Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-12T21:32:48.887Z Has data issue: false hasContentIssue false

25 - Holographic Optical Neural Interfacing with Retinal Neurons

from Part V - Optogenetics in Vision Restoration and Memory

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 371 - 381
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anselmi, F., Ventalon, C., Begue, A., et al. (2011). “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning.” Proc Natl Acad Sci U S A 108: 1950419509.CrossRefGoogle ScholarPubMed
Bertschinger, D. R., Beknazar, E., Simonutti, M., et al. (2008). “A review of in vivo animal studies in retinal prosthesis research.” Graefes Arch Clin Exp Ophthalmol 246: 15051517.CrossRefGoogle ScholarPubMed
Bi, A., Cui, J., Ma, Y. P., et al. (2006). “Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration.” Neuron 50: 2333.CrossRefGoogle ScholarPubMed
Borghuis, B. G., Tian, L., Xu, Y., et al. (2011). “Imaging light responses of targeted neuron populations in the rodent retina.” J Neurosci 31: 28552867.CrossRefGoogle ScholarPubMed
Busskamp, V., Duebel, J., Balya, D., et al. (2010). “Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa.” Science 329: 413417.CrossRefGoogle ScholarPubMed
Chen, T. W., Wardill, T. J., Sun, Y., et al. (2013). “Ultrasensitive fluorescent proteins for imaging neuronal activity.” Nature 499: 295300.CrossRefGoogle Scholar
Dana, H., Chen, T. W., Hu, A., et al. (2014). “Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo.” PLoS One 9: e108697.CrossRefGoogle ScholarPubMed
Doroudchi, M. M., Greenberg, K. P., Liu, J., et al. (2011). “Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness.” Mol Ther 19: 12201229.CrossRefGoogle ScholarPubMed
Emiliani, V., Cohen, A. E., Deisseroth, K., et al. (2015). “All-optical interrogation of neural circuits.” J Neurosci 35: 1391713926.CrossRefGoogle ScholarPubMed
Farah, N., Levinsky, A., Brosh, I., et al. (2015). “Holographic fiber bundle system for patterned optogenetic activation of large-scale neuronal networks.” Neurophotonics 2: 045002.CrossRefGoogle ScholarPubMed
Farah, N., Reutsky, I. and Shoham, S. (2007). “Patterned optical activation of retinal ganglion cells.” Conf Proc IEEE Eng Med Biol Soc 2007: 63686370.Google ScholarPubMed
Farah, N., Zoubi, A., Matar, S., et al. (2013). “Holographically patterned activation using photo-absorber induced neural-thermal stimulation.” J Neural Eng 10: 056004.CrossRefGoogle Scholar
Gaub, B. M., Berry, M. H., Holt, A. E., et al. (2015). “Optogenetic vision restoration using rhodopsin for enhanced sensitivity.” Mol Ther 23: 15621571.CrossRefGoogle ScholarPubMed
Golan, L., Reutsky, I., Farah, N., et al. (2009). “Design and characteristics of holographic neural photo-stimulation systems.” J Neural Eng 6: 066004.CrossRefGoogle Scholar
Golan, L. and Shoham, S. (2009). “Speckle elimination using shift-averaging in high-rate holographic projection.” Opt Express 17: 13301339.CrossRefGoogle ScholarPubMed
Grossman, N., Poher, V., Grubb, M. S., et al. (2010). “Multi-site optical excitation using ChR2 and micro-LED array.” J Neural Eng 7: 16004.CrossRefGoogle ScholarPubMed
Gualda, E. J., Bueno, J. M. and Artal, P. (2010). “Wavefront optimized nonlinear microscopy of ex vivo human retinas.” J. Biomed. Opt. 15: 026007.CrossRefGoogle ScholarPubMed
Humayun, M. S., Dorn, J. D., da Cruz, L., et al. (2012). “Interim results from the international trial of Second Sight’s visual prosthesis.” Ophthalmology 119: 779788.CrossRefGoogle Scholar
Lagali, P. S., Balya, D., Awatramani, G. B., et al. (2008). “Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration.” Nat Neurosci 11: 667675.CrossRefGoogle Scholar
Mace, E., Caplette, R., Marre, O., et al. (2015). “Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV Restores ON and OFF visual responses in blind mice.” Mol Ther 23: 716.CrossRefGoogle ScholarPubMed
Mandel, Y., Goetz, G., Lavinsky, D., et al. (2013). “Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials.” Nat Commun 4: 1980.CrossRefGoogle ScholarPubMed
Margalit, E., Weiland, J. D., De Juan, E., et al. (2003). Chapter 7.5 in Neuroprosthetics: Theory and Practice. World Scientific Publishers, New Jersey.Google Scholar
Nirenberg, S. and Pandarinath, C. (2012). “Retinal prosthetic strategy with the capacity to restore normal vision.” Proc Natl Acad Sci U S A 109: 1501215017.CrossRefGoogle ScholarPubMed
Palczewska, G., Dong, Z., Golczak, M., et al. (2014). “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye.” Nat Med 20: 785789.CrossRefGoogle ScholarPubMed
Paques, M., Guyomard, J. L., Simonutti, M., et al. (2007). “Panretinal, high-resolution color photography of the mouse fundus.” Invest Ophthalmol Vis Sci 48: 27692774.CrossRefGoogle ScholarPubMed
Reutsky-Gefen, I., Golan, L., Farah, N., et al. (2013). “Holographic optogenetic stimulation of patterned neuronal activity for vision restoration.” Nat Commun 4: 1509.CrossRefGoogle ScholarPubMed
Roska, B. and Pepperberg, D. (2014). “Restoring vision to the blind: optogenetics.” Transl Vis Sci Technol 3: 4.Google Scholar
Schejter, A., Tsur, L., Farah, N., et al. (2012). “Cellular resolution panretinal imaging of optogenetic probes using a simple funduscope.” Trans Vis Sci Tech 1: 4.CrossRefGoogle ScholarPubMed
Schejter Bar-Noam, A., Farah, N. and Shoham, S. (2016). “Correction-free remotely scanned two-photon in vivo mouse retinal imaging.” Light: Science & Applications 5: e16007.CrossRefGoogle Scholar
Sharma, R., Yin, L., Geng, Y., et al. (2013). “In vivo two-photon imaging of the mouse retina.” Biomed Opt Express 4: 12851293.CrossRefGoogle ScholarPubMed
van Wyk, M., Pielecka-Fortuna, J., Lowel, S., et al. (2015). “Restoring the ON switch in blind retinas: opto-mGluR6, a next-generation, cell-tailored optogenetic tool.” PLoS Biol 13: e1002143.CrossRefGoogle ScholarPubMed
Walter, P., Kisvarday, Z. F., Gortz, M., et al. (2005). “Cortical activation via an implanted wireless retinal prosthesis.” Invest Ophthalmol Vis Sci 46: 17801785.CrossRefGoogle ScholarPubMed
Wang, S., Szobota, S., Wang, Y., et al. (2007). “All optical interface for parallel, remote, and spatiotemporal control of neuronal activity.” Nano Lett 7: 38593863.CrossRefGoogle ScholarPubMed
Weiland, J. D. and Humayun, M. (2014). “Retinal prosthesis.” IEEE Trans Biomed Eng 61: 14121424.CrossRefGoogle ScholarPubMed
Wilms, M., Eger, M., Schanze, T., et al. (2003). “Visual resolution with epi-retinal electrical stimulation estimated from activation profiles in cat visual cortex.” Vis Neurosci 20: 543555.CrossRefGoogle ScholarPubMed
Yang, S., Papagiakoumou, E., Guillon, M., et al. (2011). “Three-dimensional holographic photostimulation of the dendritic arbor.” J Neural Eng 8: 046002.CrossRefGoogle Scholar
Zrenner, E., Bartz-Schmidt, K. U., Benav, H., et al. (2011). “Subretinal electronic chips allow blind patients to read letters and combine them to words.” Proc Biol Sci 278: 14891497.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×