Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T05:11:28.976Z Has data issue: false hasContentIssue false

26 - Astrobiology

from V - Exoplanets and exobiology

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, J. (2007). Rainbows, polarization and the search for habitable planets. Astrobiology, 7(2), 320332.CrossRefGoogle ScholarPubMed
Bailey, J., Chrysostomou, A., Hough, J. H.et al. (1998). Circular polarization in star-formation regions: Implications for biomolecular homochirality. Science, 281(5377), 672674.CrossRefGoogle Scholar
Bandermann, L. W., Kemp, J. C., and Wolstencroft, R. D. (1972). Circular polarization of light scattered from rough surfaces. Monthly Notices of the Royal Astronomical Society, 158, 291304.CrossRefGoogle Scholar
Barron, L. D. (2008). Chirality and life. Space Science Reviews, 135, 187201.CrossRefGoogle Scholar
Biot, J. B. (1815). Bulletin of the Société Philomathique de Paris. 190.Google Scholar
Blackmond, D. G. (2004). Asymmetric autocatalysis and its implications for the origin of homochirality. Proceedings of the National Academy of Sciences, 101(16), 57325736.CrossRefGoogle ScholarPubMed
Blankenship, R. E. (2002). Molecular Mechanisms of Photosynthesis. Oxford: Blackwell Science Ltd.CrossRefGoogle Scholar
Bohren, C. F. (1974). Light scattering by optically active sphere. Chemical Physics Letters, 29, 458462.CrossRefGoogle Scholar
Bohren, C. F. (1975). Scattering of electromagnetic waves by an optically active spherical shell. The Journal of Chemical Physics, 62, 15661571.CrossRefGoogle Scholar
Bohren, C. F. (1978). Scattering of electromagnetic waves by an optically active cylinder. Journal of Colloid and Interface Science, 66, 105109.CrossRefGoogle Scholar
Buschermöhle, M., Whittet, D. C. B., Chrysostomou, A.et al. (2005). An extended search for circularly polarized infrared radiation from the OMC-1 region of Orion. Astrophysical Journal, 624, 821826.CrossRefGoogle Scholar
Cahn, R. S., Ingold, C. K., and Prelog, V. (1956). The specification of asymmetric configuration in organic chemistry. Experientia, 12, 8194.CrossRefGoogle Scholar
Chrysostomou, A., Menard, F., Gledhill, T. M.et al. (1997). Polarimetry of young stellar objects – II. Circular polarization of GSS30. Monthly Notices of the Royal Astronomical Society, 285, 750758.CrossRefGoogle Scholar
Chrysostomou, A., Gledhill, T. M., Menard, F.et al. (2000). Polarimetry of young stellar objects – III. Circular polarimetry of OMC-1. Monthly Notices of the Royal Astronomical Society, 312, 103115.CrossRefGoogle Scholar
Chyba, C. F., Thomas, P. J., Brookshaw, L., and Sagan, C. (1990). Cometary delivery of organic molecules to the early Earth. Science, 249(4967), 366373.CrossRefGoogle Scholar
Clayton, G. C., Whitney, B. A., Wolff, M. J., Smith, P., and Gordon, K. D. (2005). Circular polarization mapping of protostellar environments: Searching for aligned grains. In Adamson, A., Aspin, C., Davis, C. J., and Fujiyoshi, T., eds., Astronomical Polarimetry: Current Status and Future Directions. ASP Conference Series, Vol. 343. San Francisco CA: ASP, pp. 122127.Google Scholar
Cline, D. B. (2005). On the physical origin of the homochirality of life. European Review, 13, 4959.CrossRefGoogle Scholar
Cooray, M. F. R. and Ciric, I. R. (1993). Wave scattering by a chiral spheroid. Journal of the Optical Society of America A, 10, 11971203.CrossRefGoogle Scholar
Cotton, A. (1895a). Absorption inégale des rayons circulaires droit et gauche dans certain corps actifs. Comptes Rendus Chimie, 120, 989991.Google Scholar
Cotton, A. (1985b). Dispersion rotatoire anomale des corps absorbants. Comptes Rendus Chimie, 120, 10441046.Google Scholar
Cronin, J. R. and Chang, S. (1993). Organic matter in meteorites: Molecular and isotopic analysis of the Murchison meteorite. In The Chemistry of Life’s Origins. Kluwer Academic Publishers, pp. 209258.CrossRefGoogle Scholar
Cronin, J. R. and Pizzarello, S. (1997). Enantiomeric excesses in meteoritic amino acids. Science, 275, 951955.CrossRefGoogle ScholarPubMed
Des Marais, D. J., Nuth, J. A., III, Allamandola, L. J.et al. (2008). The NASA astrobiology roadmap. Astrobiology, 8, 715730, doi: 10.1089/ast.2008.0819.CrossRefGoogle ScholarPubMed
Dollfus, A. (1957). Étude des planètes par la polarisation de leur lumière. Supplements aux Annales d’Astrophysique, 4, 3114.Google Scholar
Dundas, C. M., Diniega, S., Hansen, C. J., Byrne, S., and McEwen, A. S. (2012). Seasonal activity and morphological changes in Martian gullies. Icarus, 220, 124143.CrossRefGoogle Scholar
Eliel, E. L. and Wilen, S. H. (1994). Stereochemistry of Organic Compounds. Chichester: John Wiley and Sons, Inc.Google Scholar
Flores, J. J., Bonner, W. A., and Massey, G. A. (1977). Asymmetric photolysis of (RS)-leucine with circularly polarized ultraviolet light. The Journal of the American Chemical Society, 99(11), 36223624.CrossRefGoogle ScholarPubMed
Flynn, G. J., Keller, L. P., Feser, M., Wirick, S., and Jacobsen, C. (2003). The origin of organic matter in the solar system: Evidence from the interplanetary dust particles. Geochimica et Cosmochimica Acta, 67(24), 47914806.CrossRefGoogle Scholar
Fukue, T., Tamura, M., Kandori, R.et al. (2010). Extended high circular polarization in the Orion massive star forming region: Implications for the origin of homochirality in the solar system. Origins of Life and Evolution of Biospheres, 40(3), 335346.CrossRefGoogle ScholarPubMed
Glavin, D. P., Elsila, J. E., Burton, A. S.et al. (2012). Unusual nonterrestrial L-proteinogenic amino acid excess in the Tagish lake meteorite. Meteoritics and Planetary Science, 47(8), 13471364.CrossRefGoogle Scholar
Glavin, D. P., Burton, A. S., Elsila, J. E.et al. (2013). The abundance and enantiomeric composition of amino acids in the Sutter’s Mill carbonaceous chondrite. In Proceedings of the 44th Lunar and Planetary Science Conference, March 18–22, 2013 in The Woodlands, Texas. Houston TX: LPI. LPI Contribution No. 1719, pp. 11891190.Google Scholar
Gledhill, T. M. and McCall, A. (2000). Circular polarization by scattering from spheroidal dust grains. Monthly Notices of the Royal Astronomical Society, 314, 123137.CrossRefGoogle Scholar
Graham, J. R., Kalas, P., and Matthews, B. C. (2007). The Signature of primordial grain growth in the polarized light of the AU Microscopii debris disk. The Astrophysical Journal, 654, 595605.CrossRefGoogle Scholar
Hansen, J. E. and Hovenier, J. W. (1974). Interpretation of the polarization of Venus. Journal of the Atmospheric Sciences, 31, 11371160.2.0.CO;2>CrossRefGoogle Scholar
Hegstrom, R. A., Rein, D. W., and Sanders, P. G. H. (1980). Calculation of the parity nonconserving energy difference between mirror-image molecules. The Journal of Chemical Physics, 73, 23292341.CrossRefGoogle Scholar
Hester, J. J., Desch, S. J., Healy, K. R., and Leshin, L. A. (2004). The cradle of the solar system. Science, 304, 11161117.CrossRefGoogle ScholarPubMed
Horikoshi, K. and Bull, A. T. (2011). Prologue: Definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In Extremophiles Handbook. Japan: Springer, pp. 315.CrossRefGoogle Scholar
Hough, J. H., Lucas, P. W., Bailey, J. A.et al. (2006). PlanetPol: A very high sensitivity polarimeter. Publications of the Astronomical Society of the Pacific, 118, 13021318.CrossRefGoogle Scholar
Houssier, C. and Sauer, K. (1970). Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments. Journal of the American Chemical Society, 92, 779791.CrossRefGoogle Scholar
Johnson, W. C. (1996). Determination of the conformation of nucleic acids by electronic CD. In Fasman, G. D., ed., Circular Dichroism and the Conformational Analysis of Biomolecules. New York: Plenum Press.Google Scholar
Kasting, J. F., Whitmire, D. P., and Reynolds, R. T. (1993). Habitable zones around main sequence stars. Icarus, 101, 108128.CrossRefGoogle ScholarPubMed
Kelly, S. M. and Price, N. C. (2000). The use of circular dichroism in the investigation of protein structure and function. Current Protein & Peptide Science, 1, 349384.CrossRefGoogle ScholarPubMed
Kelvin, Lord (Thomson, W.) (1904). Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light. London: C. J. Clay and Sons.Google Scholar
Kemp, J. C. (1974). Circular polarization of plants. In Gehrels, T., ed., Plates, Stars and Nebulae. Tucson: The University of Arizona Press, pp. 607616.Google Scholar
Kemp, J. C. and Wolstencroft, R. D. (1971). Elliptical polarization by surface layer scattering. Nature, 231, 170171.CrossRefGoogle ScholarPubMed
Kemp, J. C., Wolstencroft, R. D., and Swedlund, J. B. (1971). Circular polarization: Jupiter and other planets. Nature, 232, 165168.CrossRefGoogle ScholarPubMed
Kemp, J. C., Henson, G. D., Steiner, C. T., and Powell, E. R. (1987). The optical polarization of the sun measured at a sensitivity of parts in ten million. Nature, 326, 270273.CrossRefGoogle Scholar
Kiang, N. Y. (2008). The color of plants on other worlds. Scientific American, April, 4855.CrossRefGoogle Scholar
Kiang, N. Y., Siefert, J., and Blankenship, R. E. (2007a). Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology, 7(1), 222251.CrossRefGoogle ScholarPubMed
Kiang, N. Y., Segura, A., Tinetti, G.et al. (2007b). Spectral signatures of photosynthesis II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology, 7, 252274.CrossRefGoogle ScholarPubMed
Kwon, J., Tamura, M., Lucas, P. W.et al. (2013). Near-infrared circular polarization images of NGC6334V. The Astrophysical Journal Letters, 765, 16.Google Scholar
Landis, G. A. (2001). Martian water: Are there extant halobacteria on Mars?Astrobiology, 1, 161164.CrossRefGoogle ScholarPubMed
Lucas, P. W., Hough, J. H., Bailey, J.et al. (2005). UV circular polarisation in star formation regions: The origin of homochirality?Origins of Life and Evolution of Biospheres, 35(1), 2960.CrossRefGoogle ScholarPubMed
Mackowski, D. W. and Mishchenko, M. I. (2011). A multiple sphere T-matrix Fortran code for use on parallel computer clusters. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 21822192.CrossRefGoogle Scholar
Mackowski, D. W., Kolokolova, L., and Sparks, W. (2011). T-matrix approach to calculating circular polarization of aggregates made of optically active materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 17261732.CrossRefGoogle Scholar
Malin, M. C., Edgett, K. S., Posiolova, L. V., McColley, S. M., and Dobrea, E. Z. N. (2006). Present-day impact cratering rate and contemporary gully activity on Mars. Science, 314, 15731577.CrossRefGoogle ScholarPubMed
Martin, W. E., Hesse, E., Hough, J. H.et al. (2010). Polarized optical scattering signatures from biological material. Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 24442459.CrossRefGoogle Scholar
McCullough, P. (2006). Models of polarized light from oceans and atmospheres of Earth-like extrasolar planets. arXiv:astro-ph/0610518.Google Scholar
Meierhenrich, U. J., Thiemann, W. H.-P., Barbier, B.et al. (2002). Circular polarization of light by planet Mercury and enantiomorphism of its surface minerals. Origins of Life and Evolution of Biospheres, 32, 181190.CrossRefGoogle ScholarPubMed
Meierhenrich, U. J., Filippi, J.-J., Meinert, C.et al. (2010). Circular dichroism of amino acids in the vacuum-ultraviolet region. Angewandte Chemie International Edition, 49, 77997802.CrossRefGoogle ScholarPubMed
Milli, J., Mouillet, D., Mawet, D.et al. (2013). Prospects for detecting the polarimetric signature of the Earth-mass planet alpha Centauri B b with SPHERE/ZIMPOL. Astronomy and Astrophysics, 556, 6468, astro-ph/1306.1006.CrossRefGoogle Scholar
Mumma, M. J., Villanueva, G. L., Novak, R. E.et al. (2009). Strong release of methane on Mars in Northern Summer 2003. Science, 323, 10411045.CrossRefGoogle ScholarPubMed
Nagdimunov, L., Kolokolova, L., and Mackowski, D. (2013a). Characterization and remote sensing of biological particles using circular polarization. Journal of Quantitative Spectroscopy and Radiative Transfer, 131, 5965, doi 10.1016/j.jqsrt.2013.04.018.CrossRefGoogle Scholar
Nagdimunov, L., Kolokolova, L., and Sparks, W. (2013b). Polarimetric technique to study (pre)biological organics in cosmic dust and planetary aerosols. Earth, Planets and Space, 65, 11671173.CrossRefGoogle Scholar
Ohishi, M. (1997). Observations of “hot cores”. In van Dishoek, E. F., ed., Molecules in Astrophysics: Probes and Processes. IAU Symposium, Vol. 178. Dordrecht, The Netherlands: Kluwer, pp. 6174.Google Scholar
Pasteur, M. L. (1850). Recherches sur les Propriétés Spécifiques des deux Acides qui composent l’Acide Racémique. Annales de Chimie et de physique, 28, 5699.Google Scholar
Pizzarello, S. and Cronin, J. R. (2000). Non-racemic amino acids in the Murray and Murchison meteorites. Geochimica et Cosmochimica Acta, 64, 329338.CrossRefGoogle ScholarPubMed
Pizzarello, S. and Weber, A. L. (2004). Prebiotic amino acids as asymmetric catalysts. Science, 303, 1151.CrossRefGoogle ScholarPubMed
Pospergelis, M. M. (1969). Spectroscopic measurements of the four Stokes parameters for light scattered by natural objects. Soviet Astronomy, 12, 973977.Google Scholar
Raven, J. A. and Wolstencroft, R. D. (2004). Constraints on photosynthesis on Earth and Earth-like planets. In Norris, R. P. and Stootman, F. H., eds., Bioastronomy 2002: Life Among the Stars. Proceedings of the IAU Symposium. San Francisco: Astronomical Society of the Pacific, pp. 305308.Google Scholar
Riehl, J. P. and Richardson, F. S. (1986). Circularly polarized luminescence spectroscopy. Chemical Reviews, 86, 116.CrossRefGoogle Scholar
Rosenbush, V., Kolokolova, L., Lazarian, A., Shakhovskoj, N., and Kiselev, N. (2007). Circular polarization in comets: Observations of Comet C/1999 S4 (LINEAR) and tentative interpretation. Icarus, 186, 317330.CrossRefGoogle Scholar
Satoh, S., Ikeuchi, M., Mimuro, M., and Tanaka, A. (2001). Chlorophyll b expressed in Cyanobacteria functions as a light-harvesting antenna in photosystem I through flexibility of the proteins. The Journal of Biological Chemistry, 276, 42934297.CrossRefGoogle ScholarPubMed
Scheer, H. (1991). Chemistry of chlorophylls. In Scheer, H., ed., Chlorophylls. Boca Raton FL: CRC Press, pp. 330.Google Scholar
Schmid, H. M., Beuzit, J.-L., Feldt, M.et al. (2006). Search and investigation of extra-solar planets with polarimetry. In Aime, C. and Vakili, F., eds., Direct Imaging of Exoplanets: Science and Techniques. Proceedings of the IAU Colloquium, Vol. 200. Cambridge University Press, pp. 165170.Google Scholar
Seager, S., Turner, E. L., Schafer, J., and Ford, E. B. (2005). Vegetation’s red edge: A possible spectroscopic biosignature of extraterrestrial plants. Astrobiology, 5, 372390.CrossRefGoogle Scholar
Sephton, M. (2002). Organic compounds in carbonaceous meteorite. Natural Product Reports, 19, 292311.CrossRefGoogle Scholar
Soai, K. and Kawasaki, T. (2008). Asymmetric autocatalysis with amplification of chirality. Topics in Current Chemistry, 284, 133.Google Scholar
Sparks, W. B., Hough, J. H., and Bergeron, L. E. (2005). A search for chiral signatures on Mars. Astrobiology, 5, 737748.CrossRefGoogle ScholarPubMed
Sparks, W. B., Hough, J., Germer, T. A.et al. (2009a). Detection of circular polarization in light scattered from photosynthetic microbes. Proceedings of the National Academy of Sciences, 106, 78167821.CrossRefGoogle ScholarPubMed
Sparks, W. B., Hough, J. H., Kolokolova, L.et al. (2009b). Circular polarization in scattered light as a possible biomarker. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 17711779.CrossRefGoogle Scholar
Sparks, W. B., Hough, J. H., Germer, T. A., Robb, F., and Kolokolova, L. (2012). Remote sensing of chiral signatures on Mars. Planetary and Space Science, 72, 111115.CrossRefGoogle Scholar
Stam, D. M. (2008). Spectropolarimetric signatures of Earth-like extrasolar planets. Astronomy and Astrophysics, 482, 9891007.CrossRefGoogle Scholar
Sterzik, M., Bagnulo, S., Azua, A.et al. (2010). Astronomy meets biology: EFOSC2 and the chirality of life. The Messenger, 142, 2527.Google Scholar
Sterzik, M. F., Bagnulo, S., and Palle, E. (2012). Biosignatures as revealed by spectropolarimetry of Earthshine. Nature, 483, 6466.CrossRefGoogle ScholarPubMed
Tachibana, S., Huss, G. R., Kita, N. T., Shimoda, G., and Morishita, Y. (2006). 60Fe in Chondrites: Debris from a nearby supernova in the early solar system?The Astrophysical Journal, 639, L87L90.CrossRefGoogle Scholar
Takahashi, J., Itoh, Y., Akitaya, H.et al. (2013). Phase variation of Earthshine polarization spectra. Publications of the Astronomical Society of Japan, 65, 9.CrossRefGoogle Scholar
Takats, Z., Nanita, S. C., and Cooks, R. G. (2003). Serine octamer reactions: Indicators of prebiotic relevance. Angewandte Chemie International Edition England, 42, 35213523.CrossRefGoogle ScholarPubMed
Vanderbilt, V. C., Grant, L., and Daughtry, C. S. T. (1985). Polarization of light scattered by vegetation. Proceedings of IEEE, 73, 10121024.CrossRefGoogle Scholar
Van Heijenoort, J. (2001). Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology, 11(3), 25R36R.CrossRefGoogle ScholarPubMed
Villanueva, G. L., Mumma, M. J., Novak, R. E.et al. (2013). A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy. Icarus, 223, 1117.CrossRefGoogle Scholar
Wald, G. (1957). The origin of optical activity. Annals of the New York Academy of Sciences, 69, 352368.CrossRefGoogle ScholarPubMed
Whitton, B. A. and Potts, M. (2000). Introduction to the cyanobacteria. In Whitton, B. A. and Potts, M., eds., The Ecology of Cyanobacteria: Their Diversity in Time and Space. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 111.Google Scholar
Wolstencroft, R. D. and Raven, J. A. (2002). Photosynthesis: Likelihood of occurrence and possibility of detection on Earth-like planets. Icarus, 157, 535548.CrossRefGoogle Scholar
Wolstencroft, R. D., Tranter, G. E., and Le Pevelen, D. D. (2004). Diffuse reflectance circular dichroism for the detection of molecular chirality: An application in remote sensing of flora. In Norris, R. P. and Stootman, F. H., eds., Bioastronomy 2002: Life Among the Stars. Proceedings of the IAU Symposium. San Francisco: Astronomical Society of the Pacific, pp. 149153.Google Scholar
Wolstencroft, R. D., Breon, F., and Tranter, G. (2007). Polarization of light reflected from forest canopies on Earth with applications to Earth-like planets with realistic cloud cover. AAS Meeting 210, #09.06, Bulletin of the American Astronomical Society, 39, 106.Google Scholar
Zahnle, K., Freedman, R. S., and Catling, D. C. (2011). Is there methane on Mars?Icarus, 212, 493503.CrossRefGoogle Scholar
Zugger, M. E., Kasting, J. F., Williams, D. M., Kane, T. J., and Philbrick, C. R. (2010). Light scattering from exoplanet oceans and atmospheres. The Astrophysical Journal, 723, 11681179.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×