child or adolescent behavior disorders: A review of evidence and issues. Telemedicine and e-Health, 16, 712716.Google Scholar
Frick, P. J., Barry, C. T., & Kamphaus, R. W. (2010). Clinical assessment of child and adolescent personality and behavior (3rd ed.). New York: Springer.Google Scholar
Frick, P. J., & Loney, B. R. (2000). The use of laboratory and performance-based measures in the assessment of children and adolescents with conduct disorders. Journal of Clinical Child Psychology, 29, 540554.Google Scholar
Frick, P. J., Ray, J. V., Thornton, L. C., & Kahn, R. E. (2014). Can callous-unemotional traits enhance the understanding, diagnosis, and treatment of serious conduct problems in children and adolescents? A comprehensive review. Psychological Bulletin, 140, 157.Google Scholar
Frick, P. J., & Viding, E. (2009). Antisocial behavior from a developmental psychopathology perspective. Development and Psychopathology, 21, 11111131.Google Scholar
Hall, C. L., Valentine, A. Z., Groom, M. J., Walker, G. M., Sayal, K., Daley, D., & Hollis, C. (2016). The clinical utility of continuous performance tests and objective measures of activity for diagnosing and monitoring ADHD in children: A systematic review. European Child and Adolescent Psychiatry, 25, 677699.Google Scholar
Johnston, C., & Murray, C. (2003). Incremental validity in the psychological assessment of children and adolescents. Psychological Assessment, 15, 496507.Google Scholar
Kazak, A. E., Hoagwood, K., Weisz, J. R., Hood, K., Kratochwill, T. R., Vargas, L. A., & Banez, G. A. (2010). A meta-systems approach to evidence-based practice for children and adolescents. American Psychologist, 65, 8597.Google Scholar
Khadka, G., Burns, G. L., & Becker, S. P. (2016). Internal and external validity of sluggish cognitive tempo and ADHD inattention dimensions with teacher ratings of Nepali children. Journal of Psychopathology and Behavioral Assessment, 38, 433442.Google Scholar
Konold, T. R., Walthall, J. C., & Pianta, R. C. (2004). The behavior of child ratings: Measurement structure of the child behavior checklist across time, informants, and child gender. Behavioral Disorders, 29, 372383.Google Scholar
Liang, J., Matheson, B. E., & Douglas, J. M. (2016). Mental health diagnostic considerations in racial/ethnic minority youth. Journal of Child and Family Studies, 25, 19261940.Google Scholar
Mash, E. J., & Hunsley, J. (2005). Evidence-based assessment of child and adolescent disorders: Issues and challenges. Journal of Clinical Child and Adolescent Psychology, 34, 362379.Google Scholar
Maughan, B., Rowe, R., Messer, J., Goodman, R., & Meltzer, H. (2004). Conduct disorder and oppositional defiant disorder in a national sample: Developmental epidemiology. Journal of Child Psychology and Psychiatry, 45, 609621.Google Scholar
McMahon, R. J., & Frick, P. J. (2005). Evidence-based assessment of conduct problems in children and adolescents. Journal of Clinical Child and Adolescent Psychology, 34, 477505.Google Scholar
Moffitt, T. E. (1993). Adolescence-limited and life-course persistent anti-social behavior: A developmental taxonomy. Psychological Reports, 100, 674701.Google Scholar
O’Brien, B. S., & Frick, P. J. (1996). Reward dominance: Associations with anxiety, conduct problems, and psychopathy in children. Journal of Abnormal Child Psychology, 24, 223240.Google Scholar
Pelham, W. E., Fabiano, G. A., & Massetti, G. M. (2005). Evidence-based assessment of attention-deficit hyperactivity disorder in children and adolescents. Journal of Clinical Child and Adolescent Psychology, 34, 477505.Google Scholar
Power, T. J., Watkins, M. W., Anastopolous, A. D., Reid, R., Lambert, M. C., & DuPaul, G. J. (2017). Multi-informant assessment of ADHD symptom-related impairments among children and adolescents. Journal of Clinical Child & Adolescent Psychology, 46, 661674.Google Scholar
Pritchard, A. E., Stephan, C. M., Zabel, T. A., & Jacobson, L. A. (2017). Is this the wave of the future? Examining the psychometric properties of child behavior rating scales online. Computers in Human Behavior, 70, 518522.Google Scholar
Ramtekkar, U. P., Reiersen, A. M., Todorov, A. A., & Todd, R. D. (2010). Sex and age differences in attention-deficit/hyperactivity disorder symptoms and diagnoses: Implications for DSM-V and ICD-11. Journal of the American Academy of Child and Adolescent Psychiatry, 49, 217228.Google Scholar
Reynolds, C. R., & Kamphaus, R. W. (2015). Behavior assessment system for children, 3rd edition (BASC-3). Circle Pines, MN: American Guidance Services.Google Scholar
Rodenacker, K., Hautmann, C., Gortz-Dorten, A., & Dopfner, M. (2017). The factor structure of ADHD – Different models, analyses and informants in a bifactor framework – testing the constructs in a German sample. Journal of Psychopathology and Behavioral Assessment, 39, 92102.Google Scholar
Rosales, A. G., Vitoratou, S., Banaschewski, T., Asherson, P., Buitelaar, J., Oades, R. D., … & Chen, W. (2015). Are all the 18 DSM-IV and DSM-5 criteria equally useful for diagnosing ADHD and predicting comorbid conduct problems? European Child and Adolescent Psychiatry, 24, 13251337.Google Scholar
Schmidt, M., Reh, V., Hirsch, O., Rief, W., & Christiansen, H. (2017). Assessment of ADHD symptoms and the issue of cultural variation: Are Conners 3 rating scales applicable to children and parents with migration background? Journal of Attention Disorders, 21, 587599.Google Scholar
Servera, M., Bernad, M. D., Carrillo, J. M., Collado, S., & Burns, G. L. (2016). Longitudinal correlates of sluggish cognitive tempo and ADHD-inattention symptom dimensions with Spanish children. Journal of Clinical Child and Adolescent Psychology, 45, 632641.Google Scholar

References

American Psychiatric Association (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: Author.Google Scholar
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (rev. 4th ed.). Washington, DC: Author.Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: Author.Google Scholar
Arango, V., Huang, Y., Underwood, M. D., & Mann, J. J. (2003). Genetics of the serotonergic system in suicidal behavior. Journal of Psychiatric Research, 37, 375386.Google Scholar
Beck, A. T., Kovacs, M., & Weissman, A. (1979). Assessment of suicidal intention: The Scale for Suicide Ideation. Journal of Consulting and Clinical Psychology, 47, 343352.Google Scholar
Beck, A. T., & Steer, R. A. (1993). Beck Scale for Suicide Ideation manual. San Antonio, TX: Psychological Corporation.Google Scholar
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the Beck Depression Inventory-II. San Antonio, TX: Psychological Corporation.Google Scholar
Beck, A. T., Steer, R. A., & Ranieri, W. F. (1988). Scale for Suicide Ideation: Psychometric properties of a self-report version. Journal of Clinical Psychology, 44, 499505.Google Scholar
Boyle, G. J., Helmes, E., Matthews, G., & Izard, C. E. (2015). Measures of affect dimensions. In Boyle, G. J., Saklofske, D. H., & Matthews, G. (Eds.), Measures of personality and social psychological constructs (pp. 190224). New York: Elsevier.Google Scholar
Brantley, P. R., & Brantley, P. J. (2017). Screening for depression. In Maruish, M. E. (Ed.), Handbook of psychological assessment in primary care settings (pp. 245276). New York: Routledge.Google Scholar
Bryan, C. J., Cukrowicz, K. C., West, C. L., & Morrow, C. E. (2010). Combat experience and the acquired capability for suicide. Journal of Clinical Psychology, 66, 10441056.Google Scholar
Busch, K. A., Fawcett, J., & Jacobs, D. G. (2003). Clinical correlates of inpatient suicide. Journal of Clinical Psychiatry, 64, 1419.Google Scholar
Campos, R. C., & Holden, R. R. (2015). Testing models relating rejection, depression, interpersonal needs and psychache to suicide risk in non-clinical individuals. Journal of Clinical Psychology, 71, 9941003.Google Scholar
Campos, R. C., & Holden, R. R. (2016). Portuguese version of the Suicidal Behaviors Questionnaire – Revised: Validation data and the establishment of a cut-score for screening purposes. European Journal of Psychological Assessment. doi:10.1027/1015-5759/a000385Google Scholar
Canetto, S. S., & Lester, D. (1998). Gender, culture, and suicidal behavior. Transcultural Psychiatry, 35, 163190.Google Scholar
Chen, F. F. (2008). What happens if we compare chopsticks with forks? The impact of making inappropriate comparisons in cross-cultural research. Journal of Personality and Social Psychology, 95, 10051018.Google Scholar
Cheng, S.-T., & Chan, A. C. M. (2005). The Center for Epidemiologic Studies Depression Scale in older Chinese: Thresholds for long and short forms. International Journal of Geriatric Psychiatry, 20, 465470.Google Scholar
Cheng, S.-T., Chan, A. C. M., & Fung, H. H. (2006). Factorial structure of a short version of the Center for Epidemiologic Studies Depression Scale. International Journal of Geriatric Psychiatry, 21, 333336.Google Scholar
Cochrane-Brink, K. A., Lofchy, J. S., & Sakinofsky, I. (2000). Clinical rating scales in suicide risk assessment. General Hospital Psychiatry, 22, 445451.Google Scholar
Curran, S. L., Andrykowski, M. A., & Studts, J. L. (1995). Short form of the Profile of Mood States (POMS-SF): Psychometric information. Psychological Assessment, 7, 8083.Google Scholar
D’Agata, M. T., & Holden, R. R. (2018). Self-concealment and perfectionistic self-presentation in the concealment of psychache and suicide ideation. Personality and Individual Differences, 125, 5661.Google Scholar
Dana, R. H. (2000). An assessment-intervention model for research and practice with multicultural populations. In Dana, R. H. (Ed.), Handbook of cross-cultural and multicultural personality assessment (pp. 516). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Eaton, W. W., Smith, C., Ybarra, M., Muntaner, C., & Tien, A. (2004). Center for Epidemiologic Studies Depression Scale: Review and revision (CESD and CESD-R). In Maruish, M. E. (Ed.), The use of psychological testing for treatment planning and outcomes assessment: Instruments for adults (pp. 363377). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Eaton, W. W., Ybarra, M., & Schwab, J. (2012). The CESD-R is available on the web. Psychiatry Research, 196, 161.Google Scholar
Erford, B. T., Johnson, E., & Bardoshi, G. (2016). Meta-analysis of the English version of the Beck Depression Inventory–Second Edition. Measurement and Evaluation in Counseling and Development, 49, 333.Google Scholar
Fekken, G. C., D’Agata, M. T., & Holden, R. R. (2016, July). The role of psychological pain and physical dissociation for understanding suicidality. Yokohama, International Congress of Psychology.Google Scholar
Fowler, J. C. (2012). Suicide risk assessment in clinical practice: Pragmatic guidelines for imperfect assessments. Psychotherapy, 49, 8190.Google Scholar
Fried, E. I., van Borkulo, C. D., Epskamp, S., Schoevers, R. A., Tuerlinckx, F., & Borsboom, D. (2016). Measuring depression over time … Or not? Lack of unidimensionality and longitudinal measurement invariance in four common rating scales of depression. Psychological Assessment, 28, 13541367.Google Scholar
Gold, J. A., Grill, M., Peterson, J., Pilcher, C., Lee, E., Hecht, F. M., & Spudich, S. (2014). Longitudinal characterization of depression and mood states beginning in primary HIV infection. AIDS and Behavior, 18, 11241132.Google Scholar
Granillo, M. T. (2012). Structure and function of the Patient Health Questionnaire-9 among Latina and Non-Latina White female college students. Journal of the Society for Social Work and Research 3, 8093.Google Scholar
Gutierrez, P. M., Osman, A., Barrios, F. X., & Kopper, B. A. (2001). Development and initial validation of the self-harm behavior questionnaire. Journal of Personality Assessment, 77, 475490.Google Scholar
Haroz, E. E., Ybarra, M. L., & Eaton, W. W. (2014). Psychometric evaluation of a self-report scale to measure adolescent depression: The CESD-R-10 in two national adolescent samples in the United States. Journal of Affective Disorders, 158, 154160.Google Scholar
Heuchert, J. P., & McNair, D. M. (2012). The Profile of Mood States (2nd ed.). North Tonawanda, NY: Multi-Health Systems.Google Scholar
Holden, R. R., & DeLisle, M. M. (2005). Factor analysis of the Beck Scale for Suicide Ideation with female suicide attempters. Assessment, 12, 231238.Google Scholar
Holden, R. R., Mendonca, J. D., & Mazmanian, D. (1985). Relation of response set to observed suicide intent. Canadian Journal of Behavioural Science, 17, 359368.Google Scholar
Hom, M. A., Joiner, T. E., & Bernert, R. A. (2016). Limitations of a single-item assessment of suicide attempt history: Implications for standardized suicide risk assessment. Psychological Assessment, 28, 10261030.Google Scholar
Horon, R., McManus, T., Schmollinger, J., Barr, T., & Jimenez, M. (2013). A study of the use and interpretation of standardized suicide risk assessment: Measures within a psychiatrically hospitalized correctional population. Suicide and Life-Threatening Behavior, 43, 1738.Google Scholar
Huang, F. Y., Chung, H., Kroenke, K., Delucchi, K. L., & Spitzer, R. L. (2006). Using the Patient Health Questionnaire-9 to measure depression among racially and ethnically diverse primary care patients. Journal of General Internal Medicine, 21, 547552.Google Scholar
Johnson, J. G., Harris, E. S., Spitzer, R. L., & Williams, J. B. W. (2002). The Patient Health Questionnaire for Adolescents: Validation of an instrument for the assessment of mental disorders among adolescent primary care patients. Journal of Adolescent Health, 30, 196204.Google Scholar
Kim, J., & Smith, T. (2017). Exploring measurement invariance by gender in the profile of mood states depression subscale among cancer survivors. Quality of Life Research, 26, 171175.Google Scholar
Kohout, F. J., Berkman, L. F., Evans, D. A., & Cornoni-Huntley, J. (1993). Two shorter forms of the CES-D Depression Symptoms Index. Journal of Aging and Health, 5, 179193.Google Scholar
Kroenke, K., Spitzer, R. L., & Williams, J. B. W. (2001). The PHQ-9: Validity of a brief depression severity measure. Journal of General Internal Medicine, 16, 606613.Google Scholar
Kroenke, K., Spitzer, R. L., & Williams, J. B. W. (2003). The Patient Health Questionnaire-2: Validity of a two-item depression screener. Medical Care, 41, 12841292.Google Scholar
Lewinsohn, P. M., Seeley, J. R., Roberts, R. E., & Allen, N. B. (1997). Center for Epidemiologic Studies Depression Scale (CES-D) as a screening instrument for depression among community-residing older adults. Psychology and Aging, 12, 277287.Google Scholar
Linehan, M. M. (1981). The Suicidal Behaviors Questionnaire (SBQ). Unpublished instrument, University of Washington, Seattle, WA.Google Scholar
Linehan, M. M., & Addis, M. E. (1983). Screening for suicidal behaviors: The Suicidal Behaviors Questionnaire. Unpublished manuscript, University of Washington, Seattle, WA.Google Scholar
Linehan, M. M., Goodstein, L. J., Nielsen, S. L., & Chiles, J. A. (1983). Reasons for staying alive when you are thinking of killing yourself: The Reasons for Living Inventory. Journal of Consulting and Clinical Psychology, 51, 276286.Google Scholar
Linehan, M. M., & Nielsen, S. L. (1981). Assessment of suicide ideation and parasuicide: Hopelessness and social desirability. Journal of Consulting and Clinical Psychology, 49, 773775.Google Scholar
Manea, L., Gilbody, S., & McMillan, D. (2012). Optimal cut-off score for diagnosing depression with the Patient Health Questionnaire (PHQ-9): A meta-analysis. Canadian Medical Association Journal, 184 (3), E191E196.Google Scholar
Manea, L., Gilbody, S., & McMillan, D. (2015). A diagnostic meta-analysis of the Patient Health Questionnaire-9 (PHQ-9) algorithm scoring method as a screen for depression. General Hospital Psychiatry, 37, 6775.Google Scholar
McNair, D. M., Lorr, M., & Droppleman, L. F. (1992). Profile of Mood States manual. San Diego: Educational and Industrial Testing Service.Google Scholar
Millner, A., Lee, M. D., & Nock, M. K. (2015). Single-item measurement of suicidal behaviors: Validity and consequences of misclassification. PLoS ONE, 10, e0141606.Google Scholar
Mitchell, A. J., Yadegarfar, M., Gill, J., & Stubbs, B. (2016). Case finding and screening clinical utility of the Patient Health Questionnaire (PHQ-9 and PHQ-2) for depression in primary care: a diagnostic meta-analysis of 40 studies. BJPsych Open, 2(2), 127138.Google Scholar
Moriarty, A. S., Gilbody, S., McMillan, D., & Manea, L. (2015). Screening and case finding for major depressive disorder using the Patient Health Questionnaire (PHQ-9): A meta-analysis. General Hospital Psychiatry, 37, 567576.Google Scholar
Myers, J. K., & Weissman, M. M. (1980). Use of a self-report symptom scale to detect depression in a community sample. American Journal of Psychiatry, 137, 10811084.Google Scholar
Myers, K., & Winters, N. C. (2002). Ten-year review of rating scales. II. Scales for internalizing disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 634659.Google Scholar
Nabbe, P., Le Reste, J. Y., Guillou-Landreat, M., Munoz Perez, M. A., Argyriadou, S., Claveria, A., … & Van Royen, P. (2017). Which DSM validated tools for diagnosing depression are usable in primary care research? A systematic literature review. European Psychiatry, 39, 99105.Google Scholar
National Institute of Mental Health (n.d.). Suicide in the U.S.: Statistics and prevention. www.nimh.nih.gov/health/publications/suicide-in-the-us-statistics-and-prevention/index.shtmlGoogle Scholar
Osman, A., Bagge, C. L., Gutierrez, P. M., Konick, L. C., Kopper, B. A., & Barrios, F. X. (2001). The Suicidal Behaviors Questionnaire – Revised (SBQ-R): Validation with clinical and nonclinical samples. Assessment, 8, 443454.Google Scholar
Osman, A., Kopper, B. A., Barrios, F., Gutierrez, P. M., & Bagge, C. L. (2004). Reliability and validity of the Beck Depression Inventory-II with adolescent psychiatric inpatients. Psychological Assessment, 16, 120132.Google Scholar
Osman, A., Kopper, B. A., Linehan, M. M., Barrios, F. X., Gutierrez, P. M., & Bagge, C. L. (1999). Validation of the Adult Suicidal Ideation Questionnaire and the Reasons for Living Inventory in an adult psychiatric inpatient sample. Psychological Assessment, 11, 115123.Google Scholar
Patterson, K., Young, C., Woods, S. P., Vigil, O., Grant, I., Atkinson, J. H., & HIV Neurobehavioral Research Center (HNRC) Group. (2006). Screening for major depression in persons with HIV infection: The concurrent predictive validity of the Profile of Mood States Depression-Dejection scale. International Journal of Methods in Psychiatric Research, 15, 7582.CrossRefGoogle ScholarPubMed
Polanczyk, G. V., Salum, G. A., Sugaya, L. S., Caye, A., & Rohde, L. A. (2015). Annual research review: A meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. Journal of Child Psychology and Psychiatry, 56, 345365.Google Scholar
Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385401.Google Scholar
Randall, J. R., Rowe, B. H., Dong, K. A., Nock, M. K., & Colman, I. (2013). Assessment of self-harm risk using implicit thoughts. Psychological Assessment, 25, 714721.Google Scholar
Reynolds, W. M. (1987). Suicidal Ideation Questionnaire. Odessa, FL: Psychological Assessment Resources.Google Scholar
Reynolds, W. M. (1991). Adult Suicidal Ideation Questionnaire. Odessa, FL: Psychological Assessment Resources.Google Scholar
Shakeri, J., Farnia, V., Abdoli, N. Akrami, M. R., Arman, F., & Shakeri, H. (2015). The risk of repetition of attempted suicide among Iranian women with psychiatric disorders as quantified by the Suicide Behaviors Questionnaire. Oman Medical Journal, 30, 173180.Google Scholar
Shneidman, E. S. (1994). Clues to suicide, reconsidered. Suicide and Life-threatening Behavior, 24, 395397.Google Scholar
Spitzer, R. L., Williams, J. B. W., Gibbon, M., & First, M. B. (1992). The structured clinical interview for DSM-III-R (SCID). Archives of General Psychiatry, 49, 624–9.Google Scholar
Steer, R. A., Rissmiller, D. J., Ranieri, W. F., & Beck, A. T. (1993). Dimensions of suicidal ideation in psychiatric inpatients. Behaviour Research and Therapy, 31, 229236.Google Scholar
Stice, B. D., & Canetto, S. S. (2008). Older adult suicide: Perceptions of precipitants and protective factors. Clinical Gerontologist, 31, 430.Google Scholar
Streiner, D. L., Norman, G. R., & Cairney, J. (2015). Health measurement scales: A practical guide to their development and use (5th ed.). New York: Oxford University Press.Google Scholar
Thombs, B., Ziegelstein, R., Pilote, L., Dozois, D., Beck, A., Dobson, K., … & Abbey, S. (2010). Somatic symptom overlap in Beck Depression Inventory-II scores following myocardial infarction. British Journal of Psychiatry, 197, 6165.Google Scholar
Troister, T., & Holden, R. R. (2012a). Suicide ideation in transitioning university undergraduates. Paper presented at the International Congress of Psychology, July, Cape Town, South Africa.Google Scholar
Troister, T., & Holden, R. R. (2012b). A two-year prospective study of psychache and its relationship to suicidality among high-risk undergraduates. Journal of Clinical Psychology, 68, 10191027.Google Scholar
Troister, T., Davis, M. P., Lowndes, A., & Holden, R. R. (2013). A five-month longitudinal study of psychache and suicide ideation: Replication in general and high-risk university students. Suicide and Life-Threatening Behavior, 43, 611620.Google Scholar
Van Dam, N. T., & Earleywine, M. (2011). Validation of the Center for Epidemiologic Studies Depression Scale-Revised (CESD-R): Pragmatic depression assessment in the general population. Psychiatry Research, 186, 128132.Google Scholar
Vilagut, G., Forero, C. G., Barbaglia, G., & Alonso, J. (2016). Screening for depression in the general population with the Center for Epidemiologic Studies Depression (CES-D): A systematic review with meta-analysis. PLoS ONE, 11(5), e0155431.Google Scholar
Walsh, C. G., Ribeiro, J. D., & Franklin, J. C. (2017). Predicting risk of suicide attempts over time through machine learning. Clinical Psychological Science, 5, 457469.Google Scholar
Wang, Y. P., & Gorenstein, C. (2013). Assessment of depression in medical patients: A systematic review of the utility of the Beck Depression Inventory-II. CLINICS (Sao Paulo), 68(9), 12741287.Google Scholar
WHO (World Health Organization). (2014a). Preventing suicide: A global imperative. Geneva: Author.Google Scholar
WHO (World Health Organization. (2014b). Global health estimates 2013: Deaths by cause, age, and sex, estimates for 2000–2012. Geneva: Author.Google Scholar
WHO (World Health Organization). (2017). Depression and other common mental disorders: Global health estimates. Geneva: Author.Google Scholar
Wittkampf, K. A., Naeije, L., Schene, A. H., Huyser, J., & van Weert, H. C. (2007). Diagnostic accuracy of the mood module of the Patient Health Questionnaire: A systematic review. General Hospital Psychiatry, 29, 388395.Google Scholar
Wong, Y.-L. I. (2000). Measurement properties of the Center for Epidemiologic Studies Depression Scale in a homeless population. Psychological Assessment, 12, 6976. http://apps.who.int/iris/bitstream/10665/254610/1/WHO-MSD-MER-2017.2-eng.pdfGoogle Scholar
Ziegler, M., & Bensch, D. (2013). Lost in translation: Thoughts regarding the translation of existing psychological measures into other languages. European Journal of Psychological Assessment, 29, 8183.Google Scholar

References

Abramowitz, J. S. (2018). Presidential address: Are the obsessive-compulsive related disorders related to obsessive-compulsive disorder? A critical look at DSM-5’s new category. Behavior Therapy, 49, 111.Google Scholar
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Arlington, VA, American Psychiatric Association.Google Scholar
Antony, M. M., Bieling, P. J., Cox, B. J., Enns, M. W., & Swinson, R. P. (1998). Psychometric properties of the 42-item and 21-item versions of the Depression Anxiety Stress Scales (DASS) in clinical groups and a community sample. Psychological Assessment, 10, 176181.Google Scholar
Antony, M. M., Ledley, D. R., Liss, A., & Swinson, R. P. (2006). Responses to symptom induction exercises in panic disorder. Behaviour Research and Therapy, 44, 8598.Google Scholar
Asnaani, A., Aderka, I. M., Marques, L., Simon, N., Robinaugh, D. J., & Hofmann, S. G. (2015). The structure of feared social situations among race-ethnic minorities and Whites with social anxiety disorder in the United States. Transcultural Psychiatry, 52, 791807.Google Scholar
Asnaani, A., Richey, J. A., Dimaite, R., Hinton, D. E., & Hofmann, S. G. (2010). A cross-ethnic comparison of lifetime prevalence rates of anxiety disorders. The Journal of Nervous and Mental Disease, 198, 551555.Google Scholar
Baker, S. L., Heinrichs, N., Kim, H.-J., & Hofmann, S. G. (2002). The Liebowitz social anxiety scale as a self-report instrument: A preliminary psychometric analysis. Behaviour Research and Therapy, 40 (6), 701715.Google Scholar
Bardhoshi, G., Duncan, K., & Erford, B.T. (2016). Psychometric meta-analysis of the English version of the Beck Anxiety Inventory. Journal of Counseling and Development, 94, 356373.Google Scholar
Barlow, D. H., Hayes, S. C., & Nelson, R. O. (1984). The scientist-practitioner: Research and accountability in clinical and educational settings. Needham Heights, MA: Allyn & Bacon.Google Scholar
Baxter, A. J., Scott, K. M., Vos, T., & Whiteford, H. A. (2012). Global prevalence of anxiety disorders: a systematic review and meta-regression. Psychological Medicine, 43, 897910.Google Scholar
Baxter, A. J., Vos, T., Scott, K. M., Ferrari, A. J., & Whiteford, H. A. (2014). The global burden of anxiety disorders in 2010. Psychological Medicine, 44, 23632374.Google Scholar
Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology, 56, 893897.Google Scholar
Behar, E., DiMarco, I. D., Hekler, E. B., Mohlman, J., & Staples, A. M. (2009). Current theoretical models of generalized anxiety disorder (GAD): Conceptual review and treatment implications. Journal of Anxiety Disorders, 23, 10111023.Google Scholar
Brown, T. A., Antony, M. M., & Barlow, D. H. (1992). Psychometric properties of the Penn State Worry Questionnaire in a clinical anxiety disorders sample. Behaviour Research and Therapy, 30, 3337.Google Scholar
Brown, T. A. & Barlow, D. H. (2014). Anxiety and Related Disorders Interview Schedule for DSM-5 (ADIS-5) – Adults and Lifetime Version: Clinician Manual. Oxford: Oxford University Press.Google Scholar
Brown, T. A., Chorpita, B. F., Korotitsch, W., & Barlow, D. H. (1997). Psychometric properties of the Depression Anxiety Stress Scales (DASS) in clinical samples. Behaviour Research and Therapy, 35, 7989.Google Scholar
Brown, T. A., Di Nardo, P. A., Lehman, C. L., & Campbell, L. A. (2001). Reliability of DSM-IV anxiety and mood disorders: Implications for the classification of emotional disorders. Journal of Abnormal Psychology, 110, 4958.Google Scholar
Buhr, K., & Dugas, M. J. (2002). The intolerance of uncertainty scale: Psychometric properties of the English version. Behaviour Research and Therapy, 40, 931945.Google Scholar
Carleton, R. N., Collimore, K. C., Asmundson, G. J. G., McCabe, R. E., Rowa, K., & Antony, M. M. (2009). Refining and validating the Social Interaction Anxiety Scale and the Social Phobia Scale. Depression and Anxiety, 26, E71E81.Google Scholar
Carleton, R. N., Thibodeau, M. A., Weeks, J. W., Sapach, M. J. N. T., McEvoy, P. M., Horswill, S. C., & Heimberg, R. G. (2014). Comparing short forms of the Social Interaction Anxiety Scale and the Social Phobia Scale. Psychological Assessment, 26 (4), 11161126.Google Scholar
Carlson, E. B., Field, N. P., Ruzek, J. I., Bryant, R. A., Dalenberg, C. J., Keane, T. M., & Spain, D. A. (2016). Advantages and psychometric validation of proximal intensive assessments of patient-reported outcomes collected in daily life. Quality of Life Research, 25, 507516.Google Scholar
Chambless, D. L., Caputo, G. C., Bright, P., & Gallagher., R. (1984). Assessment of fear of fear on agoraphobics: the body sensations questionnaire and the agoraphobic cognitions questionnaire. Journal of Consulting and Clinical Psychology, 52, 10901097.Google Scholar
Chambless, D. L., Caputo, G. C., Jasin, S. L., Gracely, E. I, & Williams, C. (1985). The mobility inventory for agoraphobia. Behaviour Research and Therapy, 23, 3544.Google Scholar
Chambless, D. L., Sharpless, B. A., Rodriguez, D., McCarthy, K. S., Milrod, B. L., Khalsa, S. R., & Barber, J. P. (2011). Psychometric properties of the Mobility Inventory for Agoraphobia: Convergent, discriminant, and criterion-related validity. Behavior Therapy, 42, 689699.Google Scholar
Chmielewski, M., Clark, L. A., Bagby, R. M., & Watson, D. (2015). Method matters: Understanding diagnostic reliability in DSM-IV and DSM-5. Journal of Abnormal Psychology, 124, 764769.Google Scholar
Clark, D. M. (1986). A cognitive approach to panic. Behaviour Research and Therapy, 24, 461470.Google Scholar
Clark, D. M., & Wells, A. (1995). A cognitive model of social phobia. In Heimberg, R. G., Liebowitz, M. R., Hope, D. A., & Schneier, F. R. (Eds.), Social Phobia: Diagnosis, assessment and treatment (pp. 6993). New York: Guilford Press.Google Scholar
Contreras, S., Fernandez, S., Malcarne, V. L., Ingram, R. E., Vaccarino, V. R. (2004). Reliability and validity of the Beck Depression and Anxiety Inventories in Caucasian Americans and Latinos. Hispanic Journal of Behavioral Sciences, 26, 446462.Google Scholar
Cuming, S., Rapee, R. M., Kemp, N., Abbott, M. J., Peters, L., & Gaston, J. E. (2009). A self-report measure of subtle avoidance and safety behaviors relevant to social anxiety: Development and psychometric properties. Journal of Anxiety Disorders, 23, 879883.Google Scholar
Dear, B. F., Titov, N., Sunderland, M., McMillan, D., Anderson, T., Lorian, C., & Robinson, E. (2011). Psychometric comparison of the Generalized Anxiety Disorder Scale-7 and the Penn State Worry Questionnaire for measuring response during treatment of Generalised Anxiety Disorder. Cognitive Behaviour Therapy, 40, 216227.Google Scholar
First, M. B., Williams, J. B. W., Karg, R. S., & Spitzer, R. L. (2016). Structured Clinical Interview for DSM-5 Disorders – Clinician Version (SCID-5-CV). Arlington, VA: American Psychiatric Association Publishing.Google Scholar
Foa, E. B., Huppert, J. D., Leiberg, S., Langner, R., Kichic, R., Hajcak, G., & Salkovskis, P. M. (2002). The Obsessive-Compulsive Inventory: Development and validation of a short version. Psychological Assessment, 14, 485496.Google Scholar
Foa, E. B., Kozak, M. J., Salkovskis, P. M., Coles, M. E., & Amir, N. (1998) The validation of a new Obsessive-Compulsive Disorder scale: The Obsessive-Compulsive Inventory. Psychological Assessment, 10, 206214.Google Scholar
Fresco, D. M., Coles, M. E., Heimberg, R. G., Liebowitz, M. R., Hami, S., Stein, M. B., & Goetz, D. (2001). The Liebowitz Social Anxiety Scale: A Comparison of the psychometric properties of self-report and clinician-administered formats. Psychological Medicine, 31, 10251035.Google Scholar
Furukawa, T. A., Shear, M. K., Barlow, D. H., Gorman, J. M., Woods, S. W., Money, R., Etschel, E., Engel, R. R., & Leucht, S. (2009). Evidence-based guidelines for interpretation of the Panic Disorder Severity Scale. Depression and Anxiety, 26, 922929.Google Scholar
Goodman, W. K., Price, L. H., Rasmussen, S. A., Mazure, C., Delgado, P., Heninger, G. R., & Charney, D.S. (1989a). The Yale-Brown Obsessive Compulsive Scale: II. Validity. Archives of General Psychiatry, 46, 10121016.Google Scholar
Goodman, W. K., Price, L. H., Rasmussen, S. A., Mazure, C., Fleischmann, R. L., Hill, C. L., Heninger, G. R., & Charney, D. S. (1989b). The Yale-Brown Obsessive Compulsive Scale: I. Development, use, and reliability. Archives of General Psychiatry, 46, 10061011.Google Scholar
Gros, D. F., & Sarver, N. W. (2014). An investigation of the psychometric properties of the Social Thoughts and Beliefs Scale (STABS) and structure of cognitive symptoms in participants with social anxiety disorder and healthy controls. Journal of Anxiety Disorders, 28, 283290.Google Scholar
Heimberg, R. G., Horner, K. J., Juster, H. R., Safren, S. A., Brown, E. J., Schneier, F. R., & Liebowitz, M. R. (1999). Psychometric properties of the Liebowitz Social Anxiety Scale. Psychological Medicine, 29, 199212.Google Scholar
Hofman, S. G., & Smits, J. A. J. (2008). Cognitive–behavioral therapy for adult anxiety disorders: A meta-analysis of randomized placebo-controlled trials. The Journal of Clinical Psychiatry, 69, 621632.Google Scholar
Houck, P. R., Spiegel, D. A., Shear, M. K., & Rucci, P. (2002). Reliability of the self-report version of the Panic Disorder Severity Scale. Depression and Anxiety, 15, 183185.Google Scholar
Kertz, S., Bigda-Peyton, J., Bjorgvinsson, T. (2013). Validity of the Generalised Anxiety Disorder-7 scale in an acute psychiatric sample. Clinical Psychology and Psychotherapy, 20 (5), 456464.Google Scholar
Leary, M. R. (1983). A brief version of the Fear of Negative Evaluation Scale. Personality and Social Psychology Bulletin, 9, 371375.Google Scholar
Lees-Haley, P. R., & Dunn, J. T. (1994). The ability of naïve subjects to report symptoms of mild brain injury, post-traumatic stress disorders, major depression, and generalized anxiety disorder. Journal of Clinical Psychology, 50, 252256.Google Scholar
Liebowitz, M. R. (1987). Social Phobia. Modern Problems of Pharmacopsychiatry, 22, 141173.Google Scholar
Lindner, P., Martell, C., Bergström, J., Andersson, G., & Carlbring, P. (2013). Clinical validation of a non-heteronormative version of the Social Interaction Anxiety Scale (SIAS). Health and Quality of Life Outcomes, 11, 209.Google Scholar
Lovibond, P. F., & Lovibond, S. H. (1995). The structure of the negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behaviour Research and Therapy, 33, 335343.Google Scholar
Mattick, R. P., & Clarke, J. C. (1998). Development and validation of measures of social phobia scrutiny fear and social interaction anxiety. Behaviour Research and Therapy, 36, 455470.CrossRefGoogle ScholarPubMed
Mattick, R. P., & Peters, L. (1988). Treatment of severe social phobia: Effects of guided exposure with and without cognitive restructuring. Journal of Consulting and Clinical Psychology, 56, 251260.Google Scholar
Mattick, R. P., Peters, L., & Clarke, J. C. (1989). Exposure and cognitive restructuring for severe social phobia: A controlled study. Behavior Therapy, 20, 323.Google Scholar
McEvoy, P. M., Grove, R., & Slade, T. (2011). Epidemiology of anxiety disorders in the Australian general population: Findings of the 2007 Australian National Survey of Mental Health and Wellbeing. Australian & New Zealand Journal of Psychiatry, 45, 957967.Google Scholar
McEvoy, P. M., & Mahoney, A. E. J. (2011). Achieving certainty about the structure of the intolerance of uncertainty in a treatment-seeking sample with anxiety and depression. Journal of Anxiety Disorders, 25, 112122.Google Scholar
McNally, R. J. (2002). Anxiety sensitivity and panic disorder. Biological Psychiatry, 52,938946.Google Scholar
Meyer, T. L., Miller., M. L., & Borkovec., T. D. (1990). Development and validation of the Penn State Worry Questionnaire. Behaviour Research and Therapy, 28, 487495.Google Scholar
Moritz, S., Van Quaquebeke, N., Hauschildt, M., Jelinek, L., & Gonner, S. (2012). Good news for allegedly bad studies. Assessment of psychometric properties may help to elucidate deception in online studies on OCD. Journal of Obsessive-Compulsive and Related Disorders, 1, 331335.Google Scholar
Obsessive Compulsive Cognitions Working Group. (2001). Development and initial validation of the obsessive beliefs questionnaire and the interpretation of intrusions inventory. Behaviour Research and Therapy, 39, 9871006.Google Scholar
Obsessive Compulsive Cognitions Working Group. (2003). Psychometric validation of the Obsessive Beliefs Questionnaire and the Interpretation of Intrusions Inventory: Part 1. Behaviour Research and Therapy, 41, 863878.Google Scholar
Obsessive Compulsive Cognitions Working Group. (2005). Psychometric validation of the Obsessive Beliefs Questionnaire and the Interpretation of Intrusions Inventory: Part 2: Factor analyses and testing of a brief version. Behaviour Research and Therapy, 43, 15271542.Google Scholar
Oei, T. P. S., Sawang, S., Goh, Y. W., & Mukhtar, F. (2013). Using the Depression Anxiety Stress Scale 21 (DASS-21) across cultures. International Journal of Psychology, 48, 10181029.Google Scholar
Parkerson, H. A., Thibodeau, M. A., Brandt, C. P., Zvolensky, M. J., & Asmundson, G. J. G. (2015). Cultural-based biases of the GAD-7. Journal of Anxiety Disorders, 31, 3842.Google Scholar
Pearl, S. B., & Norton, P. J. (2017). Transdiagnostic versus diagnostic specific cognitive behavioural therapies for anxiety: A meta-analysis. Journal of Anxiety Disorders, 46, 1124.Google Scholar
Persons, J. B. (2006). Case formulation-driven psychotherapy. Clinical Psychology: Science and Practice, 13(2), 167170.Google Scholar
Persons, J. B. (2013). Who needs a case formulation and why: Clinicians use the case formulation to guide decision-making. Pragmatic Case Studies in Psychotherapy, 9(4), 448–156.Google Scholar
Peters, L. (2000). Discriminant validity of the Social Phobia and Anxiety Inventory (SPAI), the Social Phobia Scale (SPS) and the Social Inter- action Anxiety Scale (SIAS). Behaviour Research and Therapy, 38, 943950.Google Scholar
Peters, L., Sunderland, M., Andrews, G., Rapee, R. M., & Mattick, R. P. (2012). Development of a Short Form Social Interaction Anxiety (SIAS) and Social Phobia Scale (SPS) using Nonparametric Item Response Theory: the SIAS-6 and the SPS-6. Psychological Assessment, 24(1), 6676.Google Scholar
Piccirillo, M. L., Dryman, M. T., & Heimberg, R. G. (2016). Safety behaviors in adults with social anxiety: Review and future directions. Behavior Therapy, 47, 675687.Google Scholar
Plummer, F., Manea, L., Trepel, D., & McMillan, D. (2016). Screening for anxiety disorders with the GAD-7 and GAD-2: a systematic review and diagnostic metaanalysis. General Hospital Psychiatry, 39, 2431.Google Scholar
Rapee, R. M., & Heimberg, R. G. (1997). A cognitive-behavioral model of anxiety in social phobia. Behaviour Research and Therapy, 35, 741756.Google Scholar
Reiss, S., Peterson, R. A., Gursky, D. M., & McNally, R. J. (1986). Anxiety sensitivity, anxiety frequency, and the prediction of fearfulness. Behaviour Research and Therapy, 24, 18.Google Scholar
Ries, B. J., McNeil, D. W., Boone, M. L., Turk, C. L., Carter, L. E., & Heimberg, R. G. (1998). Assessment of contemporary social phobia verbal report instruments. Behaviour Research and Therapy, 36, 983994.Google Scholar
Rodebaugh, T. L., Heimberg, R. G., Brown, P. J., Fernandez, K. C., Blanco, C., Schneier, F. R., & Liebowitz, M. R. (2011). More reasons to be straightforward: Findings and norms for two scales relevant to social anxiety. Journal of Anxiety Disorders, 25, 623630.Google Scholar
Rogers, R., Ornduff, S. R., & Sewell, K. W. (1993). Feigning specific disorders: A study of the Personality Assessment Inventory (PAI). Journal of Personality Assessment, 60, 554560.Google Scholar
Schneider, S., Margraf, J., Spoerkel, H., & Franzen, U. (1992). Therapy-related diagnosis: Reliability of the Diagnostic Interview for Mental Disorders (DIMD). Diagnostica, 38, 209227.Google Scholar
Shankman, S. A., Funkhouser, C. J., Klein, D. N., Davila, J., Lerner, D., & Hee, D. (2018). Reliability and validity of severity dimensions of psychopathology assessed using the Structured Clinical Interview for DSM-5. International Journal of Methods in Psychiatric Research, 27, e1590.Google Scholar
Shear, M. K., Brown, T. A., Barlow, D. H., Money, R., Sholomskas, D. E., Woods, S. W., Gorman, J. M., & Papp, L. A. (1997). Multicenter collaborative Panic Disorder Severity Scale. American Journal of Psychiatry, 154, 15711575.Google Scholar
Shulman, G. P., & Hope, D. A. (2016). Putting our multicultural training into practice: Assessing social anxiety disorder in sexual minorities. The Behavior Therapist, 39, 315319.Google Scholar
Spitzer, R. L. Kroenke, K., Williams, J. B. W., & Löwe, B. (2006). A brief measure for assessing Generalised Anxiety Disorder: The GAD-7. Archives of Internal Medicine, 166, 10921097.Google Scholar
Stein, J., Modini, M., Hunt, C., & Abbott, M. J. (2017). A systematic review of the psychometric properties of trait cognitive self-report measures in social anxiety. Journal of Psychopathology and Behavioural Assessment, 39, 147163.Google Scholar
Storch, E. A., Rasmussen, S. A., Price, L. H., Larson, M. J., Murphy, T. K., & Goodman, W. K. (2010). Development and psychometric evaluation of the Yale-Brown Obsessive-Compulsive Scale – Second edition. Psychological Assessment, 22, 223232.Google Scholar
Taylor, S., Abramowitz, J. S., McKay, D. (2007). Cognitive-behavioural models of obsessive-compulsive disorder. In Antony, M. M., Purdon, C., & Summerfeldt, L. J. (Eds.). Psychological treatment of obsessive-compulsive disorder: Fundamentals and beyond (pp. 929). Washington, DC: American Psychological Association.Google Scholar
Taylor, S., & Cox, B. J. (1998). An expanded Anxiety Sensitivity Index: Evidence for a hierarchic structure in a clinical sample. Journal of Anxiety Disorders, 12, 463483.Google Scholar
Turner, S. M., Johnson, M. R., Beidel, D. C., Heiser, N. A., & Lydiard, R. B. (2003). The Social Thoughts and Beliefs Scale: A new inventory for assessing cognitions in social phobia. Psychological Assessment, 15, 384391.Google Scholar
Turner, S. M., McCanna, M., & Beidel, D. C. (1987). Validity of the social avoidance and distress and fear of negative evaluation scales. Behaviour Research and Therapy, 25, 113115.Google Scholar
Watson, D., & Friend, R. (1969). Measurement of social-evaluative anxiety. Journal of Consulting and Clinical Psychology, 33, 448457.Google Scholar
Weiss, B. J., Hope, D. A., & Capozzolo, M. C. (2013). Heterocentric language in commonly used measures of social anxiety: Recommended alternate wording. Behavior Therapy, 44, 111.Google Scholar
Wells, A., & Cartwright-Hatton, S. (2003). A short form of the metacognitions questionnaire: Properties of the MCQ-30. Behaviour Research and Therapy, 42, 385396.Google Scholar
Williams, M., Davis, D. M., Thibodeau, M. A., & Bach, N. (2013). Psychometric properties of the Obsessive-Compulsive Inventory revised in African Americans with and without obsessive-compulsive disorder. Journal of Obsessive-Compulsive and Related Disorders, 2, 399405.Google Scholar
Woody, S. T., Steketee, G., & Chambless, D. L. (1995). Reliability and validity of the Yale-Brown Obsessive-Compulsive Scale. Behaviour Research and Therapy, 33, 597605.Google Scholar
Wong, Q. J. J., Chen, J., Gregory, B., Baillie, A. J., Nagata, T., Furukawa, T. A., Kaiya, H., Peters, L., & Rapee, R. M. (2019). Measurement equivalence of the Social Interaction Anxiety Scale (SIAS) and the Social Phobia Scale (SPS) across individuals with social anxiety disorder from Japanese and Australian sociocultural contexts. Journal of Affective Disorders, 243, 165174.Google Scholar
Wu, M. S., McGuire, J. F., Horng, B., Storch, E. A. (2016). Further psychometric properties of the Yale-Brown Obsessive Compulsive Scale – Second Edition. Comprehensive Psychiatry, 66, 96103.Google Scholar
Wuyek, L. A., Antony, M. M., & McCabe, R. E. (2011). Psychometric properties of the Panic Disorder Severity Scale: Clinician-administered and self-report versions. Clinical Psychology and Psychotherapy, 18, 234243.Google Scholar
Zvolensky, M. J., Arrindell, W. A., Taylor, S., Bouvard, M., Cox, B. J., Stewart, S. H., Sandin, B., Cardenas, S. J., & Eifert, G. H. (2003). Anxiety sensitivity in six countries. Behaviour Research and Therapy, 41, 841859.Google Scholar

References

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.Google Scholar
Bagby, R. M., Nicholson, R. A., Bacchiochi, J. R., Ryder, A. G., & Bury, A. S. (2002). The predictive capacity of the MMPI-2 and PAI validity scales and indexes to detect coached and uncoached feigning. Journal of Personality Assessment, 78, 6986.Google Scholar
Ben-Porath, Y. S., & Tellegen, A. (2008). Minnesota Multiphasic Personality Inventory—2 Restructured Form; Manual for administration, scoring, and interpretation. Minneapolis: University of Minnesota Press.Google Scholar
Blevins, C. A., Weathers, F. W., Davis, M. T., Witte, T. K., & Domino, J. L. (2015). The Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5): Development and initial psychometric evaluation. Journal of Traumatic Stress, 28, 489498.Google Scholar
Bodkin, J. A., Pope, H. G., Detke, M. J., & Hudson, J. I. (2007). Is PTSD caused by traumatic stress?. Journal of Anxiety Disorders, 21, 176182.Google Scholar
Bovin, M. J., Marx, B. P., Weathers, F. W., Gallagher, M. W., Rodriguez, P., Schnurr, P. P., & Keane, T. M. (2015). Psychometric properties of the PTSD Checklist for Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (PCL-5) in veterans. Psychological Assessment, 28, 13791391.Google Scholar
Brady, K. T., Killeen, T. K., Brewerton, T., & Lucerini, S. (2000). Comorbidity of psychiatric disorders and posttraumatic stress disorder. The Journal of Clinical Psychiatry, 61 (Suppl7), 2232.Google Scholar
Briere, J. (2001). Detailed assessment of posttraumatic stress. Odessa, FL: Psychological Assessment Resources.Google Scholar
Briere, J. (2004). Psychological assessment of adult posttraumatic states: Phenomenology, diagnosis, and measurement (2nd ed.). Washington, DC: American Psychological Association.Google Scholar
Briere, J. (2011). Trauma Symptom Inventory, 2nd ed. (TSI-2) professional manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Briggs, E. C., Nooner, K., & Amaya-Jackson, L. M. (2014). Assessment of childhood PTSD. In Friedman, M. J., Keane, T. M., & Resick, P. A. (Eds.), Handbook of PTSD: Science and practice (2nd ed. pp. 391405). New York: Guilford.Google Scholar
Brown, T. A., & Barlow, D. H. (2014). Anxiety Disorders Interview Schedule for DSM-5 (ADIS-5). New York: Oxford University Press.Google Scholar
Creamer, M., Bell, R., & Failla, S. (2003). Psychometric properties of the impact of event scale – revised. Behaviour Research and Therapy, 41, 14891496.Google Scholar
Crowne, D. P., & Marlowe, D. (1960). A new scale of social desirability independent of psychopathology. Journal of Consulting Psychology, 24, 349354.Google Scholar
Elhai, J. D., Gray, M. J., Kashdan, T. B., & Franklin, C. L. (2005). Which instruments are most commonly used to assess traumatic event exposure and posttraumatic effects? A survey of traumatic stress professionals. Journal of Traumatic Stress, 18, 541545.Google Scholar
First, M. B., Williams, J. B. W., Karg, R. S., & Spitzer, R. L. (2015). Structured Clinical Interview for DSM-5 Disorders, Clinician Version (SCID-5-CV). Arlington, VA: American Psychiatric Association.Google Scholar
Foa, E. B., Cashman, L., Jaycox, L., & Perry, K. (1997). The validation of a self-report measure of posttraumatic stress disorder: The Posttraumatic Diagnostic Scale. Psychological Assessment, 9, 445451.Google Scholar
Foa, E. B., McLean, C. P., Zang, Y., Zhong, J., Powers, M. B., Kauffman, B. Y., … & Knowles, K. (2016a). Psychometric properties of the posttraumatic diagnostic scale for DSM-5 (PDS-5). Psychological Assessment, 28, 11661171.Google Scholar
Foa, E. B., McLean, C. P., Zang, Y., Zhong, J., Rauch, S., Porter, K., … & Kauffman, B. Y. (2016b). Psychometric properties of the Posttraumatic Stress Disorder Symptom Scale Interview for DSM–5 (PSSI–5). Psychological Assessment, 28, 11591165.Google Scholar
Goodman, L., Corcoran, C., Turner, K., Yuan, N., & Green, B. (1998). Assessing traumatic event exposure: General issues and preliminary findings for the Stressful Life Events Screening Questionnaire. Journal of Traumatic Stress, 11, 521542.Google Scholar
Goodwin, B.E., Sellbom, M., & Arbisi, P.A. (2013). Post-traumatic stress disorder in veterans: The utility of the MMPI-2-RF validity scales in detecting over-reported symptoms. Psychological Assessment, 25, 671678.Google Scholar
Gray, M., Litz, B., Hsu, J., & Lombardo, T. (2004). Psychometric properties of the Life Events Checklist. Assessment, 11, 330341.Google Scholar
Hinton, D. E., & Good, B. J. (2016). The culturally sensitive assessment of trauma: Eleven analytic perspectives, a typology of errors, and the multiplex models of distress generation. In Hinton, D. E. & Good, B. J. (Eds.), Culture and PTSD: Trauma in global and historical perspective (pp. 50113). Philadelphia: University of Pennsylvania Press.Google Scholar
Hinton, D. E., & Lewis-Fernandez, R. (2011). The cross-cultural validity of posttraumatic stress disorder: Implications for DSM-5. Depression and Anxiety, 28, 783801.Google Scholar
Hoge, C. W., Auchterlonie, J. L., & Milliken, C. S. (2006). Mental health problems, use of mental health services, and attrition from military service after returning from deployment to Iraq or Afghanistan. JAMA, 295, 10231032.Google Scholar
Keane, T. M., Caddell, J. M., & Taylor, K. L. (1988). Mississippi Scale for Combat-Related Posttraumatic Stress Disorder: Three studies in reliability and validity. Journal of Consulting and Clinical Psychology, 56, 8590.Google Scholar
Keane, T. M., & Kaloupek, D. G. (1997). Comorbid psychiatric disorders in PTSD: Implications for research. Annals of the New York Academy of Sciences, 821, 2434.Google Scholar
Kessler, R. C., Sonnega, A., Bromet, E., Hughes, M., & Nelson, C. B. (1995). Posttraumatic stress disorder in the National Comorbidity Survey. Archives of General Psychiatry, 52, 10481060.Google Scholar
Kubany, E. S., Leisen, M. B., Kaplan, A. S., Watson, S. B., Haynes, S. N., Owens, J. A., & Burns, K. (2000). Development and preliminary validation of a brief broad-spectrum measure of trauma exposure: The Traumatic Life Events Questionnaire. Psychological Assessment, 12, 210224.Google Scholar
Kulka, R. A., Schlenger, W. E., Fairbank, J. A., Hough, R. L., Jordan, B. K., Marmar, C. R., & Weiss, D. S. (1991). Assessment of posttraumatic stress disorder in the community: Prospects and pitfalls from recent studies of Vietnam veterans. Psychological Assessment, 3, 547560.Google Scholar
Lauterbach, D., Vrana, S. R., King, D. W., & King, L. A. (1997). Psychometric properties of the civilian version of the Mississippi PTSD Scale. Journal of Traumatic Stress, 10, 499513.Google Scholar
Lewis-Fernandez, R., Hinton, D.E., & Marques, L. (2014). Culture and PTSD. In Friedman, M. J., Keane, T. M., & Resick, P. (Eds.), Handbook of PTSD: Science and practice (pp. 522539). New York: Guilford Press.Google Scholar
Lima, E. D. P., Vasconcelos, A. G., Berger, W., Kristensen, C. H., Nascimento, E. D., Figueira, I., & Mendlowicz, M. V. (2016). Cross-cultural adaptation of the Posttraumatic Stress Disorder Checklist 5 (PCL-5) and Life Events Checklist 5 (LEC-5) for the Brazilian context. Trends in Psychiatry and Psychotherapy, 38, 207215.Google Scholar
Lobbestael, J., Leurgans, M., & Arntz, A. (2011). Inter-rater reliability of the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID I) and Axis II Disorders (SCID II). Clinical Psychology & Psychotherapy, 18, 7579.Google Scholar
Marshall, R. D., Olfson, M., Hellman, F., Blanco, C., Guardino, M., & Struening, E. L. (2001). Comorbidity, impairment, and suicidality in subthreshold PTSD. American Journal of Psychiatry, 158, 14671473.Google Scholar
McCann, I. L., & Pearlman, L. A. (1990). Vicarious traumatization: A framework for understanding the psychological effects of working with victims. Journal of Traumatic Stress, 3, 131149.Google Scholar
McFall, M. E., Smith, D. E., Mackay, P. W., & Tarver, D. J. (1990). Reliability and validity of Mississippi Scale for Combat-Related Posttraumatic Stress Disorder. Psychological Assessment, 2, 114121.Google Scholar
Miller, H. A. (2005). The Miller-Forensic Assessment of Symptoms Test (M-Fast) Test Generalizability and Utility across Race Literacy, and Clinical Opinion. Criminal Justice and Behavior, 32, 591611.Google Scholar
Morel, K. R. (1998). Development and preliminary validation of a forced-choice test of response bias for Posttraumatic Stress Disorder. Journal of Personality Assessment, 70, 299314.Google Scholar
Morel, K. R., & Shepherd, B. E. (2008). Meta-analysis of the Morel Emotional Numbing Test for PTSD: Comment on Singh, Avasthi, and Grover. German Journal of Psychiatry, 11, 128131.Google Scholar
Morey, L. C. (1991). The Personality Assessment Inventory professional manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Murphy, B. C., & Dillon, C. (2008). Interviewing in action in a multicultural world. Belmont, CA: Brooks/Cole.Google Scholar
Pitts, B. L., Chapman, P., Safer, M. A., & Russell, D. W. (2014). Combat experiences predict postdeployment symptoms in US Army combat medics. Military Behavioral Health, 2, 343350.Google Scholar
Resick, P. A., Suvak, M. K., Johnides, B. D., Mitchell, K. S., & Iverson, K. M. (2012). The impact of dissociation on PTSD treatment with cognitive processing therapy. Depression and Anxiety, 29, 718730.Google Scholar
Rogers, R., Payne, J. W., Berry, D. T., & Granacher, R. P., Jr. (2009). Use of the SIRS in compensation cases: an examination of its validity and generalizability. Law and Human Behavior, 33, 213224.Google Scholar
Rogers, R., Sewell, K. W., & Gillard, N. D. (2010). SIRS: Structured Interview of Reported Symptoms (2nd eds.). Odessa, FL: Psychological Assessment Resources.Google Scholar
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Janavs, J., Weiller, E., Keskiner, A., … & Dunbar, G. C. (1997). The validity of the Mini International Neuropsychiatric Interview (MINI) according to the SCID-P and its reliability. European Psychiatry, 12, 232241.Google Scholar
Sue, D. W., & Sue, D. (2013). Counseling the culturally diverse: Theory and practice. Hoboken, NJ: John Wiley & Sons.Google Scholar
Suite, D. H., La Bril, R., Primm, A., & Harrison-Ross, P. (2007) Beyond misdiagnosis, misunderstand, and mistrust: Relevance of the historical perspective in the medical and mental health treatment of people of color, Journal of the National Medical Association, 99, 17.Google Scholar
Weathers, F. W., Blake, D. D., Schnurr, P. P., Kaloupek, D. G., Marx, B. P., & Keane, T. M. (2013a). The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5). Interview available from the National Center for PTSD at www.ptsd.va.gov.Google Scholar
Weathers, F. W., Blake, D. D., Schnurr, P. P., Kaloupek, D. G., Marx, B. P., & Keane, T. M. (2013b). The Life Events Checklist for DSM-5 (LEC-5). Instrument available from the National Center for PTSD at www.ptsd.va.govGoogle Scholar
Weathers, F. W., Bovin, M. J., Lee, D. J., Sloan, D. M., Schnurr, P. P., Kaloupek, D. G., … & Marx, B. P. (2018). The Clinician-Administered PTSD Scale for DSM–5 (CAPS-5): Development and initial psychometric evaluation in military veterans. Psychological Assessment, 30, 383395.Google Scholar
Weathers, F. W., & Keane, T. M. (1999). Psychological assessment of traumatized adults. In Saigh, P. A. & Bremner, J. D. (Eds.), Posttraumatic stress disorder: A comprehensive text (pp. 219247). Needham Heights, MA: Allyn & Bacon.Google Scholar
Weathers, F. W., Keane, T. M., & Davidson, J. R. T. (2001). Clinician administered PTSD scale: A review of the first ten years of research. Depression and Anxiety, 13, 132156.Google Scholar
Weathers, F. W., Litz, B. T., Keane, T. M., Palmieri, P. A., Marx, B. P., & Schnurr, P. P. (2013). The PTSD Checklist for DSM-5 (PCL-5). National Center for PTSD. www.ptsd.va.gov/professional/assessment/adult-sr/ptsd-checklist.aspGoogle Scholar
Weathers, F. W., Marx, B. P., Friedman, M. J., & Schnurr, P. P. (2014). Posttraumatic stress disorder in DSM-5: New criteria, new measures, and implications for assessment. Psychological Injury and Law, 7, 93107.Google Scholar
Weiss, D. S., & Marmar, C. R. (1997). The Impact of Event Scale – Revised. In Wilson, J. & Keane, T. M. (Eds.), Assessing psychological trauma and PTSD (pp. 399411). New York: Guilford.Google Scholar
Wortmann, J. H., Jordan, A. H., Weathers, F. W., Resick, P. A., Dondanville, K. A., Hall-Clark, B., … & Litz, B. T. (2016). Psychometric analysis of the PTSD Checklist-5 (PCL-5) among treatment-seeking military service members. Psychological Assessment, 28, 13921403.Google Scholar
Zanarini, M. C., Skodol, A. E., Bender, D., Dolan, R., Sanislow, C., Schaefer, E., … & Gunderson, J. G. (2000). The collaborative longitudinal personality disorders study: Reliability of axis I and II diagnoses. Journal of Personality Disorders, 14, 291299.Google Scholar

References

Addington, D., Addington, J., & Maticka-Tyndale, E. (1993). Assessing depression in schizophrenia: the Calgary Depression Scale. British Journal of Psychiatry(22), 3944.Google Scholar
Alphs, L. D., Summerfelt, A., Lann, H., & Muller, R. J. (1989). The negative symptom assessment: A new instrument to assess negative symptoms of schizophrenia. Psychopharmacology Bulletin, 25(2), 159163.Google Scholar
Altman, E., Hedeker, D., Peterson, J. L., & Davis, J. M. (2001). A comparative evaluation of three self-rating scales for acute mania. Biological Psychiatry, 50(6), 468471.Google Scholar
Altman, E. G., Hedeker, D., Peterson, J. L., & Davis, J. M. (1997). The Altman Self-Rating Mania Scale. Biological Psychiatry, 42(10), 948955. doi:10.1016/S0006-3223(96)00548-3Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Association.Google Scholar
Andreasen, N. C. (1984a). Scale for the Assessment of Negative Symtoms (SANS). Iowa City: University of Iowa.Google Scholar
Andreasen, N. C. (1984b). Scale for the Assessment of Positive Symptoms (SAPS). Iowa City: University of Iowa.Google Scholar
Andreasen, N. C. (1986). Scale for the assessment of thought, language, and communication (TLC). Schizophrenia Bulletin, 12(3), 473482.Google Scholar
Anthony, W. A. (1993). The guiding vision of the mental health service system in the 1990s. . Psychosocial Rehabilitation, 16(4), 11.Google Scholar
Bech, P., Bolwig, T. G., Kramp, P., & Rafaelsen, O. J. (1979). The Bech-Rafaelsen Mania Scale and the Hamilton Depression Scale. Acta Psychiatrica Scandinavia, 59(4), 420430.Google Scholar
Bell, I. H., Lim, M. H., Rossell, S. L., & Thomas, N. (2017). Ecological momentary assessment and intervention in the treatment of psychotic disorders: A systematic review. Psychiatric Services, 68(11), 11721181. doi:10.1176/appi.ps.201600523Google Scholar
Ben-Porath, Y. S., & Tellegen, A. M. (2008/2011). MMPI-2-RF: Manual for administration, scoring and interpretation. Minneapolis: University of Minnesota Press.Google Scholar
Berk, M., Malhi, G. S., Cahill, C., Carman, A. C., Hadzi-Pavlovic, D., Hawkins, M. T., … & Mitchell, P. B. (2007). The Bipolar Depression Rating Scale (BDRS): Its development, validation and utility. Bipolar Disorders, 9(6), 571579. doi:10.1111/j.1399-5618.2007.00536.xGoogle Scholar
Birchwood, M., Meaden, A., Trower, P., Gilbert, P., & Plaistow, J. (2000). The power and omnipotence of voices: Subordination and entrapment by voices and significant others. Psychological Medicine, 30(2), 337344.Google Scholar
Birchwood, M., Smith, J., Cochrane, R., Wetton, S., & Copestake, S. (1990). The Social Functioning Scale: The development and validation of a new scale of social adjustment for use in family intervention programmes with schizophrenic patients. British Journal of Psychiatry, 157, 853859.Google Scholar
Bora, E. (2016). Differences in cognitive impairment between schizophrenia and bipolar disorder: Considering the role of heterogeneity. Psychiatry and Clinical Neurosciences, 70(10), 424433. doi:10.1111/pcn.12410Google Scholar
Braunig, P., Shugar, G., & Kruger, S. (1996). An investigation of the Self-Report Manic Inventory as a diagnostic and severity scale for mania. Comprehensive Psychiatry, 37(1), 5255.Google Scholar
Buchanan, A., Reed, A., Wessely, S., Garety, P., Taylor, P., Grubin, D., & Dunn, G. (1993). Acting on delusions. II: The phenomenological correlates of acting on delusions. British Journal of Psychiatry, 163, 7781.Google Scholar
Bullock, B., Judd, F. K., & Murray, G. (2014). Using actigraphy to monitor sleep-wake patterns in bipolar disorder – A case study (Vol. 253).Google Scholar
Butzlaff, R. L., & Hooley, J. M. (1998). Expressed emotion and psychiatric relapse: A meta-analysis. Archives of General Psychiatry, 55(6), 547552.Google Scholar
Carter, D. M., Mackinnon, A., Howard, S., Zeegers, T., & Copolov, D. L. (1995). The development and reliability of the Mental Health Research Institute Unusual Perceptions Schedule (MUPS): An instrument to record auditory hallucinatory experience. Schizophrenia Research, 16(2), 157165.Google Scholar
Castle, D. J., Jablensky, A., McGrath, J. J., Carr, V., Morgan, V., Waterreus, A., … & Farmer, A. (2006). The diagnostic interview for psychoses (DIP): Development, reliability and applications. Psychological Medicine, 36(1), 6980. doi:10.1017/S0033291705005969Google Scholar
Chadwick, P., Lees, S., & Birchwood, M. A. X. (2000). The revised Beliefs About Voices Questionnaire (BAVQ-R). The British Journal of Psychiatry, 177(3), 229.Google Scholar
Corrigan, P. W., Giffort, D., Rashid, F., Leary, M., & Okeke, I. (1999). Recovery as a psychological construct. Community Mental Health Journal, 35(3), 231239.Google Scholar
Craddock, N., & Owen, M. J. (2010). The Kraepelinian dichotomy – going, going … but still not gone. British Journal of Psychiatry, 196(2), 9295. doi:10.1192/bjp.bp.109.073429Google Scholar
Docherty, N. M., DeRosa, M., & Andreasen, N. C. (1996). Communication disturbances in schizophrenia and mania. Archives of General Psychiatry, 53(4), 358364.Google Scholar
Dunn, M., O’Driscoll, C., Dayson, D., Wills, W., & Leff, J. (1990). The TAPS Project. 4: An observational study of the social life of long-stay patients. British Journal of Psychiatry, 157, 842848, 852.Google Scholar
Endicott, J., & Spitzer, R. L. (1978). A diagnostic interview: The schedule for affective disorders and schizophrenia. Archives of General Psychiatry, 35(7), 837844.Google Scholar
Faurholt-Jepsen, M., Busk, J., Frost, M., Vinberg, M., Christensen, E. M., Winther, O., … & Kessing, L. V. (2016). Voice analysis as an objective state marker in bipolar disorder. Translational Psychiatry, 6, e856. doi:10.1038/tp.2016.123Google Scholar
First, M. B., Williams, J. B. W., Karg, R. S., & Spitzer, R. L. (2015). Structured Clinical Interview for DSM-5 (SCID for DSM-5). Arlington, VA: American Psychiatric Association.Google Scholar
Fowler, D., Garety, P., & Kuipers, E. (1995). Cognitive-behaviour therapy for psychosis: Theory and practice. Chichester: Wiley.Google Scholar
Fusar-Poli, P., Bonoldi, I., & Yung, A. R. (2012). Predicting psychosis: Meta-analysis of transition outcomes in individuals at high clinical risk. Archives of General Psychiatry, 69(3), 220229. doi:10.1001/archgenpsychiatry.2011.1472Google Scholar
Ghaemi, S. N., Bauer, M., Cassidy, F., Malhi, G. S., Mitchell, P., Phelps, J., … & Force, I. D. G. T. (2008). Diagnostic guidelines for bipolar disorder: A summary of the International Society for Bipolar Disorders Diagnostic Guidelines Task Force Report. Bipolar Disorders, 10(1 Pt 2), 117128. doi:10.1111/j.1399-5618.2007.00556.xGoogle Scholar
Green, D., & Rosenfeld, B. (2011). Evaluating the gold standard: A review and meta-analysis of the Structured Interview of Reported Symptoms. Psychological Assessment, 23(1), 95107. doi:10.1037/a0021149Google Scholar
Green, D., Rosenfeld, B., & Belfi, B. (2013). New and improved? A comparison of the original and revised versions of the structured interview of reported symptoms. Assessment, 20(2), 210218. doi:10.1177/1073191112464389Google Scholar
Haddock, G., McCarron, J., Tarrier, N., & Faragher, E. B. (1999). Scales to measure dimensions of hallucinations and delusions: The psychotic symptom rating scales (PSYRATS). Psychological Medicine, 29(4), 879889.Google Scholar
Hayward, M., Denney, J., Vaughan, S., & Fowler, D. (2008). The voice and you: Development and psychometric evaluation of a measure of relationships with voices. Clinical Psychology and Psychotherapy, 15(1), 4552. doi:10.1002/cpp.561Google Scholar
Henderson, S., Duncan-Jones, P., Byrne, D. G., & Scott, R. (1980). Measuring social relationships: The Interview Schedule for Social Interaction. Psychological Medicine, 10(4), 723734.Google Scholar
Johns, L. C., & van Os, J. (2001). The continuity of psychotic experiences in the general population. Clinical Psychology Review, 21(8), 11251141.Google Scholar
Johnston, M. H., & Holzman, P. S. (1979). Assessing schizophrenic thinking. San Francisco: Jossey-Bass.Google Scholar
Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261276.Google Scholar
Keefe, R. S., Goldberg, T. E., Harvey, P. D., Gold, J. M., Poe, M. P., & Coughenour, L. (2004). The Brief Assessment of Cognition in Schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophrenia Research, 68(2–3), 283297. doi:10.1016/j.schres.2003.09.011Google Scholar
Kirkpatrick, B., Strauss, G. P., Nguyen, L., Fischer, B. A., Daniel, D. G., Cienfuegos, A., & Marder, S. R. (2011). The brief negative symptom scale: Psychometric properties. Schizophrenia Bulletin, 37(2), 300305. doi:10.1093/schbul/sbq059Google Scholar
Kraepelin, E. (1989). Diagnose und Prognose der Dementia Praecox. Heidelberg.Google Scholar
Kring, A. M., Gur, R. E., Blanchard, J. J., Horan, W. P., & Reise, S. P. (2013). The Clinical Assessment Interview for Negative Symptoms (CAINS): Final development and validation. American Journal of Psychiatry, 170(2), 165172. doi:10.1176/appi.ajp.2012.12010109Google Scholar
Leamy, M., Bird, V., Le Boutillier, C., Williams, J., & Slade, M. (2011). Conceptual framework for personal recovery in mental health: Systematic review and narrative synthesis. British Journal of Psychiatry, 199(6), 445452. doi:10.1192/bjp.bp.110.083733Google Scholar
Leff, J., & Vaughn, C. E. (1985). Expressed emotion in families. New York: Guildford Press.Google Scholar
Liddle, P. F., Ngan, E. T., Caissie, S. L., Anderson, C. M., Bates, A. T., Quested, D. J., … & Weg, R. (2002). Thought and Language Index: An instrument for assessing thought and language in schizophrenia. British Journal of Psychiatry, 181, 326330.Google Scholar
Lukoff, D., Nuechterlein, K. H., & Ventura, J. (1986). Manual for expanded Brief Psychiatric Rating Scale. Schizophrenia Bulletin, 12, 594602.Google Scholar
Marder, S. R., Daniel, D. G., Alphs, L., Awad, A. G., & Keefe, R. S. (2011). Methodological issues in negative symptom trials. Schizophrenia Bulletin, 37(2), 250254. doi:10.1093/schbul/sbq161Google Scholar
Marder, S. R., Davis, J. M., & Chouinard, G. (1997). The effects of risperidone on the five dimensions of schizophrenia derived by factor analysis: Combined results of the North American trials. Journal of Clinical Psychiatry, 58(12), 538546.Google Scholar
Marder, S. R., & Fenton, W. (2004). Measurement and Treatment Research to Improve Cognition in Schizophrenia: NIMH MATRICS initiative to support the development of agents for improving cognition in schizophrenia. Schizophrenia Research, 72(1), 59. doi:10.1016/j.schres.2004.09.010Google Scholar
Michalak, E. E., & Murray, G. (2010). Development of the QoL.BD: A disorder-specific scale to assess quality of life in bipolar disorder. Bipolar Disorders, 12(7), 727740. doi:10.1111/j.1399-5618.2010.00865.xGoogle Scholar
Miller, T. J., McGlashan, T. H., Rosen, J. L., Cadenhead, K., Cannon, T., Ventura, J., … & Woods, S. W. (2003). Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: Predictive validity, interrater reliability, and training to reliability. Schizophrenia Bulletin, 29(4), 703715.Google Scholar
Morrison, A. P., Renton, J. C., Dunn, H., Williams, S., & Bentall, R. P. (2003). Cognitive Therapy for Psychosis: A Formulation-Based Approach. London: Psychology Press.Google Scholar
Murray, G., & Harvey, A. (2010). Circadian rhythms and sleep in bipolar disorder. Bipolar Disorders, 12(5), 459472. doi:10.1111/j.1399-5618.2010.00843.xGoogle Scholar
Neil, S. T., Kilbride, M., Pitt, L., Nothard, S., Welford, M., Sellwood, W., & Morrison, A. P. (2009). The questionnaire about the process of recovery (QPR): A measurement tool developed in collaboration with service users. Psychosis, 1(2), 145155. doi:10.1080/17522430902913450Google Scholar
Palmier-Claus, J. E., Berry, K., Bucci, S., Mansell, W., & Varese, F. (2016). Relationship between childhood adversity and bipolar affective disorder: Systematic review and meta-analysis. British Journal of Psychiatry, 209(6), 454459. doi:10.1192/bjp.bp.115.179655Google Scholar
Patterson, T. L., Goldman, S., McKibbin, C. L., Hughs, T., & Jeste, D. V. (2001). UCSD Performance-Based Skills Assessment: Development of a new measure of everyday functioning for severely mentally ill adults. Schizophrenia Bulletin, 27(2), 235245.Google Scholar
Patterson, T. L., Moscona, S., McKibbin, C. L., Davidson, K., & Jeste, D. V. (2001). Social skills performance assessment among older patients with schizophrenia. Schizophrenia Research , 48(23), 351360.Google Scholar
Picardi, A., Battisti, F., de Girolamo, G., Morosini, P., Norcio, B., Bracco, R., & Biondi, M. (2008). Symptom structure of acute mania: a factor study of the 24-item Brief Psychiatric Rating Scale in a national sample of patients hospitalized for a manic episode. Journal of Affective Disorders, 108(12), 183189. doi:10.1016/j.jad.2007.09.010Google Scholar
Picardi, A., Viroli, C., Tarsitani, L., Miglio, R., de Girolamo, G., Dell’Acqua, G., & Biondi, M. (2012). Heterogeneity and symptom structure of schizophrenia. Psychiatry Research, 198(3), 386394. doi:10.1016/j.psychres.2011.12.051Google Scholar
Priebe, S., Huxley, P., Knight, S., & Evans, S. (1999). Application and results of the Manchester Short Assessment of Quality of Life (MANSA). International Journal of Social Psychiatry, 45(1), 712. doi:10.1177/002076409904500102Google Scholar
Rogers, R., Bagby, R. M., & Dickens, S. E. (1992). Structured Interview of reported symptoms. Lutz, FL.Google Scholar
Rogers, R., Sewell, K. W., & Gillard, N. D. (2010). SIRS-2: Structured Interview of Reported Symptoms: Professional manual. Lutz, FL.Google Scholar
Schultze-Lutter, F., Addington, J., & Ruhrmann, S. (2007). Schizophrenia Proneness Instrument, Adult Version (SPI-A). Rome: Fioriti.Google Scholar
Shawyer, F., Ratcliff, K., Mackinnon, A., Farhall, J., Hayes, S. C., & Copolov, D. (2007). The voices acceptance and action scale (VAAS): Pilot data. Journal of Clinical Psychology, 63(6), 593606. doi:10.1002/jclp.20366Google Scholar
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 59 Suppl 20, 2233;quiz 3457.Google Scholar
Siette, J., Gulea, C., & Priebe, S. (2015). Assessing social networks in patients with psychotic disorders: A systematic review of instruments. PLoS ONE, 10(12), e0145250. doi:10.1371/journal.pone.0145250Google Scholar
Varese, F., Smeets, F., Drukker, M., Lieverse, R., Lataster, T., Viechtbauer, W., … & Bentall, R. P. (2012). Childhood adversities increase the risk of psychosis: A meta-analysis of patient-control, prospective- and cross-sectional cohort studies. Schizophrenia Bulletin, 38(4), 661671. doi:10.1093/schbul/sbs050Google Scholar
Velligan, D. I., Diamond, P., Glahn, D. C., Ritch, J., Maples, N., Castillo, D., & Miller, A. L. (2007). The reliability and validity of the Test of Adaptive Behavior in Schizophrenia (TABS). Psychiatry Research, 151(12), 5566. doi:10.1016/j.psychres.2006.10.007Google Scholar
Velligan, D. I., DiCocco, M., Bow-Thomas, C. C., Cadle, C., Glahn, D. C., Miller, A. L., … & Crismon, M. L. (2004). A brief cognitive assessment for use with schizophrenia patients in community clinics. Schizophrenia Research, 71(23), 273283. doi:10.1016/j.schres.2004.02.027Google Scholar
Wallace, C. J., Liberman, R. P., Tauber, R., & Wallace, J. (2000). The independent living skills survey: A comprehensive measure of the community functioning of severely and persistently mentally ill individuals. Schizophrenia Bulletin, 26(3), 631658.Google Scholar
Williams, J., Leamy, M., Pesola, F., Bird, V., Le Boutillier, C., & Slade, M. (2015). Psychometric evaluation of the Questionnaire about the Process of Recovery (QPR). British Journal of Psychiatry, 207(6), 551555. doi:10.1192/bjp.bp.114.161695Google Scholar
Woodward, T. S., Jung, K., Hwang, H., Yin, J., Taylor, L., Menon, M., … & Erickson, D. (2014). Symptom dimensions of the psychotic symptom rating scales in psychosis: A multisite study. Schizophrenia Bulletin, 40(Suppl 4), S265S274. doi:10.1093/schbul/sbu014Google Scholar
World Health Organization. (1992). The ICD-10 classification of mental and behavioural disorders: Clinical descriptions and diagnostic guidelines. Geneva: World Health Organization.Google Scholar
Young, R. C., Biggs, J. T., Ziegler, V. E., & Meyer, D. A. (1978). A rating scale for mania: Reliability, validity and sensitivity. British Journal of Psychiatry, 133, 429435.Google Scholar
Yung, A. R., Yuen, H. P., McGorry, P. D., Phillips, L. J., Kelly, D., Dell’Olio, M., … & Buckby, J. (2005). Mapping the onset of psychosis: The Comprehensive Assessment of At-Risk Mental States. Australia and New Zealand Journal of Psychiatry, 39(11–12), 964971. doi:10.1080/j.1440-1614.2005.01714.xGoogle Scholar

References

Aardoom, J. J., Dingemans, A. E., Slof Op’t Landt, M. C., & Van Furth, E. F. (2012). Norms and discriminative validity of the Eating Disorder Examination Questionnaire (EDE-Q). Eating Behaviors, 13(4), 305309.Google Scholar
Akdemir, A., Inandi, T., Akbas, D., Karaoglan Kahilogullari, A., Eren, M., & Canpolat, B. I. (2012). Validity and reliability of a Turkish version of the body shape questionnaire among female high school students: Preliminary examination. European Eating Disorders Review, 20(1), e114115.Google Scholar
Alegria, M., Woo, M., Cao, Z., Torres, M., Meng, X., & Striegel-Moore, R. (2007). Prevalence and correlates of eating disorders in Latinos in the United States. International Journal of Eating Disorders, 40, S15S21.Google Scholar
Allen, K., O’Hara, C. B., Bartholdy, S., Renwicj, B., Keyes, A., Lose, A., … & Schmidt, U. (2016). Written case formulations in the treatment of anorexia nervosa: Evidence for therapeutic benefits. International Journal of Eating Disorders, 49, 874882.Google Scholar
Allison, K. C. (2015). Night eating syndrome history inventory (NESHI)/Night eating questionnaire (NEQ). In Wade, T (Ed.), Encyclopedia of feeding and eating disorders. Singapore: Springer. https://link.springer.com/referenceworkentry/10.1007/978-981-287-087-2_87-1Google Scholar
Allison, K. C., Lundgren, J. D., O’Reardon, J. P., Sarwer, D.B., Wadden, T.A., & Stunkard, A.J. (2008). The Night Eating Questionnaire (NEQ): Psychometric properties of a measure of severity of the Night Eating Syndrome. Eating Behaviors, 9(1), 6272.Google Scholar
Al‐Subaie, A., Al‐Shammari, S., Bamgboye, E., Al‐Sabhan, K., Al‐Shehri, S., & Bannah, A. R. (1996). Validity of the Arabic version of the Eating Attitude Test. International Journal of Eating Disorders, 20(3), 321324.Google Scholar
Ames-Frankel, J., Devlin, M. J., Walsh, B. T., Strasser, T. J., Sadik, C., Oldham, J. M., & Roose, S. P. (1992). Personality disorder diagnoses with bulimia nervosa: Clinical correlates and changes with treatment. Journal of Clinical Psychiatry, 53, 9096.Google Scholar
Anderson, D. A., & Murray, D. (2010). Psychological assessment of the eating disorders. In Agras, W. S. (Ed.), The Oxford handbook of eating disorders (pp. 249258). Oxford: Oxford University Press.Google Scholar
Atasoy, N., Saraçli, Ö., Konuk, N., Ankarali, H. Güriz, S. O., Akdemir, A., … & Atik, L. (2014). Gece Yeme Anketi-Türkçe Formunun psikiyatrik ayaktan hasta popülasyonunda geçerlilik ve güvenilirlik çalışması. Anatolian Journal of Psychiatry/Anadolu Psikiyatri Dergisi, 15(3), 328–247.Google Scholar
Becker, A. E., Thomas, J. J., Bainivualiku, A., Richards, L., Navara, K., Roberts, A. L., … & Striegel‐Moore, R. H. (2010a). Adaptation and evaluation of the Clinical Impairment Assessment to assess disordered eating related distress in an adolescent female ethnic Fijian population. International Journal of Eating Disorders, 43(2), 179186.Google Scholar
Becker, A. E., Thomas, J. J., Bainivualiku, A., Richards, L., Navara, K., Roberts, A. L., Gilman, S. E., & Striegel-Moore, R. H. (2010b). Validity and reliability of a Fijian translation and adaptation of the Eating Disorder Examination Questionnaire. International Journal of Eating Disorders, 43(2), 171178.Google Scholar
Berg, K. C. (2016). Eating disorder examination (EDE)(EDE-Q). In Wade, T (Ed.), Encyclopedia of feeding and eating disorders. Singapore: Springer. https://link.springer.com/referenceworkentry/10.1007/978-981-287-087-2_101-1Google Scholar
Berg, K. C., Peterson, C. B., Frazier, P., & Crow, S. J. (2011). Convergence scores on the interview and questionnaire versions of the Eating Disorder Examination: A meta-analytic review. Psychological Assessment, 23, 714724.Google Scholar
Berg, K. C., Peterson, C. B., Frazier, P., & Crow, S. J. (2012). Psychometric evaluation of the Eating Disorder Examination and Eating Disorder Examination-Questionnaire: A systematic review of the literature. International Journal of Eating Disorders, 45(3), 428438.Google Scholar
Berrios-Hernandez, M. N., Rodriguez-Ruiz, S., Perez, M., Gleaves, D. H., Maysonet, M., & Cepeda-Benito, A. (2007). Cross-cultural assessment of eating disorders: Psychometric properties of a Spanish version of the Bulimia Test-Revised. European Eating Disorders Review, 15, 418–24.Google Scholar
Bohn, K. (2015). Clinical impairment assessment questionnaire (CIA). In Wade, T. (Ed.), Encyclopedia of feeding and eating disorders. Singapore: Springer. https://link.springer.com/referenceworkentry/10.1007/978-981-287-087-2_85-1Google Scholar
Bohn, K., & Fairburn, C. G. (2008). Clinical Impairment Assessment Questionnaire (CIA 3.0). In Fairburn, C. G. (Ed.), Cognitive behavior therapy and eating disorders (pp. 315317). New York: Guilford Press.Google Scholar
Bohon, C., & Stice, E. (2015). Eating disorder diagnostic scale. In Wade, T. (Ed.), Encyclopedia of feeding and eating disorders.Singapore: Springer. https://link.springer.com/referenceworkentry/10.1007/978-981-287-087-2_109-1Google Scholar
Boyadjieva, S., & Steinhausen, H. C. (1996). The Eating Attitudes Test and the Eating Disorders Inventory in four Bulgarian clinical and nonclinical samples. International Journal of Eating Disorders, 19(1), 9398.Google Scholar
Bozan, N., Bas, M., & Asci, F. H. (2011). Psychometric properties of Turkish version of Dutch Eating Behaviour Questionnaire (DEBQ): A preliminary results. Appetite, 56(3), 564566.Google Scholar
Brytek-Matera, A., & Rogoza, R. (2016). The Polish version of the Body Image Avoidance Questionnaire: An exploratory structural equation modeling approach. Eating and Weight Disorders-Studies on Anorexia, Bulimia and Obesity, 21(1), 6572.Google Scholar
Calugi, S., Dalle Grave, R., Ghisi, R., & Sanavio, E. (2006). Validation of the body checking questionnaire in an eating disorders population. Behavioural and Cognitive Psychotherapy, 34(2), 233242.Google Scholar
Calugi, S., Milanese, C., Sartirana, M., El Ghoch, M., Sartori, F., Geccherle, E., … & Dalle Grave, R. (2016). The eating disorder examination questionnaire: Reliability and validity of the Italian version. Eating and Weight Disorders-Studies on Anorexia, Bulimia and Obesity, 22(3), 509514.Google Scholar
Campana, A. N., da Consolacao, M., Tavares, G. C., da Silva, D., & Diogo, M. J. (2009). Translation and validation of the Body Image Avoidance Questionnaire (BIAQ) for the Portuguese language in Brazil. Behavior Research Methods, 41(1), 236243.Google Scholar
Campana, A. N. N. B., Swami, V., Onodera, C. M. K., da Silva, D., & Tavares, M. D. C. G. C. F. (2013). An initial psychometric evaluation and exploratory cross-sectional study of the body checking questionnaire among Brazilian women. PLoS ONE , 8(9), e74649.Google Scholar
Cebolla, A., Barrada, J. R., Van Strien, T., Oliver, E., & Baños, R. (2014). Validation of the Dutch Eating Behavior Questionnaire (DEBQ) in a sample of Spanish women. Appetite, 73, 5864.Google Scholar
Celio, A. A., Wilfley, D. E., Crow, S. J., Mitchell, J., & Walsh, B. T. (2004). A comparison of the binge eating scale, questionnaire for eating and weight patterns-revised, and eating disorder examination questionnaire with instructions with the eating disorder examination in the assessment of binge eating disorder and its symptoms. International Journal of Eating Disorders, 36(4), 434444.Google Scholar
Choudry, I. Y., & Mumford, D. B. (1992). A pilot study of eating disorders in Mirpur (Pakistan) using an Urdu version of the Eating Attitudes Test. International Journal of Eating Disorders, 11(3), 243251.Google Scholar
Clausen, L., Rokkedal, K., & Rosenvinge, J. H. (2009). Validating the Eating Disorder Inventory (EDI-2) in two Danish samples: A comparison between female eating disorders patients and females from the general population. European Eating Disorders Review, 17, 462–7.Google Scholar
Clausen, L., Rosenvinge, J. H., Friborg, O., & Rokkedal, K. (2011). Validating the Eating Disorder Inventory-3 (EDI-3): A comparison between 561 female eating disorders patients and 878 females from the general population. Journal of Psychopathology and Behavioral Assessment, 33(1), 101110.Google Scholar
Cooper, P., Taylor, M., Cooper, Z., & Fairburn, C. G. (1987). The development and validation of the Body Shape Questionnaire. International Journal of Eating Disorders, 6(4), 485494.Google Scholar
Cotter, E. W., & Kelly, N. R. (2016). Binge eating scale (BES). In Wade, T. (Ed.), Encyclopedia of feeding and eating disorders. Singapore: Springer. https://link.springer.com/referenceworkentry/10.1007/978-981-287-087-2_9-2Google Scholar
Dadgostar, H., Nedjat, S., Dadgostar, E., & Soleimany, G. (2017). Translation and evaluation of the reliability and validity of Eating Disorder Inventory-3 Questionnaire among Iranian university students. Asian Journal of Sports Medicine, 8(2), e13950.Google Scholar
Dakanalis, A., Zanetti, M. A., Clerici, M., Madeddu, F., Riva, G., & Caccialanza, R. (2013). Italian version of the Dutch Eating Behavior Questionnaire: Psychometric proprieties and measurement invariance across sex, BMI-status and age. Appetite, 71, 187195.Google Scholar
Dantas, G. M., Pinto, T. F., Pereira, E. D. B., Magalhã, R. M., Bruin, V. M. S. D., & Bruin, P. F. C. D. (2012). Validation of a new Brazilian version of the “Night Eating Questionnaire.” Sleep Science, 5(1), 713.Google Scholar
Domoff, S. E. (2015). Dutch eating behaviour questionnaire (DEBQ). In Wade, T. (Ed.), Encyclopedia of feeding and eating disorders. Singapore: Springer. https://link.springer.com/referenceworkentry/10.1007/978-981-287-087-2_127-1Google Scholar
Dotti, A., & Lazzari, R. (1998). Validation and reliability of the Italian EAT-26: Eating and Weight Disorders-Studies on Anorexia. Bulimia and Obesity, 3(4), 188194.Google Scholar
Dowson, J., & Henderson, L. (2001). The validity of a short version of the Body Shape Questionnaire. Psychiatry Research, 102(3), 263271.Google Scholar
Duarte, C., Ferreira, C., & Pinto-Gouveia, J. (2016). At the core of eating disorders: Overvaluation, social rank, self-criticism, and shame in anorexia, bulimia, and binge-eating disorder. Comprehensive Psychiatry, 66, 123131.Google Scholar
Eddy, K. T., Crosby, R. D., Keel, P. K., Wonderlich, S. A., le Grange, D., Hill, L., Powers, P., & Mitchell, J. E. (2009). Empirical identification and validation of eating disorder phenotypes in a multisite clinical sample. The Journal of Nervous and Mental Disease, 197(1), 4149.Google Scholar
Elal, G., Altug, A., Slade, P., & Tekcan, A. (2000). Factor structure of the Eating Attitudes Test (EAT) in a Turkish university sample: Eating and Weight Disorders-Studies on Anorexia, Bulimia and Obesity, 5(1), 4650.Google Scholar
Elosua, P., & López-Jáuregui, A. (2012). Internal structure of the Spanish adaptation of the Eating Disorder Inventory-3. European Journal of Psychological Assessment, 28(1), 2531.Google Scholar
Elsadek, A. M., Hamid, M. S., & Allison, K. C. (2014). Psychometric characteristics of the Night Eating Questionnaire in a Middle East population. International Journal of Eating Disorders, 47(6), 660665.Google Scholar
Engel, S. G., Crosby, R. D., Thomas, G., Bond, D., Lavender, J. M., Mason, T., Steffan, K. J., Green, D. D., & Wonderlich, S. A. (2016). Ecological momentary assessment in eating disorder and obesity research: A review of the recent literature. Current Psychiatry Reports, 18, 37.Google Scholar
Evans, C., & Dolan, B. (1993). Body Shape Questionnaire: Derivation of shortened alternate forms. International Journal of Eating Disorders, 13(3), 315321.Google Scholar
Fairburn, C. G. (2008). Cognitive behaviour therapy and eating disorders. New York: Guilford Press.Google Scholar
Fairburn, C. G., & Beglin, S. (2008). Eating Disorder Examination Questionnaire (EDE–Q 6.0). In Fairburn, C. G. (Ed.), Cognitive behavior therapy and eating disorders (pp. 309314). New York: Guilford Press.Google Scholar
Fairburn, C. G., Cooper, Z., & O’Connor, M. (2014). Eating Disorder Examination 17.0D. Oxford: Centre for Research on Dissemination at Oxford.Google Scholar
Fernandez, S., Malacrne, V. L., Wilfley, D. E., & McQuaid, J. (2006). Factor structure of the Bulimia Test-Revised in college women from four ethnic groups. Cultural Diversity and Ethnic Minority Psychology, 12(3), 403.Google Scholar
Ferreira, C., Pinto-Gouveia, J., & Duarte, C. (2011). The validation of the Body Image Acceptance and Action Questionnaire: Exploring the moderator effect of acceptance on disordered eating. International Journal of Psychology and Psychological Therapy, 11, 327345.Google Scholar
Freitas, S., Lopes, C. S., Coutinho, W., & Appolinario, J. C. (2001). Tradução e adaptação para o português da Escala de Compulsão Alimentar Periódica. Revista brasileira de psiquiatria, 23(4), 215220.Google Scholar
Gale, C., Holliday, J., Troop, N. A., Serpell, L., & Treasure, J. (2006). The pros and cons of change in individuals with eating disorders: A broader perspective. International Journal of Eating Disorders, 39(5), 394403.Google Scholar
Gallant, A. R., Lundgren, J. D., Allison, K., Stunkard, A. J., Lambert, M., O’Loughlin, J., Lemieux, S., Tremblay, A., & Drapeau, V. (2012). Validity of the night eating questionnaire in children. International Journal of Eating Disorders, 45, 861865.Google Scholar
Garner, D. M. (2004). Eating Disorder Inventory – 3: Professional manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Garner, D. M., Olmsted, M. P., Bohr, Y., & Garfinkel, P. E. (1982). The Eating Attitudes Test: Psychometric features and clinical correlates. Psychological Medicine, 12(4), 871878.Google Scholar
Geller, J., Brown, K. E., & Srikameswaran, S. (2011). The efficacy of a brief motivational intervention for individuals with eating disorders: A randomized control trial. International Journal of Eating Disorders, 44 (6), 497505.Google Scholar
Ghaderi, A. T. A., & Scott, B. (2004). The reliability and validity of the Swedish version of the Body Shape Questionnaire. Scandinavian Journal of Psychology, 45(4), 319324.Google Scholar
Giovazolias, T., Tsaousis, I., & Vallianatou, C. (2013). The factor structure and psychometric properties of the Greek version of the Eating Disorders Examination Questionnaire (EDE-Q). European Journal of Psychological Assessment, 29, 189196.Google Scholar
Gormally, J., Black, S., Daston, S., & Rardin, D. (1982). The assessment of binge eating severity among obese persons. Addictive Behaviors, 7(1), 4755.Google Scholar
Halvarsson, K., & Sjödén, P. O. (1998). Psychometric properties of the Dutch Eating Behaviour Questionnaire (DEBQ) among 9–10‐year‐old Swedish girls. European Eating Disorders Review, 6(2), 115125.Google Scholar
Harrison, A., Tchanturia, K., Naumann, U., & Treasure, J. (2012). Social emotional functioning and cognitive styles in eating disorders. British Journal of Clinical Psychology, 51(3), 261279.Google Scholar
Hay, P. J., & Carriage, C. (2012). Eating disorder features in indigenous Australian and Torres Strait Islander Australian peoples. BMC Public Health, 12, 233.Google Scholar
Hilbert, A., Tuschen-Caffier, B., Karwautz, A., Niederhofer, H., & Munsch, S. (2007). Eating disorder examination-questionnaire. Diagnostica, 53(3), 144154.Google Scholar
Kapstad, H., Nelson, M., Øverås, M., & , Ø. (2015). Validation of the Norwegian short version of the Body Shape Questionnaire (BSQ-14). Nordic Journal of Psychiatry, 69(7), 509514.Google Scholar
Katzman, D. K., Kanbur, N. O., & Steinegger, C. M. (2010). Medical comorbidities of eating disorders. In Agras, W. S. (Ed.), The Oxford handbook of eating disorders (pp. 267291). Oxford: Oxford University Press.Google Scholar
Katzman, M. A., Bara-Carril, N., Rabe-Hesketh, S., Schmidt, U., Troop, N., & Treasure, J. (2010). A randomized controlled two-stage trial in the treatment of bulimia nervosa, comparing CBT versus motivational enhancement in phase 1 followed by group versus individual CBT in phase 2. Psychosomatic Medicine, 72 (7), 656663.Google Scholar
Keel, P. K., Crow, S., Davis, T. L., & Mitchell, J. E. (2002). Assessment of eating disorders: Comparison of interview and questionnaire data from a long-term follow-up study of bulimia nervosa. Journal of Psychosomatic Research, 53(5), 10431047.Google Scholar
Kelly, N. R., Mitchell, K. S., Gow, R. W., Trace, S. E., Lydecker, J. A., Bair, C. E., & Mazzeo, S. (2012). An evaluation of the reliability and construct validity of eating disorder measures in white and black women. Psychological Assessment, 24(3), 608.Google Scholar
Kim, B., Kim, I., & Choi, H. (2016). Psychometric Properties and Item Evaluation of Korean Version of Night Eating Questionnaire (KNEQ). Journal of Korean Academy of Nursing, 46(1), 109117.Google Scholar
Ko, C., & Cohen, H. (1998). Intraethnic comparison of eating attitudes in native Koreans and Korean Americans using a Korean translation of the eating attitudes test. The Journal of Nervous and Mental Disease, 186(10), 631636.Google Scholar
Konstantakopoulos, G., Tchanturia, K., Surguladze, S. A., & David, A. S. (2011). Insight in eating disorders: clinical and cognitive correlates. Psychological Medicine, 41, 1951–61.Google Scholar
Krabbenborg, M. A. M., Danner, U. N., Larsen, J. K., van der Veer, N., van Elburg, A. A., de Ridder, D. T. D., … & Engels, R. C. M. E. (2012). The eating disorder diagnostic scale: Psychometric features within a clinical population and a cut-off point to differentiate clinical patients from healthy controls. European Eating Disorders Review: The Journal of the Eating Disorders Association, 20(4), 315320.Google Scholar
Kurz, A. S., Flynn, M. K., & Bordieri, M. J. (2016). How Bayesian estimation might improve CBS measure development: A case study with body-image flexibility in Hispanic students. Journal of Contextual Behavioral Science, 5(3), 146153.Google Scholar
Latzer, Y., Tzischinsky, O., Hason, R. M., & Allison, K. (2014). Reliability and cross-validation of the Night Eating Questionnaire (NEQ): Hebrew version. The Israel Journal of Psychiatry and Related Sciences, 51(1), 6873.Google Scholar
Lavender, J. M., & Anderson, D.A. (2009). Effect of perceived anonymity in assessments of eating disordered behaviours and attitudes. International Journal of Eating Disorders, 42, 546551.Google Scholar
Lee, S., Kwok, K., Liau, C., & Leung, T. (2002). Screening Chinese patients with eating disorders using the Eating Attitudes Test in Hong Kong. International Journal of Eating Disorders, 32(1), 9197.Google Scholar
Lee, S., Lee, A. M., Leung, T., & Yu, H. (1997). Psychometric properties of the eating disorders inventory (EDI‐1) in a nonclinical Chinese population in Hong Kong. International Journal of Eating Disorders, 21(2), 187194.Google Scholar
Lee, S. W., Stewart, S. M., Striegel-Moore, R. H., Lee, S., Ho, S., Lee, P. W. H., … & Lam, T. (2007). Validation of the eating disorder diagnostic scale for use with Hong Kong adolescents. The International Journal of Eating Disorders, 40(6), 569574.Google Scholar
Legenbauer, T., Vocks, S., & Schütt-Strömel, S. (2007). Validierung einer deutschsprachigen Version des Body Image Avoidance Questionnaire BIAQ. Diagnostica, 53, 218225.Google Scholar
Lentillon-Kaestner, V., Berchtold, A., Rousseau, A., & Ferrand, C. (2014). Validity and reliability of the French versions of the Body Shape Questionnaire. Journal of Personality Assessment, 96(4), 471477.Google Scholar
Lluch, A., Kahn, J. P., Stricker-Krongrad, A., Ziegler, O., Drouin, P., & Méjean, L. (1996). Internal validation of a French version of the Dutch Eating Behaviour Questionnaire. European Psychiatry, 11(4), 198203.Google Scholar
Lucena-Santos, P., Carvalho, S. A., da Silva Oliveira, M., & Pinto-Gouveia, J. (2017). Body-Image Acceptance and Action Questionnaire: Its deleterious influence on binge eating and psychometric validation. International Journal of Clinical and Health Psychology, 17(2), 151160.Google Scholar
Lundgren, J. D., Allison, K. C., Vinai, P., & Gluck, M. E. (2012). Assessment instruments for night eating syndrome. In Lundgren, J. D., Allison, K. C., & Stunkard, A. J. (Eds.), Night eating syndrome: Research, assessment, and treatment (pp. 197217). New York: Guilford Press.Google Scholar
Lydecker, J. A., Cotter, E. W., & Mazzeo, S. E. (2014). Body checking and body image avoidance: Construct validity and norms for college women. Eating Behaviors, 15(1), 1316.Google Scholar
Machado, P. P., Gonçalves, S., Martins, C., & Soares, I. C. (2001). The Portuguese version of the eating disorders inventory: Evaluation of its psychometric properties. European Eating Disorders Review, 9(1), 4352.Google Scholar
Machado, P. P., Martins, C., Vaz, A. R., Conceição, E., Bastos, A. P., & Gonçalves, S. (2014). Eating disorder examination questionnaire: Psychometric properties and norms for the Portuguese population. European Eating Disorders Review, 22(6), 448453.Google Scholar
Maïano, C., Morin, A. J. S; Lanfranchi, M-C., & Therme, P. (2013). The Eating Attitudes Test-26 revisited using exploratory structural equation modeling. Journal of Abnormal Child Psychology, 41 (5), 775788.Google Scholar
Maïano, C., Morin, A. J., Monthuy-Blanc, J., & Garbarino, J. M. (2009). The Body Image Avoidance Questionnaire: Assessment of its construct validity in a community sample of French adolescents. International Journal of Behavioral Medicine, 16(2), 125135.Google Scholar
Martín, J., Padierna, A., Unzurrunzaga, A., González, N., Berjano, B., & Quintana, J. M. (2015). Adaptation and validation of the Spanish version of the Clinical Impairment Assessment Questionnaire. Appetite, 91, 2027.Google Scholar
Meule, A., Allison, K. C., & Platte, P. (2014). A German version of the Night Eating Questionnaire (NEQ): Psychometric properties and correlates in a student sample. Eating Behaviors, 15(4), 523527.Google Scholar
Miller, W. R., & Rollnick, S. (2012). Motivational interviewing: Helping People Change (3rd ed.). New York: Guilford Press.Google Scholar
Mitchell, J. E., & Crow, S. (2006). Medical complications of anorexia nervosa and bulimia nervosa. Current Opinion in Psychiatry, 19, 438443.Google Scholar
Mitchell, J. E., Hatsukami, D., Eckert, E., & Pyle, R. (1985). Eating disorders questionnaire. Psychopharmacology Bulletin, 21(4), 10251043.Google Scholar
Mitchell, K. S., & Mazzeo, S. E. (2004). Binge eating and psychological distress in ethnically diverse undergraduate men and women. Eating Behaviors, 5(2), 157169.Google Scholar
Moizé, V., Gluck, M. E., Torres, F., Andreu, A., Vidal, J., & Allison, K. (2012). Transcultural adaptation of the Night Eating Questionnaire (NEQ) for its use in the Spanish population. Eating Behaviors, 13(3), 260263.Google Scholar
Mond, J. M., Hay, P. J., Rodgers, B., Owen, C., & Beumont, P. J. V. (2004). Validity of the Eating Disorders Questionnaire (EDE-Q) in screening for eating disorders in a community sample. Behaviour Research and Therapy, 42, 551567.Google Scholar
Moore, M., Masuda, A., Hill, M. L., & Goodnight, B. L. (2014). Body image flexibility moderates the association between disordered eating cognition and disordered eating behavior in a non-clinical sample of women: A cross-sectional investigation. Eating behaviors, 15(4), 664669.Google Scholar
Nagl, M., Hilbert, A., de Zwaan, M., Braehler, E., & Kersting, A. (2016). The German version of the Dutch eating behavior Questionnaire: Psychometric properties, measurement invariance, and population-based norms. PloS ONE, 11(9), e0162510.Google Scholar
Nevonen, L., Clinton, D., & Norring, C. (2006). Validating the EDI-2 in three Swedish female samples: Eating disorders patients, psychiatric outpatients and normal controls. Nordic Journal of Psychiatry, 60(1), 4450.Google Scholar
Nicdao, E. G., Hong, S., & Takeuchi, D. T. (2007). Prevalence and correlates of eating disorders among Asian Americans: Results from the national Latino and Asian American study. International Journal of Eating Disorders, 40, S22S26.Google Scholar
Nunes, M. A., Camey, S., Olinto, M. T. A., & Mari, J. D. J. (2005). The validity and 4-year test-retest reliability of the Brazilian version of the Eating Attitudes Test-26. Brazilian Journal of Medical and Biological Research, 38(11), 16551662.Google Scholar
Nyman-Carlsson, E., Engström, I., Norring, C., & Nevonen, L. (2015). Eating Disorder Inventory-3, validation in Swedish patients with eating disorders, psychiatric outpatients and a normal control sample. Nordic Journal of Psychiatry, 69(2), 142151.Google Scholar
Nyman-Carlsson, E., & Garner, D. M. (2016). Eating disorder inventory. In Wade, T. (Ed.), Encyclopedia of feeding and eating disorders. Singapore: Springer. https://link.springer.com/referenceworkentry/10.1007/978-981-287-087-2_192-1Google Scholar
Partida, O. Z., Garcia, R. R., & Cardenas, A. R. (2006). Evaluation of the binge eating scale in Mexican population: Translation and psychometric properties of the Spanish version. Psiquiatria, 22, 3036.Google Scholar
Pearson, C., & Smith, G.T. (2015). Bulimic symptom onset in young girls: a longitudinal trajectory analysis. Journal of Abnormal Psychology, 124, 10031013.Google Scholar
Pellizzer, M. L., Tiggemann, M., Waller, G., & Wade, T. D. (2018). Measures of body image: Confirmatory factor analysis and association with disordered eating. Psychological Assessment, 30, 143153. doi:10.1037/pas0000461Google Scholar
Penelo, E., Negrete, A., Portell, M., & Raich, R. M. (2013) Psychometric properties of the Eating Disorder Examination Questionnaire (EDE-Q) and norms for rural and urban adolescent males and females in Mexico. PLoS ONE, 8(12), e83245.Google Scholar
Pereira, A. T., Maia, B., Bos, S., Soares, M. J., Marques, M., Macedo, A., & Azevedo, M. H. (2008). The Portuguese short form of the Eating Attitudes Test‐40. European Eating Disorders Review, 16(4), 319325.Google Scholar
Pisetsky, E. M., Thornton, L. M., Lichtenstein, P., Pedersen, N. L., & Bulik, C. M. (2013). Suicide attempts in women with eating disorders. Journal of Abnormal Psychology, 122, 10421056.Google Scholar
Pook, M., Tuschen-Caffier, B., & Brähler, E. (2008). Evaluation and comparison of different versions of the Body Shape Questionnaire. Psychiatry research, 158(1), 6773.Google Scholar
Price-Evans, K., & Treasure, J. (2011). The use of motivational interviewing in anorexia nervosa. Child and Adolescent Mental Health, 16, 6570.Google Scholar
Probst, M., Pieters, G., & Vanderlinden, J. (2008). Evaluation of body experience questionnaires in eating disorders in female patients (AN/BN) and nonclinical participants. International Journal of Eating Disorders, 41(7), 657665.Google Scholar
Randhawa, R., Kaur, J., Kaur, D., & Sidhu, S. (2014). Prevalence of night eating syndrome and obesity among urban adult females of Amritsar (Punjab). International Journal of Research and Development of Health, 2, 7074.Google Scholar
Reas, D. L., , Ø., Kapstad, H., & Lask, B. (2010). Psychometric properties of the clinical impairment assessment: Norms for young adult women. International Journal of Eating Disorders, 43(1), 7276.Google Scholar
Reas, D. L., Von Soest, T., & Lask, B. (2009). Reliability and validity of the Norwegian version of the body checking questionnaire. Tidsskrift for Norsk Psykologforening, 46(3), 260262.Google Scholar
Reas, D. L., Whisenhunt, B. L., Netemeyer, R., & Williamson, D. A. (2002). Development of the body checking questionnaire: A self-report measure of body checking behaviors. International Journal of Eating Disorders, 31(3), 324333.Google Scholar
Ricca, V., Mannucci, E., Moretti, S., Di Bernardo, M., Zucchi, T., Cabras, P., & Rotella, C. (2000). Screening for binge eating disorder in obese outpatients. Comprehensive Psychiatry, 41(2), 111115.Google Scholar
Riva, G., & Molinari, E. (1998). Replicated factor analysis of the Italian version of the Body Image Avoidance Questionnaire. Perceptual and Motor Skills, 86(3), 10711074.Google Scholar
Rivas, T., Franco, K., Bersabé, R., & Montiel, C. B. (2013). Spanish version of the eating attitudes test 40: Dimensionality, reliability, convergent and criterion validity. The Spanish journal of psychology, 16, 111.Google Scholar
, Ø., Reas, D. L., & Lask, B. (2010). Norms for the Eating Disorder Examination Questionnaire among female university students in Norway. Nordic Journal of Psychiatry, 64(6), 428432.Google Scholar
Robert, S. A., Rohana, A. G., Suehazlyn, Z., Maniam, T., Azhar, S. S., & Azmi, K. N. (2013). The validation of the Malay version of binge eating scale: A comparison with the structured clinical interview for the DSM-IV. Journal of Eating Disorders, 1(1), 28.Google Scholar
Rosen, J. C., Srebnik, D., Saltzberg, E., & Wendt, S. (1991). Development of a Body Image Avoidance Questionnaire. Psychological Assessment, 3(1), 3237.Google Scholar
Ryu, H. R., Lyle, R. M., Galer-Unti, R. A., & Black, D. R. (1999). Cross-cultural assessment of eating disorders: Psychometric characteristics of a Korean version of the Eating Disorder Inventory-2 and the Bulimia Test-Revised. Eating Disorders, 7(2), 109122.Google Scholar
Sadeghi, K., Ahmadi, S. M., Rezaei, M., Veisy, F., Raeesi, F., & Shahverdi, J. (2014). Psychometric properties of the 34-item Body Shape Questionnaire in students. Journal of Kermanshah University of Medical Sciences, 18(6), 316322.Google Scholar
Sandoz, E. K., Wilson, K. G., Merwin, R. M., & Kellum, K. K. (2013). Assessment of body image flexibility: The Body Image-Acceptance and Action Questionnaire. Journal of Contextual Behavioral Science, 2(1), 3948.Google Scholar
Serpell, L., Teasdale, J., Troop, N., & Treasure, J. (2004). The development of the P-CAN: A scale to operationalise the pros and cons of anorexia nervosa. International Journal of Eating Disorders, 36, 416–33.Google Scholar
Serpell, L., Treasure, J., Teasdale, J., & Sullivan, V. (1999). Anorexia nervosa: Friend or foe? International Journal of Eating Disorders, 25, 177–86.Google Scholar
Silva, W. R., Costa, D., Pimenta, F., Maroco, J., & Campos, J. A. D. B. (2016). Psychometric evaluation of a unified Portuguese-language version of the Body Shape Questionnaire in female university students. Cadernos de Saúde Pública, 32(7).Google Scholar
Smolak, L., & Levine, M.P. (1994). Psychometric properties of the Children’s Eating Attitudes Test. International Journal of Eating Disorders, 16 (3), 275282.Google Scholar
Startup, H., Mountford, V., Lavender, A., & Schmidt, U. (2016). A cognitive behavioural case formulation in complex eating disorder. In Tarrier, N & Johnson, J. (Eds.), Case formulation in cognitive behaviour therapy: The treatment of challenging and complex cases (pp. 239264). London: Routledge.Google Scholar
Sternheim, L., Startup, H., Saeidi, S., Morgan, J., Hugo, P., Russell, A., & Schmidt, U. (2012). Understanding catastrophic worry in eating disorders: process and content characteristics. Journal of Behavior Therapy and Experimental Psychiatry, 43, 1095–103.Google Scholar
Stice, E., Fisher, M., & Martinez, E. (2004). Eating disorder diagnostic scale: Additional evidence of reliability and validity. Psychological Assessment, 16(1), 6071.Google Scholar
Stice, E., Telch, C. F., & Rizvi, S. L. (2000). Development and validation of the eating disorder diagnostic scale: A brief self-report measure of anorexia, bulimia, and binge-eating disorder. Psychological Assessment, 12(2), 123131.Google Scholar
Swanson, S. A., Aloisio, K. M., Horton, N. J., Sonneville, K. R., Crosby, R. D., Eddy, K. T., Field, A. E., & Micali, N. (2014). Assessing eating disorder symptoms in adolescence: Is there a role for multiple informants? International Journal of Eating Disorders, 47, 475–82.Google Scholar
Swanson, S. A., Brown, T. A., Crosby, R. D., & Keel, P. K. (2014). What are we missing? The costs versus benefits of skip rule designs. International Journal of Methods and Psychiatric Research, 23, 474–85.Google Scholar
Szabo, C. P., & Allwood, C. W. (2004). Application of the Eating Attitudes Test (EAT-26) in a rural, Zulu speaking, adolescent population in South Africa. World Psychiatry, 3(3), 169.Google Scholar
Taranis, L., Touyz, S., & Meyer, C. (2011). Disordered eating and exercise: Development and preliminary validation of the Compulsive Exercise Test. European Eating Disorder Review, 19, 256268.Google Scholar
Taylor, J. Y., Caldwell, C. H., Baser, R. E., Faison, N., & Jackson, J. S. (2007). Prevalence of eating disorders among blacks in the national survey of American life. International Journal of Eating Disorders, 40, S10S14.Google Scholar
Thelen, M. H., Farmer, J., Wonderlich, S., & Smith, M. (1991). A revision of the Bulimia Test: The BULIT-R. Psychological Assessment, 3(1), 119124.Google Scholar
Thelen, M. H., Mintz, L. B., Vander, W., & Jillon, S. (1996). The Bulimia Test-Revised: Validation with DSM-IV criteria for bulimia nervosa. Psychological Assessment, 8(2), 219221.Google Scholar
Thomas, J. J. (2017). Assessment of feeding and eating disorders. In Brownell, K. D. & Walsh, B. T. (Eds.), Eating disorders and obesity: A comprehensive handbook (3rd ed., pp. 279283). New York: Guilford Press.Google Scholar
Thornton, C., Russell, J., & Hudson, J. (1998). Does the Composite International Diagnostic Interview underdiagnose the eating disorders? International Journal of Eating Disorders, 23, 341–5.Google Scholar
Thorsteinsdottir, G., & Ulfarsdottir, L. (2008). Eating disorders in college students in Iceland. The European Journal of Psychiatry, 22(2), 107115.Google Scholar
Tu, C. Y., Tseng, M. C. M., Chang, C. H., & Lin, C. C. (2017). Comparative validity of the Internet and paper-and-pencil versions of the Night Eating Questionnaire. Comprehensive Psychiatry, 75, 5361.Google Scholar
Utzinger, L. M., & Mitchell, J. E. (2016). Eating disorder questionnaire. In Wade, T. (Ed.), Encyclopedia of feeding and eating disorders.Singapore: Springer. https://link.springer.com/referenceworkentry/10.1007/978-981-287-087-2_103-2Google Scholar
Vall, E., & Wade, T. D. (2015). Predictors of treatment outcome in individuals with eating disorders: A systematic review and meta-analysis. International Journal of Eating Disorders, 48, 946–71.Google Scholar
Van Strien, T., & Oosterveld, P. (2008). The children’s DEBQ for assessment of restrained, emotional, and external eating in 7- to 12-year-old children. International Journal of Eating Disorders, 41(1), 7281.Google Scholar
Van Strien, T., & Ouwens, M. (2003). Validation of the Dutch EDI-2 in one clinical and two nonclinical populations. European Journal of Psychological Assessment, 19(1), 66.Google Scholar
Van Strien, T., Frijters, J. E., Bergers, G., & Defares, P. B. (1986). The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. International Journal of Eating Disorders, 5(2), 295315.Google Scholar
Vander Wal, J.S., Stein, R.I., & Blashill, A.J. (2011). The EDE-Q, BULIT-R, and BEDT as self-report measures of binge eating disorder. Eating Behaviours, 12(4), 267–71.Google Scholar
Villarroel, A. M., Penelo, E., Portell, M., & Raich, R. M. (2011). Screening for eating disorders in undergraduate women: Norms and validity of the Spanish version of the Eating Disorder Examination Questionnaire (EDE-Q). Journal of Psychopathology and Behavioral Assessment, 33(1), 121128.Google Scholar
Vitousek, K., Watson, S., & Wilson, G. T. (1998). Enhancing motivation for change in treatment-resistant eating disorders. Clinical Psychology Review, 18, 391420.Google Scholar
Wade, T. (2016a). Body shape questionnaire. In Wade, T. (Ed.), Encyclopedia of feeding and eating disorders. Singapore: Springer. https://link.springer.com/referenceworkentry/10.1007/978-981-287-087-2_212-1Google Scholar
Wade, T. (2016b). Eating attitudes test. In Wade, T. (Ed.), Encyclopedia of feeding and eating disorders. Singapore: Springer. https://link.springer.com/referenceworkentry/10.1007/978-981-287-087-2_215-1Google Scholar
Wade, T. D., Fairweather-Schmidt, A. K., Zhu, G., Martin, N. G. (2015). Does shared genetic risk contribute to the co-occurrence of eating disorders and suicidality? International Journal of Eating Disorders, 48, 684691.Google Scholar
Waller, G., Cordery, H., Corstorphine, E., Hinrichsen, H., Lawson, R., Mountford, V., & Russell, K. (2007). Cognitive behavioural therapy for eating disorders. A comprehensive treatment guide. Cambridge: Cambridge University Press.Google Scholar
Wardle, J. (1987). Eating style: A validation study of the Dutch eating behaviour questionnaire in normal subjects and women with eating disorders. Journal of Psychosomatic Research, 31, 161169.Google Scholar
Warren, C. S., Cepeda-Benito, A., Gleaves, D. H., Moreno, S., Rodriguez, S., … & Pearson, C. A. (2008). English and Spanish versions of the Body Shape Questionnaire: Measurement equivalence across ethnicity and clinical status. International Journal of Eating Disorders, 41 (3), 265272.Google Scholar
Welch, E., Birgegård, A., Parling, T., & Ghaderi, A. (2011). Eating disorder examination questionnaire and clinical impairment assessment questionnaire: General population and clinical norms for young adult women in Sweden. Behaviour Research and Therapy, 49(2), 8591.Google Scholar
White, E. K., Claudat, K., Jones, S. C., Barchard, K. A., & Warren, C. S. (2015). Psychometric properties of the body checking questionnaire in college women. Body Image, 13, 4652.Google Scholar
White, E. K., & Warren, C. S. (2013). Body checking and avoidance in ethnically diverse female college students. Body Image, 10(4), 583590.Google Scholar
Wilksch, S. M., & Wade, T. D. (2010). Risk factors for clinically significant importance of shape and weight in adolescent girls. Journal Abnormal Psychology, 119, 206215.Google Scholar
Wonderlich, J. A., Lavender, J. M., Wonderlich, S. A., Peterson, C. B., Crow, S. J., Engel, S. G., Le Grange, D., Mitchell, J. E., & Crosby, R. D. (2015). Examining convergence of retrospective and ecological momentary assessment measures of negative affect and eating disorder behaviors. International Journal of Eating Disorders, 48 (3), 305311.Google Scholar
World Health Organization. (1993). Composite International Diagnostic Interview (CIDI) (Core Version 1.1): Interviewer manual. New York: American Psychiatric Press.Google Scholar
Young, S., Touyz, S., Meyer, C., Arercelus, J., Rhodes, P., Madden, S., Pike, K., Attia, E., Crosby, R. D., Wales, J., & Hay, P. (2017). Validity of exercise measures in adults with anorexia nervosa: The EDE, compulsive exercise test, and other self-report scales. International Journal of Eating Disorders, 50, 533541.Google Scholar
Yucel, B., Polat, A., Ikiz, T., Dusgor, B. P., & Yavuz, A. E. (2011). The Turkish version of the Eating Disorder Examination Questionnaire: Reliability and validity in adolescents. European Eating Disorders Review, 19(6), 509511.Google Scholar

References

Allegre, B., Souville, M., Therme, P., & Griffiths, M. (2006). Definitions and measures of exercise dependence. Addiction Research and Theory, 14, 631646.Google Scholar
Alterman, A. I., Mulvaney, F. D., Cacciola, J. S., Cnaan, A., McDermott, P. A., & Brown, L. S., Jr. (2001). The validity of the interviewer severity rating in groups of ASI interviewers with varying training. Addiction, 96 (9), 12971305.Google Scholar
American Psychiatric Association. (1987). Diagnostic and statistical manual of mental disorders (rev. 3rd ed.). Washington, DC: American Psychiatric Association.Google Scholar
American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
American Psychiatric Association. (2004). Diagnostic and statistical manual of mental disorders (rev. 4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Association.Google Scholar
Babor, T. F., Higgins-Biddle, J. C., Saunders, J. B., & Monteiro, M. G. (2001). The Alcohol Use Disorders Identification Test (AUDIT): Guidelines for use in primary care. Geneva: World Health Organization.Google Scholar
Balsa, A. I., Seiler, N., McGuire, T. G., & Bloche, M. G. (2003). Clinical uncertainty and healthcare disparities. American Journal of Law and Medicine, 29, 203219.Google Scholar
Bayard, M., McIntyre, J., Hill, K. R., & Woodside, J., Jr. (2004). Alcohol withdrawal syndrome. American Family Physician, 69 (6), 14431450.Google Scholar
Birley, J. L. T. (1975). The history of psychiatry as the history of an art. British Journal of Psychiatry, 127, 393400.Google Scholar
Blume, S. B. (1997). Pathological gambling: Addiction without a drug. In Substance abuse: A comprehensive textbook (3rd ed., pp. 330337). Baltimore, MD: Williams and Wilkins.Google Scholar
Brown, R. I. F. (1988). Models of gambling and gambling addictions as perceptual filters. Journal of Gambling Studies, 3, 224236.Google Scholar
Cash, H., Rae, C. D., Steel, A. H., & Winkler, A. (2012). Internet addiction: A brief summary of research and practice. Current Psychiatry Review, 8 (4), 292298.Google Scholar
Cottler, L. B., Robins, L. N., & Helzer, J. E. (1989). The reliability of the SIDI-SAM: A comprehensive substance abuse interview. British Journal of Addiction, 84 (7), 801814.Google Scholar
Cox, L. S., Tiffany, S. T., & Christen, A. G. (2001). Evaluation of the brief questionnaire of smoking urges (QSU-Brief) in laboratory and clinical settings. Nicotine and Tobacco Research, 3 (1), 716.Google Scholar
de Bruijn, C., van den Brink, W., de Graaf, R., & Vollebergh, W. A. (2005). The craving withdrawal model for alcoholism: Towards the DSM-V. Improving the discriminant validity of alcohol use disorder diagnosis. Alcohol and Alcoholism, 40, 314–22.Google Scholar
DeJong, C. A. J., Willems, J. C. E. W., Schippers, G. M., & Hendricks, V. M. (1995). The Addiction Severity Index: Reliability and validity in a Dutch alcoholic population. International Journal of the Addictions, 30, 605616.Google Scholar
DiClemente, C. C., Prochaska, J. O., Fairhurst, S. K., Velicer, W. F., Velasquez, M. M., & Rossi, J. S. (1991). The process of smoking cessation: An analysis of precontemplation, contemplation, and preparation stages of change. Journal of Consulting and Clinical Psychology, 59, 295304.Google Scholar
Dom, G., D’haene, P., Hulstijn, W., & Sabbe, B. (2006). Inpulsivity in abstinent early- and late-onset alcoholics: Differences in self-report measures and a discounting task. Addiction, 101 (1), 5059.Google Scholar
Dougherty, D. M., Marsh, D. M., & Mathias, C. W. (2002). Immediate and delayed memory tasks: A computerized behavioral measure of memory, attention, and impulsivity. Behavioral Research Methods: Instruments and Computers, 34, 391398.Google Scholar
Doyle, S. R., & Donovan, D. M. (2009). A validation study of the Alcohol Dependence Scale. Journal of Studies on Alcohol and Drugs, 70 (5), 689699.Google Scholar
Drake, R. E., McHugo, G. J., & Biesanz, J. C. (1995). The test-retest reliability of standardized instruments among homeless persons with substance use disorders. Journal of Studies on Alcohol, 56, 161167.Google Scholar
Edwards, G., & Gross, M. M. (1976). Alcohol dependence: Provisional description of a clinical syndrome. British Medical Journal, 1, 10581061.Google Scholar
Edwards, S., & Koob, G. F. (2010). Neurobiology of dysregulated motivational systems in drug addiction. Future of Neurology, 5, 393401.Google Scholar
Eysenck, S. B. G, Pearson, P. R., Easting, G., & Allsopp, J. F. (1985). Age norms for impulsiveness, venturesomeness and empathy in adults. Personality and Individual Differences, 6, 613619.Google Scholar
Feingold, A., & Rounsaville, B. (1995). Construct validity of the dependence syndrome as measured by DSM-IV for different psychoactive substances. Addiction, 90, 16611669.Google Scholar
Feragne, M., Longabaugh, R., & Stevenson, J. F. (1983). The Psychosocial Functioning Inventory. Evaluation and Health Professions, 6, 2548.Google Scholar
First, M. B., Williams, J. B. W., Karg, R. S., & Spitzer, R. S. (2016). Structured Clinical Interview for DSM-5 Disorders – Clinician version. Washington, DC: American Psychiatric Association.Google Scholar
First, M. B., Williams, J. B. W., Spitzer, R. L., & Gibbons, M. (2007). Structured Clinical Interview for DSM-IV-TR Axis I Disorders. New York: Biometrics Research, New York State Psychiatric Institute.Google Scholar
Gaume, J., Gmel, G., Faouzi, M., & Daeppen, J. B. (2009). Counselor skill influences outcomes of brief motivational interventions. Journal of Substance Abuse Treatment, 37, 151159.Google Scholar
Grant, B. F. (1997). Prevalence and correlates of alcohol use and DSM-IV alcohol dependence in the United States: Results of the National Longitudinal Alcohol Epidemiologic Survey. Journal of Studies on Alcohol, 58, 464473.Google Scholar
Grant, B. F., Goldstein, R. B., Smith, S. M., Jung, J., Zhang, H., Chou, S. P. et al. (2015). The Alcohol Use Disorders and Associated Disabilities Interview Schedule – 5 (AUDADIS-5): Reliability of substance use and psychiatric disorder modules in a general population sample. Drug and Alcohol Dependence, 148, 2733.Google Scholar
Hasin, D. S., Samet, S., Nunes, E., Meydan, J., Matseoane, K., & Waxman, R. (2006). Diagnosis of comorbid disorders in substance users: Psychiatric Research Interview for Substance and Mental Disorders (PRISM-IV): Reliability for substance abusers. American Journal of Psychiatry, 163 (4), 689696.Google Scholar
Heather, N., Gold, R., & Rollnick, S. (1991). Readiness to Change Questionnaire: User’s manual. Sydney: National Drug and Alcohol Research Center and University of New South WalesGoogle Scholar
Helzer, J. E., Bucholz, K. K., & Gossop, M. (2007). A dimensional option for the diagnosis of substance dependence in DSM-V. International Journal of Methods in Psychiatric Research, 16 , Suppl 1, S24S33.Google Scholar
Hoffmann, N. G. (2000). CAAPE (Comprehensive Addictions and Psychological Evaluation) manual. Smithfield, RI: Evince Clinical AssessmentsGoogle Scholar
Horn, J., Wanberg, K. W., & Foster, F. M. (1990). Alcohol Use Inventory. San Antonio, TX: PsychCorp.Google Scholar
Jellinek, E. M. (1943). The alcohol problem: Formulations and attitudes. Quarterly Journal of Studies on Alcohol, 4, 446461.Google Scholar
Jellinek, E. M. (1952). Phases of alcohol addiction. Quarterly Journal of Studies on Alcohol, 13, 673684.Google Scholar
Jellinek, E. M. (1960). The disease concept of alcoholism. Highland Park, NJ: Hillhouse Press.Google Scholar
Joyner, L. M., Wright, J. D., & Devine, J. A. (1996). Reliability and validity of the Addiction Severity Index among homeless substance misusers. Substance Use and Misuse, 31, 729751.Google Scholar
Keyes, K. M., Krueger, R. F., Grant, B. F., & Hasin, D,S. (2011). Alcohol craving and the dimensionality of alcohol disorders. Psychological Medicine, 41, 629640.Google Scholar
Koob, G., & Kreek, M. J. (2007). Stress, dysregulation of drug reward pathways, and the transition to drug dependence. American Journal of Psychiatry, 164, 11491159.Google Scholar
Kosten, T. R., Rounsaville, B. J., Babor, T. F., Spitzer, R. L., & Williams, J. B. (1987). Substance-use disorders in DSM-III-R: Evidence for the dependence syndrome across different psychoactive substances. British Journal of Psychiatry, 151, 834843.Google Scholar
Langenbucher, J., Labouvie, E., Sanjuan, P., Kirisci, L., Bavly, L., Martin, C., & Chung, T. (2004). An application of Item Response Theory analysis to alcohol, cannabis and cocaine criteria in DSM-IV. Journal of Abnormal Psychology, 113 (1), 7280.Google Scholar
Lubman, D. I., Yucel, M., & Pantelis, C. (2004). Addiction, a condition of compulsive behavior? Neuroimaging and neuropsychological evidence of inhibitory dysregulation. Addiction, 99, 14911502.Google Scholar
Ludwig, A. M., Wikler, A., & Stark, L. H. (1974). The first drink: Psychobiological aspects of craving. Archives of General Psychiatry, 30, 539547.Google Scholar
Makela, K. (2004). Studies of the reliability and validity of the Addiction Severity Index. Addiction, 99, 398410.Google Scholar
Malloy-Diniz, L. F., de Paula, J. J., Vasconcelos, A. G., Almondes, K. M., Pessoa, R., Faria, L. et al. (2015). Normative data of the Barratt Impulsiveness Scale 11 (BIS-11) for Brazilian adults. Brazilian Journal of Psychiatry, 37 (3), 245248.Google Scholar
Mamelli, M., & Luscher, C. (2011). Synaptic plasticity and addiction: Learning mechanisms gone awry. Neuropsychopharmacology, 61 (7), 10521059.Google Scholar
Marsh, J. C., Angell, B., Andrews, C. M., & Curry, A. (2012). Client-provider relationship and treatment outcome: A systematic review of substance abuse, child welfare, and mental health services research. Journal of the Society of Social Work and Research, 3 (4), 233267.Google Scholar
McConnaughy, E. A., Prochaska, J. O., & Velicer, W. F. (1983). Stages of change in psychotherapy: Measurement and sample profiles. Psychotherapy, 20, 368375.Google Scholar
McLellan, A. T., Cacciola, J. C., Alterman, A. I., Rikoon, S. H., & Carise, D. (2006). The Addiction Severity Index at 25: Origins, contributions and transitions. American Journal on Addictions, 15(2), 113124.Google Scholar
McLellan, A. T., Kushner, H., Metzger, D., Peters, R., Smith, I., Grissom, G., Pettinati, H., & Argeriou, M. (1992). The fifth edition of the Addiction Severity Index. Journal of Substance Abuse Treatment, 9, 199213.Google Scholar
McLellan, A. T., Luborsky, L, Woody, G. E., & O’Brien, C. P. (1980). An improved diagnostic evaluation instrument for substance abuse patients: The Addiction Severity Index. Journal of Nervous and Mental Disease, 168(1), 2633.Google Scholar
Meier, P. S., Barrowclough, C., & Donmallo, M. C. (2015). The role of the therapeutic alliance in the treatment of substance misuse: A critical review of the literature. Addiction, 100 (3), 304316.Google Scholar
Miller, W. R., & Tonigan, J. S. (1996). Assessing drinkers’ motivation for change: The Stages of Change Readiness and Treatment Eagerness Scale (SOCRATES). Psychology of Addictive Behaviors, 10, 8189.Google Scholar
Miller, W. R., Tonigan, J. S. & Longabaugh, R. (1995). The Drinker Inventory of Consequences (DrInC): An instrument for assessing adverse consequences of alcohol abuse (Project MATCH Monograph Series, Vol. 4. DHHS Publication No. 95–3911.) Rockville, MD: National Institute on Alcohol Abuse and Alcoholism.Google Scholar
Mitchell, A. J., Meader, N., Bird, V., & Rizzo, M. (2012). Clinical recognition and recording of alcohol disorders by clinicians in primary and secondary care: Meta-analysis. British Journal of Psychiatry, 201 (2), 93100.Google Scholar
Mitchell, D., & Angelone, D. J. (2006). Assessing the validity of the Stages of Change Readiness and Treatment Eagerness Scale with treatment-seeking military service member. Military Medicine, 171, 900904.Google Scholar
Nathan, P. E., Skinstad, A. H., & Langenbucher, J. W. (1999). Substance abuse: Diagnosis, comorbidity, and psychopathology. In Millon, T., Blaney, P. H., & Davis, R. D. (Eds.), Oxford textbook of psychopathology (pp. 227248). New York: Oxford University Press.Google Scholar
Norcross, J. C., Krebs, P. M., & Prochaska, J. O. (2011). Stages of change. Journal of Clinical Psychology, 67, 143154.Google Scholar
O’Connor, P. G., Nyquist, J. G., & McLellan, A. T. (2011). Integrating addiction medicine into graduate medical education in primary care: The time has come. Annals of Internal Medicine, 154, 56–9.Google Scholar
O’Malley, S. S., & Maisto, S. A. (1984). Factors affecting the perception of intoxication: Dose, tolerance, and setting. Addictive Behaviors, 2, 111120.Google Scholar
Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt Impulsiveness Scale. Journal of Clinical Psychology, 51, 768774.Google Scholar
Pomerleau, O. F., Fertig, J. B., & Shanahan, S. O. (1983). Nicotine dependence in cigarette smoking: An empirically-based, multivariate model. Pharmacology, Biochemistry and Behavior, 19, 291299.Google Scholar
Prochaska, J. O., & DiClemente, C. C. (1983). Stages and processes of self-change of smoking: Toward an integrative model of change. Journal of Consulting and Clinical Psychology, 51, 390395.Google Scholar
Rinn, W., Desai, N., Rosenblatt, H., & Gastfriend, D. R. (2002). Addiction denial and cognitive dysfunction: A preliminary investigation. Journal of Neuropsychiatry and Clinical Neuroscience, 14, 52–7.Google Scholar
Robinson, T. E., & Berridge, K. C. (2008) Review. The incentive sensitization theory of addiction: Some current issues. Philosophical Transactions of the Royal Society, London: B Biological Sciences, 363, 31373146.Google Scholar
Rogers, R. (2018). Handbook of Diagnostic and Structured Interviewing (Amazon ePub RK–41182).Google Scholar
Selzer, M. I. (1971). The Michigan Alcoholism Screening Test (MAST): The quest for a new diagnostic instrument. American Journal of Psychiatry, 127, 16531658.Google Scholar
Shaw, J. M., Kolesar, G. S., Sellers, E. M., Kaplan, H. L., & Sandor, P. (1981). Development of optimal treatment tactics for alcohol withdrawal. I. Assessment and effectiveness of supportive care. Journal of Clinical Psychopharmacology, 1, 382387.Google Scholar
Skinner, H. A. (1982). The Drug Abuse Screening Test. Addictive Behaviors, 7, 363371.Google Scholar
Skinner, H. A., & Horn, J. L. (1984). Alcohol Dependence Scale: User’s guide. Toronto: Addiction Research Foundation.Google Scholar
Spinella, M. (2007). Normative data and a short form of the Barratt Impulsiveness Scale. International Journal of Neuroscience, 177, 359368.Google Scholar
Stanford, M. S., Mathias, C. W., Dougherty, D. M., Lake, S.L, Anderson, N.E., & Patton, J.H. (2009). Fifty years of the Barratt Impulsiveness Scale: An update and review. Personality and Individual Differences, 47, 385395.Google Scholar
Stockwell, T., Murphy, D., & Hodgson, R. (1983). The severity of alcohol dependence questionnaire: Its use, reliability and validity. British Journal of Addiction, 78 (2), 145156.Google Scholar
Sullivan, J. T., Sykora, K., Schneiderman, J., Naranjo, C. A., & Sellers, E. M. (1989). Assessment of alcohol withdrawal: The revised Clinical Institute Withdrawal Assessment for Alcohol scale (CIWA-Ar). British Journal of Addiction, 84 (11), 11531157.Google Scholar
Szmukler, G. I. (1987). Some comments on the link between anorexia nervosa and affective disorder. International Journal of Eating Disorders, 6, 181189.Google Scholar
Tiffany, S. T., & Drobes, D. J. (1991). The development and initial validation of a questionnaire on smoking urges. British Journal of Addiction, 86, 14671476.Google Scholar
Tiffany, S. T., & Wray, J. M. (2012). The clinical significance of drug craving. Annals of the New York Academy of Sciences, 1248, 117.Google Scholar
Verbruggen, F., & Logan, G. D. (2008). Response inhibition in the stop-signal paradigm. Trends in Cognitive Science, 12 (11), 418424.Google Scholar
Weisner, C., McLellan, A. T., & Hunkeler, M. A. (2000). Addiction Severity Index data from general membership and treatment samples of HMO members: One case of norming the ASI. Journal of Substance Abuse Treatment, 19 (2), 103109.Google Scholar
Wertz, J. S., Cleaveland, B. I., & Stephens, R. S. (1995). Problems in the application of the Addiction Severity Index (ASI) in rural substance abuse services. Journal of Substance Abuse, 7, 175188.Google Scholar
Zhang, A. Y., Harmon, J. A., Werkner, J., & McCormick, R. A. (2004). Impacts of motivation for change on the severity of alcohol use by patients with severe and persistent mental illness. Journal of Studies on Alcohol, 65(3), 392397.Google Scholar

References

Abdin, E., Koh, K. G., Subramaniam, M., Guo, M. E., Leo, T., Teo, C., Tan, E. E., & Chong, S. A. (2011). Validity of the Personality Diagnostic Questionnaire-4 (PDQ-4+) among Mentally Ill Prison Inmates in Singapore. Journal of Personality Disorders, 25, 834841.Google Scholar
Al-Dajani, N., Gralnick, T. M., & Bagby, R. M. (2016). A psychometric review of the Personality Inventory for DSM-5 (PID-5): Current status and future directions. Journal of Personality Assessment, 98(1), 6281.Google Scholar
Alden, L. E., Wiggins, J. S., & Pincus, A. L. (1990). Construction of circumplex scales for the Inventory of Interpersonal Problems. Journal of Personality Assessment, 55(3–4), 521536.Google Scholar
American Psychiatric Association. (1980). Diagnostic and statistical manual of mental disorders (3rd ed.). Arlington, VA: American Psychiatric Publishing.Google Scholar
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (rev. 4th ed.). Arlington, VA: American Psychiatric Publishing.Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.Google Scholar
Bach, B., & Hutsebaut, J. (2018). Level of Personality Functioning Scale – Brief Form 2.0: Utility in capturing personality problems in psychiatric outpatients and incarcerated addicts. Journal of Personality Assessment. doi:10.1080/00223891.2018.1428984Google Scholar
Bagby, R. M., Costa, P. T., Widiger, T. A., Ryder, A. G., & Marshall, M. (2005). DSM‐IV personality disorders and the Five‐Factor Model of personality: A multi‐method examination of domain‐ and facet‐level predictions. European Journal of Personality, 19, 307324.Google Scholar
Bagby, R. M., & Sellbom, M. (2018). The validity and clinical utility of the Personality Inventory for DSM–5 Response Inconsistency Scale. Journal of Personality Assessment, 100, 398405.Google Scholar
Bagby, R. M., & Widiger, T. A. (2018). Five Factor Model personality disorder scales: An introduction to a special section on assessment of maladaptive variants of the five-factor model. Psychological Assessment, 30(1), 19.Google Scholar
Bagge, C. L., & Trull, T. J. (2003). DAPP-BQ: Factor structure and relations to personality disorder symptoms in a non-clinical sample. Journal of Personality Disorders, 17, 1932.Google Scholar
Benjamin, L. S. (1996). Interpersonal diagnosis and treatment of personality disorders (2nd ed.). New York: Guilford.Google Scholar
Ben-Porath, Y. S., & Tellegen, A. (2008). MMPI-2-RF: Manual for Administration, Scoring, and Interpretation. Minneapolis: University of Minnesota Press.Google Scholar
Berghuis, H., Kamphuis, J. H., & Verheul., R. (2014). Specific personality traits and general personality dysfunction as predictors of the presence and severity of personality disorders in a clinical sample. Journal of Personality Assessment, 96(4), 410416.Google Scholar
Busch, A. J., Morey, L. C., & Hopwood, C. J. (2017). Exploring the assessment of the DSM-5 Alternative Model for Personality Disorders with the Personality Assessment Inventory. Journal of Personality Assessment, 99(2), 211218.Google Scholar
Butcher, J. N., Dahlstrom, W. G., Graham, J. R., Tellegen, A., & Kaemmer, B. (1989). Minnesota Multiphasic Personality Inventory – 2 (MMPI-2): Manual for administration and scoring. Minneapolis: University of Minnesota Press.Google Scholar
Calabrese, W. R., Rudick, M. M., Simms, L. J., & Clark, L. A. (2012). Development and validation of Big Four personality scales for the Schedule for Nonadaptive and Adaptive Personality-2nd Edition (SNAP-2). Psychological Assessment, 24, 751763.Christensen, T. B., Paap, M. C. S, Arnesen, M., Koritzinsky, K., Nysaeter, T., Eikenaes, I., et al. (in press). Interrater reliability of the Structured Clinical Interview for the DSM–5 Alternative Model of Personality Disorders Module I: Level of Personality Functioning Scale. Journal of Personality Assessment.Google Scholar
Clark, L. A. (2007). Assessment and diagnosis of personality disorder: Perennial issues and an emerging reconceptualization. Annual Review of Clinical Psychology, 58, 227257.Google Scholar
Clark, L. A., Simms, L. J., Wu, K. D., & Casillas, A. (2002). Schedule for Nonadaptive and Adaptive Personality (2nd ed.): Manual for administration, scoring, and interpretation. Unpublished test manual.Google Scholar
Clark, L. A., Watson, D., & Reynolds, S. (1995). Diagnosis and classification of psychopathology: Challenges to the current system and future directions. Annual Review of Psychology, 46, 121153.Google Scholar
Coolidge, F. L., & Merwin, M. M. (1992). Reliability and validity of the Coolidge Axis Two Inventory: A new inventory for the assessment of personality disorders. Journal of Personality Assessment, 59, 223238.Google Scholar
Costa, P. T., & McCrae, R. R. (1992). Normal personality assessment in clinical practice: The NEO Personality Inventory. Psychological Assessment, 4(1), 513.Google Scholar
Davidson, K. M., Obonsawin, M. C., Seils, M., Patience, L. (2003). Patient and clinician agreement on personality using the SWAP-200. Journal of Personality Disorders, 17, 208218.Google Scholar
Dreessen, L., & Arntz, A. (1998). Short-interval test-retest interrater reliability of the Structured Clinical Interview for DSM-III-R Personality Disorders (SCID-II) in outpatients. Journal of Personality Disorders, 12, 138148.Google Scholar
Evans, C., & Simms, L. J. (2018). Assessing inter-model continuity between the Section II and Section III conceptualization of borderline personality disorder in DSM-5.Personality Disorders: Theory, Research, and Treatment, 9, 290296.Google Scholar
First, M. B., & Gibbon, M. (2004). The Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and the Structured Clinical Interview for DSM-IV Axis II Disorders (SCID-II). In Hilsenroth, M. J. & Segal, D. L. (Eds.), Comprehensive handbook of psychological assessment, Vol. 2: Personality assessment (pp. 134143). Hoboken, NJ: John Wiley & Sons.Google Scholar
First, M. B., Skodol, A. E., Bender, D. S., & Oldham, J. M. (2018). Structured Clinical Interview for the DSM-5 Alternative Model for Personality Disorders (SCID-AMPD). Arlington, VA: American Psychiatric Association.Google Scholar
First., M. B., Williams, J. B. W., Benjamin, L. S., Spitzer, R. L. (2015). User’s Guide for the SCID-5-PD (Structured Clinical Interview for DSM-5 Personality Disorder). Arlington, VA: American Psychiatric Association.Google Scholar
First, M. B., Williams, J. B. W., Benjamin, L. S., Spitzer, R. L. (2016). Structured Clinical Interview for DSM-5 Screening Personality Questionnaire (SCID-5-SPQ). Arlington, VA: American Psychiatric Association.Google Scholar
Fossati, A., Somma, A., Borroni, S., & Miller, J. D. (2017). Assessing dimensions of pathological narcissism: Psychometric properties of the Short Form of the Five-Factor Narcissism Inventory in a sample of Italian university students. Journal of Personality Assessment, 100, 250258.Google Scholar
Goldberg, L. R. (1993). The structure of phenotypic personality traits. American Psychologist, 48, 2634.Google Scholar
Goldberg, L. R., Johnson, J. A., Eber, H. W., Hogan, R., Ashton, M. C., Cloninger, C. R., & Gough, H. G. (2006). The international personality item pool and the future of public-domain personality measures. Journal of Research in Personality, 40, 8496.Google Scholar
Harkness, A. R., & McNulty, J. L. (1994). The personality psychopathology five (PSY-5): Issues from the pages of a diagnostic manual instead of a dictionary. In Strack, S. & Lorr, M. (Eds.), Differentiating normal and abnormal personality. New York: Springer.Google Scholar
Harkness, A. R., McNulty, J. L., & Ben-Porath, Y. S. (1995). The Personality Psychopathology Five (PSY-5): Constructs and MMPI-2 Scales. Psychological Assessment, 7(1), 104114.Google Scholar
Harkness, A. R., McNulty, J. L., Finn, J. A., Reynolds, S. M., Shields, S. M., & Arbisi, P. (2013). The MMPI-2-RF Personality Psychopathology Five (PSY-5-RF) Scales: Development and validity research. Journal of Personality Assessment, 96(2), 140150.Google Scholar
Hentschel, A. G., & Livesley, W. J. (2013). The General Assessment of Personality Disorder (GAPD): Factor structure, incremental validity of self-pathology, and relations to DSM-IV personality disorders. Journal of Personality Assessment, 95(5), 479485.Google Scholar
Hentschel, A. G., & Pukrop, R. (2014). The essential features of personality disorder in DSM-5: The relationship between Criteria A and B. Journal of Nervous and Mental Disease, 202(5), 412418.Google Scholar
Hopwood, C. J., Good, E. W., & Morey, L. C. (2018). Validity of the DSM-5 Levels of Personality Functioning Scale-Self Report. Journal of Personality Assessment, 100, 650659.Google Scholar
Huprich, S. K., Nelson, S. M., Meehan., K. B., Siefert, C. J., Haggerty, G., Sexton, J., Baade, L. (2017). Introduction of the DSM-5 Levels of Personality Functioning Questionnaire. Personality Disorders: Theory, Research, and Treatment, 9, 553563.Google Scholar
Hutsebaut, J. Feenstra, D. J., & Kamphuis, J. H. (2016). Development and preliminary psychometric evaluation of a brief self-report questionnaire for the assessment of the DSM-5 Level of Personality Functioning Scale: The LPFS Brief Form (LPFS-BF). Personality Disorders: Theory, Research, and Treatment, 7(2), 192197.Google Scholar
Hyler, S. E. (1994). Personality Diagnostic Questionnaire-4 (PDQ-4). New York: New York State Psychiatric Institute.Google Scholar
Klein, M. H., Benjamin, L. S., Rosenfeld, R., Treece, C., Hsted, J., & Greist, J. H. (1993). The Wisconsin Personality Dis- orders Inventory. I: Development, Reliability, and Validity. Journal of Personality Disorders, Supplement, 1833.Google Scholar
Kotov, R., Krueger, R. F., Watson, D., Achenbach, T. M., Althoff, R. R., Bagby, R. M., … & Zimmerman, M. (2017). The Hierarchical Taxonomy of Psychopathology (HiTOP): A dimensional alternative to traditional nosologies. Journal of Abnormal Psychology, 4, 454477.Google Scholar
Krueger, R. F. (2013). Personality disorders are the vanguard of the post-DSM-5.0 era. Personality Disorders: Theory, Research, and Treatment, 4, 355362.Google Scholar
Krueger, R. F., Derringer, J., Markon, K. E., Watson, D., & Skodol, A. E. (2012). Initial construction of a maladaptive personality trait model and inventory for DSM-5. Psychological Medicine, 42, 18791890.Google Scholar
Livesley, W. K. (2006). The Dimensional Assessment of Personality Pathology (DAPP) approach to personality disorder. In Strack, S. (Ed.), Differentiating normal and abnormal personality (pp. 401429). New York: Springer.Google Scholar
Livesley, W. K., & Jackson, D. N. (2009). Manual for the Dimensional Assessment of Personality Pathology-Basic Questionnaire (DAPP-BQ). Port Huron, MI: Sigma Assessment Systems.Google Scholar
Livesley, W. J., & Jang, K. L. (2000). Toward an empirically based classification of personality disorder. Journal of Personality Disorders, 14, 137151.Google Scholar
Livesley, W. J., Jang, K. L., & Vernon, P. A. (1998). The phenotypic and genetic structure of traits delineating personality disorder. Archives of General Psychiatry, 55, 941948.Google Scholar
Livesley, W. J., Schroeder, M. L., Jackson, D. N., & Jang, K. L. (1994). Categorical distinctions in the study of personality disorder: Implications for classification. Journal of Abnormal Psychology, 103, 617.Google Scholar
Loranger, A. W. (1999). International Personality Disorder Examination (IPDE). Odessa, FL: Psychological Assessment Resources.Google Scholar
Loranger, A. W. (2002). OMNI Personality Inventory and OMNI-IV Personality Disorder Inventory manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Lynam, D. R., & Widiger, T. A. (2001). Using the five-factor model to represent the DSM-IV personality disorders: An expert consensus approach. Journal of Abnormal Psychology, 110, 401412.Google Scholar
Maples, J. L., Carter, N. T., Few, L. R., Crego, C., Gore, W., Samuel, D. B., … & Miller, J. D. (2015). Testing whether the DSM-5 personality disorder trait model can be measured with a reduced set of items: An item response theory investigation of the Personality Inventory for DSM-5. Psychological Assessment, 27, 116.Google Scholar
McCrae, R. R., Costa, P. T., Jr., & Martin, T. A. (2005). The NEO-PI-3: A more readable Revised NEO Personality Inventory. Journal of Personality Assessment, 84(3), 261270.Google Scholar
McCrae, R. R., & Terracciano, A. (2005). Personality profiles of cultures: Aggregate personality traits. Journal of Personality and Social Psychology, 89, 407425.Google Scholar
McDermutt, W., & Zimmerman, M. (2005). Assessment instruments and standardized evaluation. In Oldham, J. M., Skodol, A. E., & Bender, D. S. (Eds.), Textbook of personality disorders (pp. 89101). Washington, DC: American Psychiatric Association Press.Google Scholar
Millon, T., Davis, R., & Millon, C. (1997). MCMI-III manual (2nd ed.). Minneapolis, MN: National Computer Systems.Google Scholar
Millon, T., Grossman, S., & Millon, C. (2015). MCMI-IV: Millon Clinical Multiaxial Inventory manual (1st ed.). Bloomington, MN: NCS Pearson.Google Scholar
Morey, L. C. (1991). Professional manual for the Personality Assessment Inventory. Odessa, FL: Psychological Assessment Resources.Google Scholar
Morey, L. C. (2017). Development and initial evaluation of a self-report form of the DSM-5 Level of Personality Functioning Scale. Psychological Assessment, 29, 13021308.Google Scholar
Okada, M., & Oltmanns, T. F. (2009). Comparison of three self-report measures of personality pathology. Journal of Psychopathology and Behavioral Assessment, 31, 358367.Google Scholar
Oltmanns, J. R., & Widiger, T. A. (2018). A self-report measure for the ICD-11 dimensional trait model proposal: The Personality Inventory for ICD-11. Psychological Assessment, 30, 154169.Google Scholar
Oltmanns, T. F., & Turkheimer, E. (2006). Perceptions of self and others regarding pathological personality traits. In Krueger, R. F. & Tackett, J. L. (Eds.), Personality and psychopathology (pp. 71111). New York: Guilford.Google Scholar
Parker, G., Both, L., Olley, A., Hadzi-Pavlovic, D., Irvine, P., & Jacobs, G. (2002). Defining disordered personality functioning. Journal of Personality Disorders, 16(6), 503522.Google Scholar
Parker, G., Hadzi-Pavlovic, D., Both, L., Kumar, S., Wilhelm, K., & Olley, A. (2004). Measuring disordered personality functioning: To love and to work reprised. Acta Psychiatrica Scandinavica, 110(3), 230239.Google Scholar
Pfohl, B., Blum, N., & Zimmerman, M. (1997). Structured Interview for DSM-IV Personality. Washington, DC: American Psychiatric Press.Google Scholar
Piotrowski, C. (1999). Assessment practices in the era of managed care: Current status and future directions. Journal of Clinical Psychology, 55(7), 787796.Google Scholar
Quilty, L. C., & Bagby, R. M. (2007). Psychometric and Structural Analysis of the MMPI-2 Personality Psychopathology Five (PSY-5) Facet Subscales. Assessment, 14, 375384.Google Scholar
Retzlaff, P. (1996). MCMI-III diagnostic validity: Bad test or bad validity study. Journal of Personality Assessment, 66(2), 431437.Google Scholar
Ro, E., & Clark., L. A. (2009). Psychosocial functioning in the context of diagnosis: Assessment and theoretical issues. Psychological Assessment, 21(3), 313324.Google Scholar
Rojas, S. L. (2017). Dismantling the Five Factor Form. Unpublished doctoral dissertation, University of Kentucky.Google Scholar
Rojas, S. L., & Widiger, T. A. (2014). Convergent and discriminant validity of the Five Factor Form. Assessment, 21(2), 143157.Google Scholar
Rojas, S. L., & Widiger, T. A. (2018). Convergent and discriminant validity of the Five Factor Form and the Sliderbar Inventory. Assessment, 25(2), 222234.Google Scholar
Schotte, C. K. W, De Doncker, D. A. M., Dmitruk, D., Mulders, I. V ., D’Haenen, H., & Cosyns, P. (2004). The ADP-IV Questionnaire: Differential validity and concordance with the semi-structured Interview. Journal of Personality Disorders, 18, 405419.Google Scholar
Schotte, C. K. W., De Doncker, D., Vankerckhoven, C., Vertommen, H., & Cosyns, P. (1998). Self-report assessment of the DSM-IV personality disorders. Measurement of trait and distress characteristics: The ADP-IV. Psychological Medicine, 28, 11791188.Google Scholar
Segal, D. L., & Coolidge, F. L. (2007). Structured and semi-structured interviews for differential diagnosis: Issues and application. In Hersen, M., Turner, S. M., & Beidel, D. C. (Eds.), Adult psychopathology and diagnosis (5th ed., pp. 72103). New York: John Wiley & Sons.Google Scholar
Sellbom, M., Dhillon, S., & Bagby, R. M. (2018). Development and validation of an Overreporting Scale for the Personality Inventory for DSM–5 (PID-5). Psychological Assessment, 30, 582593.Google Scholar
Sellbom, M., Waugh, M. H., & Hopwood, C. J. (2018) Development and validation of personality disorder spectra scales for the MMPI–2–RF. Journal of Personality Assessment, 100, 406420.Google Scholar
Shedler, J., & Westen, D. (2007). The Shedler-Westen Assessment Procedure (SWAP): Making personality diagnosis clinically meaningful. Journal of Personality Assessment, 89, 4155.Google Scholar
Simms, L. J., & Clark, L. A. (2006). The Schedule for Nonadaptive and Adaptive Personality (SNAP): A dimensional measure of traits relevant to personality and personality pathology. In Strack, S. (Ed.), Differentiating Normal and Abnormal Personality (2nd ed., pp. 431450). New York: Springer.Google Scholar
Simms, L. J., Goldberg, L. R., Roberts, J. E., Watson, D., Welte, J., & Rotterman, J. H. (2011). Computerized Adaptive Assessment of Personality Disorder: Introducing the CAT-PD Project. Journal of Personality Assessment, 93, 380389.Google Scholar
Smith, S. W., Hilsenroth, M. J., & Bornstein, R. F. (2009). Convergent validity of the SWAP-200 Dependency Scales. Journal of Nervous and Mental Disease, 197, 613618.Google Scholar
Smith, T. L., Klein, M. H., Alonson, C., Salazar-Fraile, J., Felipe-Castano, E., Moreno, C. L. et al. (2011). The Spanish Version of the Wisconsin personality Disorders Inventory-IV (WISPI-IV): Tests of Validity and Reliability. Journal of Personality Disorders, 25, 813833.Google Scholar
Somwaru, D. P., & Ben-Porath, Y. S. (1995). Development and reliability of MMPI-2 based personality disorder scales. Paper presented at the 30th Annual Workshop and Symposium on Recent Developments in Use of the MMPI-2 & MMPI-A. St. Petersburg Beach, Florida.Google Scholar
Suzuki, T., Samuel, D. B., Pahlen, S., & Krueger, R. F. (2015). DSM-5 alternative personality disorder model traits as maladaptive extreme variants of the five-factor model: An item-response theory analysis. Journal of Abnormal Psychology, 124, 343354.Google Scholar
Tellegen, A., Ben-Porath, Y. S., McNulty, J. L., Arbisi, P. A., Graham, J. R., & Kaemmer, B. (2003). The MMPI-2-RF Restructured Clinical Scales: Development, validation, and interpretation. Minneapolis: University of Minnesota Press.Google Scholar
Thomas, C., Turkheimer, E., & Oltmanns, T. F. (2003). Factorial structure of pathological personality traits as evaluated by peers. Journal of Abnormal Psychology, 112, 112.Google Scholar
Trull, T. J., & Widiger, T. A. (1997). Structured Interview for the Five-Factor Model of Personality (SIFFM): Professional manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
van Kampen, D. (2002). The DAPP-BQ in the Netherlands: Factor structure and relationship with basic personality dimensions. Journal of Personality Disorders, 16(3), 235254.Google Scholar
Verheul, R., Andrea, H., Berghout, C. C., Dolan, C., Busschbach, J. J. V., van der Kroft, P. J. A. et al. (2008). Severity Indices of Personality Problems (SIPP-118): Development, factor structure, reliability, and validity. Psychological Assessment, 20(2), 2334.Google Scholar
Westen, D., & Shedler, J. (1999a). Revising and assessing Axis II, Part 1: Developing a clinically and empirically valid assessment method. American Journal of Psychiatry, 156, 258272.Google Scholar
Westen, D., & Shedler, J. (1999b). Revising and assessing Axis II, Part 2: Toward an empirically based and clinically useful classification of personality disorders. American Journal of Psychiatry, 156, 273285.Google Scholar
Westen, D., & Shedler, J. (2007). Personality diagnosis with the Shedler-Westen Assessment Procedure (SWAP): Integrating clinical and statistical measurement and prediction. Journal of Abnormal Psychology, 116, 810822.Google Scholar
Westen, D., Shedler, J., Bradley, B., & DeFife, J. (2012). An empirically derived taxonomy for personality diagnosis: Bridging science and practice in conceptualizing personality. American Journal of Psychiatry, 169, 273284.Google Scholar
Widiger, T. A. (1993). The DSM-III-R categorical personality disorder diagnoses: A critique and an alternative. Psychological Inquiry, 4, 7590.Google Scholar
Widiger, T. A., Bach, B., Chmielewski, M. S., Clark, L. A., DeYoung, C. G., Hopwood, C. J., et al. (in press). Criterion A of the AMPD in HiTOP. Journal of Personality Assessment.Google Scholar
Widiger, T. A., & Boyd, S. (2009). Personality disorders assessment instruments. In Butcher, J. N. (Ed.), Oxford handbook of personality assessment (pp. 336363). New York: Oxford University Press.Google Scholar
Widiger, T. A., & Clark, L. A. (2000). Toward DSM-V and the classification of psychopathology. Psychological Bulletin, 126, 946963.Google Scholar
Widiger, T. A., Sellbom, M., Chmielewski, M., Clark, L. A., DeYoung, C. G., Kotov, R. et al. (2019). Personality in a Hierarchical Model of Psychopathology. Clinical Psychological Science, 7(1), 7792.Widiger, T. A., & Trull, T. J. (2007). Plate tectonics in the classification of personality disorder: Shifting to a dimensional model. American Psychologist, 62(2), 71–83.Google Scholar
Wright, A. G. C., & Simms, L. J. (2014). On the structure of personality disorder traits: Conjoint analyses of the CAT-PD, PID-5, and NEO-PI-3 trait models. Personality Disorders: Theory, Research, and Treatment, 5, 4354.Google Scholar
Yalch, M. M., & Hopwood, C. J. (2016). Convergent, discriminant, and criterion validity of DSM-5 traits. Personality Disorders: Theory, Research, and Treatment, 7, 394404.Google Scholar
Yam, W. H. (2017). Examination of personality pathology across cultures: Comparisons among White, Chinese, and Indian Individuals in the United States. Unpublished doctoral dissertation, University at Buffalo.Google Scholar
Yam, W. H., & Simms, L. J. (2014). Comparing criterion- and trait-based personality disorder diagnoses in DSM-5. Journal of Abnormal Psychology, 123, 802808.Google Scholar
Zanarini, M. C., Frankenburg, F. R., Sickel, A. E., & Yong, L. (1996). The Diagnostic Interview for DSM-IV Personality Disorders (DIPD-IV). Belmont, MA: McLean Hospital.Google Scholar
Zanarini, M. C., Skodol, A. E., Bender, D., Dolan, R., Sanislow, C., Schaefer, E. et al. (2000). The Collaborative Longitudinal Personality Disorders Study: Reliability of Axis I and II diagnoses. Journal of Personality Disorders, 14, 291299.Google Scholar
Zimmerman, J., Bohnke, J. R., Eschstruth, R., Mathews, A., Wenzel, K., & Leising, D. (2015). The latent structure of personality functioning: Investigating Criterion A from the Alternative Model for Personality Disorders in DSM-5.Journal of Abnormal Psychology, 124, 532548.Google Scholar

References

Adlam, A. L., Bozeat, S., Arnold, R., Watson, P., & Hodges, J. R. (2006). Semantic knowledge in mild cognitive impairment and mild Alzheimer’s disease. Cortex, 42, 675684.Google Scholar
Ahmed, S., Arnold, R., Thompson, S. A., Graham, K. S., & Hodges, J. R. (2008). Naming of objects, faces and buildings in mild cognitive impairment. Cortex, 44, 746752.Google Scholar
Albert, M. S., Blacker, D., Moss, M. B., Tanzi, R., & McArdle, J. J. (2007). Longitudinal change in cognitive performance among individuals with mild cognitive impairment. Neuropsychology, 21, 158169.Google Scholar
Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, 7, 270279.Google Scholar
Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357381.Google Scholar
Ally, B. A., McKeever, J. D., Waring, J. D., & Budson, A. E. (2009). Preserved frontal memorial processing for pictures in patients with mild cognitive impairment. Neuropsychologia, 47, 20442055.Google Scholar
Alzheimer’s Association. (2018). 2018 Alzheimer’s disease facts and figures. Alzheimer’s and Dementia, 14, 367429.Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.Google Scholar
Anderson, N. D., Ebert, P. L., Jennings, J. M., Grady, C. L., Cabezza, R., & Graham, S. (2008). Recollection- and familiarity-based memory in healthy aging and amnestic mild cognitive impairment. Neuropsychology, 22, 177187.Google Scholar
Ardila, A. (2018). Historical development of human cognition (pp. 135159).New York: Springer.Google Scholar
Backman, L., & Herlitz, A. (1996). Knowledge and memory in Alzheimer’s disease: A relationship that exists. In Morris, R. G. (Ed.), The cognitive neuropsychology of Alzheimer’s disease (pp. 89104). Oxford: Oxford University Press.Google Scholar
Backman, L., Jones, S., Berger, A. K., Laukka, E. J., & Small, B. J. (2004). Multiple cognitive deficits during the transition to Alzheimer’s disease. Journal of Internal Medicine, 256, 195204.Google Scholar
Backman, L., Jones, S., Berger, A. K., Laukka, E. J., & Small, B. J. (2005). Cognitive impairment in preclinical Alzheimer’s disease: A meta-analysis. Neuropsychology, 19, 520531.Google Scholar
Backman, L., & Small, B. J. (1998). Influences of cognitive support on episodic remembering: Tracing the process of loss from normal aging to Alzheimer’s disease. Psychology and Aging, 13, 267276.Google Scholar
Balota, D. A., Tse, C., Hutchison, K. A., Spieler, D. H., Duchek, J. M., & Morris, J. C. (2010). Predicting conversion to dementia of the Alzheimer’s type in a healthy control sample: The power of errors in Stroop color naming. Psychology and Aging, 25, 208218.Google Scholar
Bayles, K. A., & Kaszniak, A. W. (1987). Communication and cognition in normal aging and dementia. Boston: College-Hill/Little, Brown and Company.Google Scholar
Bayles, K. A., & Tomoeda, C. K. (1983). Confrontation naming impairment in dementia. Brain and Language, 19, 98114.Google Scholar
Bayley, P. J., Salmon, D. P., Bondi, M. W., Bui, B. K., Olichney, J., Delis, D. C., Thomas, R. G., & Thal, L. J. (2000). Comparison of the serial position effect in very mild Alzheimer’s disease, mild Alzheimer’s disease, and amnesia associated with electroconvulsive therapy. Journal of the International Neuropsychological Society, 6, 290298.Google Scholar
Belanger, S., & Belleville, S. (2009). Semantic inhibition impairment in mild cognitive impairment: A distinctive feature of upcoming cognitive decline? Neuropsychology, 23, 592606.Google Scholar
Bennett, I. J., Golob, E. J., Parker, E. S., & Starr, A. (2006). Memory evaluation in mild cognitive impairment using recall and recognition tests. Journal of Clinical and Experimental Neuropsychology, 28, 14081422.Google Scholar
Bialystok, E., Craik, F. I. M., & Freedman, M. (2007). Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45, 459464.Google Scholar
Bialystok, E., Craik, F. I. M., Green, D. W., & Gollan, T. H. (2009). Bilingual minds. Psychological Science in the Public Interest, 10, 89129.Google Scholar
Biundo, R., Gardini, S., Caffarra, P., Concari, L., Martorana, D., Neri, T. M., Shanks, M. F., & Venneri, A. (2011). Influence of APOE status on lexical-semantic skills in mild cognitive impairment. Journal of the International Neuropsychological Society, 17, 423430.Google Scholar
Bondi, M. W., Edmonds, E. C., Jak, A. J., Clark, L. R., Delano-Wood, L., McDonald, C. R., & Salmon, D. P. (2014). Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and prediction of progression. Journal of Alzheimer’s Disease, 42, 275289.Google Scholar
Bondi, M. W., Monsch, A. U., Butters, N., Salmon, D. P., & Paulsen, J. S. (1993). Utility of a modified version of the Wisconsin Card Sorting Test in the detection of dementia of the Alzheimer type. Clinical Neuropsychologist, 7, 161170.Google Scholar
Borg, C., Thomas-Atherion, C., Bogey, S., Davier, K., & Laurent, B. (2010). Visual imagery processing and knowledge of famous names in Alzheimer’s disease and MCI. Aging, Neuropsychology and Cognition, 17, 603614.Google Scholar
Bowles, N. L., Obler, L. K., & Albert, M. L. (1987). Naming errors in healthy aging and dementia of the Alzheimer type. Cortex, 23, 519524.Google Scholar
Braak, H., & Braak, E. (1991). Neuropathological staging of Alzheimer-related changes. Acta Neuropathologica, 82, 239259.Google Scholar
Brandt, J., & Manning, K. J. (2009). Patterns of word-list generation in mild cognitive impairment and Alzheimer’s disease. Clinical Neuropsychologist, 23, 870879.Google Scholar
Buschke, H. (1973). Selective reminding for analysis of memory and learning. Journal of Verbal Learning and Verbal Behavior, 12, 543550.Google Scholar
Buschke, H., & Fuld, P. A. (1974). Evaluating storage, retention, and retrieval in disordered memory and learning. Neurology, 24, 10191025.Google Scholar
Buschke, H., Sliwinski, M. J., Kuslansky, G., & Lipton, R. B. (1997). Diagnosis of early dementia by the double memory test. Neurology, 48, 989997.Google Scholar
Butters, N., Granholm, E., Salmon, D. P., Grant, I., & Wolfe, J. (1987). Episodic and semantic memory: A comparison of amnesic and demented patients. Journal of Clinical and Experimental Neuropsychology, 9, 479497.Google Scholar
Butters, N., Salmon, D. P., Cullum, C. M., Cairns, P., Troster, A. I., Jacobs, D., Moss, M., & Cermak, L. S. (1988). Differentiation of amnesic and demented patients with the Wechsler memory scale – revised. Clinical Neuropsychologist, 2, 133148.Google Scholar
Capitani, E., Della Sala, S., Logie, R., & Spinnler, H. (1992). Recency, primacy, and memory: Reappraising and standardising the serial position curve. Cortex, 28, 315342.Google Scholar
Carlesimo, G. A., Sabbadini, M., Fadda, L., & Caltagirone, C. (1995). Different components in word-list forgetting of pure amnesics, degenerative demented and healthy subjects. Cortex, 31, 735745.Google Scholar
Chertkow, H., & Bub, D. (1990). Semantic memory loss in dementia of Alzheimer’s type. Brain, 113, 397417.Google Scholar
Chertkow, H., Whitehead, V., Phillips, N., Wolfson, C., Atherton, J., & Bergman, H. (2010). Multilingualism (but not always bilingualism) delays the onset of Alzheimer disease: Evidence from a bilingual community. Alzheimer Disease and Associated Disorders, 24, 118125.Google Scholar
Clark, L. R., Delano-Wood, L., Libon, D. J., McDonald, C. R., Nation, D. A., Bangen, K. J., … & Bondi, M. W. (2013). Are empirically derived subtypes of mild cognitive impairment consistent with conventional subtypes? Journal of the International Neuropsychological Society, 19, 111.Google Scholar
Clark, L. R., Stricker, N. H., Libon, D. J., Delano-Wood, L., Salmon, D. P., Delis, D. C., & Bondi, M. W. (2012). Yes/No forced choice recognition memory in mild cognitive impairment and Alzheimer’s disease: Patterns of impairment and associations with dementia severity. Clinical Neuropsychology, 26, 12011216.Google Scholar
Connor, D. J., Drake, A. I., Bondi, M. W., & Delis, D. C. (1997). Detection of feigned cognitive impairments in patients with a history of mild to severe closed head injury. Paper presented at the American Academy of Neurology, Boston.Google Scholar
Costa, A., Perri, R., Serra, L., Barban, F., Gatto, I., Zabberoni, S., Caltagirone, C., & Carlesimo, G. A. (2010). Prospective memory functioning in mild cognitive impairment. Neuropsychology, 24, 327335.Google Scholar
Craik, F. I. M., Bialystok, E., & Freedman, M. (2010). Delaying the onset of Alzheimer disease: Bilingualism as a form of cognitive reserve. Neurology, 75, 17261729.Google Scholar
Crews, L., & Masliah, E. (2010). Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Human Molecular Genetic, 19, R12R20.Google Scholar
Crocco, E., Curiel, R. E., Acevedo, A., Czaja, S. J., & Loewenstein, D. A. (2014). An evaluation of deficits in semantic cueing and proactive and retroactive interference as early features of Alzheimer’s disease. American Journal of Geriatric Psychiatry, 22, 889897.Google Scholar
Crutch, S. J., Schott, J. M., Rabinovici, G. D., Murray, M., Snowden, J. S., van der Flier, W. M., et al. (2017). Consensus classification of posterior cortical atrophy. Alzheimer’s and Dementia, 13, 870884.Google Scholar
Dalla Barba, G., & Goldblum, M. (1996). The influence of semantic encoding on recognition memory in Alzheimer’s disease. Neuropsychologia, 34, 11811186.Google Scholar
Darby, D., Maruff, P., Collie, A., & McStephen, M. (2002). Mild cognitive impairment can be detected by multiple assessments in a single day. Neurology, 59, 10421046.Google Scholar
Davie, J. E., Azuma, T., Goldinger, S. D., Connor, D. J., Sabbagh, M. N., & Silverberg, N. B. (2004). Sensitivity to expectancy violations in healthy aging and mild cognitive impairment. Neuropsychology, 18, 269275.Google Scholar
Dawes, R. M., Faust, D., & Meehl, P. E. (1989). Clinical versus actuarial judgment. Science,243, 16681674.Google Scholar
Dean, A. C., Victor, T. L., Boone, K. B., Philpott, L. M., & Hess, R. A. (2009). Dementia and effort test performance. The Clinical Neuropsychologist, 23, 133152.Google Scholar
Delano-Wood, L., Bondi, M. W., Sacco, J., Abeles, N., Jak, A. J., Libon, D. J., & Bozoki, A.(2009). Heterogeneity in mild cognitive impairment: Differences in neuropsychological profile and associated white matter lesion pathology. Journal of the International Neuropsychological Society, 15, 906914.Google Scholar
Delis, D. C., Massman, P. J., Butters, N., Salmon, D. P., Cermak, L. S., & Kramer, J. H. (1991). Profiles of demented and amnesic patients on the California verbal learning test: Implications for the assessment of memory disorders. Psychological Assessment, 3, 1926.Google Scholar
de Rover, M., Pironti, V. A., McCabe, J. A., Acosta-Cabronero, J., Arana, F. S., Morein-Zamir, S. et al. (2011). Hippocampal dysfunction in patients with mild cognitive impairment: A functional neuroimaging study of a visuospatial paired associates learning task. Neuropsychologia, 49, 20602070.Google Scholar
Edmonds, E. C., Delano-Wood, L., Clark, L. R. Jak, A. J., Nation, D. A., McDonald, C. R., & Bondi, M. W. (2015). Susceptibility of the conventional criteria for mild cognitive impairment to false-positive diagnostic errors. Alzheimer’s and Dementia, 11, 415424.Google Scholar
Fischer, P., Marterer, A., & Danialczyk, W. (1990). Right-left disorientation in dementia of the Alzheimer type. Neurology, 40, 16191620.Google Scholar
Flicker, C., Ferris, S. H., Crook, T., Reisberg, B., & Bartus, R. T. (1988). Equivalent spatial-rotation deficits in normal aging and Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 10, 387399.Google Scholar
Flicker, C., Ferris, S. H., & Reisberg, B. (1991). Mild cognitive impairment in the elderly: Predictors of dementia. Neurology, 41, 10061009.Google Scholar
Fortuny, L. A. I., Garolera, M., Romo, D. H., Feldman, E., Barillas, H. F., Keefe, R. et al. (2005). Research with Spanish-speaking populations in the United States: Lost in the translation a commentary and a plea. Journal of Clinical and Experimental Neuropsychology, 27, 555564.Google Scholar
Freedman, M., Leach, L., Kaplan, E., Winocur, G., Shulman, K. I., & Delis, D. C. (1994). Clock drawing: A neuropsychological analysis. New York: Oxford University Press.Google Scholar
Gagnon, L. G., & Belleville, S. (2011). Working memory in mild cognitive impairment and Alzheimer’s disease: Contribution of forgetting and predictive value of complex span tasks. Neuropsychology, 25, 226236.Google Scholar
Galton, C. J., Patterson, K., Xuereb, J. H., & Hodges, J. R. (2000). Atypical and typical presentations of Alzheimer’s disease: A clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain, 123, 484498.Google Scholar
Goldblum, M., Gomez, C., Dalla Barba, G., Boller, F., Deweer, B., Hahn, V., & Dubois, B. (1998). The influence of semantic and perceptual encoding on recognition memory in Alzheimer’s disease. Neuropsychologia, 36, 717729.Google Scholar
Gollan, T. H., Salmon, D. P., Montoyoa, R. I., & Galasko, D. R. (2011). Degree of bilingualism predicts age of diagnosis of Alzheimer’s disease in low-education but not in highly-educated Hispanics. Neuropsychologia, 49, 38263830.Google Scholar
Gollan, T. H., Stasenko, A., Li, C., & Salmon, D. P. (2017). Bilingual language intrusions and other speech errors in Alzheimer’s disease. Brain and Cognition, 118, 2744.Google Scholar
Grady, C. L., Haxby, J. V., Horwitz, B., Sundaram, M., Berg, G., Schapiro, M., Friedland, R. P., & Rappaport, S. I. (1988). Longitudinal study of the early neuropsychological and cerebral metabolic changes in dementia of the Alzheimer type. Journal of Clinical and Experimental Neuropsychology, 10, 576596.Google Scholar
Greene, J. D. W., Baddeley, A. D., & Hodges, J. R. (1996). Analysis of the episodic memory deficit in early Alzheimer’s disease: evidence from the doors and people test. Neuropsychologia, 34, 537551.Google Scholar
Grober, E., Hall, C. B., Lipton, R. B., Zonderman, A. B., Resnick, S. M., & Kawas, C. (2008). Memory impairment, executive dysfunction, and intellectual decline in preclinical Alzheimer’s disease. Journal of the International Neuropsychological Society, 14, 266278.Google Scholar
Grober, E., Merling, A., Heimlich, T., & Lipton, R. B. (1997). Comparison of selective reminding and free and cued recall reminding in the elderly. Journal of Clinical and Experimental Neuropsychology, 19, 643654.Google Scholar
Grundman, M., Petersen, R. C., Morris, J. C., Ferris, S., Sano, M., Farlow, M. et al. (1996). Rate of dementia of Alzheimer type (DAT) in subjects with mild cognitive impairment: The Alzheimer’s Disease Cooperative Study [abstract]. Neurology, 46, A403.Google Scholar
Heinly, M. T., Greve, K. W., Bianchini, K. J., Love, J. M., & Brennan, A. (2005). WAIS Digit Span-based indicators of malingered neurocognitive dysfunction: Classification accuracy in traumatic brain injury. Assessment, 12, 429444.Google Scholar
Hodges, J. R., & Patterson, K. (1995). Is semantic memory consistently impaired early in the course of Alzheimer’s disease? Neuroanatomical and diagnostic implications. Neuropsychologia, 33, 441459.Google Scholar
Hodges, J. R., Salmon, D. P., & Butters, N. (1991). The nature of the naming deficit in Alzheimer’s and Huntington’s disease. Brain, 114, 15471558.Google Scholar
Hodges, J. R., Salmon, D. P., & Butters, N. (1992). Semantic memory impairment in Alzheimer’s disease: Failure of access or degraded knowledge? Neuropsychologia, 30, 301314.Google Scholar
Hudon, C., Belleville, S., & Gauthier, S. (2009). The assessment of recognition memory using the remember/know procedure in amnestic mild cognitive impairment and probable Alzheimer’s disease. Brain and Cognition, 70, 171179.Google Scholar
Hudon, C., Villeneuve, S., & Belleville, S. (2011). The effect of orientation at encoding on free-recall performance in amnestic mild cognitive impairment and probable Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 33, 631638.Google Scholar
Huff, F. J., Corkin, S., & Growdon, J. H. (1986). Semantic impairment and anomia in Alzheimer’s disease. Brain and Language, 28, 235249.Google Scholar
Jacobs, D., Salmon, D. P., Tröster, A. I., & Butters, N. (1990). Intrusion errors in the figural memory of patients with Alzheimer’s and Huntington’s disease. Archives of Clinical Neuropsychology, 5, 4957.Google Scholar
Jak, A. J., Bondi, M. W., Delano-Wood, L., Wierenga, C., Corey-Bloom, J., … & Delis, D.C.(2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. American Journal of Geriatric Psychiatry, 17, 368375.Google Scholar
Jak, A. J., Preis, S. R., Beiser, A. S., Seshadri, S., Wolf, P. A., Bondi, M. W., & Au, R. (2016). Neuropsychological criteria for mild cognitive impairment and dementia risk in the Framingham Heart Study. Journal of the International Neuropsychological Society,22, 937943.Google Scholar
Joubert, S., Brambati, S. M., Ansado, J., Barbeau, E. J., Felician, O., Didac, M. et al. (2010). The cognitive and neural expression of semantic memory impairment in mild cognitive impairment and early Alzheimer’s disease. Neuropsychologia, 48, 978988.Google Scholar
Karantzoulis, S., Troyer, A. K., & Rich, J. B. (2009). Prospective memory in amnestic mild cognitive impairment. Journal of the International Neuropsychological Society, 15, 407415.Google Scholar
Kiewel, N. A., Wisdom, N. M., Bradshaw, M. R., Pastorek, N. J., & Strutt, A. M. (2012). A retrospective review of digit span-related effort indicators in probable Alzheimer’s disease patients. The Clinical Neuropsychologist, 26, 965974.Google Scholar
Knopman, D. S., & Ryberg, S. (1989). A verbal memory test with high predictive accuracy for dementia of the Alzheimer type. Archives of Neurology, 46, 141145.Google Scholar
Koedam, E. L., Lauffer, V., van der Viles, A. E., van der Flier, W. M., Scheltens, P., & Pijnenburg, Y. A. (2010). Early-versus late-onset Alzheimer’s disease: More than age alone. Journal of Alzheimer’s Disease, 19, 14011408.Google Scholar
Lange, K. W., Sahakian, B. J., Quinn, N. P., Marsden, C. D., & Robbins, T. W. (1995). Comparison of executive and visuospatial memory function in Huntington’s disease and dementia of Alzheimer type matched for degree of dementia. Journal of Neurology, Neurosurgery and Psychiatry, 58, 598606.Google Scholar
Larrabee, G. L., Largen, J. W., & Levin, H. S. (1985). Sensitivity of age-decline resistant (“Hold”) WAIS subtests to Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 7, 497504.Google Scholar
Larson, E. B., Kukull, W. A., & Katzman, R. (1992). Cognitive impairment: Dementia and Alzheimer’s disease. Annual Review of Public Health, 13, 431449.Google Scholar
La Rue, A., & Jarvik, L. R. (1987). Cognitive function and prediction of dementia in old age. International Journal of Aging and Human Development, 25, 7989.Google Scholar
La Rue, A., Romero, L. J., Ortiz, I. E., Chi Lang, H., & Lindeman, R. D. (1999). Neuropsychological performance of Hispanic and non-Hispanic older adults: An epidemiologic survey. Clinical Neuropsychologist, 13, 474486.Google Scholar
Lefleche, G., & Albert, M. S. (1995). Executive function deficits in mild Alzheimer’s disease. Neuropsychology, 9, 313320.Google Scholar
Libon, D. J., Bondi, M. W., Price, C. C., Lamar, M., Joel, E., Wambach, D. M., … & Penney, D. L.(2011). Verbal serial list learning in mild cognitive impairment: A profile analysis of interference, forgetting, and errors. Journal of the International Neuropsychological Society, 17, 905914.Google Scholar
Libon, D. J., Drabick, D. A., Giovannetti, T., Price, C. C., Bondi, M. W., Eppig, J., … & Swenson, R. (2014). Neuropsychological syndromes associated with Alzheimer’s/vascular dementia: a latent class analysis. Journal of Alzheimer’s Disease, 42, 9991014.Google Scholar
Licht, E. A., McMurtray, A. M., Saul, R. E., & Mendez, M. F. (2007). Cognitive differences between early- and late-onset Alzheimer’s disease. American Journal of Alzheimer’s Disease and Other Dementias, 22, 218222.Google Scholar
Lineweaver, T. T., Salmon, D. P., Bondi, M. W., & Corey-Bloom, J. (2005). Distinct effects of Alzheimer’s disease and Huntington’s disease on performance of mental rotation. Journal of the International Neuropsychological Society, 11, 3039.Google Scholar
Liu, L., Gauthier, L., & Gauthier, S. (1991). Spatial disorientation in persons with early senile dementia of the Alzheimer’s type. American Journal of Occupational Therapy, 45, 6774.Google Scholar
Locascio, J. J., Growdon, J. H., & Corkin, S. (1995). Cognitive test performance in detecting, staging, and tracking Alzheimer’s disease. Archives of Neurology, 52, 10871099.Google Scholar
Loewenstein, D. A., Curiel, R. E., DeKosky, S., Bauer, R. M., Rosselli, M. … & Duara, R. (2018). Utilizing semantic intrusions to identify amyloid positivity in mild cognitive impairment. Neurology, 91, e976e984.Google Scholar
Manes, F., Serrano, C., Calcagno, M. L., Cardozo, J., & Hodges, J. R. (2008). Accelerated forgetting in subjects with memory complaints. Journal of Neurology, 255, 10671070.Google Scholar
Manly, J. J., & Echemendia, R. J. (2007). Race-specific norms: Using the model of hypertension to understand issues of race, culture, and education in neuropsychology. Archives of Clinical Neuropsychology, 22, 319325.Google Scholar
Martin, A., & Fedio, P. (1983). Word production and comprehension in Alzheimer’s disease: The breakdown of semantic knowledge. Brain and Language, 19, 124141.Google Scholar
Masliah, E., & Salmon, D. (1999). Neuropathological correlates of dementia in Alzheimer’s disease. In Peters, A & Morrison, J. (Eds.), Cerebral cortex, Vol. 14 (pp. 513551). New York: Kluwer Academic/Plenum Publishers.Google Scholar
Massman, P. J., Delis, D. C., & Butters, N. (1993). Does impaired primacy recall equal impaired long-term storage?: Serial position effects in Huntington’s disease and Alzheimer’s disease. Developmental Neuropsychology, 9, 115.Google Scholar
Massman, P. J., Delis, D. C., Butters, N., Dupont, R. M., & Gillin, J. C. (1992). The subcortical dysfunction hypothesis of memory deficits in depression: Neuropsychological validation in a subgroup of patients. Journal of Clinical and Experimental Neuropsychology, 14, 687706.Google Scholar
Mathias, J. L., & Burke, J. (2009). Cognitive functioning in Alzheimer’s and vascular dementia: a meta-analysis. [Meta-Analysis]. Neuropsychology, 23(4), 411423.Google Scholar
McKeith, I. G., Boeve, B. F., Dickson, D. W., Halliday, G., Taylor, J. P., … & Kosaka, K. (2017). Diagnosis and management of dementia with Lewy bodies 4th consensus report of the DLB consortium. Neurology, 89, 88100.Google Scholar
McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Jr., Kawas, C. H., … & Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, 7, 263269.Google Scholar
Mendez, M. F., Lee, A. S., Joshi, A., & Shapira, J. S. (2012). Nonamnestic presentation of early-onset Alzheimer’s disease. American Journal of Alzheimer’s Disease and other Dementia, 27, 413420.Google Scholar
Merten, T., Bossink, L., & Schmand, B. (2007). On the limits of effort testing: Symptom validity tests and severity of neurocognitive symptoms in nonlitigant patients. Journal of Clinical and Experimental Neuropsychology, 29, 308318.Google Scholar
Mickes, L., Wixted, J. T., Fennema-Notestine, C., Galasko, D., Bondi, M. W., Thal, L. J., & Salmon, D. P. (2007). Progressive impairment on neuropsychological tasks in a longitudinal study of preclinical Alzheimer’s disease. Neuropsychology, 21, 696705.Google Scholar
Miller, E. (1971). On the nature of memory disorder in presenile dementia. Neuropsychologia, 9, 7578.Google Scholar
Miller, B. L., Ikonte, C., Ponton, M., Levy, M., Boone, K., Darby, A., Berman, N., Mena, I., & Cummings, J. L. (1997). A study of the Lund-Manchester research criteria for frontotemporal dementia: clinical and single-photon emission CT correlations. Neurology, 48, 937942.Google Scholar
Minoshima, S., Foster, N. L., Sima, A., Frey, K. A., Albin, R. L., & Kuhl, D. E. (2001). Alzheimer’s disease versus dementia with Lewy bodies: Cerebral metabolic distinction with autopsy confirmation. Annals of Neurology, 50, 358–65.Google Scholar
Mohr, E., Litvan, I., Williams, J., Fedio, P., & Chase, T. N. (1990). Selective deficits in Alzheimer and Parkinson dementia: Visuospatial function. Canadian Journal of Neurological Science, 17, 292297.Google Scholar
Monsch, A. U., Bondi, M. W., Butters, N, Paulsen, J. S., Salmon, D. P., Brugger, P., & Swenson, M. (1994). A comparison of category and letter fluency in Alzheimer’s disease and Huntington’s disease. Neuropsychology, 8, 2530.Google Scholar
Morris, J. C., McKeel, D. W., Storandt, M., Rubin, E. H., Price, J. L., Grant, E. A., Ball, M. J., & Berg, L. (1991). Very mild Alzheimer’s disease: Informant-based clinical, psychometric, and pathologic distinction from normal aging. Neurology, 41, 469478.Google Scholar
Murphy, K. J., Rich, J. B., & Troyer, A. K. (2006). Verbal fluency patterns in amnestic mild cognitive impairment are characteristic of Alzheimer’s type dementia. Journal of the International Neuropsychological Society, 12, 570574.Google Scholar
Nebes, R. (1989). Semantic memory in Alzheimer’s disease. Psychological Bulletin, 106, 377394.Google Scholar
Nell, V. (2000). Cross-cultural neuropsychological assessment: Theory and practice. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Nicholas, M., Obler, L., Albert, M., & Helm-Estabrooks, N. (1985). Empty speech in Alzheimer’s disease and fluent aphasia. Journal of Speech and Hearing Research, 28, 405410.Google Scholar
Norton, L. E., Bondi, M. W., Salmon, D. P., & Goodglass, H. (1997). Deterioration of generic knowledge in patients with Alzheimer’s disease: Evidence from the Number Information Test. Journal of Clinical and Experimental Neuropsychology, 19, 857866.Google Scholar
Nutter-Upham, K. E., Saykin, A. J., Rabin, L. A., Roth, R. M., Wishart, H. A., Pare, N., & Flashman, L. A. (2008). Verbal fluency performance in amnestic MCI and older adults with cognitive complaints. Archives of Clinical Neuropsychology, 23, 229241.Google Scholar
Pandovani, A., Di Piero, V., Bragoni, M., Iacoboni, M., Gualdi, G. G., & Lenzi, G. L. (1995). Patterns of neuropsychological impairment in mild dementia: A comparison between Alzheimer’s disease and multi-infarct dementia. Acta Neurologica Scandinavica, 92, 433442.Google Scholar
Pantoni, L. (2010). Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. [Review]. Lancet Neurology, 9, 689701.Google Scholar
Parasuraman, R., & Haxby, J. V. (1993). Attention and brain function in Alzheimer’s disease. Neuropsychology, 7, 242272.Google Scholar
Paulson, D., Horner, M. D., & Bachman, D. (2015). A comparison of four embedded validity indices for the RBANS in a memory disorders clinic. Archives of Clinical Neuropsychology, 30, 207216.Google Scholar
Pearson, R. C., Esiri, M. M., Hiorns, R. W., Wilcock, G. K., & Powell, T. P. (1985). Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proceeding of the National Academy of Sciences of the USA, 82, 45314534.Google Scholar
Pedraza, O., & Mungas, D. (2008). Measurement in cross-cultural neuropsychology. Neuropsychology Review, 18, 184193.Google Scholar
Peña, E. D. (2007). Lost in translation: Methodological considerations in cross‐cultural research. Child Development, 78, 12551264.Google Scholar
Pepin, E. P., & Eslinger, P. J. (1989). Verbal memory decline in Alzheimer’s disease: A multiple-processes deficit. Neurology, 39, 14771482.Google Scholar
Perri, R., Serra, L., Carlesimo, G. A., & Caltagirone, C. (2007). Amnestic mild cognitive impairment: difference of memory profile in subjects who converted or did not convert to Alzheimer’s disease. Neuropsychology, 21, 549558.Google Scholar
Perry, R. J., & Hodges, J. R. (1999). Attention and executive deficits in Alzheimer’s disease: A critical review. Brain, 122, 383404.Google Scholar
Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183194.Google Scholar
Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56, 303308.Google Scholar
Pike, K. E., Rowe, C. C., Moss, S. A., & Savage, G. (2008). Memory profiling with paired associate learning in Alzheimer’s disease, mild cognitive impairment, and healthy aging. Neuropsychology, 22, 718728.Google Scholar
Rapp, M. A., & Reischies, F. M. (2005). Attention and executive control predict Alzheimer’s disease in late life: results from the Berlin aging study (BASE). American Journal of Geriatric Psychiatry, 13, 134141.Google Scholar
Rascovsky, K., Hodges, J. R., Kipps, C. M., Johnson, J. K., Seeley, W. W., Mendez, M. F., Knopman, D., … & Miller, B. L. (2007). Diagnostic criteria for the behavioral variant of frontotemporal dementia (bvFTD): Current limitations and future directions. Alzheimer Disease and Associated Disorders, 21, S1418.Google Scholar
Rascovsky, K., Hodges, J. R., Knopman, D., Mendez, M. F., Kramer, J. H., Neuhaus, J. et al. (2011). Sensitivity of revised diagnostic criteria for the behavioral variant of frontotemporal dementia. Brain, 134, 24562477.Google Scholar
Rascovsky, K., Salmon, D. P., Ho, G. J., Galasko, D., Peavy, G. M., Hansen, L. A., & Thal, L. J. (2002). Cognitive profiles differ in autopsy-confirmed frontotemporal dementia and AD. Neurology, 58, 18011808Google Scholar
Reed, B. R., Mungas, D. M., Kramer, J. H., Ellis, W., Vinters, H. V., Zarow, C., Jagust, W. J., & Chui, H. C. (2007). Profiles of neuropsychological impairment in autopsy-defined Alzheimer’s disease and cerebrovascular disease. Brain, 130, 731739.Google Scholar
Rentz, D. M., Amariglio, R. E., Becker, J. A., Frey, M., Olson, L. E., Frishe, K. et al. (2011). Face-name associative memory performance is related to amyloid burden in normal elderly. Neuropsychologia, 49, 27762783.Google Scholar
Salmon, D. P., & Chan, A. S. (1994). Semantic memory deficits associated with Alzheimer’s disease. In Cermak, L. S. (Ed.), Neuropsychological explorations of memory and cognition: Essays in honor of Nelson Butters (pp. 6176). New York: Plenum Press.Google Scholar
Salmon, D. P., Heindel, W. C., & Lange, K. L. (1999). Differential decline in word generation from phonemic and semantic categories during the course of Alzheimer’s disease: Implications for the integrity of semantic memory. Journal of the International Neuropsychological Society, 5, 692703.Google Scholar
Salmon, D. P., & Squire, L. R. (2009). The neuropsychology of memory dysfunction and its assessment. In Grant, I. & Adams, K. (Eds.), Neuropsychological assessment of neuropsychiatric and neuromedical disorders (3rd ed., pp. 560594). New York: Oxford University Press.Google Scholar
Salmon, D. P., Thomas, R. G., Pay, M. M., Booth, A., Hofstetter, C. R., Thal, L. J., & Katzman, R. (2002). Alzheimer’s disease can be accurately diagnosed in very mildly impaired individuals. Neurology, 59, 10221028.Google Scholar
Saunders, N. L. J., & Summers, M. J. (2011). Longitudinal deficits to attention, executive, and working memory in subtypes of mild cognitive impairment. Neuropsychology, 25, 237248.Google Scholar
Sawyer, R. J., Testa, S. M., & Dux, M. (2017). Embedded performance validity tests within the Hopkins Verbal Learning Tests-Revised and the Brief Visuospatial Memory Test-Revised. The Clinical Neuropsychologist, 31, 207218.Google Scholar
Schmitter-Edgecombe, M., Woo, E., & Greeley, D. R. (2009). Characterizing multiple memory deficits and their relation to everyday functioning in individuals with mild cognitive impairment. Neuropsychology, 23, 168177.Google Scholar
Seidenberg, M., Guidotti, L., Nielson, K. A., Woodard, J. L., Durgerian, S., Zhang, Q., Gander, A., Antuono, P., & Rao, S. M. (2009). Semantic knowledge for famous names in mild cognitive impairment. Journal of the International Neuropsychological Society, 15, 918.Google Scholar
Serra, L., Bozzali, M., Cercignani, M., Perri, R., Fadda, L., Caltagirone, C., & Carlesimo, G. A. (2010). Recollection and familiarity in amnestic mild cognitive impairment. Neuropsychology, 24, 316326.Google Scholar
Sieck, B. C., Smith, M. M., Duff, K., Paulsen, J. S., & Beglinger, L. J. (2013). Symptom validity test performance in the Huntington disease clinic. Archives of Clinical Neuropsychology, 28, 135143.Google Scholar
Sinai, M., Phillips, N. A., Chertkow, H., & Kabani, N. J. (2010). Task switching performance reveals heterogeneity amongst patients with mild cognitive impairment. Neuropsychology, 24, 757774.Google Scholar
Ska, B., Poissant, A., & Joanette, Y. (1990). Line orientation judgement in normal elderly and subjects with dementia of Alzheimer’s type. Journal of Clinical and Experimental Neuropsychology, 12, 695702.Google Scholar
Snowden, J. S., Bathgate, D., Varma, A., Blackshaw, A., Gibbons, Z. C., & Neary, D. (2001). Distinct behavioural profiles in frontotemporal dementia and semantic dementia. Journal of Neurology, Neurosurgery and Psychiatry, 70, 323332.Google Scholar
Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., Iwatsubo, T., … & Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, 7, 280292.Google Scholar
Spinnler, H., Della Sala, S., Bandera, R., & Baddeley, A. (1988). Dementia, aging, and the structure of human memory. Cognitive Neuropsychology, 5, 193211.Google Scholar
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47, 20152028.Google Scholar
Teichner, G., & Wagner, M. T. (2004). The Test of Memory Malingering (TOMM): Normative data from cognitively intact, cognitively impaired, and elderly patients with dementia. Archives of Clinical Neuropsychology, 19, 455464.Google Scholar
Terry, R. D., & Katzman, R. (1983). Senile dementia of the Alzheimer type. Annals of Neurology, 14, 497506.Google Scholar
Thompson, C., Henry, J. D., Rendell, P. G., Withall, A., & Brodaty, H. (2010). Prospective memory function in mild cognitive impairment. Journal of the International Neuropsychological Society, 16, 318325.Google Scholar
Tombaugh, T. N. (1997). The Test of Memory Malingering (TOMM): Normative data from cognitively intact and cognitively impaired individuals. Psychological Assessment, 9, 260268.Google Scholar
Troyer, A. K., & Murphy, K. J. (2007). Memory for intentions in amnestic mild cognitive impairment: Time- and event-based prospective memory. Journal of the International Neuropsychological Society, 13, 365369.Google Scholar
Troyer, A. K., Murphy, K. J., Anderson, N. D., Hayman-Abello, B. A., Craik, F. I. M., & Moscovitch, M. (2008). Item and associative memory in amnestic mild cognitive impairment: performance on standardized memory tests. Neuropsychology, 22, 1016.Google Scholar
Twamley, E. W., Ropacki, S. A. L., & Bondi, M. W. (2006). Neuropsychological and neuroimaging changes in preclinical Alzheimer’s disease. Journal of the International Neuropsychological Society, 12, 707735.Google Scholar
United States Census Bureau. (2017). Facts for Features: Hispanic Heritage Month 2017.Google Scholar
Villardita, C. (1993). Alzheimer’s disease compared with cerebrovascular dementia. Acta Neurologica Scandinavica, 87, 299308.Google Scholar
Vonsattel, J. P., Myers, R. H., Stevens, T. J., Ferrante, R. J., Bird, E. D., & Richardson, E. P. (1985). Neuropathological classification of Huntington’s disease. Journal of Neuropathology and Experimental Neurology, 44, 559577.Google Scholar
Walter, J., Morris, J., Swier-Vosnos, A., & Pliskin, N. (2014). Effects of severity of dementia on a symptom validity measure. The Clinical Neuropsychologist, 28, 11971208.Google Scholar
Weintraub, S., Wickland, A. H., & Salmon, D. P. (2012). The neuropsychological profile of Alzheimer’s disease. In Selkoe, D., Holtzman, D., & Mandelkow, E. (Eds.), The biology of Alzheimer’s disease (pp. 2542.) Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Weissberger, G. H., Gollan, T. H., Bondi, M. W., Nation, D. A., Hansen, L. A., Galasko, D., & Salmon, D. P. (2019). Neuropsychological deficit profiles, vascular risk factors, and neuropathological findings in Hispanic older adults with autopsy-confirmed Alzheimer’s disease. Journal of Alzheimer’s Disease, 67, 291302.Google Scholar
Weissberger, G. H., Salmon, D. P., Bondi, M. W., & Gollan, T. H. (2013). Which neuropsychological tests predict progression to Alzheimer’s disease in Hispanics? Neuropsychology, 27, 343355.Google Scholar
Welsh, K., Butters, N., Hughes, J., Mohs, R., & Heyman, A. (1991). Detection of abnormal memory decline in mild cases of Alzheimer’s disease using CERAD neuropsychological measures. Archives of Neurology, 48, 278281.Google Scholar
Westerberg, C. E., Paller, K. A., Weintraub, S., Mesulam, M., Holdstock, J. S., Mayes, A. R., & Reber, P. J. (2006). When memory does not fail: Familiarity-based recognition in mild cognitive impairment and Alzheimer’s disease. Neuropsychology, 20, 193205.Google Scholar
Wetzel, M. E., & Kramer, J. H. (2008). The neuropsychology of vascular dementia. Handbook of Clinical Neurology, 88, 567583.Google Scholar
Wilson, R. S., Bacon, L. D., Fox, J. H., & Kaszniak, A. W. (1983). Primary and secondary memory in dementia of the Alzheimer type. Journal of Clinical Neuropsychology, 5, 337344.Google Scholar
Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L. O., … & Petersen, R. C. (2004). Mild cognitive impairment – beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256, 240246.Google Scholar
Wolk, D. A., Signoff, E. D., & Dekosky, S. T. (2008). Recollection and familiarity in amnestic mild cognitive impairment: A global decline in recognition memory. Neuropsychologia, 46, 19651978.Google Scholar

References

ACRM (American Congress of Rehabilitation Medicine). (1993). Definition of mild traumatic brain injury. Journal of Head Trauma Rehabilitation, 8(3), 8687.Google Scholar
Alexander, M. P. (1995). Mild traumatic brain injury: Pathophysiology, natural history, and clinical management. Neurology, 45(7), 12531260.Google Scholar
Alsalaheen, B., Stockdale, K., Pechumer, D., Giessing, A., He, X., & Broglio, S. P. (2017). Cumulative effects of concussion history on baseline computerized neurocognitive test scores: Systematic review and meta-analysis. Sports Health, 9(4), 324332.Google Scholar
Arango-Lasprilla, J. C., Ketchum, J. M., Williams, K., Kreutzer, J. S., Marquez de la Plata, C. D., O’Neil-Pirozzi, T. M., & Wehman, P. (2008). Racial differences in employment outcomes after traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(5), 988995.Google Scholar
Arango-Lasprilla, J. C., Rosenthal, M., Deluca, J., Komaroff, E., Sherer, M., Cifu, D., & Hanks, R. (2007). Traumatic brain injury and functional outcomes: Does minority status matter? Brain Injury, 21(7), 701708.Google Scholar
Beck, A. T., & Steer, R. A. (1993). Beck Anxiety Inventory manual. San Antonio, TX: Psychological Corporation.Google Scholar
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck Depression Inventory manual (2nd ed.). San Antonio, TX: Psychological Corporation.Google Scholar
Belanger, H. G., & Vanderploeg, R. D. (2005). The neuropsychological impact of sports-related concussion: A meta-analysis. Journal of the International Neuropsychological Society, 11(4), 345357.Google Scholar
Ben-Porath, Y., & Tellegen, A. (2011). MMPI-2 RF (Minnesota Multiphasic Personality Inventory-2 Restructured Form): Manual for administration, scoring, and interpretation. Minneapolis: University of Minnesota Press.Google Scholar
Bilbao, A., Kennedy, C., Chatterji, S., Ustun, B., Barquero, J. L., & Barth, J. T. (2003). The ICF: Applications of the WHO model of functioning, disability and health to brain injury rehabilitation. NeuroRehabilitation, 18(3), 239250.Google Scholar
Bin Zahid, A., Hubbard, M. E., Dammavalam, V. M., Balser, D. Y., Pierre, G., Kim, A., Samadani, U. (2018). Assessment of acute head injury in an emergency department population using Sport Concussion Assessment Tool – 3rd edition. Applied Neuropsychology: Adult, 25(2), 110119.Google Scholar
Binder, L. M., Iverson, G. L., & Brooks, B. L. (2009). To err is human: “Abnormal” neuropsychological scores and variability are common in healthy adults. Archives of Clinical Neuropsychology, 24(1), 3146.Google Scholar
Boake, C., McCauley, S. R., Levin, H. S., Pedroza, C., Contant, C. F., Song, J. X., … & Diaz-Marchan, P. J. (2005). Diagnostic criteria for postconcussional syndrome after mild to moderate traumatic brain injury. Journal of Neuropsychiatry and Clinical Neurosciences, 17(3), 350356.Google Scholar
Boake, C., Millis, S. R., High, W. M., Jr., Delmonico, R. L., Kreutzer, J. S., Rosenthal, M., … & Ivanhoe, C. B. (2001). Using early neuropsychologic testing to predict long-term productivity outcome from traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 82(6), 761768.Google Scholar
Boone, K. B. (2009). The need for continuous and comprehensive sampling of effort/response bias during neuropsychological examinations. Clinical Neuropsychologist, 23(4), 729741.Google Scholar
Borkowski, J. G., Benton, A. L., & Spreen, O. (1967). Word fluency and brain damage. Neuropsychologia, 5(2), 135140.Google Scholar
Brandt, J. (1991). The hopkins verbal learning test: Development of a new memory test with six equivalent forms. Clinical Neuropsychologist, 5(2), 125142.Google Scholar
Broglio, S. P., Katz, B. P., Zhao, S., McCrea, M., & McAllister, T. (2018). Test-Retest Reliability and Interpretation of Common Concussion Assessment Tools: Findings from the NCAA-DoD CARE Consortium. Sports Med, 48(5), 12551268.Google Scholar
Bryant, R. A., & Harvey, A. G. (1998). Relationship between acute stress disorder and posttraumatic stress disorder following mild traumatic brain injury. Am J Psychiatry, 155(5), 625629.Google Scholar
Bush, S. S., Sweet, J. J., Bianchini, K. J., Johnson-Greene, D., Dean, P. M., & Schoenberg, M. R. (2018). Deciding to adopt revised and new psychological and neuropsychological tests: an inter-organizational position paper. Clinical Neuropsychologist, 32(3), 319325.Google Scholar
Carroll, L. J., Cassidy, J. D., Peloso, P. M., Borg, J., von Holst, H., Holm, L., … & Pepin, M. (2004). Prognosis for mild traumatic brain injury: Results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Journal of Rehabilitation Medicine (43 Suppl), 84105.Google Scholar
Christensen, B. K., Colella, B., Inness, E., Hebert, D., Monette, G., Bayley, M., & Green, R. E. (2008). Recovery of cognitive function after traumatic brain injury: A multilevel modeling analysis of Canadian outcomes. Archives of Physical Medicine and Rehabilitation, 89(12), S3S15.Google Scholar
Cicerone, K. D., Dahlberg, C., Malec, J. F., Langenbahn, D. M., Felicetti, T., Kneipp, S., … & Catanese, J. (2005). Evidence-based cognitive rehabilitation: Updated review of the literature from 1998 through 2002. Archives of Physical Medicine and Rehabilitation, 86(8), 16811692.Google Scholar
Dean, A. C., Victor, T. L., Boone, K. B., & Arnold, G. (2008). The relationship of IQ to effort test performance. Clinical Neuropsychologist, 22(4), 705722.Google Scholar
Dean, A. C., Victor, T. L., Boone, K. B., Philpott, L. M., & Hess, R. A. (2009). Dementia and effort test performance. Clinical Neuropsychologist, 23(1), 133152.Google Scholar
Delis, D. C. (2000). California Verbal Learning Test – Adult Version. Manual. San Antonio, TX: Psychological Corporation.Google Scholar
Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan executive function system: Examiner’s manual. San Antonio, TX: Psychological Corporation.Google Scholar
Dikmen, S. S., Machamer, J. E., Powell, J. M., & Temkin, N. R. (2003). Outcome 3 to 5 years after moderate to severe traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 84(10), 14491457.Google Scholar
Dikmen, S. S., Machamer, J. E., Winn, H. R., & Temkin, N. R. (1995). Neuropsychological outcome at 1-year post head injury. Neuropsychology, 9(1), 8090.Google Scholar
Draper, K., & Ponsford, J. (2008). Cognitive functioning ten years following traumatic brain injury and rehabilitation. Neuropsychology, 22(5), 618625.Google Scholar
Echemendia, R. J., Meeuwisse, W., McCrory, P., Davis, G. A., Putukian, M., Leddy, J., … & Herring, S. (2017). The Sport Concussion Assessment Tool 5th Edition (SCAT5): Background and rationale. British Journal of Sports Medicine, 51(11), 848850.Google Scholar
Ellenberg, J. H., Levin, H. S., & Saydjari, C. (1996). Posttraumatic Amnesia as a predictor of outcome after severe closed head injury: Prospective assessment. Archives of Neurology, 53(8), 782791.Google Scholar
Erlanger, D., Feldman, D., Kutner, K., Kaushik, T., Kroger, H., Festa, J., … & Broshek, D. (2003). Development and validation of a web-based neuropsychological test protocol for sports-related return-to-play decision-making. Archives of Clinical Neuropsychology, 18(3), 293316.Google Scholar
Esselman, P. C., & Uomoto, J. M. (1995). Classification of the spectrum of mild traumatic brain injury. Brain Injury, 9(4), 417424.Google Scholar
Fork, M., Bartels, C., Ebert, A. D., Grubich, C., Synowitz, H., & Wallesch, C. W. (2005). Neuropsychological sequelae of diffuse traumatic brain injury. Brain Inj, 19(2), 101108.Google Scholar
Garcia, G. P., Broglio, S. P., Lavieri, M. S., McCrea, M., & McAllister, T. (2018). Quantifying the value of multidimensional assessment models for acute concussion: An analysis of data from the NCAA-DoD Care Consortium. Sports Medicine, 48(7), 17391749.Google Scholar
Gary, K. W., Arango-Lasprilla, J. C., & Stevens, L. F. (2009). Do racial/ethnic differences exist in post-injury outcomes after TBI? A comprehensive review of the literature. Brain Inj, 23(10), 775789.Google Scholar
Giacino, J. T., Kalmar, K., & Whyte, J. (2004). The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Archives of Physical Medicine and Rehabilitation, 85(12), 20202029.Google Scholar
Giza, C. C., & Hovda, D. A. (2014). The new neurometabolic cascade of concussion. Neurosurgery, 75(0 4), S24S33.Google Scholar
Golden, C. J. (1978). Stroop Color and Word Test: A Manual for Clinical and Experimental Uses. Wood Dale, IL: Stoelting Company.Google Scholar
Gouvier, W. D., Blanton, P. D., LaPorte, K. K., & Nepomuceno, C. (1987). Reliability and validity of the Disability Rating Scale and the Levels of Cognitive Functioning Scale in monitoring recovery from severe head injury. Archives of Physical Medicine and Rehabilitation, 68(2), 9497.Google Scholar
Green, P. (2003). Word memory test for windows: User’s manual and program. Edmonton: Green’s Publishing.Google Scholar
Greiffenstein, M. F., Baker, W. J., & Gola, T. (1994). Validation of malingered amnesia measures with a large clinical sample. Psychological Assessment, 6(3), 218224.Google Scholar
Gunstad, J., & Suhr, J. A. (2001). “Expectation as etiology” versus “the good old days”: Postconcussion syndrome symptom reporting in athletes, headache sufferers, and depressed individuals. Journal of the International Neuropsychological Society, 7(3), 323333.Google Scholar
Guskiewicz, K. M., Ross, S. E., & Marshall, S. W. (2001). Postural stability and neuropsychological deficits after concussion in collegiate athletes. Journal of Athletic Training, 36(3), 263273.Google Scholar
Hart, T., Hoffman, J. M., Pretz, C., Kennedy, R., Clark, A. N., & Brenner, L. A. (2012). A longitudinal study of major and minor depression following traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 93(8), 13431349.Google Scholar
Hart, T., Millis, S., Novack, T., Englander, J., Fidler-Sheppard, R., & Bell, K. R. (2003). The relationship between neuropsychologic function and level of caregiver supervision at 1 year after traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 84(2), 221230.Google Scholar
Heaton, R. K., Grant, I., & Matthews, C. (1991). Comprehensive norms for an expanded Halstead-Reitan neuropsychological battery: Demographic corrections, research findings, and clinical applications. Odessa, FL: Psychological Assessment Resources.Google Scholar
Heaton, S. K., Chelune, G.J., Talley, J.L., Kay, G.G., & Curtiss, G. (1993). Wisconsin Card Sorting Test manual: Revised and expanded. Odessa, FL: Psychological Assessment Resources.Google Scholar
Heilbronner, R. L., Sweet, J. J., Attix, D. K., Krull, K. R., Henry, G. K., & Hart, R. P. (2010). Official position of the American academy of clinical neuropsychology on serial neuropsychological assessments: The utility and challenges of repeat test administrations in clinical and forensic contexts. Clinical Neuropsychologist, 24(8), 12671278.Google Scholar
Heilbronner, R. L., Sweet, J. J., Morgan, J. E., Larrabee, G. J., & Millis, S. R. (2009). American Academy of Clinical Neuropsychology Consensus Conference Statement on the neuropsychological assessment of effort, response bias, and malingering. Clinical Neuropsychologist, 23(7), 10931129.Google Scholar
Hiott, D. W., & Labbate, L. (2002). Anxiety disorders associated with traumatic brain injuries. NeuroRehabilitation, 17(4), 345355.Google Scholar
Jackson, W. T., Novack, T. A., & Dowler, R. N. (1998). Effective serial measurement of cognitive orientation in rehabilitation: The Orientation Log. Archives of Physical Medicine and Rehabilitation, 79(6), 718720.Google Scholar
Kaplan, E., Goodglass, H., & Weintrab, S. (1983). The Boston naming test. Philadelphia: Lea & Febiger.Google Scholar
Karr, J. E., Areshenkoff, C. N., & Garcia-Barrera, M. A. (2014). The neuropsychological outcomes of concussion: A systematic review of meta-analyses on the cognitive sequelae of mild traumatic brain injury. Neuropsychology, 28(3), 321336.Google Scholar
Kashluba, S., Hanks, R. A., Casey, J. E., & Millis, S. R. (2008). Neuropsychologic and functional outcome after complicated mild traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(5), 904911.Google Scholar
Kiernan, R. J., Mueller, J., Langston, J. W., & Van Dyke, C. (1987). The Neurobehavioral Cognitive Status Examination: A brief but quantitative approach to cognitive assessment. Annals of Internal Medicine, 107(4), 481485.Google Scholar
King, N. S., Crawford, S., Wenden, F. J., Moss, N. E., & Wade, D. T. (1995). The Rivermead Post Concussion Symptoms Questionnaire: A measure of symptoms commonly experienced after head injury and its reliability. J Neurol, 242(9), 587592.Google Scholar
Kontos, A. P., Deitrick, J. M., Collins, M. W., & Mucha, A. (2017). Review of vestibular and oculomotor screening and concussion rehabilitation. Journal of Athletic Training, 52(3), 256261.Google Scholar
Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-9: Validity of a brief depression severity measure. J Gen Intern Med, 16(9), 606613.Google Scholar
Larrabee, G. J. (2003). Detection of malingering using atypical performance patterns on standard neuropsychological tests. Clinical Neuropsychologist, 17(3), 410425.Google Scholar
Larrabee, G. J. (2012). Performance validity and symptom validity in neuropsychological assessment. Journal of the International Neuropsychological Society, 18(4), 625630.Google Scholar
Laxe, S., Tschiesner, U., Zasler, N., López-Blazquez, R., Tormos, J. M., & Bernabeu, M. (2012). What domains of the International Classification of Functioning, Disability and Health are covered by the most commonly used measurement instruments in traumatic brain injury research? Clinical Neurology and Neurosurgery, 114(6), 645650.Google Scholar
Laxe, S., Zasler, N., Robles, V., López-Blázquez, R., Tormos, J. M., & Bernabeu, M. (2014). ICF profiling of patients with traumatic brain injury: an international professional survey. Disability and Rehabilitation, 36(1), 8288.Google Scholar
Levin, H. S., O’Donnell, V. M., & Grossman, R. G. (1979). The Galveston Orientation and Amnesia Test: A practical scale to assess cognition after head injury. J Nerv Ment Dis, 167(11), 675684.Google Scholar
Lippa, S. M. (2018). Performance validity testing in neuropsychology: A clinical guide, critical review, and update on a rapidly evolving literature. Clinical Neuropsychologist, 32(3), 391421.Google Scholar
Lippa, S. M., Agbayani, K. A., Hawes, S., Jokic, E., & Caroselli, J. S. (2014). Effort in acute traumatic brain injury: Considering more than pass/fail. Rehabilitation Psychology, 59(3), 306312.Google Scholar
Lippa, S. M., Lange, R. T., French, L. M., & Iverson, G. L. (2017). Performance Validity, Neurocognitive Disorder, and Post-concussion Symptom Reporting in Service Members with a History of Mild Traumatic Brain Injury. Archives of Clinical Neuropsychology, 33(5), 113.Google Scholar
Loring, D. W., & Bauer, R. M. (2010). Testing the limits: Cautions and concerns regarding the new Wechsler IQ and Memory scales. Neurology, 74(8), 685690.Google Scholar
Loring, D. W., Goldstein, F. C., Chen, C., Drane, D. L., Lah, J. J., Zhao, L., & Larrabee, G. J. (2016). False-positive error rates for reliable digit span and auditory verbal learning test performance validity measures in amnestic mild cognitive impairment and early Alzheimer disease. Archives of Clinical Neuropsychology, 31(4), 313331.Google Scholar
Lovell, M. R., Iverson, G. L., Collins, M. W., Podell, K., Johnston, K. M., Pardini, D., … & Maroon, J. C. (2006). Measurement of symptoms following sports-related concussion: Reliability and normative data for the post-concussion scale. Applied Neuropsychology, 13(3), 166174.Google Scholar
Malec, J. F., Brown, A. W., Leibson, C. L., Flaada, J. T., Mandrekar, J. N., Diehl, N. N., & Perkins, P. K. (2007). The mayo classification system for traumatic brain injury severity. Journal of Neurotrauma, 24(9), 14171424.Google Scholar
Marr, A. C. V. (2004). Central Nervous System Injury Surveillance: Annual Data Submission Standards for the Year 2002. Atlanta: U.S. Department of Health and Human Services, CDC, National Center for Injury Prevention and Control.Google Scholar
Marshall, P., & Happe, M. (2007). The performance of individuals with mental retardation on cognitive tests assessing effort and motivation. Clinical Neuropsychologist, 21(5), 826840.Google Scholar
Mathias, J. L., & Wheaton, P. (2007). Changes in attention and information-processing speed following severe traumatic brain injury: A meta-analytic review. Neuropsychology, 21(2), 212223.Google Scholar
McCrea, M., Barr, W. B., Guskiewicz, K., Randolph, C., Marshall, S. W., Cantu, R., … & Kelly, J. P. (2005). Standard regression-based methods for measuring recovery after sport-related concussion. Journal of the International Neuropsychological Society, 11(1), 5869.Google Scholar
McCrea, M., Guskiewicz, K. M., Marshall, S. W., Barr, W., Randolph, C., Cantu, R. C., … & Kelly, J. P. (2003). Acute effects and recovery time following concussion in collegiate football players: The NCAA Concussion Study. Jama, 290(19), 25562563.Google Scholar
McCrea, M., Hammeke, T., Olsen, G., Leo, P., & Guskiewicz, K. (2004). Unreported concussion in high school football players: Implications for prevention. Clin J Sport Med, 14(1), 1317.Google Scholar
McCrea, M., Iverson, G. L., McAllister, T. W., Hammeke, T. A., Powell, M. R., Barr, W. B., & Kelly, J. P. (2009). An integrated review of recovery after mild traumatic brain injury (MTBI): Implications for clinical management. Clinical Neuropsychologist, 23(8), 13681390.Google Scholar
McCrea, M., Kelly, J. P., Kluge, J., Ackley, B., & Randolph, C. (1997). Standardized assessment of concussion in football players. Neurology, 48(3), 586588.Google Scholar
McCrory, P., Meeuwisse, W., Dvorak, J., Aubry, M., Bailes, J., Broglio, S., … & Vos, P. E. (2017). Consensus statement on concussion in sport-the 5(th) international conference on concussion in sport held in Berlin, October 2016. British Journal of Sports Medicine, 51(11), 838847.Google Scholar
McKee, A. C., Cantu, R. C., Nowinski, C. J., Hedley-Whyte, E. T., Gavett, B. E., Budson, A. E., … & Stern, R. A. (2009). Chronic traumatic encephalopathy in athletes: Progressive tauopathy after repetitive head injury. Journal of Neuropathology and Experimental Neurology, 68(7), 709735.Google Scholar
McKinley, W. (1999). Cognitive and behavioral effects of brain injury. In Rosenthal, M. (Ed.), Rehabilitation of the adult and child with traumatic brain injury (pp. 7486). Philadelphia:FA Davis Co.Google Scholar
McLeod, T. C., & Leach, C. (2012). Psychometric properties of self-report concussion scales and checklists. Journal of Athletic Training, 47(2), 221223.Google Scholar
Meterko, M., Baker, E., Stolzmann, K. L., Hendricks, A. M., Cicerone, K. D., & Lew, H. L. (2012). Psychometric assessment of the Neurobehavioral Symptom Inventory-22: The structure of persistent postconcussive symptoms following deployment-related mild traumatic brain injury among veterans. Journal of Head Trauma Rehabilitation, 27(1), 5562.Google Scholar
Meyers, J. E., & Diep, A. (2000). Assessment of malingering in chronic pain patients using neuropsychological tests. Applied Neuropsychology, 7(3), 133139.Google Scholar
Meyers, J. E., & Volbrecht, M. E. (2003). A validation of multiple malingering detection methods in a large clinical sample. Archives of Clinical Neuropsychology, 18(3), 261276.Google Scholar
Miller, J. B., Axelrod, B. N., Schutte, C., & Davis, J. J. (2017). Symptom and performance validity assessment in forensic neuropsychology. In Bush, S. S., Demakis, G. J., & Rohling, M. L (Eds.). APA handbook of forensic neuropsychology (pp. 67109). Washington, DC: American Psychological Association.Google Scholar
Millis, S. R., Rosenthal, M., Novack, T. A., Sherer, M., Nick, T. G., Kreutzer, J. S., … & Ricker, J. H. (2001). Long-term neuropsychological outcome after traumatic brain injury. Journal of Head Trauma Rehabilitation, 16(4), 343355.Google Scholar
Mittenberg, W., DiGiulio, D. V., Perrin, S., & Bass, A. E. (1992). Symptoms following mild head injury: Expectation as aetiology. Journal of Neurology, Neurosurgery, and Psychiatry, 55(3), 200204.Google Scholar
Morey, L. C. (2007). Personality Assessment Inventory (PAI): Professional manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., … & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695699.Google Scholar
Nelson, L. D., Furger, R. E., Ranson, J., Tarima, S., Hammeke, T. A., Randolph, C., … & McCrea, M. A. (2018). Acute clinical predictors of symptom recovery in emergency department patients with uncomplicated mild traumatic brain injury or non-traumatic brain injuries. Journal of Neurotrauma, 35(2), 249259.Google Scholar
Nelson, L. D., Janecek, J. K., & McCrea, M. A. (2013). Acute clinical recovery from sport-related concussion. Neuropsychology Review, 23(4), 285299.Google Scholar
Nelson, L. D., LaRoche, A. A., Pfaller, A. Y., Lerner, E. B., Hammeke, T. A., Randolph, C., … & McCrea, M. A. (2016). Prospective, head-to-head study of three Computerized Neurocognitive Assessment Tools (CNTs): Reliability and validity for the assessment of sport-related concussion. Journal of the International Neuropsychological Society, 22(1), 2437.Google Scholar
Nelson, N. W., Hoelzle, J. B., Sweet, J. J., Arbisi, P. A., & Demakis, G. J. (2010). Updated meta-analysis of the MMPI-2 symptom validity scale (FBS): Verified utility in forensic practice. Clinical Neuropsychologist, 24(4), 701724.Google Scholar
Novack, T. A., Alderson, A. L., Bush, B. A., Meythaler, J. M., & Canupp, K. (2000). Cognitive and functional recovery at 6 and 12 months post-TBI. Brain Injury, 14(11), 987996.Google Scholar
Novack, T. A., Bush, B. A., Meythaler, J. M., & Canupp, K. (2001). Outcome after traumatic brain injury: Pathway analysis of contributions from premorbid, injury severity, and recovery variables. Archives of Physical Medicine and Rehabilitation, 82(3), 300305.Google Scholar
Pearson. (2009). Test of Premorbid Functioning (TOPF). San Antonio, TX: NCS Pearson.Google Scholar
Pertab, J. L., James, K. M., & Bigler, E. D. (2009). Limitations of mild traumatic brain injury meta-analyses. Brain Injury, 23(6), 498508.Google Scholar
Rabin, L. A., Barr, W. B., & Burton, L. A. (2005). Assessment practices of clinical neuropsychologists in the United States and Canada: A survey of INS, NAN, and APA Division 40 members. Archives of Clinical Neuropsychology, 20(1), 3365.Google Scholar
Randolph, C., Tierney, M. C., Mohr, E., & Chase, T. N. (1998). The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Preliminary clinical validity. Journal of Clinical and Experimental Neuropsychology, 20(3), 310319.Google Scholar
Rappaport, M. (2005). The Disability Rating and Coma/Near-Coma scales in evaluating severe head injury. Neuropsychological Rehabilitation, 15(34), 442453.Google Scholar
Rappaport, M., Dougherty, A. M., & Kelting, D. L. (1992). Evaluation of coma and vegetative states. Archives of Physical Medicine and Rehabilitation, 73(7), 628634.Google Scholar
Reitan, R. M. (1955). The relation of the trail making test to organic brain damage. Journal of Consulting Psychology, 19, 393394.Google Scholar
Reitan, R. M. (1958). Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills, 8(3), 271276.Google Scholar
Reitan, R. M., & Wolfson, D. (1995). Category test and trail making test as measures of frontal lobe functions. Clinical Neuropsychologist, 9(1), 5056.Google Scholar
Resch, J. E., McCrea, M. A., & Cullum, C. M. (2013). Computerized neurocognitive testing in the management of sport-related concussion: an update. Neuropsychology Review, 23(4), 335349.Google Scholar
Rey, A. (1941). L’examen psychologique dans les cas d’encephalopathie traumtique. Archives of Psychology, 28, 286340.Google Scholar
Ricker, J. H. (2010). Traumatic brain injury in adults. In Frank, R. G., Rosenthal, M., & Caplan, B. (Eds.) Handbook of rehabilitation psychology (2nd ed., pp. 4362). Washington, DC: American Psychological Association.Google Scholar
Robles, L., Lopez, E., Salazar, X., Boone, K. B., & Glaser, D. F. (2015). Specificity data for the b Test, Dot Counting Test, Rey-15 Item Plus Recognition, and Rey Word Recognition Test in monolingual Spanish-speakers. Journal of Clinical and Experimental Neuropsychology, 37(6), 614621.Google Scholar
Rohling, M. L., Meyers, J. E., & Millis, S. R. (2003). Neuropsychological impairment following traumatic brain injury: A dose-response analysis. Clinical Neuropsychologist, 17(3), 289302.Google Scholar
Rosenthal, M., Dljkers, M., Harrison-Felix, C., Nabors, N., Witol, A. D., Young, M. E., & Englander, J. S. (1996). Impact of minority status on functional outcome and community integration following traumatic brain injury. Journal of Head Trauma Rehabilitation, 11(5), 4057.Google Scholar
Salazar, X. F., Lu, P. H., Wen, J., & Boone, K. B. (2007). The use of effort tests in ethnic minorities and in non-English-speaking and English as a second language populations. In Boone, K. B. (Ed.) Assessment of feigned cognitive impairment: A neuropsychological perspective (pp. 405427). New York: Guilford Press.Google Scholar
Sander, A. M., Pappadis, M. R., Davis, L. C., Clark, A. N., Evans, G., Struchen, M. A., & Mazzei, D. M. (2009). Relationship of race/ethnicity and income to community integration following traumatic brain injury: Investigation in a non-rehabilitation trauma sample. NeuroRehabilitation, 24(1), 1527.Google Scholar
Schmidt, M. (1996). Rey auditory verbal learning test: A handbook. Los Angeles: Western Psychological Services.Google Scholar
Schretlen, D. J., Testa, S. M., Winicki, J. M., Pearlson, G. D., & Gordon, B. (2008). Frequency and bases of abnormal performance by healthy adults on neuropsychological testing. Journal of the International Neuropsychological Society, 14(3), 436445.Google Scholar
Schwamm, L. H., Van Dyke, C., Kiernan, R. J., Merrin, E. L., & Mueller, J. (1987). The Neurobehavioral Cognitive Status Examination: Comparison with the Cognitive Capacity Screening Examination and the Mini-Mental State Examination in a neurosurgical population. Annals of Internal Medicine, 107(4), 486491.Google Scholar
Sherer, M., Giacino, J. T., Doiron, M. J., LaRussa, A., & Taylor, S. R. (2014). Bedside evaluations. In Sherer, M. & Sander, A. M. (Eds.), Handbook on the neuropsychology of traumatic brain injury (pp. 4975). New York: Springer.Google Scholar
Sherer, M., & Novack, T. A. (2003). Neuropsychological assessment after brain injury. In Prigatano, G., & Pliskin, N (Ed.), Clinical neuropsychology and cost outcome research: A beginning (pp. 3960). New York: Psychology Press.Google Scholar
Sherer, M., Novack, T. A., Sander, A. M., Struchen, M. A., Alderson, A., & Thompson, R. N. (2002). Neuropsychological assessment and employment outcome after traumatic brain injury: A review. Clinical Neuropsychologist, 16(2), 157178.Google Scholar
Sherer, M., Yablon, S. A., Nakase-Richardson, R., & Nick, T. G. (2008). Effect of severity of post-traumatic confusion and its constituent symptoms on outcome after traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(1), 4247.Google Scholar
Smith, A. (1982). Symbol Digit Modalities Test (SDMT): Manual (revised). Los Angeles: Western Psychological Services.Google Scholar
Spitzer, R. L., Kroenke, K., Williams, J. B., & Lowe, B. (2006). A brief measure for assessing generalized anxiety disorder: The GAD-7. Archives of Internal Medicine, 166(10), 10921097.Google Scholar
Stein, S. C., & Ross, S. E. (1992). Moderate head injury: A guide to initial management. Journal of Neurosurgery, 77(4), 562564.Google Scholar
Strutt, A. M., Scott, B. M., Shrestha, S., & York, M. K. (2011). The Rey 15-item memory test and Spanish-speaking older adults. Clinical Neuropsychologist, 25(7), 12531265.Google Scholar
Tator, C. H. (2009). Let’s standardize the definition of concussion and get reliable incidence data. Canadian Journal of Neurological Sciences, 36(4), 405406.Google Scholar
Taylor, , Bell, J. M., M. J., Breiding, & Xu, L. (2017). Traumatic brain injury-related emergency department visits, hospitalizations, and deaths – United States, 2007 and 2013. MMWR Surveillance Summaries, 66(9), 116.Google Scholar
Teasdale, G., & Jennett, B. (1974). Assessment of coma and impaired consciousness: A practical scale. Lancet, 2(7872), 8184.Google Scholar
Tombaugh, T. N. (1996). TOMM, Test of Memory Malingering. North Tonawanda: Multi-Health Systems.Google Scholar
VA/DoD (Department of Veterans Affairs, Department of Defense). (2009). VA/DoD Clinical Practice Guideline for Management of Concussion/Mild Traumatic Brain Injury. Journal of Rehabilitation Research and Development, 46(6), 168.Google Scholar
Van Reekum, R., Bolago, I., Finlayson, M. A. J., Garner, S., & Links, P. S. (1996). Psychiatric disorders after traumatic brain injury. Brain Injury, 10(5), 319328.Google Scholar
van Reekum, R., Cohen, T., & Wong, J. (2000). Can traumatic brain injury cause psychiatric disorders? Journal of Neuropsychiatry and Clinical Neurosciences, 12(3), 316327.Google Scholar
Vilar-López, R., Gomez-Rio, M., Caracuel, A., Llamas-Elvira, J., & Perez-Garcia, M. (2008). Use of specific malingering measures in a Spanish sample. Journal of Clinical and Experimental Neuropsychology, 30(6), 710722.Google Scholar
Vilar-López, R., Santiago-Ramajo, S., Gomez-Rio, M., Verdejo-García, A. M., Llamas, J., & Perez-Garcia, M. (2007). Detection of malingering in a Spanish population using three specific malingering tests. Archives of Clinical Neuropsychology, 22(3), 379388.Google Scholar
Volbrecht, M. E., Meyers, J. E., & Kaster-Bundgaard, J. (2000). Neuropsychological outcome of head injury using a short battery. Archives of Clinical Neuropsychology, 15(3), 251265.Google Scholar
Wechsler, D. (2008). Wechsler Memory Scale – fourth edition (WMS-IV). San Antonio, TX: NCS Pearson.Google Scholar
Wechsler, D. (2011). Wechsler Abbreviated Scale of Intelligence – second edition (WASI-II). San Antonio, TX: NCS Pearson.Google Scholar
Whelan-Goodinson, R., Ponsford, J. L., Schonberger, M., & Johnston, L. (2010). Predictors of psychiatric disorders following traumatic brain injury. Journal of Head Trauma Rehabilitation, 25(5), 320329.Google Scholar
Whelan, R., Ponsford, J., Johnston, L., & Grant, F. (2009). Psychiatric disorders following traumatic brain injury. Journal of Head Trauma Rehabilitation, 24 (5), 324332.Google Scholar
WHO (World Health Organization). (2001). International Classification of Functioning, Disability and Health. www3.who.int/icf/icftemplate.cfmGoogle Scholar
Wygant, D. B., Sellbom, M., Gervais, R. O., Ben-Porath, Y. S., Stafford, K. P., Freeman, D. B., & Heilbronner, R. L. (2010). Further validation of the MMPI-2 and MMPI-2-RF Response Bias Scale: Findings from disability and criminal forensic settings. Psychological Assessment, 22(4), 745756.Google Scholar
Youngjohn, J. R., Wershba, R., Stevenson, M., Sturgeon, J., & Thomas, M. L. (2011). Independent validation of the MMPI-2-RF Somatic/Cognitive and Validity scales in TBI Litigants tested for effort. Clinical Neuropsychologist, 25(3), 463476.Google Scholar
Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica, 67(6), 361370.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×