Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T03:51:42.888Z Has data issue: false hasContentIssue false

12 - Random Walk Analyses in Primates

from Part II - GIS Analysis in Fine-Scale Space

Published online by Cambridge University Press:  29 January 2021

Francine L. Dolins
Affiliation:
University of Michigan, Dearborn
Christopher A. Shaffer
Affiliation:
Grand Valley State University, Michigan
Leila M. Porter
Affiliation:
Northern Illinois University
Jena R. Hickey
Affiliation:
University of Georgia
Nathan P. Nibbelink
Affiliation:
University of Georgia
Get access

Summary

Models of foraging behavior often assume that foragers either have no information about the spatial distribution of resources that they seek or, at the other extreme, that they are omniscient with regard to the locations of those resources. This is paralleled by a distinction between the optimization of search behavior (which assumes no knowledge of resource locations) and the pursuit of efficient routes between multiple resource patches (often explicitly considered to be a cognitive task). In this chapter we discuss a variety of movement models that have recently become common in animal ecology. We then use a population of hamadryas baboons as a case study to investigate the relevance of these models to a species possessing spatial memory and learning capabilities.

Type
Chapter
Information
Spatial Analysis in Field Primatology
Applying GIS at Varying Scales
, pp. 247 - 266
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Safadi, M. M. 1994. The hamadryas baboon, Papio hamadryas (Linnaeus, 1758) in Yemen (Mammalia: Primates: Cercopithecidae). Zoology in the Middle East 10: 516.Google Scholar
Altmann, S. A. and Altmann, J. 1970. Baboon Ecology. University of Chicago Press, Chicago, IL.Google Scholar
Atkinson, R. P. D., Rhodes, C. J., Macdonald, D. W., and Anderson, R. M. 2002. Scale-free dynamics in the movement patterns of jackals. Oikos 98: 134140.CrossRefGoogle Scholar
Austin, D., Bowen, W. D., and McMillan, J. I. 2004. Intraspecific variation in movement patterns: modeling individual behaviour in a large marine predator. Oikos 105: 1530.Google Scholar
Bailey, H. and Thompson, P. 2006. Quantitative analysis of bottlenose dolphin movement patterns and their relationship with foraging. Journal of Animal Ecology 75: 456465.Google Scholar
Bartumeus, F. 2007. Levy processes in animal movement: an evolutionary hypothesis. Fractals: Complex Geometry Patterns and Scaling in Nature and Society 15: 151162.Google Scholar
Bartumeus, F., Peters, F., Pueyo, S., Marrase, C., and Catalan, J. 2003. Helical Levy walks: adjusting searching statistics to resource availability in microzooplankton. Proceedings of the National Academy of Sciences of the United States of America 100: 1277112775.Google Scholar
Benedix, J. H. 1993. Area-restricted search by the plains pocket gopher (Geomys bursarius) in tallgrass prairie habitat. Behavioral Ecology 4: 318324.Google Scholar
Benhamou, S. 1992. Efficiency of area-concentrated searching behavior in a continuous patchy environment. Journal of Theoretical Biology 159: 6781.Google Scholar
Benhamou, S. 2007. How many animals really do the Lévy walk? Ecology 88: 19621969.Google Scholar
Berg, H. C. 1983. Random Walks in Biology. Princeton University Press, Princeton, NJ.Google Scholar
Bergman, C. M., Schaefer, J. A., and Luttich, S. N. 2000. Caribou movement as a correlated random walk. Oecologia 123: 364374.CrossRefGoogle ScholarPubMed
Biquand, S., Biquand-Guyot, V., Boug, A., and Gautier, J.-P. 1992. Group composition in wild and commensal hamadryas baboons: a comparative study in Saudi Arabia. International Journal of Primatology 13: 533543.Google Scholar
Blackwell, P. G. 1997. Random diffusion models for animal movement. Ecological Modelling 100: 87102.Google Scholar
Bond, A. B. 1980. Optimal foraging in a uniform habitat: search mechanism of the green lacewing. Animal Behaviour 28: 1019.Google Scholar
Bovet, P. and Benhamou, S. 1988. Spatial analysis of animals’ movements using a correlated random walk model. Journal of Theoretical Biology 131: 419433.Google Scholar
Boyer, D., Ramos-Fernández, G., Miramontes, O., et al. 2006. Scale-free foraging by primates emerges from their interaction with a complex environment. Proceedings of the Royal Society B: Biological Sciences 273: 17431750.Google Scholar
Brantingham, P. J. 2006. Measuring forager mobility. Current Anthropology 47: 435459.Google Scholar
Brockmann, D., Hufnagel, L., and Geisel, T. 2006. The scaling laws of human travel. Nature 439: 462465.Google Scholar
Brown, C. T., Liebovitch, L. S., and Glendon, R. 2007. Lévy flights in Dobe Ju/’hoansi foraging patterns. Human Ecology 35: 129138.Google Scholar
Brown, J. H., Gupta, V. K., Li, B.-L., et al. 2002. The fractal nature of nature: power laws, ecological complexity and biodiversity. Philosophical Transactions of the Royal Society B: Biological Sciences 357: 619626.Google Scholar
Byrne, R. W., Noser, R., Bates, L. A., and Jupp, P. E. 2009. How did they get here from there? Detecting changes of direction in terrestrial ranging. Animal Behaviour 77: 619631.Google Scholar
Chapleau, F., Johansen, P. H., and Williamson, M. 1988. The use and abuse of the term strategy. Oikos 53: 136138.Google Scholar
Clauset, A., Shalizi, C. R., and Newman, M. E. J. 2009. Power-law distributions in empirical data. SIAM Review 51: 661703.Google Scholar
Condit, R., Ashton, P. S., Baker, P., et al. 2000. Spatial patterns in the distribution of tropical tree species. Science 288: 14141418.Google Scholar
Crist, T. O., Guertin, D. S., Wiens, J. A., and Milne, B. T. 1992. Animal movement in heterogeneous landscapes: an experiment with Eleodes beetles in shortgrass prairie. Functional Ecology 6: 536544.CrossRefGoogle Scholar
Curio, E. 1976. The Ethology of Predation. Springer, New York.Google Scholar
Dai, X., Shannon, G., Slotow, R., Page, B., and Duffy, K. J. 2007. Short-duration daytime movements of a cow herd of African elephants. Journal of Mammalogy 88: 151157.Google Scholar
de Jager, N. R. and Rohweder, J. J. 2011. Spatial scaling of core and dominant forest cover in the Upper Mississippi and Illinois River floodplains, USA. Landscape Ecology 26: 697708.Google Scholar
de Knegt, H. J., Hengeveld, G. M., van Langevelde, F., et al. 2007. Patch density determines movement patterns and foraging efficiency of large herbivores. Behavioral Ecology 18: 10651072.Google Scholar
Edwards, A. M., Phillips, R. A., Watkins, N. W., et al. 2007. Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449: 10441045.Google Scholar
Faugeras, B. and Maury, O. 2007. Modeling fish population movements: from an individual-based representation to an advection–diffusion equation. Journal of Theoretical Biology 247: 837848.CrossRefGoogle Scholar
Ford, R. G. 1983. Home range in a patchy environment: optimal foraging predictions. American Zoologist 23: 315326.Google Scholar
Fritz, H., Said, S., and Weimerskirch, H. 2003. Scale-dependent hierarchical adjustments of movement patterns in a long-range foraging seabird. Proceedings of the Royal Society B: Biological Sciences 270: 11431148.CrossRefGoogle Scholar
Garber, P. A. and Porter, L. 2014. Navigating in small-scale space: the role of landmarks and resource monitoring in understanding saddleback tamarin travel. American Journal of Primatology 76: 447459.Google Scholar
Gautestad, A. O. 2013. Animal space use: distinguishing a two-level superposition of scale-specific walks from scale-free Levy walk. Oikos 122: 612620.CrossRefGoogle Scholar
Gautestad, A. O. and Mysterud, I. 2005. Intrinsic scaling complexity in animal dispersion and abundance. American Naturalist 165: 4455.Google Scholar
Gonzalez, M. C., Hidalgo, C. A., and Barabasi, A.-L. 2008. Understanding individual human mobility patterns. Nature 453: 779782.Google Scholar
Grove, M. 2010. The quantitative analysis of mobility: ecological techniques and archaeological extensions. Pages 83118 in New Perspectives on Old Stones: Analytical Approaches to Palaeolithic Technologies. Lycett, S. and Chuahan, P. (Eds.). Springer, Dordrecht.Google Scholar
Grove, M. 2013. The evolution of spatial memory. Mathematical Biosciences 242: 2532.Google Scholar
Grunbaum, D. 1998. Using spatially explicit models to characterize foraging performance in heterogeneous landscapes. American Naturalist 151: 97115.Google Scholar
Hills, T. T., Kalff, C., and Wiener, J. M. 2013. Adaptive Levy processes and area-restricted search in human foraging. PLoS ONE 8. DOI: 10.1371/journal.pone.0060488.Google Scholar
Janson, C. H. and DiBitetti, M. S. 1997. Experimental analysis of food detection in capuchin monkeys: effects of distance, travel speed, and resource size. Behavioral Ecology and Sociobiology 41: 1724.CrossRefGoogle Scholar
Johnson, A. R., Milne, B. T., and Wiens, J. A. 1992. Diffusion in fractal landscapes: simulations and experimental studies of tenebrionid beetle movements. Ecology 73: 19681983.Google Scholar
Johnson, D. S., London, J. M., Lea, M.-A., and Durban, J. W. 2008. Continuous-time correlated random walk model for animal telemetry data. Ecology 89: 12081215.Google Scholar
Kareiva, P. and Odell, G. 1987. Swarms of predators exhibit preytaxis if individual predators use area-restricted search. American Naturalist 130: 233270.Google Scholar
Kareiva, P. M. and Shigesada, N. 1983. Analyzing insect movement as a correlated random walk. Oecologia 56: 234238.Google Scholar
Keasar, T., Shmida, A., and Motro, U. 1996. Innate movement rules in foraging bees: flight distances are affected by recent rewards and are correlated with choice of flower type. Behavioral Ecology and Sociobiology 39: 381388.CrossRefGoogle Scholar
Knell, A. S. and Codling, E. A. 2012. Classifying area-restricted search (ARS) using a partial sum approach. Theoretical Ecology 5: 325339.CrossRefGoogle Scholar
Kummer, H. 1968. Social Organization of Hamadryas Baboons. University of Chicago Press, Chicago, IL.Google Scholar
Laing, J. 1937. Host-finding by insect parasites: I. Observations on the finding of hosts by Alysia manducator, Mormoniella vitripennis and Trichogramma evanescens. Journal of Animal Ecology 6: 298317.CrossRefGoogle Scholar
Laing, J. 1938. Host-finding by insect parasites: II. The chance of Trichogramma evanescens finding its hosts. Journal of Experimental Biology 15: 281302.Google Scholar
Levandowsky, M., Klafter, J., and White, B. S. 1988a. Feeding and swimming behavior in grazing microzooplankton. Journal of Protozoology 35: 243246.Google Scholar
Levandowsky, M., Klafter, J., and White, B. S. 1988b. Swimming behavior and chemosensory responses in the protistan microzooplankton as a function of the hydrodynamic regime. Bulletin of Marine Science 43: 758763.Google Scholar
Levandowsky, M., White, B. S., and Schuster, F. L. 1997. Random movements of soil amebas. Acta Protozoologica 36: 237248.Google Scholar
Lévy, P. 1937. Theorie de l’Addition des Variables Aleatoires. Paris: Gauthier-Villars.Google Scholar
Lode, T. 2000. Functional response and area-restricted search in a predator: seasonal exploitation of anurans by the European polecat, Mustela putorius. Austral Ecology 25: 223231.Google Scholar
Marell, A., Ball, J. P., and Hofgaard, A. 2002. Foraging and movement paths of female reindeer: insights from fractal analysis, correlated random walks, and Lévy flights. Canadian Journal of Zoology/Revue Canadienne De Zoologie 80: 854865.Google Scholar
Miramontes, O., DeSouza, O., Hernandez, D., and Ceccon, E. 2012. Non-Levy mobility patterns of Mexican Me’Phaa peasants searching for fuel wood. Human Ecology 40: 167174.Google Scholar
Newman, M. E. J. 2005. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics 46: 323351.Google Scholar
Normand, E. and Boesch, C. 2009. Sophisticated Euclidean maps in forest chimpanzees. Animal Behaviour 77: 11951201.Google Scholar
Noser, R. and Byrne, R. W. 2007. Travel routes and planning of visits to out-of-sight resources in wild chacma baboons, Papio ursinus. Animal Behaviour 73: 257266.Google Scholar
Noser, R. and Byrne, R. W. 2010. How do wild baboobs (Papio ursinus) plan their routes? Travel among multiple high-quality food sources with inter-group competition. Animal Cognition 13, 145155.Google Scholar
Patlak, C. S. 1953a. Random walk with persistence and external bias. Bulletin of Mathematical Biophysics 15: 311318.Google Scholar
Patlak, C. S. 1953b. A mathematical contribution to the study of orientation of organisms. Bulletin of Mathematical Biophysics 15: 431476.Google Scholar
Porter, L. and Garber, P. 2013. Foraging and spatial memory in wild Weddell’s saddleback tamarins (Saguinus fuscicollis weddelli) when moving between distant and out-of-sight goals. International Journal of Primatology 34: 3048.CrossRefGoogle Scholar
Raichlen, D. A., Wood, B. M., Gordon, A. D., et al. 2014. Evidence of Lévy walk foraging patterns in human hunter-gatherers. Proceedings of the National Academy of Sciences USA 111(2): 728733.Google Scholar
Ramos-Fernández, G., Mateos, J. L., Miramontes, O., et al. 2004. Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi). Behavioral Ecology and Sociobiology 55: 223230.Google Scholar
Reid, A. T. 1953. On stochastic processes in biology. Biometrics 9: 275289.Google Scholar
Reynolds, A. M., Reynolds, D. R., Smith, A. D., Svensson, G. P., and Lofstedt, C. 2007a. Appetitive flight patterns of male Agrotis segetum moths over landscape scales. Journal of Theoretical Biology 245: 141149.Google Scholar
Reynolds, A. M., Smith, A. D., Menzel, R., et al. 2007b. Displaced honey bees perform optimal scale-free search flights. Ecology 88: 19551961.Google Scholar
Reynolds, A. M., Smith, A. D., Reynolds, D. R., Carreck, N. L., and Osborne, J. L. 2007c. Honeybees perform optimal scale-free searching flights when attempting to locate a food source. Journal of Experimental Biology 210: 37633770.CrossRefGoogle ScholarPubMed
Rhee, I., Shin, M., Hong, S., et al. 2011. On the Lévy-walk nature of human mobility. IEEE–ACM Transactions on Networking 19: 630643.Google Scholar
Schaefer, J. A., Bergman, C. M., and Luttich, S. N. 2000. Site fidelity of female caribou at multiple spatial scales. Landscape Ecology 15: 731739.Google Scholar
Schreier, A. L. 2009. The influence of resource distribution on the social structure and travel patterns of wild hamadryas baboons (Papio hamadryas) in Filoha, Awash National Park, Ethiopia. Dissertation, City University of New York.Google Scholar
Schreier, A. L. and Grove, M. 2010. Ranging patterns of hamadryas baboons: random walk analyses. Animal Behaviour 80: 7587.Google Scholar
Schreier, A. L. and Grove, M. 2014. Recurrent patterning in the daily foraging routes of hamadryas baboons (Papio hamadryas): spatial memory in large- versus small-scale space. American Journal of Primatology 76: 421435.Google Scholar
Schreier, A. and Swedell, L. 2008. Use of palm trees as a sleeping site for hamadryas baboons (Papio hamadryas) in Ethiopia. American Journal of Primatology 70: 107113.Google Scholar
Schreier, A. L. and Swedell, L. 2009. The fourth level of social structure in a multi-level society: ecological and social functions of clans in hamadryas baboons. American Journal of Primatology 71: 948955.Google Scholar
Schreier, A. L. and Swedell, L. 2012a. The socioecology of network scaling ratios in the multilevel society of hamadryas baboons. International Journal of Primatology 33: 10691080.Google Scholar
Schreier, A. L. and Swedell, L. 2012b. Ecology and sociality in a multilevel society: ecological determinants of social cohesion in hamadryas baboons. American Journal of Physical Anthropology 148: 580588.Google Scholar
Shettleworth, S. J. 1998. Cognition, Evolution, and Behavior. Oxford University Press, New York.Google Scholar
Shlesinger, M. F. and Klafter, J. 1986. Lévy walks versus Lévy flights. Pages 279283 in On Growth and Form. Stanley, H. E. and Ostrowski, N. (Eds.). Martinus Nijhof, Amsterdam.CrossRefGoogle Scholar
Shlesinger, M. F., Zaslavsky, G. M., and Klafter, J. 1993. Strange kinetics. Nature 363: 3137.Google Scholar
Sigg, H. 1986. Ranging patterns in hamadryas baboons: evidence for a mental map. Pages 8791 in Primate Ontogeny, Cognition, and Social Behaviour, Vol. 3, Else, J. G. and Lee, P. C. (Eds.). Cambridge University Press, Cambridge.Google Scholar
Sigg, H. and Stolba, A. 1981. Home range and daily march in a hamadryas baboon troop. Folia Primatologica 26: 4075.Google Scholar
Sims, D. W., Righton, D., and Pitchford, J. W. 2007. Minimizing errors in identifying Lévy flight behaviour of organisms. Journal of Animal Ecology 76: 222229.Google Scholar
Sims, D. W., Southall, E. J., Humphries, N. E., et al. 2008. Scaling laws of marine predator search behaviour. Nature 451: 10981102.Google Scholar
Skellam, J. G. 1951. Random dispersal in theoretical populations. Biometrika 38: 196218.Google Scholar
Skellam, J. G. 1973. The formulation and interpretation of mathematical models of diffusionary processes in population biology. Pages 6385 in The Mathematical Theory of the Dynamics of Biological Populations. Bartlett, M. S. and Hiorns, R. W. (Eds.). Academic Press, New York.Google Scholar
Sueur, C. 2011. A non-Lévy random walk in chacma baboons: what does it mean? PLoS ONE 6. DOI: 10.1371/journal.pone.0016131.Google Scholar
Sueur, C., Briard, L., and Petit, O. 2011. Individual analyses of Lévy walk in semi-free ranging tonkean macaques (Macaca tonkeana). PLoS ONE 6. DOI: 10.1371/journal.pone.0026788.Google Scholar
Swedell, L. 2000. Two takeovers in wild hamadryas baboons. Folia Primatologica 71: 169172.Google Scholar
Swedell, L. 2002a. Affiliation among females in wild hamadryas baboons (Papio hamadryas hamadryas). International Journal of Primatology 23: 12051226.Google Scholar
Swedell, L. 2002b. Ranging behavior, group size and behavioral flexibility in Ethiopian hamadryas baboons (Papio hamadryas hamadryas). Folia Primatologica 73: 95103.Google Scholar
Swedell, L. 2006. Strategies of Sex and Survival in Hamadryas Baboons: Through a Female Lens. Prentice Hall, Upper Saddle River, NJ.Google Scholar
Swedell, L. and Schreier, A. 2009. Male aggression towards females in hamadryas baboons: conditioning, coercion, and control. Pages 244268 in Sexual Coercion in Primates: An Evolutionary Perspective on Male Aggression Against Females. Muller, M. N. and Wrangham, R. (Eds.). Harvard University Press, Cambridge, MA.Google Scholar
Swedell, L., Hailemeskel, G., and Schreier, A. 2008. Composition and seasonality of diet in adult male hamadryas baboons: preliminary findings from Filoha. Folia Primatologica 79: 476490.Google Scholar
Swedell, L., Saunders, J., Schreier, A., et al. 2011. Female “dispersal” in hamadryas baboons: transfer among social units in a multi-level society. American Journal of Physical Anthropology 145: 360370.Google Scholar
Turchin, P. 1998. Quantitative Analysis of Movement. Sinauer Associates, Sunderland, MA.Google Scholar
Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., et al. 1996. Levy flight search patterns of wandering albatrosses. Nature 381: 413415.Google Scholar
Viswanathan, G. M., Bartumeus, F., Buldyrev, S. V., et al. 2002. Levy flight random searches in biological phenomena. Physica A: Statistical Mechanics and Its Applications 314: 208213.Google Scholar
Viswanathan, G. M., Buldyrev, S. V., Havlin, S., et al. 1999. Optimizing the success of random searches. Nature 401: 911914.Google Scholar
Viswanathan, G. M., Raposo, E. P., and da Luz, M. G. E. 2008. Levy flights and superdiffusion in the context of biological encounters and random searches. Physics of Life Reviews 5: 133150.Google Scholar
Ward, D. and Saltz, D. 1994. Foraging at different spatial scales: dorcas gazelles foraging for lilies in the Negev Desert. Ecology 75: 4858.Google Scholar
Zinner, D., Pelaez, F., and Torkler, F. 2001. Distribution and habitat associations of baboons (Papio hamadryas) in central Eritrea. International Journal of Primatology 22: 397413.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×