Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-03T14:08:21.425Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 January 2015

Andrew W. Woods
Affiliation:
BP Institute, University of Cambridge
Get access
Type
Chapter
Information
Flow in Porous Rocks
Energy and Environmental Applications
, pp. 281 - 284
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. R. L. (2001). Principles of Physical Sedimentology. Caldwall, NJ: Blackburn Press.Google Scholar
Barenblatt, G. (1996). Dimensional Analysis, Intermediate Asymptotics and Self-similarity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bear, J. (1972). Dynamics of Fluids in Porous Media. New York: Elsevier.Google Scholar
Bear, J. and Cheng, A. (2010). Modeling Groundwater Flow and Contaminant Transport. New York: Springer.CrossRefGoogle Scholar
Behbahani, H., DiDonato, G. and Blunt, M. (2006). Simulation of counter-current imbibition in water wet fractured reservoirs. J. Petrol. Sci. Eng., 50, 2139.CrossRefGoogle Scholar
Berkowitz, B. (2010). Dispersion in Heterogeneous Geological Formations. New York: Springer.Google Scholar
Berkowitz, B. and Scher, H. (1997). Anomalous transport in random fracture networks. Phys. Rev. Lett., 79, 20.CrossRefGoogle Scholar
Berkowitz, B. and Scher, H. (2001). Application of continuous time random walk theory to tracer test measurements in heterogeneous and fractured media. Ground Water, 39, 583604.CrossRefGoogle Scholar
Bickle, M., Chadwick, A., Huppert, H. E., Hallworth, M. and Lyle, S. (2007). Modelling carbon dioxide accumulation at Sleipnir: implications for underground carbon storage. Earth Planet. Sc. Lett., 255, 164176.CrossRefGoogle Scholar
Bijejic, J., Muggeridge, A. and Blunt, M. (2004). Pore scale modeling of longitudinal dispersion. WRR 2004, WR003567.Google Scholar
Boait, F., White, N., Bickle, M., et al. (2012). Spatial and temporal evolution of injected CO2 at Sleipnir field, North Sea. J. Geophys. Res., 117, B03309.Google Scholar
Bodvarsson, G. S., Benson, S. and Witherspoon, P. (2012). Theory of the development of geothermal systems charged by vertical faults. J. Geophys. Res., 87, 93179328.CrossRefGoogle Scholar
BP (2013). BP Statistical Review of World Energy. Available at: www.bp.com/statisticalreview.Google Scholar
Brooks, R. and Corey, A. (1959). Hydraulic properties of porous media. Hydro Paper No. 5, Colorado State University.Google Scholar
Cardoso, S. and Woods, A. W. (1993). The formation of drops by viscous instability. J. Fluid Mech., 289, 351379.CrossRefGoogle Scholar
Chiles, J. P. and Delfiner, P. (1999). Geostatistics: Modeling Spatial Uncertainty. New York: Wiley.CrossRefGoogle Scholar
Corey, A. T. (1954). The interrelations between gas and oil permeabilities. Producers Monthly, 19, 3841.Google Scholar
Dagan, G. (1989). Flow and Transport in Porous Formations. New York: Springer-Verlag.CrossRefGoogle Scholar
Delgado, J. M. P. Q. (2007). Longitudinal and transverse dispersion in porous media. Trans. I. Chem. E., Supplement 9A, 85(9), 1245.CrossRefGoogle Scholar
Del Ioio, G. and Woods, A. W. (2014). Instability of an axisymmetric porous bed through deformation of the boundaries. Manuscript subjudice. BP Institute, University of Cambridge.Google Scholar
DeLoubens, R. and Ramakrishnan, T. (2011). Analysis and computation of gravity-induced migration in porous media. J. Fluid Mech., 675, 6086.CrossRefGoogle Scholar
Dudfield, P. and Woods, A. W. (2014). On the periodic injection of fluid into, and its extraction from, a confined aquifer. J. Fluid Mech., 755, 111141.CrossRefGoogle Scholar
Dudfield, P. and Woods, A.W. (2013). On the use of seismic data to monitor the injection of CO2 into a layered aquifer. Earth Planet. Sci. Lett., 368, 132143.CrossRefGoogle Scholar
Dullien, F. A. L. (1991). Porous Media, Fluid Transport and Pore Structure. Waltham, MA: Academic Press.Google Scholar
Eames, I. and Bush, J. (1999). Longitudinal dispersion by bodies fixed in a potential flow. Proc. Roy. Soc. A, 455 (1990), 36653686.CrossRefGoogle Scholar
Farcas, A. and Woods, A. W. (2007), On the extraction of gas from multilayered rock. J. Fluid Mech., 581, 7995.CrossRefGoogle Scholar
Farcas, A. and Woods, A. W. (2009). The effect of drainage on the capillary retention of CO2 in a layered permeable rock. J. Fluid Mech., 618, 349359.CrossRefGoogle Scholar
Farcas, A. and Woods, A. W. (2013). Three dimensional buoyancy driven flow along a fractured boundary. J. Fluid Mech., 728, 279305.CrossRefGoogle Scholar
Farcas, A. and Woods, A.W. (2014). Buoyancy driven dispersion in a layered permeable rock. Manuscript subjudice. BP Institute, Cambridge University.Google Scholar
Freeze, R. A. and Cherry, J. A. (1979). Groundwater. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Fried, J. J. and Cambarnous, M. A. (1971). Dispersion in porous media. In Show, V. (ed.), Advances in Hydroscience, 7. New York: Academic Press, pp. 169282.Google Scholar
Furtney, J. and Woods, A. W. (2014). On the difference in spatial distribution of mean and variance in well placement problems. Manuscript BPI.Google Scholar
Gelhar, L. W., Welty, C. and Rehfeldt, K. R. (1992). A critical review of data on field scale dispersion in aquifers. Water Resour. Res., 28(7), 19551974.CrossRefGoogle Scholar
Gerritsen, M. G. and Durlofsky, L. J. (2005). Modeling fluid flow in oil reservoirs. Annu. Rev. Fluid Mech., 37, 211238.Google Scholar
Green, C. and Ennis-King, J. (2013). Residual trapping beneath impermeable barriers during buoyant migration of CO2. Transport Porous Med., 98(3), 505524.CrossRefGoogle Scholar
Gunn, I. and Woods, A.W. (2011). On the flow of buoyant fluid injected into a confined, inclined aquifer. J. Fluid Mech., 672, 109129.CrossRefGoogle Scholar
Haward, L. N. (1964). Convection at high Rayleigh number. In Gortler, H. (ed.), Proc. Eleventh Intl. Congress on Applied Mechanics. Munich: Springer, pp. 11091115.Google Scholar
Hesse, M. and Woods, A. W. (2010). Buoyant dispersal of CO2 during geological storage.CrossRefGoogle Scholar
Hesse, M., Tchelepi, H. A. and Orr, F. M. (2008). Gravity currents with residual trapping. J. Fluid Mech., 611, 3560.CrossRefGoogle Scholar
Hewitt, D. R., Neufeld, J. A. and Lister, J. R. (2013) Convective shutdown in a porous medium at high Rayleigh number. J. Fluid Mech., 719, 551586.CrossRefGoogle Scholar
Hinch, E. J. and Bhatt, B. S. (1990). Stability of an acid front moving through a porous rock. J. Fluid Mech., 212, 279288.CrossRefGoogle Scholar
Homsy, B. (1987). Viscous fingering in porous media. Ann. Rev. Fluid Mech., 19, 271301.CrossRefGoogle Scholar
Huppert, H. E. and Woods, A. W. (1995) The dynamics of gravity driven flow in porous media. J. Fluid Mech., 292, 5569.CrossRefGoogle Scholar
Kim, H., Funada, T., Joseph, D. D. and Homsy, G. M. (2009). Viscous potential flow analysis of radial fingering in a Hele–Shaw cell. Phys. Fluids, 21, 074106.CrossRefGoogle Scholar
King, S. E. and Woods, A. W. (2003). Dipole solutions for viscous gravity currents: theory and experiments. J. Fluid Mech., 483, 91109.CrossRefGoogle Scholar
Koch, D. and Brady, J. (1985). Dispersion in fixed beds, J. Fluid Mech., 399427.CrossRefGoogle Scholar
Lajeunesse, E., Martin, J., Rakotomalala, N., Salin, D. and Yortsos, Y. C. (1999). Miscible displacement in a Hele-Shaw cell at high rates. J. Fluid Mech., 398, 299319.CrossRefGoogle Scholar
Lake, L. (1991). Enhanced Oil Recovery. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Lauwerier, H. A. (1955). The transport of heat in an oil layer caused by the injection of hot fluid. Appl. Sci. Res., A, 5, 145151.CrossRefGoogle Scholar
Ma, S., Morrow, N. and Zhang, X. (1997). Generalised scaling for spontaneous imbibition data for strongly water-wet systems, J. Pet. Sci. Eng., 18, 165178.Google Scholar
MacMinn, C., Szulczewski, M. L. and Juanes, R. (2010). CO2 migration in saline aquifers. Part 1: Capillary trapping under slope and groundwater flow. J. Fluid Mech., 662, 329351.CrossRefGoogle Scholar
MacMinn, C., Szulczewski, M. L. and Juanes, R. (2011). CO2 migration in saline aquifers. Part 2: Capillary and solubility trapping. J. Fluid Mech., 688, 321351.CrossRefGoogle Scholar
Mathias, S. A., de Miguel, G. J. G. M., Thatcher, K. and Zimmerman, R. (2011). Pressure build up during CO2 injection in a closed brine aquifer. Trans. Porous Media, 89, 383397.CrossRefGoogle Scholar
Maxworthy, T. (1989). Experimental study of interface instability in a Hele Shaw cell. Phys. Rev. A, 39, 58635866.CrossRefGoogle Scholar
Menand, T. and Woods, A. W. (2005). Dispersion, scale and time dependence of mixing zones under gravitationally stable and unstable displacements in porous media. Water Resour. Res., 41, 5.CrossRefGoogle Scholar
Menand, T., Raw, A. and Woods, A.W. (2003). Thermal inertia and reversing buoyancy in flow in porous media. Geophys. Res. Lett., 30(6), 1291.CrossRefGoogle Scholar
Mitchell, V. and Woods, A. W. (2006). Self-similar dynamics of liquid injected into partially saturated aquifers. J. Fluid Mech., 566, 345355.CrossRefGoogle Scholar
Muskat, M. (1937). The Flow of Homogeneous Fluids through Porous Media. New York: McGraw Hill.Google Scholar
Naff, R. L., Haley, D. F. and Sudicky, E. A. (1998). High-resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media. Water Resour. Res., 34(4), 663697.CrossRefGoogle Scholar
Nichols, G. (2009). Sedimentology and Stratigraphy. Chichester, UK: Wiley-Blackwell.Google Scholar
Nigam, M. and Woods, A. W. (2005). The influence of buoyancy contrasts on miscible source-sink flows in a porous medium with thermal inertia. J. Fluid Mech., 549, 253271.CrossRefGoogle Scholar
Otto, C., Lapotre, M. and Woods, A.W. (2014). Transverse and longitudinal mixing across a density interface in a layered porous rock subject to an oscillatory flow. Manuscript subjudice. BP Institute, University of Cambridge.Google Scholar
Paterson, L. (1985). Fingering with miscible fluids in a Hele Shaw cell. Phys. Fluids, 28, 2630.CrossRefGoogle Scholar
Pfannkuch, H. D. (1963). Contribution to the study of miscible displacements in a porous medium. Rev. Inst. Franc. Petrol., 18, 215231.Google Scholar
Phillips, O. M. (1991). Flow and Reaction in Porous Rocks. Cambridge: Cambridge University Press.Google Scholar
Philips, O. M. (2009). Geological Fluid Mechanics: Subsurface Flow and Reactions. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Pritchard, D., Woods, A.W. and Hogg, A. J. (2001). On the slow draining of a gravity current moving through a layered permeable medium. J. Fluid Mech., 444, 2347.CrossRefGoogle Scholar
Raw, A.W.V. and Woods, A.W. (2003). On gravity-driven flow through a reacting porous rock. J. Fluid Mech., 474, 227243.CrossRefGoogle Scholar
Rayward-Smith, W. and Woods, A.W. (2011). Dispersal of buoyancy-driven flow in porous media with inclined baffles. J. Fluid Mech., 689, 517528.CrossRefGoogle Scholar
Rayward-Smith, W. and Woods, A.W. (2014). Experimental analogues for reactions with buoyancy reversal in porous media. Manuscript sub judice.Google Scholar
Reinhelt, D. (1987). The effect of thin film variations and transverse curvature in the shape of fingers in a Hele Shaw cell. Phys. Fluids, 30, 2617.CrossRefGoogle Scholar
Riolfo, L., Nagatsu, Y., Iwata, S., Maes, R., Trevelyan, P. and DeWit, A. (2012). Experimental evidence of reaction driven miscible viscous fingering. Phys Rev., E85, 015394.Google Scholar
Saffman, P. (1959). A theory of dispersion in a porous medium. J. Fluid Mech., 6, 321349.CrossRefGoogle Scholar
Saffman, P. and Taylor, G. (1958). The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid. Proc. Roy. Soc., 245, 312329.Google Scholar
Schwartz, L. (1986). Stability of Hele Shaw flow the wetting layer effect. Phys. Fluids, 29, 3086.CrossRefGoogle Scholar
Sorbie, K. (1991). Polymer-improved Oil Recovery. London: Blackie.CrossRefGoogle Scholar
Sudicky, E. and Frind, E. (1982). Contaminant transport in fractured porous media, analytical solutions for a system of parallel fractures. Water Resour. Res., 18(6), 16341642.CrossRefGoogle Scholar
Szulczewski, M. L., Hesse, M. A. and Juanes, R. (2013). Carbon dioxide dissolution in structural and stratigraphic traps. J. Fluid Mech., 736, 287315.CrossRefGoogle Scholar
Taylor, G. I. (1953). Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc., 219, 186203.Google Scholar
Tyspkin, G. and Woods, A. W. (2005). Precipitate formation in a porous rock through evaporation of saline water. J. Fluid Mech., 537, 3553.Google Scholar
van Genuchten, M. and Wierenga, P. (1976). Mass transfer studies in sorbing porous media. 1. Analytical solutions. Soil Sci. Soc. Am. J., 40(4), 473481.CrossRefGoogle Scholar
van Triet, A., Routh, A. and Woods, A.W. (2014). Control of the permeability of a porous media using a thermally sensitive polymer. AICHE, 60(3), 11931201.CrossRefGoogle Scholar
Verdon, J. and Woods, A. W. (2007). Gravity-driven reacting flows in a confined porous aquifer. J. Fluid Mech., 588, 2941.CrossRefGoogle Scholar
Verdon, J., Kendall, M., Stork, A., Chadwick, A., White, D. and Bissell, R. (2013). A comparison of geomechanical deformation induced by megatonne scale CO2 storage at Sleipnir, Weyburn and InSalah. Proc. Nat. Acad. Sci., 110, E27622771.CrossRefGoogle Scholar
Wooding, R. A. (1963). Convection in a saturated porous medium at large Rayleigh number or Péclet number. J. Fluid Mech., 15, 527.CrossRefGoogle Scholar
Woods, A. W. (1998). Vaporising gravity currents in porous media. J. Fluid Mech., 377, 151168.CrossRefGoogle Scholar
Woods, A. W. (1999). Liquid and vapour flow in superheated permeable rock. Ann. Rev. Fluid Mech., 31, 171199.CrossRefGoogle Scholar
Woods, A.W. (2002). Gravity driven flow in porous rock. In Ingham, D.B. and Pop, I. (eds.), Flow and Transport in Porous Media. New York: Wiley, pp. 397423.Google Scholar
Woods, A.W. and Espie, T. (2012). Controls on the dissolution of CO2 plumes in structural traps in deep saline aquifers. Geophys. Res. Lett., 39, L08401.CrossRefGoogle Scholar
Woods, A. W. and Farcas, A. (2009). Capillary entry pressure and the leakage of gravity currents through a sloping layered permeable rock. J. Fluid Mech., 618, 361379.CrossRefGoogle Scholar
Woods, A.W. and Mason, R. (2001). The dynamics of two-layer gravity-driven flows in permeable rock. J. Fluid Mech., 421, 83114.CrossRefGoogle Scholar
Woods, A. W. and Norrise, S. (2010). On the role of caprock and fracture zones in dispersing gas plumes in the subsurface. Water Resour. Res., 46, W88522.CrossRefGoogle Scholar
Yih, C.-S. (1966). Stratified Flows. Waltham, MA: Academic Press.Google Scholar
Yortsos, Y. C. and Salin, D. (2006). On the selection principle for viscous fingering in porous media. J. Fluid Mech., 557, 225236.CrossRefGoogle Scholar
Young, W. and Jones, S. (1991). Shear dispersion. Phy. Fluids, 3(5), 10871101.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Andrew W. Woods
  • Book: Flow in Porous Rocks
  • Online publication: 05 January 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107588677.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Andrew W. Woods
  • Book: Flow in Porous Rocks
  • Online publication: 05 January 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107588677.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Andrew W. Woods
  • Book: Flow in Porous Rocks
  • Online publication: 05 January 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107588677.015
Available formats
×